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Functions of a complex variable

A complex function F is a mapping F : C → C. The complex derivative of
F at s0 ∈ C is

F ′(s0) = lim
s→s0

F (s)− F (s0)

s − s0
;

where the limit is supposed to be independent of the (complex) path along
which s approaches s0. If the limit above exists, then the function F is said
to be complex differentiable at s0. If O ⊂ C is an open set, we say that

− F is holomorphic (analytic) in O if F ′(s0) exists for every s0 ∈ O.

Entire functions are those holomorphic in the whole C. A function is said to
be holomorphic at s0 ∈ C if it is holomorphic in some neighbourhood of s0.
Every holomorphic function is locally the sum of a convergent power series.

Examples: Functions sn for n ∈ N and eas for a ∈ R are entire:

(sn)′ = nsn−1 and (eas)′ = aeas :

Function 1=sn for n ∈ N is holomorphic in C \ {0}, as (1=sn)′ = −n=sn+1.
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Isolated singularities

We say that F has an isolated singularity at a point s0 ∈ O, where O is an
open set in C, if F is holomorphic in O \ {s0}. Three cases are possible:

1. if F can be defined at s0 so that the extended function is holomorphic
in O (roughly, if F (s0) is bounded), then the singularity is removable;
e.g. F (s) = (1− e−s)=s has a removable singularity at s = 0, because F (0) = 1

2. if there is n ∈ N such that (s − s0)
nF (s) has a removable singularity at

s0 and lims→s0(s − s0)
nF (s) ̸= 0, then the singularity is a pole and n is

its order1 (or multiplicity);
e.g. F (s) = 1=s2 has a second-order pole at s = 0, because sF (s) = s=s2 = 1=s has

a non-removable singularity at s = 0 and s2F (s) = s2=s2 = 1 is entire and nonzero

at s = 0

3. if no finite n as in item 2. exists, then the singularity is called essential.
e.g. F (s) = e1=s has an essential singularity at s = 0

1If the order equals 1, then the pole is said to be simple.
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Rational functions and partial fraction expansion

A function F is said to be rational if it is the quotient of two polynomials,

F (s) =
bms

m + bm−1s
m−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
=··

N(s)

D(s)
; bm ̸= 0

It’s called proper / strictly proper / bi-proper if n ≥ m / n > m / n = m and
non-proper if n < m. When all coefficients are real, F is called real-rational.
Every root of D(s) = 0 that is not a root of N(s) = 0 is a pole of F . If F is
proper, then

F (s) = F (∞) +
k∑

i=1

ni∑

j=1

cij
(s − pi )j

for distinct poles pi ∈ C of F of order ni and cij ∈ C. This form is known as
the partial fraction expansion of F . If pi is a simple pole, i.e. ni = 1, then

ci1 = Res(F ; pi ) ··= lim
s→pi

(s − pi )F (s) ̸= 0

is the residue of F at s = pi .
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Pros and cons of the Fourier transform

The Fourier transform,

X (j!) = (F{x})(j!) ··=
∫

R

x(t)e−j!t dt

decomposes x into elementary harmonic signals via

x(t) =
1

2�

∫

R

X (j!)ej!t d!:

This

¨̂ offers a valuable insight into properties of x .

However, it

_̈ applies to only a limited class of signals,

some widely used signals (like 1) require Dirac distributions and some (like
exp� 1 for � > 0) are not transformable at all.
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Definition

The bilateral (two-sided) Laplace transform L{x} of a signal x : R → F is

X (s) = (L{x})(s) ··=
∫

R

x(t)e−st dt

defined over those s ∈ C for which the integral converges. The latter set is
known as the region of convergence (RoC) of the transform. If s = � + j!,
then ∫

R

x(t)e−st dt =

∫

R

(
x(t)e−�t

)
e−j!t dt

is the Fourier transform of x exp−� , so that the condition x exp−Re s ∈ L1 is
sufficient for this s to be in the RoC.

If the whole vertical line {s ∈ C | Re s = �} ⊂ RoC, then

x(t) =
1

j2�

∫

�+jR
X (s)est ds

(the inverse Laplace transform).
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Remarks on RoC

The condition x exp−� ∈ L1 is draconian if supp(x) = R.

If � > 0, then x(t) should decay faster than e−�t grows in t < 0 and grow
slower than e−�t decays in t > 0:

cf.

x(t)

t0

×
e−�t

t0

=
x(t)e−�t

t0

and

x(t)

t0

×
e−�t

t0

=
x(t)e−�t

t0

If � < 0, then x(t) should decay faster than e−�t grows in t > 0 and grow
slower than e−�t decays in t < 0:

cf.

x(t)

t0

×
e−�t

t0

=
x(t)e−�t

t0

and

x(t)

t0

×
e−�t

t0

=
x(t)e−�t

t0
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Remarks on RoC (contd)

Many hurdles are avoided if supp(x) is limited to finite interval or semi-axis.
For instance, if supp(x) = R+, then ∃˛x ∈ R ∪ {±∞} such that

{
s ∈ C | Re s > ˛x

}
︸ ︷︷ ︸

C˛x

⊂ RoC and
{
s ∈ C | Re s < ˛x

}
︸ ︷︷ ︸

C\C̄˛x

∩ RoC = ∅

(here C̄˛x stands for the closure of C˛x ). Particular cases:

− ˛x = −∞ =⇒ RoC = C e.g. x(t) = e−t21(t)

− ˛x = +∞ =⇒ RoC = ∅ e.g. x(t) = et
2
1(t)

If x is bounded and supp(x) = [a; b], then RoC = C.

If the RoC of x is nonempty, then X can be extended beyond its RoC to the
whole C by the analytic continuation technique (don’t ask what’s that) and
we treat X = L{x} as a signal X : C → C, which may contain singularities.
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Mind the RoC

Example 1: if x1 = exp−11, i.e. x1(t) = e−t1(t) =
t0
, then

X1(s) =

∫

R

x1(t)e
−st dt =

∫ ∞

0
e−(s+1)t dt = − e−(s+1)t

s + 1

∣∣∣
∞

0
=

1

s + 1

Example 2: if x2 = −P−1(exp11), i.e. x2(t) = −e−t1(−t) =
t0

, then

X2(s) = −
∫

R

x2(t)e
−st dt = −

∫ 0

−∞
e−(s+1)t dt =

e−(s+1)t

s + 1

∣∣∣
0

−∞
=

1

s + 1

The only way to distinguish them is via their RoC’s:

− RoC1 = C−1 limt→∞ e−(s+1)t = 0 ⇐⇒ Re(s + 1) > 0

− RoC2 = C \ C̄−1 limt→−∞ e−(s+1)t = 0 ⇐⇒ Re(s + 1) < 0

(note that RoC1 ∩ RoC2 = ∅).
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Basic properties

Assuming all involved signals have their support in R+,

property time domain s-domain RoC

linearity x = a1x1 + a2x2 X (s) = a1X1(s) + a2X2(s) C˛1∩ C˛2

time shift y = S�x Y (s) = e�sX (s) C˛x

time scaling y = P&x , & > 0 Y (s) = 1
&X ( s& ) C&˛x

modulation y = x exps0 Y (s) = X (s − s0) C˛x+Re s0

t-modulation y = xramp Y (s) = − d
dsX (s) C˛x

differentiation2 y = ẋ Y (s) = sX (s) C˛x

convolution z = x ∗ y Z (s) = X (s)Y (s) C˛x ∩ C˛y

2If limt→∞ x(t)e−st = 0 for all s ∈ RoC, which is normally the case for x exp− Re s ∈ L1.
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Laplace transform of the rectangular pulse

If x = rect, then

X (s) =

∫

R

x(t)e−st dt =

∫ 1=2

−1=2
e−st dt =

e−st

−s

∣∣∣
1=2

−1=2
=

es=2 − e−s=2

s

and the integral converges for all s. Hence, RoC = C for this signal.

Remark: Note that the function (es=2 − e−s=2)=s is entire, which follows by either

lim
s→0

es=2 − e−s=2

s
= lim

s→0

es=2=2 + e−s=2=2

1
= 1 or

es=2 − e−s=2

s
=

∫ 1=2

−1=2

e−st dt;

the first by L’Hôpital’s rule, so the singularity of (es=2 − e−s=2)=s at s = 0 is removable.

Consequence:

− by time scaling, if y = recta for some a > 0, then

Y (s) = (L{P1=arect})(s) =
esa=2 − e−sa=2

s
=

sinh(as=2)

s=2
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Laplace transform of the step

If x = 1, then

X (s) =

∫

R

x(t)e−st dt =

∫ ∞

0
e−st dt = lim

T→∞

∫ T

0
e−st dt = lim

T→∞
1− e−sT

s

Cases:

− if Re s < 0, then limT→∞|e−sT | = limT→∞ e−(Re s)T = ∞
− if s = 0, then lims→0

1−e−sT

s = T diverge as T → ∞

− if s = j! for ! ̸= 0, then 1−e−j!T

j! doesn’t converge as T → ∞
− if Re s > 0, then limT→∞|e−sT | = limT→∞ e−(Re s)T = 0

Thus, the integral converges iff Re s > 0 and then

X (s) =
1

s

and RoC = C0 ··= {s ∈ C | Re s > 0}. If treated as a signal C → C, this X
has a singularity (pole) at s = 0.
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Laplace transform of the step (contd)

Consequences:

− if y = 1 ∗ x , i.e. y(t) =
∫ t

−∞
x(t)dt, then by the convolution property

Y (s) =
X (s)

s

and its RoC is the intersection of C0 and the RoC of x .

− if y =
rampn

n!
for n ∈ N, i.e. y(t) =

tn1(t)

n!
, then by the t-modulation

Y (s) =
1

sn+1

and its RoC is still C0. For example,

d
ds

(
1
s

)
= − 1

s2
=⇒ L{1 · ramp} = L{ramp} = 1

s2

d
ds

(
1
s2

)
= − 2

s3
=⇒ L{ramp · ramp} = L{ramp2} = 2!

s3
...
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Laplace transform of exponential

If x = exp� 1 for � ∈ C, then

X (s) =

∫

R

x(t)e−st dt =

∫ ∞

0
e−(s−�)t dt = lim

T→∞

∫ T

0
e−(s−�)t dt

= lim
T→∞

1− e−(s−�)T

s − �

and by already familiar arguments

X (s) =
1

s − �

and RoC = CRe� ··= {s ∈ C | Re s > Re�}, where Re(s − �) > 0.

If treated as a signal C → C, this X has a singularity (pole) at s = �.
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Laplace transform of sine wave

If x(t) = sin(!x t + �)1(t) for !x ; � ∈ R, then (see Lect. 3, Slide 4)

x(t) =

(
ej(�−�=2)

2
ej!x t +

e−j(�−�=2)

2
e−j!x t

)
1(t)

Hence, by linearity and the transform of the exponential,

X (s) =
ej(�−�=2)

2(s − j!x)
+

e−j(�−�=2)

2(s + j!x)
=

−jej�

2(s − j!x)
+

je−j�

2(s + j!x)

=
−s j(ej� − e−j�) + !x(e

j� + e−j�)

2(s2 + !2
x )

=
s sin� + !x cos�

s2 + !2
x

and RoC = C0.

If treated as a signal C → C, this X has singularities (poles) at s = ±j!x .
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Laplace transform of modulated sine wave

If

x(t) = e�t sin(!x t + �)1(t) =





t0

sin �
if � < 0

t0

sin �

if � > 0

for !x ; �; � ∈ R, then by modulation

X (s) =
(s − �) sin� + !x cos�

(s − �)2 + !2
x

=
s sin� + !x cos� − � sin�

s2 + 2�s + !2
x + �

2

and RoC = C�.

If treated as a signal C → C, this X has singularities (poles) at s = �± j!x .
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Laplace transform of the Dirac delta

If x = ı, then

X (s) =

∫

R

ı(t)e−st dt = e−st |t=0 = 1

and RoC = C.

Consequence:

− if y = S�ı for � ∈ R, i.e. y(t) = ı(t + �), then

Y (s) = e�s

by the time shift property.
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Unilateral (one-sided) transform

The transform of x : R → F of the form
∫ ∞

0−
x(t)e−st dt

is known as its unilateral (or one-sided) Laplace transform. It is, in fact, the
bilateral Laplace transform of x1. The bi- and unilateral Laplace transforms
coincide if supp(x) ⊂ R+, in which case x = x1.

The properties of the one-sided Laplace transform are similar to those of its
two-sided counterpart, with some deviations, like

− if y(t) = ẋ(t), then its unilateral transform Y (s) = sX (s)− x(0−)

− time shift is not well defined if only a part of the support is taken into
account, as is done in the unilateral transform, requiring some tricks
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Fourier vs. Laplace

The relations

(F{x})(j!) =
∫

R

x(t)e−j!t dt and (L{x})(s) =
∫

R

x(t)e−st dt

suggest that F{x} = L{x}|s=j! . This is why we use the notation X (j!) for
the Fourier. However, certain care shall be taken with this relation, it is

− true only if jR ⊂ RoC of the Laplace transform of x ,

i.e. only if x is Fourier transformable.

Example (1)

If x(t) = e−t1(t) =
t0
, then X (s) = 1=(s + 1). If Y = X |s=j! , then

Y (j!) =
1

j! + 1
=⇒ (F−1{Y })(t) = e−t1(t) = x(t)

(see Lect. 3, Slide 40), because jR ⊂ RoC = C−1.
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Fourier vs. Laplace (contd)

Example (2)

If x(t) = et1(t) =
t0

, then X (s) = 1=(s − 1). But Y = X |s=j! has

Y (j!) =
1

j! − 1
=⇒ (F−1{Y })(t) = −et1(−t) = t

0 ̸= x(t)

because jR ̸⊂ RoC = C1.

Example (3)

If x(t) = 1(t), then X (s) = 1=s. If Y = X |s=j! , then

Y (j!) =
1

j!
̸= 1

j!
+ �ı(!) = X (j!)

(see Lect. 3, Slide 41), because jR ̸⊂ RoC = C0.

In Mathematica: InverseFourierTransform with FourierParameters -> {1,-1}.
22/40

The final value theorem

Theorem
If x : R → F with supp(x) ⊂ R+ is converging, then

lim
t→∞

x(t) = lim
s→0

sX (s) = Res(X ; 0):

Example

Let x(t) = e�t sin(!x t + �)1(t), for which

X (s) =
s sin� + !x cos� − � sin�

s2 + 2�s + !2
x + �

2

In this case

lim
s→0

sX (s) = lim
s→0

s(s sin� + !x cos� − � sin�)
s2 + 2�s + !2

x + �
2

= 0

equals limt→∞ x(t) only if � < 0, otherwise this 0 makes no sense.
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The initial value theorem

Theorem
If x : R → F with supp(x) ⊂ R+ is such that x(0+) exists, then

lim
t→0

x(t) = lim
s∈R;s→∞

sX (s):

Example

Let x(t) = e�t sin(!x t + �)1(t), for which

X (s) =
s sin� + !x cos� − � sin�

s2 + 2�s + !2
x + �

2

In this case

lim
s→∞

sX (s) = lim
s→∞

s2 sin� + s(!x cos� − � sin�)
s2 + 2�s + !2

x + �
2

= sin� = x(0);

indeed.
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Definition

The bilateral (two-sided) z-transform Z{x} of a signal x : Z → F is

X (z) = (Z{x})(z) ··=
∑

t∈Z

x [t]z−t

defined over those z ∈ C for which the sum converges (again, the RoC). If
z =  ej� , then ∑

t∈Z

x [t]z−t =
∑

t∈Z

(
x [t]−t

)
e−j�t

is the DTFT of x exp1= and the condition x exp1=|z| ∈ `1 ensures that this
z is in the RoC. Like in the Laplace transform case, we mostly z-transform
signals x with supp(x) ⊂ Z+. For such signals ∃˛x ∈ R+ ∪ {∞} such that{
z ∈ C | |z | > ˛x

}
⊂ RoC and

{
z ∈ C | |z | < ˛x

}
∩ RoC = ∅.

If the RoC of x is nonempty, then X can be extended beyond its RoC to the
whole C by the analytic continuation technique and we treat X = Z{x} as
a signal X : C → C, which may contain singularities.
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Basic properties

Assuming all involved signals have their support in Z+,

property time domain z-domain RoC

linearity x = a1x1 + a2x2 X (z) = a1X1(z) + a2X2(z) ∩

time shift y = S�x Y (z) = z�X (z) RoCx

modulation y = x exp� Y (z) = X (z=�) |�|RoCx

t-modulation y = xramp Y (z) = −z d
dzX (z) RoCx

convolution w = x ∗ y W (z) = X (z)Y (z) ∩
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z-transform of the pulse

If x = ı, then
X (z) =

∑

t∈Z

ı[t]z−t = z0 = 1

and RoC = C.

Consequence:

− if y = S�ı for � ∈ Z, i.e. y [t] = ı[t + � ], then

Y (z) = z�

by the time shift property.
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z-transform of the step

If x = 1, then

X (z) =
∑

t∈Z

x [t]z−t =
∑

t∈Z+

z−t = lim
T→∞

T∑

t=0

z−t = lim
T→∞

z − z−T

z − 1

Cases:

− if |z | < 1, then limT→∞|z−T | = limT→∞|z |−T = ∞
− if z = 1, then limz→1

z−z−T

z−1 = T + 1 diverge as T → ∞
− if z = ej� for � ̸= 0, then e−j�T doesn’t converge as T → ∞
− if |z | > 1, then limT→∞|z−T | = limT→∞|z |−T = 0

Thus, the sum converges iff |z | > 1 and then

X (z) =
z

z − 1

and RoC = {z ∈ C | |z | > 1}. If treated as a signal C → C, this X has a
singularity (pole) at z = 1.
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z-transform of exponential

If x = exp� 1 for � ∈ C, then

X (z) =
∑

t∈Z

x [t]z−t =
∑

t∈Z+

�tz−t = lim
T→∞

T∑

t=0

( z
�

)−t

= lim
T→∞

z=�− (z=�)−T

z=�− 1
= lim

T→∞
z − �(z=�)−T

z − �

and by already familiar arguments

X (z) =
z

z − �

and RoC = {z ∈ C | |z | > |�|}, where |z=�| > 1.

If treated as a signal C → C, this X has a singularity (pole) at z = �.
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z-transform of sine wave

If x [t] = sin[�x t + �]1[t] for �x ; � ∈ R, then (see Lect. 3, Slide 4)

x [t] =

(
ej(�−�=2)

2
(ej�x )t +

e−j(�−�=2)

2
(e−j�x )t

)
1[t]

Hence, by linearity and the transform of the exponential,

X (z) =
ej(�−�=2)

2(z − ej�x )
+

e−j(�−�=2)

2(z − e−j�x )
=

−jej�z

2(z − ej�x )
+

je−j�z

2(z − e−j�x )

=
z(z sin� + sin(�x − �))

z2 − 2 cos �xz + 1

and RoC = {z ∈ C | |z | > 1}.

If treated as a signal C → C, this X has singularities (poles) at z = e±j�x .
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z-transform of modulated sine wave

If

x [t] = �t sin[�x t + �]1[t] =





t0

sin �
if |�| < 1

t0

sin �

if |�| > 1

for �x ; �; � ∈ R, then by modulation

X (z) =
z(z sin� + � sin(�x − �))
z2 − 2� cos �x z + �2

and RoC = {z ∈ C | |z | > |�|}.

If treated as a signal C → C, this X has singularities (poles) at z = �e±j�x .
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The final and initial value theorems

Theorem
If x : Z → F with supp(x) ⊂ Z+ is converging, then

lim
t→∞

x [t] = lim
z→1

(z − 1)X (z) = Res(X ; 1)

Theorem
If x : Z → F with supp(x) ⊂ Z+ is such that x [0] exists, then

x [0] = lim
z∈R;z→∞

X (z):

Proof : follows directly from X (z) = x [0] + x [1]z−1 + x [2]z−2 + · · ·
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Thermometer model

A mercury thermometer is a system mapping the ambient temperature into
the temperature of the mercury inside it (which, in turn, changes its volume
as a result). Assuming that

− the heat transfer coefficient is constant and

− there is no thermal radiation in heat transfer

the Newton’s law of cooling yields that the mercury temperature � satisfies

��̇(t) = �amb(t)− �(t);

where �amb is the ambient temperature and � > 0 is a parameter dependent
on the thermal properties of the thermometer. Assuming that �(t) = �0 for
all t < 0, the model in terms of deviations from �0 is

�
˙̃
�(t) + �̃(t) = �̃amb(t);

where �̃(t) = �(t)− �0 and �̃amb(t) = �amb(t)− �0 with supp(�̃) = R+.
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Thermometer model in the s-domain

By the linearity and differentiation properties of the Laplace transform, the
model in the s-domain reads as the algebraic relation

�sΘ̃(s) + Θ̃(s) = Θ̃amb(s) ⇐⇒ Θ̃(s) =
Θ̃amb(s)

�s + 1
:

Solution sequence:

1. partial fraction expansion of Θ̃ with real rational elements

2. inverse Laplace transform of each simple fractions
partial fractions are either first- or second-order real-rational elements, whose inverse

Laplace transforms we already know; if a pole is not simple, then the t-modulation

property of the Laplace transform shall be used
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Thermometer model: solution for the step input

If �̃amb = �̃11 for some �̃1 ∈ R, then

Θ̃(s) =
�̃1

s(�s + 1)
=

Res(Θ̃; 0)

s
+

Res(Θ̃;−1=�)

s + 1=�
;

because both poles are simple. Residues are

Res(Θ̃; 0) = lim
s→0

sΘ̃(s) = lim
s→0

�̃1

�s + 1
= �̃1

and

Res(Θ̃;−1=�) = lim
s→−1=�

(s + 1=�)Θ̃(s) = lim
s→−1=�

�̃1

�s
= −�̃1

Thus,

Θ̃(s) =
�̃1

s
− �̃1

s + 1=�
=⇒ �̃(t) = �̃1(1− e−t=� )1(t) =

t0 � 3�

�̃1
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Mass-spring model

m
k

x

f

Assumptions:

− spring force is proportional to position differences (Hooke’s law)

− we may neglect friction, force misalignment, etc

Supposing zero spring force at x = 0, by Newton’s second law

mẍ(t) = f (t) + fspring(t) = f (t)− kx(t)

or, equivalently,
mẍ(t) + kx(t) = f (t):
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Mass-spring model in the s domain

By the linearity and differentiation properties of the Laplace transform, the
model in the s-domain reads as the algebraic relation

ms2X (s) + kX (s) = F (s) ⇐⇒ X (s) =
F (s)

ms2 + k
:

The denominator polynomial has roots at

s1;2 = ±j

√
k

m

which are pure imaginary.
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Mass-spring model: solution for the step input

If f = f11 for some f1 ∈ R, then

X (s) =
f1

s(ms2 + k)
=

Res(X ; 0)

s
+

(
removable singularity at s = 0︷ ︸︸ ︷

f1
s(ms2 + k)

− Res(X ; 0)

s

)
;

(to avoid dealing with complex poles and residues). The residue at s = 0 is

Res(X ; 0) = lim
s→0

sX (s) = lim
s→0

f1
ms2 + k

=
f1
k
;

so that

X (s) =
f1
ks

+

(
f1

s(ms2 + k)
− f1

ks

)
=

f1
k

(
1

s
− s

s2 + k=m

)

Hence,

x(t) =
f1
k

(
1− cos(

√
k=m t)

)
1(t) =

t0 2�
√
m=k

f1=k
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