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Background: (rudimentary) complex functions

Functions of a complex variable

A complex function F is a mapping F : C — C. The complex derivative of
FatspeCis
F(s)— F
F(s0) = lim ()= F(s0)

sS—So S$—95
where the limit is supposed to be independent of the (complex) path along
which s approaches sp. If the limit above exists, then the function F is said
to be complex differentiable at sp. If © C C is an open set, we say that

— F is holomorphic (analytic) in © if F/(sp) exists for every sy € O.

Entire functions are those holomorphic in the whole C. A function is said to
be holomorphic at sy € C if it is holomorphic in some neighbourhood of sp.
Every holomorphic function is locally the sum of a convergent power series.

Examples: Functions s” for n € N and e?° for a € R are entire:
n\/ __ n—1 as\/ __ as
(s") =ns and (e*) = ae®™.

Function 1/s" for n € N is holomorphic in C \ {0}, as (1/s") = —n/s"*L.

Isolated singularities

We say that F has an isolated singularity at a point sp € O, where O is an
open set in C, if F is holomorphic in © \ {sp}. Three cases are possible:

1. if F can be defined at sy so that the extended function is holomorphic
in © (roughly, if F(sp) is bounded), then the singularity is removable;
e.g. F(s) = (1 — e™°)/s has a removable singularity at s = 0, because F(0) =1

2. if thereis n € N such that (s — sp)"F(s) has a removable singularity at
so and lims_,¢,(s — s0)"F(s) # 0, then the singularity is a pole and n is
its order! (or multiplicity);

e.g. F(s) = 1/s* has a second-order pole at s = 0, because sF(s) = s/s*> = 1/s has
a non-removable singularity at s = 0 and SZF(S) = s%/s®> =1 is entire and nonzero

ats=0

3. if no finite n as in item 2. exists, then the singularity is called essential.

e.g. F(s) = €* has an essential singularity at s = 0

LIf the order equals 1, then the pole is said to be simple.




Rational functions and partial fraction expansion

A function F is said to be rational if it is the quotient of two polynomials,

bms™ + bm_15™ Y 4 -« + bys + by _ N(s)
s"+ap_1s" 1+ +as+a  D(s)

F(s) = bn #0

It's called proper /strictly proper / bi-properif n>m / n>m / n= m and
non-proper if n < m. When all coefficients are real, F is called real-rational.
Every root of D(s) = 0 that is not a root of N(s) =0 is a pole of F. If F is
proper, then

k n;
F(s) = F(oo) + G
; Jz_; (s —piy

for distinct poles p; € C of F of order n; and ¢;j € C. This form is known as
the partial fraction expansion of F. If p; is a simple pole, i.e. n; = 1, then

ci1 = Res(F, pi) ::Sli_>rrl13'(s —pi)F(s) #0

i

is the residue of F at s = p;.
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(Bilateral) Laplace transform

Pros and cons of the Fourier transform

The Fourier transform,
X(jo) = (31xD)) = [ x(etde
R

decomposes x into elementary harmonic signals via

1 .
x(t) = 27T/[RX(ja))ertda).

This

- offers a valuable insight into properties of x.

However, it
~ applies to only a limited class of signals,

some widely used signals (like 1) require Dirac distributions and some (like
exp, 1 for A > 0) are not transformable at all.

Definition
The bilateral (two-sided) Laplace transform £{x} of a signal x : R — F is
X(s) = (2(1)(s) = [ x()ede
R

defined over those s € C for which the integral converges. The latter set is
known as the region of convergence (RoC) of the transform. If s = 0 + jw,

then
/x(t)e‘“dt: /(x(t)e_“t)e_j“’tdt
R R

is the Fourier transform of x exp_,, so that the condition xexp_g.s € L1 is
sufficient for this s to be in the RoC.

If the whole vertical line {s € C | Res = 0} C RoC, then

.
x(t) = — X(s)e®tds
J27T‘ o+jR

(the inverse Laplace transform).




Remarks on RoC

The condition xexp_, € L;j is draconian if supp(x) = R.

If o > 0, then x(t) should decay faster than e™°* grows in t < 0 and grow
slower than e 7t decays in t > 0:

x(t) x(t)
0 t x(t)e ot 0 ¢ x(t)e 7t
cf. X ="—"——— and X =—T
ot ) ' e ot t
0 t 0 t

If o <0, then x(t) should decay faster than e™°* grows in t > 0 and grow
slower than e 7! decays in t < 0:

cf. X = — and X -

Remarks on RoC (contd)

Many hurdles are avoided if supp(x) is limited to finite interval or semi-axis.
For instance, if supp(x) = R, then 3o, € RU {£o00} such that

{seC|Res>a,} CRoC and {se€C|Res<ay}NRoC=0
Cay C\Cay
(here Cq, stands for the closure of Cy, ). Particular cases:
— ay=-00 = RoC=C e.g. x(t) = e T1(¢)
— @y =400 = RoC =0 e.g. x(t) = e 1(t)

If x is bounded and supp(x) = [a, b|, then RoC = C.

If the RoC of x is nonempty, then X can be extended beyond its RoC to the
whole C by the analytic continuation technique (don't ask what's that) and
we treat X = £{x} as a signal X : C — C, which may contain singularities.

Mind the RoC
Example 1: if x; = exp_1 1, i.e. xq(t) = e *1(t) = _!>t then
00 —(s+1)t oo 1
Xi(s) = t)e tdt = ~(s+ gy = E =
1(s) /mxl( Je /0 € s+1 lo s+1

Example 2: if xp = —P_1(exp; 1), i.e. xo(t) = —e~t1(—t) = %O ', then

0 —(s+1)t o 1
Xo(s) = — t)e Stdt = — ~(s+1)t gy — & =
2(s) /[sz( )e /_Ooe s+1 -0 s+1
The only way to distinguish them is via their RoC's:
— RoC; =C_;4 lim; oo et =0 <= Re(s+1) > 0
— RoC,=C\C_; lime_soe TNt =0 «—= Re(s+1) <0

(note that RoC; N RoCy = ©).

Basic properties

Assuming all involved signals have their support in R,

property time domain s-domain RoC
linearity | x = a1xy + azxxo | X(s) = a1X1(s) + a2Xa(s) | Cy, N Cq,

time shift y = S¢x Y(s) = e X(s) Ca,

time scaling | y = Pcx, ¢ >0 Y(s) = éX(?) Cca,
modulation Y = X expg, Y(s) = X(s — so) Ca,+Res,

t-modulation y = xramp Y(s) = —%X(s) Cq,

differentiation? y =X Y (s) = sX(s) Cq,
convolution Z=Xxxy Z(s) = X(s)Y(s) Ca,NCy,

21f limis oo x(t)e™*" = 0 for all s € RoC, which is normally the case for xexp_g.. € Li.




Laplace transform of the rectangular pulse
If x = rect, then

1/2 e—st
X(s):/x(t)eStdt:/ estdt —
R

—1/2 —S

1/2 eS/2 _ o—s/2

12 s

and the integral converges for all s. Hence, RoC = C for this signal.

Remark: Note that the function (e/2 — e~*/2)/s is entire, which follows by either

’ e5/2 o e75/2 ’ es/2/2 + 675/2/2 . e5/2 o e75/2 1/2
m = IIm — or _— =
s—0 S s—0 1 S .

e *tdt,
~1/2

the first by L'Hépital’s rule, so the singularity of (e¥/2 — e*/2)/s at s = 0 is removable.
Consequence:

— by time scaling, if y = rect, for some a > 0, then

V(5) = (efByarect = S )

S

Laplace transform of the step

If x =1, then
oo T 1— e—sT
X(s) :/x(t)e_“dt:/ e Stdt = |lim / e Stdt = lim ——
R 0 T— Jo T—o0 S
Cases:
— if Res <0, then lim7_o0]e 57| = lim7_o e (RESIT = o

1_e—sT
S

= T diverge as T — o

1—e i®oT

— if s =0, then limg_,g

— if s = jo for ® # 0, then

doesn't converge as T — oo
— if Res > 0, then lim7_o0]e 57| = lim7_o e (ReSIT =

Thus, the integral converges iff Res > 0 and then

and RoC = Cq := {s € C | Res > 0}. If treated as a signal C — C, this X
has a singularity (pole) at s = 0.

Laplace transform of the step (contd)

Consequences: .
— ify=1xx,ie y(t)= / x(t)dt, then by the convolution property
X
Y(s) = ES)

and its RoC is the intersection of Cy and the RoC of x.

n t"1(t
— ify= rar:lp forne N, ie y(t) = nf ) then by the t-modulation
1
Y(s)= o

and its RoC is still Cg. For example,

d 1y _ _ 1 0. —¢ 1
£(3) = > = L{l-ramp} = £{ramp} = 3

d 1 o 2 N _Qr 27 _ 2!
?s(?) =-5 = L{ramp-ramp} = L{ramp~} = 5

Laplace transform of exponential

If x =exp; 1 for A € C, then

o'} T
X(s) = /x(t)e_“dt = / e (=Mtgr = |im / e =Mty
R 0 T—oo Jo
i 1— e—(s—l)T
_Tinoo s—A

and by already familiar arguments

and RoC = Cg. := {s € C | Res > Re 1}, where Re(s — 1) > 0.

If treated as a signal C — C, this X has a singularity (pole) at s = A.




Laplace transform of sine wave Laplace transform of modulated sine wave
If x(t) = sin(wxt + ¢)1(t) for wx, ¢ € R, then (see Lect. 3, Slide 4) If

2\ AAAAA |
el(@—7/2) ot e—i(@—7/2) ot ¢ 5 : if L <0
x(t) = (2e + — ) (t)
Hence, by linearity and the transform of the exponential, x(t) = e“sin(a)xt + @) 1(t) =< ang /\ /\ /\ [\ o
0 if A >
ej(¢77[/2) efj(‘b*n/z) _JeJ¢ jefj¢ V V V V \/

s)= - + . = . .
2(5 - wa) 2(5 + wa) 2(5 - wa) 2(5 + Ja)x)
o —SJ(eJ¢ — e7j¢) _|_ wx(ej¢ + e7j¢)

- 2(s2 + w2) for wy, ¢, A € R, then by modulation
B ssin¢2+ wx2cosq5 X(s) (s —A)sing + wycos¢p  ssing + wycosp — Asing
S) = f—
7T wx (s — )2 + w2 s2 4+ 2As + w2 1 A2
and RoC = Cy. and RoC = C,.

If treated as a signal € — C, this X has singularities (poles) at s = Ljo. If treated as a signal C — C, this X has singularities (poles) at s = A + jox.

Laplace transform of the Dirac delta Unilateral (one-sided) transform
If x =&, then The transform of x : R — [ of the form
Xs:/b’te_Stdt:e_St —0=1 00
(5) = | 8(8 E / x(t)etdt
and RoC = C. -

is known as its unilateral (or one-sided) Laplace transform. It is, in fact, the
bilateral Laplace transform of x1. The bi- and unilateral Laplace transforms
Consequence: coincide if supp(x) C R4, in which case x = x1.

— if y=5;6 for t € R, i.e. y(t) = 6(t + 1), then
The properties of the one-sided Laplace transform are similar to those of its
Y(s)=e" two-sided counterpart, with some deviations, like

by the time shift property. — if y(t) = x(t), then its unilateral transform Y(s) = sX(s) — x(07)

— time shift is not well defined if only a part of the support is taken into
account, as is done in the unilateral transform, requiring some tricks




Fourier vs. Laplace

The relations

G0 = |

R

x(t)e @tdt and (£{x})(s) = /[R x(t)e stdt

suggest that §{x} = £{x}|s—jw. This is why we use the notation X(jw) for
the Fourier. However, certain care shall be taken with this relation, it is

— true only if jR C RoC of the Laplace transform of x,

i.e. only if x is Fourier transformable.

Example (1)
If x(t) = e t1(t) = [~ then X(s) =1/(s +1). If Y = X|s—jo, then

Y(jo) = @YD) = e (t) = x(t)

B jo+1
(see Lect. 3, Slide 40), because jR C RoC =C_;.

Fourier vs. Laplace (contd)

Example (2)
If x(t) = e'1(t) = E , then X(s) =1/(s —1). But Y = X|s=ju has

0 t

V(o) =g = @HYR(O) = —e1(-t) = £ x(0)

because jR ¢ RoC = C;.

Example (3)
If x(t) = 1(t), then X(s) =1/s. If Y = X|s—jo, then

Y (jo) = Jjo ” Ji} + 78(0) = X(jo)

(see Lect. 3, Slide 41), because jR ¢ RoC = Cy.

In Mathematica: InverseFourierTransform with FourierParameters->{1,-1}.

The final value theorem

Theorem
If x: R — F with supp(x) C Ry is converging, then

lim x(t) :Sli_)mOsX(s) = Res(X,0).

t—o0

Example
Let x(t) = e*tsin(wxt + ¢)1(t), for which

ssing + wy cos¢ — Asing

X =
() s2+ 2As + w2 + A2
In this case
_ . S(ssing + wxcos¢p — Asing)
I X(s) =1 =
limsX(s) = im == 25 + w2 + A2 0

equals limy_o x(t) only if A < 0, otherwise this 0 makes no sense.

The initial value theorem

Theorem
If x: R — F with supp(x) C Ry is such that x(0") exists, then

li t)= i X(s).
fim ()= i, X9

Example
Let x(t) = et sin(wxt + ¢)1(t), for which

ssing + wyx cos¢ — Asing

X =
() s2 +2)s + w2 + A2
In this case
_ . s?sing + s(wxcosp — Asing) _
slrgosx(s) :slngo s?2+2As + w2 + A2 = sing = x(0),

indeed.




Outline

(Bilateral) z transform

Definition

The bilateral (two-sided) z-transform 3{x} of a signal x : Z — [ is

X(2) = (302 = Y Xtz

teZ

defined over those z € C for which the sum converges (again, the RoC). If

z = yel?, then |
D ox[tlz =D (x[tly e

teZ teZ

is the DTFT of xexp;;, and the condition x expy/|,| € {1 ensures that this
z is in the RoC. Like in the Laplace transform case, we mostly z-transform
signals x with supp(x) C Z,. For such signals oy € Ry U {occ} such that
{zeC ||z >a} CRoCand {z€C||z] <ay} NRoC=o.

If the RoC of x is nonempty, then X can be extended beyond its RoC to the
whole C by the analytic continuation technique and we treat X = 3{x} as
a signal X : C — C, which may contain singularities.

Basic properties

Assuming all involved signals have their support in Z .,

property time domain z-domain RoC
linearity | x = a1x1 + axxo | X(z2) = a1.X1(2) + a2 X2(2) N
time shift y =%x Y(z) = z"X(z2) RoCy
modulation y = xexp; Y(z) = X(z/A) |A|RoC
t-modulation y = xramp Y(z)= —z%X(z) RoCyx
convolution W=Xxy W(z) = X(z)Y(z) N

z-transform of the pulse

If x =&, then
X(z)=> 8tz t=2"=1
tez
and RoC = C.
Consequence:

— ify =56 fort € Z, i.e y[t] =3[t + 7], then
Y(z)=2Z°

by the time shift property.




z-transform of the step

If x =1, then
T z—z" T
X(z) = x[t]z7t = z ' = lim z b= lim ———
( ) Z [ ] Z T—o0 T—ooo z—1
tez tezZy t=0
Cases:
— if |z] <1, then lim7_ 00|z 7| = lim700]2| 7T = 00
— if z=1, then lim,_,1 z;iT =T+ 1diverge as T — o0

— ifz=el? for 6 # 0, then e 197 doesn’t converge as T — oo
— if |z| > 1, then lim7_,00|z7 7| = lim7_slz|~T =0

Thus, the sum converges iff |z| > 1 and then

and RoC = {z e C | |z| > 1}.
singularity (pole) at z = 1.

If treated as a signal C — C, this X has a

z-transform of exponential

If x =exp; 1 for A € C, then

z\ 't
X(z) = Zx[t]zft = Z Atz = lim Z -

tez tez, T=roee t:0</\>

_ -T _ -T

— i z/A —(z/]) — fim 2 A(z/A)
T—o0 Z/A -1 T—o0 z—A
and by already familiar arguments
z
X =
(2)=-—

and RoC = {z € C | |z| > |A|}, where |z/A| > 1.

If treated as a signal C — C, this X has a singularity (pole) at z = A.

z-transform of sine wave

If x[t] = sin[Oxt + ¢]1[t] for by, ¢ € R, then (see Lect. 3, Slide 4)

( ci(@—7/2) o—i(#-7/2)
2

At = (6" + S (e )

Hence, by linearity and the transform of the exponential,
= - + - - -
2(z—elfx)  2(z—e i) 2(z—eifx)  2(z - eif)

~ z(zsing +sin(6x — ¢))
22 -2cosbyz+1

X(z)

and RoC = {z e C | |z| > 1}.

If treated as a signal C — C, this X has singularities (poles) at z = eFifx,

z-transform of modulated sine wave

If
'sm«; ﬁ.m_m et A <1
x[t] = A sin[0t + @]1[t] = Sind; H'lHJH*J“x” T‘ if [A| >1

for O, ¢, A € R, then by modulation

z(zsin¢g + Asin(6, — ¢))

X =
(2) z2 —2Acos Oy z + A2

and RoC ={z € C | |z| > |A|}.

If treated as a signal C — C, this X has singularities (poles) at z = Ae

+i6,




The final and initial value theorems

Theorem
If x:Z — F with supp(x) C Z4 is converging, then

tIergo x[t] = ZIi_r)nl(z —1)X(z) = Res(X.1)

Theorem
If x:Z — F with supp(x) C Z4 is such that x[0] exists, then

x[0] = Zeml:gn_}ooX(z).
Proof : follows directly from X(z) = x[0] + x[1]z7! + x[2]z72 + - - O]

Outline

Solving differential equations with the Laplace transform

Thermometer model

—

A mercury thermometer is a system mapping the ambient temperature into
the temperature of the mercury inside it (which, in turn, changes its volume
as a result). Assuming that

— the heat transfer coefficient is constant and
— there is no thermal radiation in heat transfer
the Newton's law of cooling yields that the mercury temperature 6 satisfies

10(t) = Oamb(t) — 0(2),

where 0;mp is the ambient temperature and T > 0 is a parameter dependent
on the thermal properties of the thermometer. Assuming that 6(t) = 6y for
all t < 0, the model in terms of deviations from 6 is

20() + 6(t) = Barmb(£),
where 0(t) = 0(t) — 0o and Gamb(t) = Oamb(t) — b with supp(d) = R...

Thermometer model in the s-domain

By the linearity and differentiation properties of the Laplace transform, the
model in the s-domain reads as the algebraic relation

éamb(s)

150(s) + 6(s) = Omp(s) = O(s) = .

Solution sequence:

1. partial fraction expansion of © with real rational elements
2. inverse Laplace transform of each simple fractions

partial fractions are either first- or second-order real-rational elements, whose inverse
Laplace transforms we already know; if a pole is not simple, then the t-modulation

property of the Laplace transform shall be used




Thermometer model: solution for the step input

If éamb = 511] for some 51 € R, then

Xy 6, B Res(©,0) Res(©,—1/1)
Ols) = s(ts+1) s s+1/t

’

because both poles are simple. Residues are

~ . = : th ~
Res(©,0) = sll_% sO(s) = sI|_r‘>n0 o1 01
and
) . 5 .6 -
Res(©, —1 = | 1/1)0(s) = | — =0
eS( /T) s—)l—rq/‘r(s + /T) (S) s—>l—rq/r Ts !
Thus,
~ _ é él]. A N 7t/1: _ b
O(s) = s s+t O(t)=61(1—e )ﬂ(t)—_

Mass-spring model

AAAAAAMAAAA m f
YYVYYYYVYY

Assumptions:
— spring force is proportional to position differences (Hooke's law)
— we may neglect friction, force misalignment, etc

Supposing zero spring force at x = 0, by Newton's second law
mx(t) = f(t) + f;pring(t) = f(t) — kX(t)

or, equivalently,
mx(t) + kx(t) = f(t).

Mass-spring model in the s domain

By the linearity and differentiation properties of the Laplace transform, the
model in the s-domain reads as the algebraic relation

ms?X(s) + kX(s) = F(s) <= X(s)=

The denominator polynomial has roots at

|k
S1,2 = Xj -

which are pure imaginary.

Mass-spring model: solution for the step input

If f = f11 for some f; € R, then

removable singularity at s = 0

h _Res(X,0) . f ~ Res(X,0)
s(ms2 + k) s s(ms? + k) s '

X(s) =
(to avoid dealing with complex poles and residues). The residue at s =0 is

L o fi _
Res(X,0) = lim sX(s) = lim < s % = &

so that

h h h h(l s
X = = e e [
() P (s(ms2 + k) ks) k <s s? + k/m>

Hence,

x(t) = 2(1 — cos(\/k/m ) 1) = "1\

0 271\/Ym/k t
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