Linear Systems (034032) lecture no.6

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

V

Outline

Some standard systems

Principal properties

LTI systems in the time domain

Reminder: systems

- Systems are constraints imposed on interdependent signals of interest.
- $\mbox{ I/O}$ systems map input signals (action) to output signals (reaction).
- The relation between signals in a system $G: u \mapsto y$ is denoted y = Gu.
- Models are relations between involved signals described by an abstract (mathematical) language under simplifying assumptions.
- $-\,$ Block-diagrams represent information flow in I/O systems, like

and are convenient to visualize interconnected systems

Gain

It is a system $u \mapsto y$ such that

y = ku

for a given gain

- either constant, $k\in\mathbb{R}$
- or varying,
 - $k : \mathbb{R} \to \mathbb{R}$, in the continuous-time case so y(t) = k(t)u(t)
 - $k: \mathbb{Z} \to \mathbb{R}$, in the discrete-time case so y[t] = k[t]u[t]

Think of an amplifier, gearbox, currency converter, ... as examples of such systems.

Saturation

It is a system $u \mapsto y$, which we denote sat_[a,b], such that

$$y(t) = \begin{cases} a & \text{if } u(t) < a \\ u(t) & \text{if } a \le u(t) \le b \\ b & \text{if } u(t) > b \end{cases} \quad \text{or} \quad y[t] = \begin{cases} a & \text{if } u[t] < a \\ u[t] & \text{if } a \le u[t] \le b \\ b & \text{if } u[t] > b \end{cases}$$

for given a < b. We use the short notation $sat_a := sat_{[-a,a]}$ for some a > 0. Think of a gas pedal in cars, water tap, integer overflow in computers, etc.

Sample-and-hold

It is a continuous-time system $G_{S\&H}: u \mapsto y$ such that

$$y(t) = u\left(\left\lfloor \frac{t}{h}
ight
vert h
ight) \quad \Longleftrightarrow \quad y(ih+ au) = u(ih), \quad \forall au \in (0,h)$$

for a given sampling interval h > 0. It is a basic block of any sampled-data control / signal processing system.

Block-diagram notation:

Quantizer

It is a system $u \mapsto y$, which we denote qnt_q , such that

$$y = q \left\lfloor \frac{u}{q} \right\rfloor$$
 or, maybe, $y = q \left\lfloor \frac{u}{q} + \frac{1}{2} \right\rfloor$

for a given threshold q > 0. Think of an incremental encoder sensing, finite word-length effects in computers, etc.

Integrator

In continuous time: the system $G_{int} : u \mapsto y$ such that

$$y(t) = \int_{-\infty}^t u(s) \mathrm{d}s$$

Think of a water tank with no outflow, odometer, electricity / water meters, etc

In discrete time: the system $G_{int} : u \mapsto y$ such that

$$y[t] = \sum_{s=-\infty}^{t} u[s]$$

Think of your (well-organized) mail account Inbox, Trash folder, etc.

Finite-memory integrator

In continuous time: the system $G_{fmi,\mu}: u \mapsto y$ such that

$$y(t) = \int_{t-\mu}^{t} u(s) ds$$
 or $y(t) = \int_{t-\mu(t)}^{t} u(s) ds$

for a given $\mu > 0$ or function $\mu : \mathbb{R} \to \mathbb{R}_+$. Think of a pipeline (if its content is of interest as the output), vehicle line at a traffic light (abroad), etc.

In discrete time: the system $G_{\text{fmi},\mu}: u \mapsto y$ such that

$$y[t] = \sum_{s=t-\mu}^{t} u[s]$$
 or $y[t] = \sum_{s=t-\mu[t]}^{t} u[s]$

for some $\mu\in\mathbb{N}$ or function $\mu:\mathbb{Z}\to\mathbb{N}.~$ Think of a circular buffer, a FIFO queue, etc.

Second-order system

In continuous time: the system $G_{2o}: u \mapsto y$ such that

 $\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_1 \dot{u}(t) + b_0 u(t)$

for constant real parameters a_1 , a_0 , and $b \neq 0$. Think of mass-spring-damper $\overrightarrow{a_1}$ or $\overrightarrow{a_1}$ and *RLC*-circuit $\overrightarrow{a_1}$, which we already saw.

In discrete time: the system $G_{1o}: u \mapsto y$ such that

 $y[t+2] + a_1y[t+1] + a_0y[t] = b_2u[t+2] + b_1u[t+1] + b_0u[t]$

Some believe (Keynesian economics) that this is how the GNP evolves as a function of governmental expenditure¹; the Fibonacci sequence is generated by this system², ...

¹With $a_1 = -\alpha(1 + \beta)$, $a_0 = \alpha\beta$, $b_2 = 1$, and $b_1 = b_0 = 0$, where α is the part of the GNP going to consumption and β is the part of the GNP grows invested. ²With $a_1 = a_0 = -1$, $b_2 = b_0 = 0$, $b_1 = 1$, and $u = \delta$.

First-order system

In continuous time: the system $G_{1o}: u \mapsto y$ such that

$$\dot{y}(t) + a_0 y(t) = b_0 u(t)$$

for constant real parameters a_0 and $b_0 \neq 0$. Think of a thermometer \sim , spring-damper \downarrow , and *RL*-circuit $\langle , , \rangle$, which we already saw.

In discrete time: the system $G_{1o}: u \mapsto y$ such that

$$y[t+1] + a_0 y[t] = b_1 u[t+1] + b_0 u[t]$$

Think of a saving program, loan return, simple population grows model (if the birth and mortality rates are *assumed* to be in constant proportions to the total population and the input is migrations), etc.

Delay element

In continuous time: the system $\overline{D}_{\tau} : u \mapsto y$ such that $y = \mathbb{S}_{-\tau} u$, i.e.

$$y(t) = u(t - \tau)$$
 or $y(t) = u(t - \tau(t))$

for a given $\tau > 0$ or function $\tau : \mathbb{R} \to \mathbb{R}_+$. Think of a conveyor belt, toaster, satellite transmission, optical fibers, etc.

In discrete time: the system $\overline{D}_{\tau} : u \mapsto y$ such that $y = S_{-\tau}u$, i.e.

$$y[t] = u[t - \tau]$$
 or $y[t] = u[t - \tau[t]]$

for some $\tau \in \mathbb{N}$ or a function $\tau : \mathbb{Z} \to \mathbb{N}$. Think of a digital communication channel, exam grading, US presidential inauguration, etc.

Causality

A system $u \mapsto y$ is said to be causal if

- y at every time instance $t_{\rm c}$ can depend only on u at $t \leq t_{\rm c}$ and not at $t > t_{\rm c}.$

Every static system is obviously causal. A formal way to define causality is to require

$$\chi_{\tau}(Gu) = \chi_{\tau}(G(\chi_{\tau}u)), \quad \forall \tau \in \mathbb{R}$$

where the signal $\chi_{\tau} := \mathbb{S}_{-\tau}(\mathbb{P}_{-1}\mathbb{1}) = -\tau$, meaning that inputs at $t > \tau$ do not affect outputs at $t \leq \tau$.

Examples

- causal systems: everything studied today
- $-\,$ non-causal systems: sample-and-hold with the first-order hold

Static & dynamic systems

A system $u \mapsto y$ is said to be static if

- y at every time instance t_c can depend only on u at $t = t_c$ and not at $t < t_c$ or $t > t_c$.

Otherwise, i.e. if at some time instances the output may depend on past or future inputs, the system is dubbed dynamic. In other words, static systems are memoryless, while dynamic systems have memory.

Examples

- static systems: gain, saturation, quantizer
- dynamic systems: integrator, finite-memory integrator, 1- and 2-order systems, delay

SISO & MIMO systems

If both u and y are scalar-valued, we say that a system $G: u \mapsto y$ is SISO (single-input/single-output). If either of those signals is vector-values, then we say that G is MIMO (multiple-input/multiple-output).

Linearity

A system $G: u \mapsto y$ is said to be linear if

$$G(a_1u_1 + a_2u_2) = a_1(Gu_1) + a_2(Gu_2)$$

for all admissible inputs u_1 and u_2 and all scalars a_1 and a_2 . In other words, linearity requires superposition property to hold. An alternative definition is in terms of additivity and homogeneity, i.e.

 $G(u_1+u_2) = Gu_1 + Gu_2$ and G(au) = a(Gu)

Remark. By homogeneity, $u = 0 \implies Gu = 0$ whenever G is linear. In other words, the zero input necessarily produces the zero output.

Linearity is a very useful property, greatly simplifying the analysis. So it is – often assumed, but seldom (if ever) holds in reality.

- often assumed, but seidom (if ever) noids in reality.

Still, linear models approximate the nonlinear reality well in many situations.

Linearity: examples

Integrator:

$$G_{int}(a_1u_1 + a_2u_2) = \int_{-\infty}^t (a_1u_1(s) + a_2u_2(s)) ds$$

= $a_1 \int_{-\infty}^t u_1(s) ds + a_2 \int_{-\infty}^t u_2(s) ds$
= $a_1(G_{int}u_1) + a_2(G_{int}u_2)$

i.e. it is linear (as well as finite-memory integrator, 1- and 2-order systems).

Delay:

$$\begin{split} \bar{D}_{\tau}(a_1u_1+a_2u_2) &= (a_1u_1+a_2u_2)(t-\tau) = (a_1u_1)(t-\tau) + (a_2u_2)(t-\tau) \\ &= a_1u_1(t-\tau) + a_2u_2(t-\tau) \\ &= a_1(\bar{D}_{\tau}u_1) + a_2(\bar{D}_{\tau}u_2) \end{split}$$

i.e. it is linear.

Time (shift) invariance

A system $G: u \mapsto y$ is said to be time invariant (or shift invariant) if

 $G(\mathbb{S}_{\tau} u) = \mathbb{S}_{\tau}(Gu)$

for all admissible inputs u and all $\tau \in \mathbb{R} / \tau \in \mathbb{Z}$. In other words, every time shift of the input results in the same time shift of the output. Otherwise, a system is called time varying. If the property above holds only if $\tau = Tk$ for some T > 0 and every $k \in \mathbb{Z}$, then G is said to be T-periodic.

If G is both linear and time invariant, it is called LTI (linear time invariant).

Time invariance: examples

Gain:

$$(k(\mathbb{S}_{\tau}u))(t) = k(t)(u(t)|_{t \to t+\tau}) = k(t)u(t+\tau)$$
$$(\mathbb{S}_{\tau}(ku))(t) = (k(t)u(t))|_{t \to t+\tau} = k(t+\tau)u(t+\tau)$$

so it is time invariant iff $k(t + \tau) = k(t)$ for all τ and t, i.e. iff k = const.

Finite-memory integrator: if the memory length μ is constant, then

$$(G_{\mathsf{fmi},\mu}(\mathbb{S}_{\tau}u))(t) = \int_{t-\mu(t)}^{t} (u(s)|_{s\to s+\tau}) \, \mathrm{d}s = \int_{t+\tau-\mu(t)}^{t+\tau} u(s) \, \mathrm{d}s$$
$$(\mathbb{S}_{\tau}(G_{\mathsf{fmi},\mu}u))(t) = \left(\int_{t-\mu(t)}^{t} u(s) \, \mathrm{d}s\right)\Big|_{t\to t+\tau} = \int_{t+\tau-\mu(t+\tau)}^{t+\tau} u(s) \, \mathrm{d}s$$

so it is time invariant iff $\mu(t+ au) = \mu(t)$ for all au and t, i.e. iff $\mu = \text{const.}$

1st and 2nd order systems: are time invariant (try to show that).

Stability: examples

Showing that a system is stable, w/o understanding general systems theory, might not be easy. But in some cases it is.

Delay. If $\tau = \text{const}$, then

$$\|y\|_{\infty} = \sup_{t\in\mathbb{R}} |y(t)| = \sup_{t\in\mathbb{R}} |u(t- au)| = \sup_{t\in\mathbb{R}} |u(t)| = \|u\|_{\infty}$$

and

$$\|y\|_{2} = \int_{\mathbb{R}} |y(t)|^{2} dt = \int_{\mathbb{R}} |u(t-\tau)|^{2} dt \Big|_{s=t-\tau} = \int_{\mathbb{R}} |u(s)|^{2} ds = \|u\|_{2}$$

Thus, \bar{D}_{τ} with a constant τ is both L_{2} - and L_{∞} -stable, with induced norms

$$\|\bar{D}_{\tau}\|_{\text{ind},\infty} = \|\bar{D}_{\tau}\|_{\text{ind},2} = 1.$$

Remark. Curiously, \overline{D}_{τ} might be L_2 -unstable for varying τ . Try to find an example of $\tau(t)$ for which the delay is unstable and the corresponding destabilizing input.

I/O stability

A continuous-time system $G: u \mapsto y$ is said to be

- L_q -stable if there are $\gamma, \beta \in \mathbb{R}$ such that $||y||_q \leq \gamma ||u||_q + \beta$, $\forall u \in L_q$ for $q \in \{1, 2, \infty\}$. L_q -stability implies that $y \in L_q$ for all $u \in L_q$. L_∞ -stable systems are also known as BIBO (bounded input / bounded output) stable.

If G is linear, then we may always take $\beta = 0$ in the stability definition. I.e. a linear system is L_q -stable if $||y||_q \leq \gamma ||u||_q$ for some γ (independent of u). If G is stable, then the smallest γ for which the inequality above holds true is called the L_q -induced norm of G,

$$\|G\|_{\mathrm{ind},q} := \sup_{u \neq 0} \frac{\|Gu\|_q}{\|u\|_q} = \sup_{\|u\|_q = 1} \|Gu\|_q.$$

In the discrete-time case, the ℓ_q -stability and ℓ_q -induced norms are defined similarly.

Stability: examples (contd)

Showing that a system is unstable may be easier. One "just" needs to dream up a destabilizing input.

Integrator. If $u = 1 \in L_{\infty}$, then

23/3

$$y(t) = \int_{-\infty}^{t} \mathbb{1}(s) \mathrm{d}s = \int_{0}^{t} \mathrm{d}s = t \mathbb{1}(t) = \mathrm{ramp}(t)$$

Because ramp $\notin L_{\infty}$, the integrator is not BIBO stable. If $u = \exp_{\lambda} \mathbb{1} \in L_2$ for some $\lambda < 0$, then

$$y(t) = \int_{-\infty}^{t} e^{\lambda s} \mathbb{1}(s) ds = \int_{0}^{t} e^{\lambda s} ds = \frac{e^{\lambda s}}{\lambda} \Big|_{0}^{t} = \frac{e^{\lambda t} - 1}{\lambda} \mathbb{1}(t)$$

converges to $-\frac{1}{\lambda} \neq 0$ and thus does not belong to L_2 . Thus, the integrator is not L_2 -stable either.

Response of discrete-time LTI systems

i.e.

Let $G: u \mapsto y$ be LTI. We know (Lect. 2, Slide 28) that $u = \delta * u$, i.e.

$$u[t] = \sum_{s \in \mathbb{Z}} \delta[t-s]u[s] \implies u = \sum_{s \in \mathbb{Z}} (\mathbb{S}_{-s} \delta)u[s]$$

Passing over convergence-related issues (also delicate), we then have that

$$y[t] = (Gu)[t] = \left(G\left(\sum_{s \in \mathbb{Z}} (\mathbb{S}_{-s} \,\delta) u[s]\right)\right)[t]$$

$$= \sum_{s \in \mathbb{Z}} (G(\mathbb{S}_{-s} \,\delta u[s]))[t] \quad \text{by linearity}$$

$$= \sum_{s \in \mathbb{Z}} (G(\mathbb{S}_{-s} \,\delta))[t]u[s] \quad \text{by linearity, } u[s] \text{ is constant on } t \text{ axis}$$

$$= \sum_{s \in \mathbb{Z}} (\mathbb{S}_{-s}(G\delta))[t]u[s] \quad \text{by time invariance}$$

$$= \sum_{s \in \mathbb{Z}} (G\delta)[t-s]u[s]$$

the relation $y = Gu$ is equivalent to $y = (G\delta) * u$ in the LTI case, again.

Response of continuous-time LTI systems

Let $G: u \mapsto y$ be LTI. We know (Lect. 2, Slide 15) that $u = \delta * u$, i.e.

$$u(t) = \int_{\mathbb{R}} \delta(t-s)u(s) ds \implies u = \int_{\mathbb{R}} (\mathbb{S}_{-s}\delta)u(s) ds$$

Passing over convergence-related issues (really delicate), we then have that

$$y(t) = (Gu)(t) = \left(G\left(\int_{\mathbb{R}} (\mathbb{S}_{-s} \delta)u(s)ds\right)\right)(t)$$

$$= \int_{\mathbb{R}} \left(G(\mathbb{S}_{-s} \delta u(s))\right)(t)ds \quad \text{by linearity}$$

$$= \int_{\mathbb{R}} (G(\mathbb{S}_{-s} \delta))(t)u(s)ds \quad \text{by linearity, } u(s) \text{ is constant on } t \text{ axis}$$

$$= \int_{\mathbb{R}} (\mathbb{S}_{-s}(G\delta))(t)u(s)ds \quad \text{by time invariance}$$

$$= \int_{\mathbb{R}} (G\delta)(t-s)u(s)ds$$

i.e. the relation $y = Gu$ is equivalent to $y = (G\delta) * u$ in the LTI case.

The impulse response

The signal

27/36

$$g := G\delta$$

which is the response of G to the Dirac delta / unit pulse applied at t = 0, is known as the impulse response of G. The relation

$$y = Gu \iff y = g * u$$

implies that the processing of every input signal by an LTI system amounts to convolving that input with the impulse response of the system. Thus,

- properties of LTI systems are fully shaped by their impulse responses.

The impulse response: examples Gain: if G acts as y(t) = ku(t), then $g = k\delta$ (i.e. $g(t) = k\delta(t)$). Delay: if G acts as $y(t) = u(t - \tau)$, then $g = \$_{-\tau}\delta$ (i.e. $g(t) = \delta(t - \tau)$). Integrator: G_{int} acts as (cf. Lect. 2, Slide 16) $y(t) = \int_{-\infty}^{t} u(s) ds$ $\implies g_{int} = 1$ i.e. $\begin{cases} g_{int}(t) = 1(t) \\ g_{int}[t] = 1[t] \end{cases}$ Finite-memory integrator: $G_{fmi,\mu}$ acts as (cf. Lect. 2, Slide 12) $y(t) = \int_{t-\mu}^{t} u(s) ds \implies g_{fmi,\mu} = \$_{-\mu/2} \operatorname{rect}_{\mu} = \frac{1}{0} = \frac{1}{\mu} = \frac{1}{1}$

What if G is not LTI

If G is linear, but not time invariant, then the impulse response g is a signal $\mathbb{R}^2 \to \mathbb{R}$ or $\mathbb{Z}^2 \to \mathbb{R}$, with g(t,s) / g[t,s] being the value of the response at the time instance t to an impulse / pulse applied at the time instance s. In this case

$$y(t) = \int_{\mathbb{R}} g(t,s)u(s)ds$$
 or $y[t] = \sum_{s\in\mathbb{Z}} g[t,s]u[s]$

known as the kernel representation (not convolutions anymore). In terms of this impulse response the time invariance reads $g(t,s) = g(t + \tau, s + \tau)$ for all $\tau \in \mathbb{R}$, so that g(t,s) = g(t - s, 0) (the discrete case is alike).

If G is nonlinear, then no universal representation is known.

Linear systems are all alike; every nonlinear system is nonlinear in its own way. could have been coined by L.Tolstoy

The impulse response: examples (contd)

First-order system: if G acts as $\dot{y}(t) + a_0 y(t) = b_0 u(t)$ and $u = \delta$, then we may apply the Laplace transform and get

$$sY(s) + a_0Y(s) = b_0 \implies Y(s) = \frac{b_0}{s+a_0} \implies y(t) = b_0 e^{-a_0 t} \mathbb{1}(t)$$

i.e. $g_{1o} = b_0 \exp_{-a_0} \mathbb{1}$.

If G acts as $y[t+1] + a_0 y[t] = b_1 u[t+1] + b_0 u[t]$ and $u = \delta$, then we may apply the z transform and get $zY(z) + a_0 Y(z) = b_1 z + b_0$, from which

$$Y(z) = \frac{b_1 z + b_0}{z + a_0} = b_1 + (b_0 - b_1 a_0) z^{-1} \frac{z}{z + a_0}$$

and then, by the linearity and time shift properties

$$y[t] = b_1 + (b_0 - b_1 a_0)(-a_0)^{t-1} \mathbb{1}[t-1]$$

i.e. $g_{1o} = b_1 \delta + (b_0 - b_1 a_0) \mathbb{S}_{-1}(\exp_{-a_0} \mathbb{1}).$

Causality via impulse responses

Theorem

An LTI system G with the impulse response g is causal iff $supp(g) \subset \mathbb{R}_+$ in the continuous-time case or $supp(g) \subset \mathbb{Z}_+$ in the discrete-time case.

Disclaimer. The continuous-time case may be delicate if g includes Dirac deltas. Hereafter we consider that $supp(\delta) \subset \mathbb{R}_+$, although this statement is mathematically dubious.

Proof (discrete): The response
$$y = g * u$$
 reads at every t as

$$y[t] = \sum_{s \in \mathbb{Z}} g[t-s]u[s] = \sum_{s=-\infty}^{t} g[t-s]u[s] + \sum_{s=t+1}^{\infty} g[t-s]u[s]$$
Thus, $y[t]$ cannot depend on $u[s]$ for $s > t$ iff $g[t-s] = 0$ for all $s > t$, i.e.
 $g[t] = 0$ for all $t < 0$.

 $s = -\infty$

35/3

Stability via impulse responses: proof (discrete)

Sufficiency: If $g \in \ell_1$, then for every $u \in \ell_\infty$

$$\begin{aligned} |y[t]| &= \Big| \sum_{s \in \mathbb{Z}} g[t-s] u[s] \Big| \leq \sum_{s \in \mathbb{Z}} |g[t-s] u[s]| \leq \sum_{s \in \mathbb{Z}} |g[t-s]| |u[s]| \\ &\leq \|u\|_{\infty} \sum_{s \in \mathbb{Z}} |g[t-s]| \Big|_{r=t-s} = \sum_{r \in \mathbb{Z}} |g[r]| \|u\|_{\infty} = \|g\|_1 \|u\|_{\infty} \end{aligned}$$

Hence, $\|y\|_{\infty} \leq \gamma \|u\|_{\infty}$ for $\gamma = \|g\|_1 < \infty$ and the system is BIBO stable.

Necessity: Choose $u = \operatorname{sign}(\mathbb{P}_{-1}g)$, i.e. $u[t] = \operatorname{sign}(g[-t])$. Its $||u||_{\infty} = 1$ so $u \in \ell_{\infty}$. With this choice,

$$y[0] = \sum_{s \in \mathbb{Z}} g[-s]u[s] = \sum_{s \in \mathbb{Z}} g[-s]\operatorname{sign}(g[-s]) = \sum_{s \in \mathbb{Z}} |g[-s]| = \sum_{s \in \mathbb{Z}} |g[s]|$$

and $g \in \ell_1$ is necessary for the boundedness of y[0] and, therefore, that of $||y||_{\infty} \ge |y[0]|$. This also proves the $||G||_{ind,\infty}$ part.

Stability via impulse responses

Theorem

An LTI system G with the impulse response g is BIBO stable iff $g \in L_1$ in the continuous-time case or $g \in \ell_1$ in the discrete-time case. If G is BIBO stable, then $\|G\|_{ind,\infty} = \|g\|_1$.

Disclaimer. The continuous-time case may be delicate if g includes Dirac deltas here as well. Strictly speaking, δ is not a function. A more rigorous approach would be to limit the class of considered systems to those, whose impulse response could be decomposed in the form $g = \tilde{g} + \sum_i \gamma[i] \mathbb{S}_{t_i} \delta$ for some function \tilde{g} and an increasing sequence of time instances $\{t_i\}$. Such systems are BIBO stable iff $\tilde{g} \in L_1$ and $\gamma \in \ell_1$. Nonetheless, we proceed with regarding the Dirac delta as absolutely integrable, merely to simplify the exposition.

Remark 1. The mere decaying of g might not be enough for the BIBO stability of G. For example, if $g(t) = 1/(1+t) \mathbb{1}(t)$ and $u = 1 \in L_{\infty}$, then for all $t \ge 0$

$$y(t) = \int_{-\infty}^{t} \frac{1}{1+t-s} \mathbb{1}(t) ds = \int_{0}^{t} \frac{1}{1+t-s} ds = -\ln(1+t-s) \Big|_{0}^{t} = \ln(1+t)$$

and it is not bounded. Hence, this system is not BIBO stable (and indeed, this $g \notin L_1$). Remark 2. The L_2 -stability is not easy to verify directly in terms of the impulse response.

Stability via impulse responses: examples

Integrator: $g_{int} = 1 \notin L_1$, with agrees with what we already saw.

Finite-memory integrator: $g_{\text{fmi},\mu} = \mathbb{S}_{-\mu/2}\text{rect}_{\mu} \in L_1$, i.e. it is BIBO stable, with $\|G_{\text{fmi},\mu}\|_{\text{ind},\infty} = \|g_{\text{fmi},\mu}\|_1 = \mu$

First-order system (in continuous time): $\dot{y}(t) + a_0 y(t) = b_0 u(t)$

$$g_{1o} = b_0 \exp_{-a_0} \mathbb{1} \in L_1 \iff a_0 > 0$$

i.e. it's BIBO stable iff $a_0 > 0$, with $||G_{1o}||_{ind,\infty} = \frac{1}{a_0}$ (cf. Lect. 2, Slide 19). First-order system (in discrete time): $y[t+1] + a_0y[t] = b_1u[t+1] + b_0u[t]$

$$g_{1\mathsf{o}} = b_1\delta + (b_0 - b_1a_0)\,\mathbb{S}_{-1}(\exp_{-a_0}\mathbb{1}) \in \ell_1 \iff |a_0| < 1$$

i.e. it's BIBO stable iff $|a_0| < 1$, with (cf. Lect. 2, Slide 30)

$$\|G_{1o}\|_{\mathrm{ind},\infty} = |b_1| + rac{|b_0 - b_1 a_0|}{1 - |a_0|}$$