Linear Systems (034032)

lecture no. 5

Leonid Mirkin

Faculty of Mechanical Engineering
Technion-IIT
区

Functions of a complex variable

A complex function F is a mapping $F: \mathbb{C} \rightarrow \mathbb{C}$. The complex derivative of F at $s_{0} \in \mathbb{C}$ is

$$
F^{\prime}\left(s_{0}\right)=\lim _{s \rightarrow s_{0}} \frac{F(s)-F\left(s_{0}\right)}{s-s_{0}}
$$

where the limit is supposed to be independent of the (complex) path along which s approaches s_{0}. If the limit above exists, then the function F is said to be complex differentiable at s_{0}. If $\mathbb{O} \subset \mathbb{C}$ is an open set, we say that
$-F$ is holomorphic (analytic) in \mathbb{O} if $F^{\prime}\left(s_{0}\right)$ exists for every $s_{0} \in \mathbb{O}$.
Entire functions are those holomorphic in the whole \mathbb{C}. A function is said to be holomorphic at $s_{0} \in \mathbb{C}$ if it is holomorphic in some neighbourhood of s_{0}. Every holomorphic function is locally the sum of a convergent power series.
Examples: Functions s^{n} for $n \in \mathbb{N}$ and $\mathrm{e}^{a s}$ for $a \in \mathbb{R}$ are entire:

$$
\left(s^{n}\right)^{\prime}=n s^{n-1} \quad \text { and } \quad\left(\mathrm{e}^{a s}\right)^{\prime}=a \mathrm{e}^{a s} .
$$

Function $1 / s^{n}$ for $n \in \mathbb{N}$ is holomorphic in $\mathbb{C} \backslash\{0\}$, as $\left(1 / s^{n}\right)^{\prime}=-n / s^{n+1}$.

Outline

Background: (rudimentary) complex functions

Isolated singularities

We say that F has an isolated singularity at a point $s_{0} \in \mathbb{O}$, where \mathbb{O} is an open set in \mathbb{C}, if F is holomorphic in $\mathbb{O} \backslash\left\{s_{0}\right\}$. Three cases are possible:

1. if F can be defined at s_{0} so that the extended function is holomorphic in \mathbb{O} (roughly, if $F\left(s_{0}\right)$ is bounded), then the singularity is removable; e.g. $F(s)=\left(1-e^{-s}\right) / s$ has a removable singularity at $s=0$, because $F(0)=1$
2. if there is $n \in \mathbb{N}$ such that $\left(s-s_{0}\right)^{n} F(s)$ has a removable singularity at s_{0} and $\lim _{s \rightarrow s_{0}}\left(s-s_{0}\right)^{n} F(s) \neq 0$, then the singularity is a pole and n is its order ${ }^{1}$ (or multiplicity);
e.g. $F(s)=1 / s^{2}$ has a second-order pole at $s=0$, because $s F(s)=s / s^{2}=1 / s$ has a non-removable singularity at $s=0$ and $s^{2} F(s)=s^{2} / s^{2}=1$ is entire and nonzero at $s=0$
3. if no finite n as in item 2. exists, then the singularity is called essential. e.g. $F(s)=e^{1 / s}$ has an essential singularity at $s=0$

Rational functions and partial fraction expansion

A function F is said to be rational if it is the quotient of two polynomials,

$$
F(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}=: \frac{N(s)}{D(s)}, \quad b_{m} \neq 0
$$

It's called proper / strictly proper / bi-proper if $n \geq m / n>m / n=m$ and non-proper if $n<m$. When all coefficients are real, F is called real-rational. Every root of $D(s)=0$ that is not a root of $N(s)=0$ is a pole of F. If F is proper, then

$$
F(s)=F(\infty)+\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \frac{c_{i j}}{\left(s-p_{i}\right)^{j}}
$$

for distinct poles $p_{i} \in \mathbb{C}$ of F of order n_{i} and $c_{i j} \in \mathbb{C}$. This form is known as the partial fraction expansion of F. If p_{i} is a simple pole, i.e. $n_{i}=1$, then

$$
c_{i 1}=\operatorname{Res}\left(F, p_{i}\right):=\lim _{s \rightarrow p_{i}}\left(s-p_{i}\right) F(s) \neq 0
$$

is the residue of F at $s=p_{i}$.

Pros and cons of the Fourier transform

The Fourier transform,

$$
X(\mathrm{j} \omega)=(\mathfrak{F}\{x\})(\mathrm{j} \omega):=\int_{\mathbb{R}} x(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t
$$

decomposes x into elementary harmonic signals via

$$
x(t)=\frac{1}{2 \pi} \int_{\mathbb{R}} X(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} \omega
$$

This
\because offers a valuable insight into properties of x.

However, it

$\underset{\sim}{ }$ applies to only a limited class of signals,
some widely used signals (like $\mathbb{1}$) require Dirac distributions and some (like $\exp _{\lambda} \mathbb{\square}$ for $\lambda>0$) are not transformable at all.

Outline

(Bilateral) Laplace transform

Definition

The bilateral (two-sided) Laplace transform $\mathfrak{L}\{x\}$ of a signal $x: \mathbb{R} \rightarrow \mathbb{F}$ is

$$
X(s)=(\mathfrak{L}\{x\})(s):=\int_{\mathbb{R}} x(t) \mathrm{e}^{-s t} \mathrm{~d} t
$$

defined over those $s \in \mathbb{C}$ for which the integral converges. The latter set is known as the region of convergence (RoC) of the transform. If $s=\sigma+\mathrm{j} \omega$, then

$$
\int_{\mathbb{R}} x(t) \mathrm{e}^{-s t} \mathrm{~d} t=\int_{\mathbb{R}}\left(x(t) \mathrm{e}^{-\sigma t}\right) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t
$$

is the Fourier transform of $x \exp _{-\sigma}$, so that the condition $x \exp _{-\operatorname{Res}} \in L_{1}$ is sufficient for this s to be in the RoC.

If the whole vertical line $\{s \in \mathbb{C} \mid \operatorname{Re} s=\sigma\} \subset \operatorname{RoC}$, then

$$
x(t)=\frac{1}{j 2 \pi} \int_{\sigma+\mathrm{j} \mathbb{R}} X(s) \mathrm{e}^{s t} \mathrm{~d} s
$$

(the inverse Laplace transform).

Remarks on RoC

The condition $x \exp _{-\sigma} \in L_{1}$ is draconian if $\operatorname{supp}(x)=\mathbb{R}$.
If $\sigma>0$, then $x(t)$ should decay faster than $\mathrm{e}^{-\sigma t}$ grows in $t<0$ and grow slower than $\mathrm{e}^{-\sigma t}$ decays in $t>0$:
cf.

If $\sigma<0$, then $x(t)$ should decay faster than $\mathrm{e}^{-\sigma t}$ grows in $t>0$ and grow slower than $\mathrm{e}^{-\sigma t}$ decays in $t<0$:
cf.

Remarks on RoC (contd)

Many hurdles are avoided if $\operatorname{supp}(x)$ is limited to finite interval or semi-axis.
For instance, if $\operatorname{supp}(x)=\mathbb{R}_{+}$, then $\exists \alpha_{x} \in \mathbb{R} \cup\{ \pm \infty\}$ such that

$$
\underbrace{\left\{s \in \mathbb{C} \mid \operatorname{Re} s>\alpha_{x}\right\}}_{\mathbb{C}_{\alpha_{x}}} \subset \operatorname{RoC} \text { and } \underbrace{\left\{s \in \mathbb{C} \mid \operatorname{Re} s<\alpha_{x}\right\}}_{\mathbb{C} \mid \widetilde{\mathbb{C}}_{\alpha_{x}}} \cap \operatorname{RoC}=\varnothing
$$

(here $\overline{\mathbb{C}}_{\alpha_{x}}$ stands for the closure of $\mathbb{C}_{\alpha_{x}}$). Particular cases:
$-\alpha_{x}=-\infty \Longrightarrow \operatorname{RoC}=\mathbb{C}$
e.g. $x(t)=e^{-t^{2}} \mathbb{1}(t)$
$-\alpha_{x}=+\infty \Longrightarrow \operatorname{RoC}=\varnothing \quad$ e.g. $x(t)=\mathrm{e}^{t^{2}} \mathbb{1}(t)$

$$
\text { e.g. } x(t)=\mathrm{e}^{t^{2}} \mathbb{1}(t)
$$

If x is bounded and $\operatorname{supp}(x)=[a, b]$, then $\operatorname{RoC}=\mathbb{C}$.

If the RoC of x is nonempty, then X can be extended beyond its RoC to the whole \mathbb{C} by the analytic continuation technique (don't ask what's that) and we treat $X=\mathfrak{L}\{x\}$ as a signal $X: \mathbb{C} \rightarrow \mathbb{C}$, which may contain singularities.

Basic properties

Assuming all involved signals have their support in \mathbb{R}_{+},

property	time domain	s-domain	RoC
linearity	$x=a_{1} x_{1}+a_{2} x_{2}$	$X(s)=a_{1} X_{1}(s)+a_{2} X_{2}(s)$	$\mathbb{C}_{\alpha_{1}} \cap \mathbb{C}_{\alpha_{2}}$
time shift	$y=\mathbb{S}_{\tau} X$	$Y(s)=\mathrm{e}^{\tau s} X(s)$	$\mathbb{C}_{\alpha_{x}}$
time scaling	$y=\mathbb{P}_{\varsigma} x, \varsigma>0$	$Y(s)=\frac{1}{\varsigma} X\left(\frac{s}{\varsigma}\right)$	$\mathbb{C}_{\varsigma \alpha_{x}}$
modulation	$y=x \exp _{s_{0}}$	$Y(s)=X\left(s-s_{0}\right)$	$\mathbb{C}_{\alpha_{x}+\operatorname{Re} s_{0}}$
t t-modulation	$y=x$ ramp	$Y(s)=-\frac{\mathrm{d}}{\mathrm{d} s} X(s)$	$\mathbb{C}_{\alpha_{x}}$
differentiation	$y=\dot{x}$	$Y(s)=s X(s)$	$\mathbb{C}_{\alpha_{x}}$
convolution	$z=x * y$	$Z(s)=X(s) Y(s)$	$\mathbb{C}_{\alpha_{x} \cap \mathbb{C}_{\alpha_{y}}}$

or instance, $\operatorname{if} \operatorname{supp}(x)-\mathbb{R}_{+}$, then $\exists \alpha_{x} \in \mathbb{R} \cup\{ \pm \infty\}$ such that

Mind the RoC

Example 1: if $x_{1}=\exp _{-1} \mathbb{1}$, i.e. $x_{1}(t)=\mathrm{e}^{-t} \mathbb{1}(t)=\underset{r_{t}}{\Gamma_{0}}$, then

$$
X_{1}(s)=\int_{\mathbb{R}} x_{1}(t) \mathrm{e}^{-s t} \mathrm{~d} t=\int_{0}^{\infty} \mathrm{e}^{-(s+1) t} \mathrm{~d} t=-\left.\frac{\mathrm{e}^{-(s+1) t}}{s+1}\right|_{0} ^{\infty}=\frac{1}{s+1}
$$

Example 2: if $x_{2}=-\mathbb{P}_{-1}\left(\exp _{1} \mathbb{1}\right)$, i.e. $x_{2}(t)=-\mathrm{e}^{-t} \mathbb{1}(-t)={ }^{t}$, then

$$
X_{2}(s)=-\int_{\mathbb{R}} x_{2}(t) \mathrm{e}^{-s t} \mathrm{~d} t=-\int_{-\infty}^{0} \mathrm{e}^{-(s+1) t} \mathrm{~d} t=\left.\frac{\mathrm{e}^{-(s+1) t}}{s+1}\right|_{-\infty} ^{0}=\frac{1}{s+1}
$$

The only way to distinguish them is via their RoC's:
$-\operatorname{RoC}_{1}=\mathbb{C}_{-1} \quad \lim _{t \rightarrow \infty} \mathrm{e}^{-(s+1) t}=0 \Longleftrightarrow \operatorname{Re}(s+1)>0$
$-\operatorname{RoC}_{2}=\mathbb{C} \backslash \overline{\mathbb{C}}_{-1} \quad \lim _{t \rightarrow-\infty} \mathrm{e}^{-(s+1) t}=0 \Longleftrightarrow \operatorname{Re}(s+1)<0$
(note that $\mathrm{RoC}_{1} \cap \mathrm{RoC}_{2}=\varnothing$).

Laplace transform of the rectangular pulse

If $x=$ rect, then

$$
X(s)=\int_{\mathbb{R}} x(t) \mathrm{e}^{-s t} \mathrm{~d} t=\int_{-1 / 2}^{1 / 2} \mathrm{e}^{-s t} \mathrm{~d} t=\left.\frac{\mathrm{e}^{-s t}}{-s}\right|_{-1 / 2} ^{1 / 2}=\frac{\mathrm{e}^{s / 2}-\mathrm{e}^{-s / 2}}{s}
$$

and the integral converges for all s. Hence, $\mathrm{RoC}=\mathbb{C}$ for this signal.
Remark: Note that the function $\left(e^{s / 2}-e^{-s / 2}\right) / s$ is entire, which follows by either

$$
\lim _{s \rightarrow 0} \frac{\mathrm{e}^{s / 2}-\mathrm{e}^{-s / 2}}{s}=\lim _{s \rightarrow 0} \frac{\mathrm{e}^{s / 2} / 2+\mathrm{e}^{-s / 2} / 2}{1}=1 \quad \text { or } \quad \frac{\mathrm{e}^{s / 2}-\mathrm{e}^{-s / 2}}{s}=\int_{-1 / 2}^{1 / 2} \mathrm{e}^{-s t} \mathrm{~d} t,
$$

the first by L'Hôpital's rule, so the singularity of $\left(\mathrm{e}^{s / 2}-\mathrm{e}^{-s / 2}\right) / s$ at $s=0$ is removable.
Consequence:

- by time scaling, if $y=\operatorname{rect}_{a}$ for some $a>0$, then

$$
Y(s)=\left(\mathfrak{L}\left\{\mathbb{P}_{1 / a} \mathrm{rect}\right\}\right)(s)=\frac{\mathrm{e}^{s a / 2}-\mathrm{e}^{-s a / 2}}{s}=\frac{\sinh (a s / 2)}{s / 2}
$$

Laplace transform of the step (contd)

Consequences:
Consequences:

- if $y=\mathbb{1} * x$, i.e. $y(t)=\int_{-\infty}^{t} x(t) \mathrm{d} t$, then by the convolution property

$$
Y(s)=\frac{X(s)}{s}
$$

and its RoC is the intersection of \mathbb{C}_{0} and the RoC of x.

- if $y=\frac{\operatorname{ramp}^{n}}{n!}$ for $n \in \mathbb{N}$, i.e. $y(t)=\frac{t^{n} \mathbb{1}(t)}{n!}$, then by the t-modulation

$$
Y(s)=\frac{1}{s^{n+1}}
$$

and its RoC is still \mathbb{C}_{0}. For example,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{1}{s}\right)=-\frac{1}{s^{2}} \quad \Longrightarrow \quad \mathfrak{L}\{\mathbb{1} \cdot \mathrm{ramp}\}=\mathfrak{L}\{\text { ramp }\}=\frac{1}{s^{2}} \\
\frac{\mathrm{~d}}{\mathrm{~d} s}\left(\frac{1}{s^{2}}\right)=-\frac{2}{s^{3}} \quad \Longrightarrow \quad \mathfrak{L}\{\text { ramp } \cdot \mathrm{ramp}\}=\mathfrak{L}\left\{\mathrm{ramp}^{2}\right\}=\frac{2!}{s^{3}}
\end{aligned}
$$

Laplace transform of the step

If $x=\mathbb{1}$, then

$$
X(s)=\int_{\mathbb{R}} x(t) \mathrm{e}^{-s t} \mathrm{~d} t=\int_{0}^{\infty} \mathrm{e}^{-s t} \mathrm{~d} t=\lim _{T \rightarrow \infty} \int_{0}^{T} \mathrm{e}^{-s t} \mathrm{~d} t=\lim _{T \rightarrow \infty} \frac{1-\mathrm{e}^{-s T}}{s}
$$

Cases:

- if $\operatorname{Re} s<0$, then $\lim _{T \rightarrow \infty}\left|\mathrm{e}^{-s T}\right|=\lim _{T \rightarrow \infty} \mathrm{e}^{-(\operatorname{Re} s) T}=\infty$
- if $s=0$, then $\lim _{s \rightarrow 0} \frac{1-\mathrm{e}^{-s T}}{s}=T$ diverge as $T \rightarrow \infty$
- if $s=\mathrm{j} \omega$ for $\omega \neq 0$, then $\frac{1-\mathrm{e}^{-\mathrm{j} \omega T}}{\mathrm{j} \omega}$ doesn't converge as $T \rightarrow \infty$
- if $\operatorname{Re} s>0$, then $\lim _{T \rightarrow \infty}\left|\mathrm{e}^{-s T}\right|=\lim _{T \rightarrow \infty} \mathrm{e}^{-(\operatorname{Re} s) T}=0$

Thus, the integral converges iff $\operatorname{Re} s>0$ and then

$$
X(s)=\frac{1}{s}
$$

and $\operatorname{RoC}=\mathbb{C}_{0}:=\{s \in \mathbb{C} \mid \operatorname{Re} s>0\}$. If treated as a signal $\mathbb{C} \rightarrow \mathbb{C}$, this X has a singularity (pole) at $s=0$.

Laplace transform of exponential

If $x=\exp _{\lambda} \mathbb{1}$ for $\lambda \in \mathbb{C}$, then

$$
\begin{aligned}
X(s) & =\int_{\mathbb{R}} x(t) \mathrm{e}^{-s t} \mathrm{~d} t=\int_{0}^{\infty} \mathrm{e}^{-(s-\lambda) t} \mathrm{~d} t=\lim _{T \rightarrow \infty} \int_{0}^{T} \mathrm{e}^{-(s-\lambda) t} \mathrm{~d} t \\
& =\lim _{T \rightarrow \infty} \frac{1-\mathrm{e}^{-(s-\lambda) T}}{s-\lambda}
\end{aligned}
$$

and by already familiar arguments

$$
X(s)=\frac{1}{s-\lambda}
$$

and $\operatorname{RoC}=\mathbb{C}_{\operatorname{Re} \lambda}:=\{s \in \mathbb{C} \mid \operatorname{Re} s>\operatorname{Re} \lambda\}$, where $\operatorname{Re}(s-\lambda)>0$.

If treated as a signal $\mathbb{C} \rightarrow \mathbb{C}$, this X has a singularity (pole) at $s=\lambda$.

Laplace transform of sine wave

If $x(t)=\sin \left(\omega_{x} t+\phi\right) \mathbb{1}(t)$ for $\omega_{x}, \phi \in \mathbb{R}$, then (see Lect. 3, Slide 4)

$$
x(t)=\left(\frac{\mathrm{e}^{\mathrm{j}(\phi-\pi / 2)}}{2} \mathrm{e}^{\mathrm{j} \omega_{x} t}+\frac{\mathrm{e}^{-\mathrm{j}(\phi-\pi / 2)}}{2} \mathrm{e}^{-\mathrm{j} \omega_{x} t}\right) \mathbb{1}(t)
$$

Hence, by linearity and the transform of the exponential,

$$
\begin{aligned}
X(s) & =\frac{\mathrm{e}^{\mathrm{j}(\phi-\pi / 2)}}{2\left(s-\mathrm{j} \omega_{x}\right)}+\frac{\mathrm{e}^{-\mathrm{j}(\phi-\pi / 2)}}{2\left(s+\mathrm{j} \omega_{x}\right)}=\frac{-\mathrm{j} \mathrm{e}^{\mathrm{j} \phi}}{2\left(s-\mathrm{j} \omega_{x}\right)}+\frac{\mathrm{je}}{} \begin{aligned}
&-\mathrm{j} \phi \\
& 2\left(s+\mathrm{j} \omega_{x}\right) \\
&=\frac{-s \mathrm{j}\left(\mathrm{e}^{\mathrm{j} \phi}-\mathrm{e}^{-\mathrm{j} \phi}\right)+\omega_{x}\left(\mathrm{e}^{\mathrm{j} \phi}+\mathrm{e}^{-\mathrm{j} \phi}\right)}{2\left(s^{2}+\omega_{x}^{2}\right)} \\
&=\frac{s \sin \phi+\omega_{x} \cos \phi}{s^{2}+\omega_{x}^{2}}
\end{aligned} .
\end{aligned}
$$

and $\mathrm{RoC}=\mathbb{C}_{0}$.
If treated as a signal $\mathbb{C} \rightarrow \mathbb{C}$, this X has singularities (poles) at $s= \pm \mathrm{j} \omega_{\chi}$.

Laplace transform of the Dirac delta

If $x=\delta$, then

$$
X(s)=\int_{\mathbb{R}} \delta(t) \mathrm{e}^{-s t} \mathrm{~d} t=\left.\mathrm{e}^{-s t}\right|_{t=0}=1
$$

and $\mathrm{RoC}=\mathbb{C}$.

Consequence:

- if $y=\Phi_{\tau} \delta$ for $\tau \in \mathbb{R}$, i.e. $y(t)=\delta(t+\tau)$, then

$$
Y(s)=\mathrm{e}^{\tau s}
$$

by the time shift property.

Laplace transform of modulated sine wave

If

for $\omega_{x}, \phi, \lambda \in \mathbb{R}$, then by modulation

$$
X(s)=\frac{(s-\lambda) \sin \phi+\omega_{x} \cos \phi}{(s-\lambda)^{2}+\omega_{x}^{2}}=\frac{s \sin \phi+\omega_{x} \cos \phi-\lambda \sin \phi}{s^{2}+2 \lambda s+\omega_{x}^{2}+\lambda^{2}}
$$

and $\operatorname{RoC}=\mathbb{C}_{\lambda}$.
If treated as a signal $\mathbb{C} \rightarrow \mathbb{C}$, this X has singularities (poles) at $s=\lambda \pm \mathrm{j} \omega_{\chi}$.

Unilateral (one-sided) transform

The transform of $x: \mathbb{R} \rightarrow \mathbb{F}$ of the form

$$
\int_{0^{-}}^{\infty} x(t) \mathrm{e}^{-s t} \mathrm{~d} t
$$

is known as its unilateral (or one-sided) Laplace transform. It is, in fact, the bilateral Laplace transform of $x \mathbb{1}$. The bi- and unilateral Laplace transforms coincide if $\operatorname{supp}(x) \subset \mathbb{R}_{+}$, in which case $x=x \mathbb{1}$.

The properties of the one-sided Laplace transform are similar to those of its two-sided counterpart, with some deviations, like

- if $y(t)=\dot{x}(t)$, then its unilateral transform $Y(s)=s X(s)-x\left(0^{-}\right)$
- time shift is not well defined if only a part of the support is taken into account, as is done in the unilateral transform, requiring some tricks

Fourier vs. Laplace

The relations

$$
(\mathfrak{F}\{x\})(\mathrm{j} \omega)=\int_{\mathbb{R}} x(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t \quad \text { and } \quad(\mathfrak{L}\{x\})(s)=\int_{\mathbb{R}} x(t) \mathrm{e}^{-s t} \mathrm{~d} t
$$

suggest that $\mathfrak{F}\{x\}=\left.\mathfrak{L}\{x\}\right|_{s=\mathrm{j} \omega}$. This is why we use the notation $X(\mathrm{j} \omega)$ for the Fourier. However, certain care shall be taken with this relation, it is

- true only if $\mathrm{j} \mathbb{R} \subset$ RoC of the Laplace transform of x,
i.e. only if x is Fourier transformable.

Example (1)
If $x(t)=\mathrm{e}^{-t} \mathbb{1}(t)=\underbrace{}_{\mathrm{t}}$, then $X(s)=1 /(s+1)$. If $Y=\left.X\right|_{s=\mathrm{j} \omega}$, then

$$
Y(\mathrm{j} \omega)=\frac{1}{\mathrm{j} \omega+1} \quad \Longrightarrow \quad\left(\mathfrak{F}^{-1}\{Y\}\right)(t)=\mathrm{e}^{-t} \mathbb{1}(t)=x(t)
$$

(see Lect. 3, Slide 40), because $\mathfrak{j R} \subset \operatorname{RoC}=\mathbb{C}_{-1}$.

The final value theorem

Theorem
If $x: \mathbb{R} \rightarrow \mathbb{F}$ with $\operatorname{supp}(x) \subset \mathbb{R}_{+}$is converging, then

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(s)=\operatorname{Res}(X, 0)
$$

Example

Let $x(t)=\mathrm{e}^{\lambda t} \sin \left(\omega_{x} t+\phi\right) \mathbb{1}(t)$, for which

$$
X(s)=\frac{s \sin \phi+\omega_{x} \cos \phi-\lambda \sin \phi}{s^{2}+2 \lambda s+\omega_{x}^{2}+\lambda^{2}}
$$

In this case

$$
\lim _{s \rightarrow 0} s X(s)=\lim _{s \rightarrow 0} \frac{s\left(s \sin \phi+\omega_{x} \cos \phi-\lambda \sin \phi\right)}{s^{2}+2 \lambda s+\omega_{X}^{2}+\lambda^{2}}=0
$$

equals $\lim _{t \rightarrow \infty} x(t)$ only if $\lambda<0$, otherwise this 0 makes no sense.

Fourier vs. Laplace (contd)

Example (2)
If $x(t)=\mathrm{e}^{t} \mathbb{\rrbracket}(t)=$ \qquad , then $X(s)=1 /(s-1)$. But $Y=\left.X\right|_{s=j \omega}$ has

$$
Y(\mathrm{j} \omega)=\frac{1}{\mathrm{j} \omega-1} \quad \Longrightarrow \quad\left(\mathfrak{F}^{-1}\{Y\}\right)(t)=-\mathrm{e}^{t} \mathbb{1}(-t)=\sqrt{ } \quad \neq x(t)
$$

because $\mathrm{j} \mathbb{R} \not \subset \mathrm{RoC}=\mathbb{C}_{1}$.
Example (3)
If $x(t)=\mathbb{1}(t)$, then $X(s)=1 / s$. If $Y=\left.X\right|_{s=j \omega}$, then

$$
Y(\mathrm{j} \omega)=\frac{1}{\mathrm{j} \omega} \neq \frac{1}{\mathrm{j} \omega}+\pi \delta(\omega)=X(\mathrm{j} \omega)
$$

(see Lect. 3, Slide 41), because $\mathrm{j} \mathbb{R} \not \subset \mathrm{RoC}=\mathbb{C}_{0}$.

In Mathematica: InverseFourierTransform with FourierParameters $\rightarrow>\{1,-1\}$.

The initial value theorem

Theorem
If $x: \mathbb{R} \rightarrow \mathbb{F}$ with $\operatorname{supp}(x) \subset \mathbb{R}_{+}$is such that $x\left(0^{+}\right)$exists, then

$$
\lim _{t \rightarrow 0} x(t)=\lim _{s \in \mathbb{R}, s \rightarrow \infty} s X(s) .
$$

Example
Let $x(t)=\mathrm{e}^{\lambda t} \sin \left(\omega_{x} t+\phi\right) \mathbb{1}(t)$, for which

$$
X(s)=\frac{s \sin \phi+\omega_{x} \cos \phi-\lambda \sin \phi}{s^{2}+2 \lambda s+\omega_{x}^{2}+\lambda^{2}}
$$

In this case

$$
\lim _{s \rightarrow \infty} s X(s)=\lim _{s \rightarrow \infty} \frac{s^{2} \sin \phi+s\left(\omega_{x} \cos \phi-\lambda \sin \phi\right)}{s^{2}+2 \lambda s+\omega_{x}^{2}+\lambda^{2}}=\sin \phi=x(0),
$$

indeed.

Outline

(Bilateral) z transform

Definition

The bilateral (two-sided) z-transform $\mathfrak{Z}\{x\}$ of a signal $x: \mathbb{Z} \rightarrow \mathbb{F}$ is

$$
X(z)=(\mathfrak{Z}\{x\})(z):=\sum_{t \in \mathbb{Z}} x[t] z^{-t}
$$

defined over those $z \in \mathbb{C}$ for which the sum converges (again, the RoC). If $z=\gamma \mathrm{e}^{\mathrm{j} \theta}$, then

$$
\sum_{t \in \mathbb{Z}} x[t] z^{-t}=\sum_{t \in \mathbb{Z}}\left(x[t] \gamma^{-t}\right) \mathrm{e}^{-\mathrm{j} \theta t}
$$

is the DTFT of $x \exp _{1 / \gamma}$ and the condition $x \exp _{1 /|z|} \in \ell_{1}$ ensures that this z is in the RoC. Like in the Laplace transform case, we mostly z-transform signals x with $\operatorname{supp}(x) \subset \mathbb{Z}_{+}$. For such signals $\exists \alpha_{x} \in \mathbb{R}_{+} \cup\{\infty\}$ such that $\left\{z \in \mathbb{C}\left||z|>\alpha_{x}\right\} \subset \operatorname{RoC}\right.$ and $\left\{z \in \mathbb{C}\left||z|<\alpha_{x}\right\} \cap \operatorname{RoC}=\varnothing\right.$.

If the RoC of x is nonempty, then X can be extended beyond its RoC to the whole \mathbb{C} by the analytic continuation technique and we treat $X=\mathfrak{Z}\{x\}$ as a signal $X: \mathbb{C} \rightarrow \mathbb{C}$, which may contain singularities.

z-transform of the pulse

If $x=\delta$, then

$$
X(z)=\sum_{t \in \mathbb{Z}} \delta[t] z^{-t}=z^{0}=1
$$

and $\mathrm{RoC}=\mathbb{C}$.

Consequence:

- if $y=\mathbb{S}_{\tau} \delta$ for $\tau \in \mathbb{Z}$, i.e. $y[t]=\delta[t+\tau]$, then

$$
Y(z)=z^{\tau}
$$

by the time shift property.

z-transform of the step

If $x=\mathbb{1}$, then

$$
X(z)=\sum_{t \in \mathbb{Z}} x[t] z^{-t}=\sum_{t \in \mathbb{Z}_{+}} z^{-t}=\lim _{T \rightarrow \infty} \sum_{t=0}^{T} z^{-t}=\lim _{T \rightarrow \infty} \frac{z-z^{-T}}{z-1}
$$

Cases:

- if $|z|<1$, then $\lim _{T \rightarrow \infty}\left|z^{-T}\right|=\lim _{T \rightarrow \infty}|z|^{-T}=\infty$
- if $z=1$, then $\lim _{z \rightarrow 1} \frac{z-z^{-T}}{z-1}=T+1$ diverge as $T \rightarrow \infty$
- if $z=\mathrm{e}^{\mathrm{j} \theta}$ for $\theta \neq 0$, then $\mathrm{e}^{-\mathrm{j} \theta T}$ doesn't converge as $T \rightarrow \infty$
- if $|z|>1$, then $\lim _{T \rightarrow \infty}\left|z^{-T}\right|=\lim _{T \rightarrow \infty}|z|^{-T}=0$

Thus, the sum converges iff $|z|>1$ and then

$$
X(z)=\frac{z}{z-1}
$$

and $\operatorname{RoC}=\{z \in \mathbb{C}| | z \mid>1\}$. If treated as a signal $\mathbb{C} \rightarrow \mathbb{C}$, this X has a singularity (pole) at $z=1$.

z-transform of sine wave

If $x[t]=\sin \left[\theta_{x} t+\phi\right] \mathbb{\square}[t]$ for $\theta_{x}, \phi \in \mathbb{R}$, then (see Lect. 3, Slide 4)

$$
x[t]=\left(\frac{\mathrm{e}^{\mathrm{j}(\phi-\pi / 2)}}{2}\left(\mathrm{e}^{\mathrm{j} \theta_{x}}\right)^{t}+\frac{\mathrm{e}^{-\mathrm{j}(\phi-\pi / 2)}}{2}\left(\mathrm{e}^{-\mathrm{j} \theta_{x}}\right)^{t}\right) \mathbb{[}[t]
$$

Hence, by linearity and the transform of the exponential,

$$
\begin{aligned}
X(z) & =\frac{\mathrm{e}^{\mathrm{j}(\phi-\pi / 2)}}{2\left(z-\mathrm{e}^{\mathrm{j} \theta_{x}}\right)}+\frac{\mathrm{e}^{-\mathrm{j}(\phi-\pi / 2)}}{2\left(z-\mathrm{e}^{-\mathrm{j} \theta_{x}}\right)}=\frac{-\mathrm{j}^{\mathrm{j} \phi_{z}}}{2\left(z-\mathrm{e}^{\mathrm{j} \theta_{x}}\right)}+\frac{\mathrm{j}^{-\mathrm{j} \phi_{z}}}{2\left(z-\mathrm{e}^{-\mathrm{j} \theta_{x}}\right)} \\
& =\frac{z\left(z \sin \phi+\sin \left(\theta_{x}-\phi\right)\right)}{z^{2}-2 \cos \theta_{x} z+1}
\end{aligned}
$$

and $\operatorname{RoC}=\{z \in \mathbb{C}| | z \mid>1\}$.
If treated as a signal $\mathbb{C} \rightarrow \mathbb{C}$, this X has singularities (poles) at $z=\mathrm{e}^{ \pm j \theta_{x}}$.

z-transform of exponential

If $x=\exp _{\lambda} \mathbb{\square}$ for $\lambda \in \mathbb{C}$, then

$$
\begin{aligned}
X(z) & =\sum_{t \in \mathbb{Z}} x[t] z^{-t}=\sum_{t \in \mathbb{Z}_{+}} \lambda^{t} z^{-t}=\lim _{T \rightarrow \infty} \sum_{t=0}^{T}\left(\frac{z}{\lambda}\right)^{-t} \\
& =\lim _{T \rightarrow \infty} \frac{z / \lambda-(z / \lambda)^{-T}}{z / \lambda-1}=\lim _{T \rightarrow \infty} \frac{z-\lambda(z / \lambda)^{-T}}{z-\lambda}
\end{aligned}
$$

and by already familiar arguments

$$
X(z)=\frac{z}{z-\lambda}
$$

and $\operatorname{RoC}=\{z \in \mathbb{C}| | z|>|\lambda|\}$, where $|z / \lambda|>1$.
If treated as a signal $\mathbb{C} \rightarrow \mathbb{C}$, this X has a singularity (pole) at $z=\lambda$.

z-transform of modulated sine wave

If

for $\theta_{x}, \phi, \lambda \in \mathbb{R}$, then by modulation

$$
X(z)=\frac{z\left(z \sin \phi+\lambda \sin \left(\theta_{x}-\phi\right)\right)}{z^{2}-2 \lambda \cos \theta_{x} z+\lambda^{2}}
$$

and $\operatorname{RoC}=\{z \in \mathbb{C}| | z|>|\lambda|\}$.
If treated as a signal $\mathbb{C} \rightarrow \mathbb{C}$, this X has singularities (poles) at $z=\lambda \mathrm{e}^{ \pm \mathrm{j} \theta_{x}}$.

The final and initial value theorems

Theorem
If $x: \mathbb{Z} \rightarrow \mathbb{F}$ with $\operatorname{supp}(x) \subset \mathbb{Z}_{+}$is converging, then

$$
\lim _{t \rightarrow \infty} x[t]=\lim _{z \rightarrow 1}(z-1) X(z)=\operatorname{Res}(X, 1)
$$

Theorem
If $x: \mathbb{Z} \rightarrow \mathbb{F}$ with $\operatorname{supp}(x) \subset \mathbb{Z}_{+}$is such that $x[0]$ exists, then

$$
x[0]=\lim _{z \in \mathbb{R}, z \rightarrow \infty} X(z) .
$$

Proof: follows directly from $X(z)=x[0]+x[1] z^{-1}+x[2] z^{-2}+\cdots$

Thermometer model

A mercury thermometer is a system mapping the ambient temperature into the temperature of the mercury inside it (which, in turn, changes its volume as a result). Assuming that

- the heat transfer coefficient is constant and
- there is no thermal radiation in heat transfer
the Newton's law of cooling yields that the mercury temperature θ satisfies

$$
\tau \dot{\theta}(t)=\theta_{\mathrm{amb}}(t)-\theta(t)
$$

where $\theta_{\text {amb }}$ is the ambient temperature and $\tau>0$ is a parameter dependent on the thermal properties of the thermometer. Assuming that $\theta(t)=\theta_{0}$ for all $t<0$, the model in terms of deviations from θ_{0} is

$$
\tau \dot{\tilde{\theta}}(t)+\tilde{\theta}(t)=\tilde{\theta}_{\mathrm{amb}}(t)
$$

where $\tilde{\theta}(t)=\theta(t)-\theta_{0}$ and $\tilde{\theta}_{\mathrm{amb}}(t)=\theta_{\mathrm{amb}}(t)-\theta_{0}$ with $\operatorname{supp}(\tilde{\theta})=\mathbb{R}_{+}$.

Outline

Solving differential equations with the Laplace transform

Thermometer model in the s-domain

By the linearity and differentiation properties of the Laplace transform, the model in the s-domain reads as the algebraic relation

$$
\tau s \tilde{\Theta}(s)+\tilde{\Theta}(s)=\tilde{\Theta}_{\mathrm{amb}}(s) \Longleftrightarrow \tilde{\Theta}(s)=\frac{\tilde{\Theta}_{\mathrm{amb}}(s)}{\tau s+1}
$$

Solution sequence:

1. partial fraction expansion of $\tilde{\Theta}$ with real rational elements
2. inverse Laplace transform of each simple fractions
partial fractions are either first- or second-order real-rational elements, whose inverse Laplace transforms we already know; if a pole is not simple, then the t-modulation property of the Laplace transform shall be used

Thermometer model: solution for the step input
If $\tilde{\theta}_{\text {amb }}=\tilde{\theta}_{1} \rrbracket$ for some $\tilde{\theta}_{1} \in \mathbb{R}$, then

$$
\tilde{\Theta}(s)=\frac{\tilde{\theta}_{1}}{s(\tau s+1)}=\frac{\operatorname{Res}(\tilde{\Theta}, 0)}{s}+\frac{\operatorname{Res}(\tilde{\Theta},-1 / \tau)}{s+1 / \tau},
$$

because both poles are simple. Residues are

$$
\operatorname{Res}(\tilde{\Theta}, 0)=\lim _{s \rightarrow 0} s \tilde{\Theta}(s)=\lim _{s \rightarrow 0} \frac{\tilde{\theta}_{1}}{\tau s+1}=\tilde{\theta}_{1}
$$

and

$$
\operatorname{Res}(\tilde{\Theta},-1 / \tau)=\lim _{s \rightarrow-1 / \tau}(s+1 / \tau) \tilde{\Theta}(s)=\lim _{s \rightarrow-1 / \tau} \frac{\tilde{\theta}_{1}}{\tau s}=-\tilde{\theta}_{1}
$$

Thus,
$\tilde{\Theta}(s)=\frac{\tilde{\theta}_{1}}{s}-\frac{\tilde{\theta}_{1}}{s+1 / \tau} \quad \Longrightarrow \quad \tilde{\theta}(t)=\tilde{\theta}_{1}\left(1-\mathrm{e}^{-t / \tau}\right) \mathbb{1}(t)=$

Mass-spring model in the s domain

By the linearity and differentiation properties of the Laplace transform, the model in the s-domain reads as the algebraic relation

$$
m s^{2} X(s)+k X(s)=F(s) \quad \Longleftrightarrow \quad X(s)=\frac{F(s)}{m s^{2}+k}
$$

The denominator polynomial has roots at

$$
s_{1,2}= \pm j \sqrt{\frac{k}{m}}
$$

which are pure imaginary.

Mass-spring model

Assumptions:

- spring force is proportional to position differences (Hooke's law)
- we may neglect friction, force misalignment, etc

Supposing zero spring force at $x=0$, by Newton's second law

$$
m \ddot{x}(t)=f(t)+f_{\text {spring }}(t)=f(t)-k x(t)
$$

or, equivalently,

$$
m \ddot{x}(t)+k x(t)=f(t)
$$

Mass-spring model: solution for the step input

If $f=f_{1} \mathbb{1}$ for some $f_{1} \in \mathbb{R}$, then

$$
\begin{aligned}
& =f_{1} \mathbb{1} \text { for some } f_{1} \in \mathbb{R} \text {, then } \\
& X(s)=\frac{f_{1}}{s\left(m s^{2}+k\right)}=\frac{\operatorname{Res}(X, 0)}{s}+(\overbrace{\left.\frac{f_{1}}{s\left(m s^{2}+k\right)}-\frac{\operatorname{Res}(X, 0)}{s}\right),}^{\text {removable singularity at } s=0}
\end{aligned}
$$

(to avoid dealing with complex poles and residues). The residue at $s=0$ is

$$
\operatorname{Res}(X, 0)=\lim _{s \rightarrow 0} s X(s)=\lim _{s \rightarrow 0} \frac{f_{1}}{m s^{2}+k}=\frac{f_{1}}{k}
$$

so that

$$
X(s)=\frac{f_{1}}{k s}+\left(\frac{f_{1}}{s\left(m s^{2}+k\right)}-\frac{f_{1}}{k s}\right)=\frac{f_{1}}{k}\left(\frac{1}{s}-\frac{s}{s^{2}+k / m}\right)
$$

Hence,

