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Background: (rudimentary) complex functions

(Bilateral) Laplace transform

(Bilateral) z transform

Solving differential equations with the Laplace transform



Complex functions
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Background: (rudimentary) complex functions



Complex functions

Functions of a complex variable

A complex function F is a mapping F : C — C. The complex derivative of
FatspeCis
F(s) = F(s0)

’

F'(s0) = lim
S—rS0 S—95
where the limit is supposed to be independent of the (complex) path along
which s approaches sp. If the limit above exists, then the function F is said
to be complex differentiable at sp.



Complex functions

Functions of a complex variable

A complex function F is a mapping F : C — C. The complex derivative of
FatspeCis
F(s)— F
F/(s0) = lim £8) = Fls0)

S—rS0 S—95

’

where the limit is supposed to be independent of the (complex) path along
which s approaches sp. If the limit above exists, then the function F is said
to be complex differentiable at sp. If © C C is an open set, we say that

— F is holomorphic (analytic) in © if F/(sp) exists for every sp € O.

Entire functions are those holomorphic in the whole C. A function is said to
be holomorphic at sy € C if it is holomorphic in some neighbourhood of sg.
Every holomorphic function is locally the sum of a convergent power series.



Complex functions

Functions of a complex variable

A complex function F is a mapping F : C — C. The complex derivative of
FatspeCis

F/(s0) = lim - 8) = Fs0).

S—rS0 S—95

where the limit is supposed to be independent of the (complex) path along
which s approaches sp. If the limit above exists, then the function F is said
to be complex differentiable at sp. If © C C is an open set, we say that

— F is holomorphic (analytic) in © if F/(sp) exists for every sp € O.

Entire functions are those holomorphic in the whole C. A function is said to
be holomorphic at sy € C if it is holomorphic in some neighbourhood of sg.
Every holomorphic function is locally the sum of a convergent power series.

Examples: Functions s” for n € N and e? for a € R are entire:
ny/ __ n—1 as\/ __ as
(s") =ns and (e*)" = ae®.

Function 1/s" for n € N is holomorphic in C \ {0}, as (1/s") = —n/s"*1.



Complex functions

Isolated singularities

We say that F has an isolated singularity at a point sp € O, where O is an
open set in C, if F is holomorphic in O\ {sp}. Three cases are possible:

1. if F can be defined at sy so that the extended function is holomorphic
in O (roughly, if F(sp) is bounded), then the singularity is removable;
e.g. F(s) = (1 — e°)/s has a removable singularity at s = 0, because F(0) =1

2. if thereis n € N such that (s — s9)"F(s) has a removable singularity at
so and lims_,s,(s — sp)"F(s) # 0, then the singularity is a pole and n is
its order! (or multiplicity);

e.g. F(s) = 1/s? has a second-order pole at s = 0, because sF(s) = s/s> = 1/s has
a non-removable singularity at s = 0 and s?F(s) = s?°/s> = 1 is entire and nonzero

ats =20

3. if no finite n as in item 2. exists, then the singularity is called essential.

e.g. F(s) = e has an essential singularity at s = 0

1|f the order equals 1, then the pole is said to be simple.



Complex functions

Rational functions and partial fraction expansion

A function F is said to be rational if it is the quotient of two polynomials,

bms™ + bpm_15"" 1 4+ - 4+ bis + by N(s)
F(s) = - T =: ,
s"+ap_1s" 14+ 4+ a5+ ag D(s)

It's called proper /strictly proper / bi-proper if n > m / n>m / n= m and
non-proper if n < m. When all coefficients are real, F is called real-rational.
Every root of D(s) = 0 that is not a root of N(s) =0 is a pole of F.



Complex functions

Rational functions and partial fraction expansion

A function F is said to be rational if it is the quotient of two polynomials,

bms™ + bpm_15"" 1 4+ - 4+ bis + by _ N(s)
s"+a, 15" 1+ 4+ a5+ ag " D(s)’

F(s) =

It's called proper /strictly proper / bi-proper if n > m / n>m / n= m and
non-proper if n < m. When all coefficients are real, F is called real-rational.
Every root of D(s) = 0 that is not a root of N(s) =0 is a pole of F. If Fis
proper, then

for distinct poles p; € C of F of order n; and ¢;; € C. This form is known as
the partial fraction expansion of F.



Complex functions

Rational functions and partial fraction expansion

A function F is said to be rational if it is the quotient of two polynomials,

Fls) = bms™ 4 bm_1s™ 1+ -+ bis+ by N(s) by £ 0
o s"4aps" i+ +as+a 0 D(s)t T

It's called proper /strictly proper / bi-proper if n > m / n>m / n= m and
non-proper if n < m. When all coefficients are real, F is called real-rational.
Every root of D(s) = 0 that is not a root of N(s) =0 is a pole of F. If Fis
proper, then

for distinct poles p; € C of F of order n; and ¢;; € C. This form is known as
the partial fraction expansion of F. If p; is a simple pole, i.e. n; =1, then

¢i1 = Res(F, pi) :=lim (s — pij)F(s) # 0

S—pi

is the residue of F at s = p;.



(Bilateral) Laplace transform
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(Bilateral) Laplace transform



(Bilateral) Laplace transform

Pros and cons of the Fourier transform

The Fourier transform,
X(i0) = (F0xh)0) = [ (et

decomposes x into elementary harmonic signals via

1

x(t) = 271/[RX(ja))ej“’tda).

This

- offers a valuable insight into properties of x.

However, it
A~ applies to only a limited class of signals,

some widely used signals (like 1) require Dirac distributions and some (like
expy 1 for A > 0) are not transformable at all.



(Bilateral) Laplace transform
Definition
The bilateral (two-sided) Laplace transform £{x} of a signal x : R — F is

X(s) = (£{x})(s) = / x(t)estdt

R

defined over those s € C for which the integral converges. The latter set is
known as the region of convergence (RoC) of the transform. If s = o + jo,

then
/x(t)eStdt:/(x(t)eat)ej“’tdt
R R

is the Fourier transform of x exp_,, so that the condition xexp_g.s € L1 is
sufficient for this s to be in the RoC.



(Bilateral) Laplace transform
Definition
The bilateral (two-sided) Laplace transform £{x} of a signal x : R — F is
X(s) = (£{x})(s) i= / x(t)e—stdt
R

defined over those s € C for which the integral converges. The latter set is
known as the region of convergence (RoC) of the transform. If s =0 + jw,

then
/x(t)eStdt:/(x(t)eat)ej“’tdt
R R

is the Fourier transform of x exp_,, so that the condition xexp_g.s € L1 is
sufficient for this s to be in the RoC.

If the whole vertical line {s € C | Res = 0} C RoC, then

.
x(t) = — X(s)e*ds
127 Jo4ir

(the inverse Laplace transform).



(Bilateral) Laplace transform

Remarks on RoC

The condition xexp_, € L; is draconian if supp(x) = R.



(Bilateral) Laplace transform

Remarks on RoC

The condition xexp_, € L; is draconian if supp(x) = R.

If o > 0, then x(t) should decay faster than e " grows in t < 0 and grow
slower than et decays in t > 0:
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(Bilateral) Laplace transform

Remarks on RoC

The condition xexp_, € L; is draconian if supp(x) = R.

If o > 0, then x(t) should decay faster than e " grows in t < 0 and grow
slower than et decays in t > 0:

,_,
X
=

f % x(t)e 7t
CT.
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If o <0, then x(t) should decay faster than e " grows in t > 0 and grow
slower than e %! decays in t < 0:
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(Bilateral) Laplace transform

Remarks on RoC (contd)

Many hurdles are avoided if supp(x) is limited to finite interval or semi-axis.
For instance, if supp(x) = R, then Joy € R U {+o0} such that

{s€eC|Res>a,} CRoC and {s€C|Res<ay}NRoC=0
Cax C\Cax

(here Cq, stands for the closure of Cy, ). Particular cases:
— @y = —00 = RoC=C e.g. x(t) = e T 1(t)
— axy =400 = RoC=0 e.g. x(t) = et 1(t)

If x is bounded and supp(x) = [a, b], then RoC = C.



(Bilateral) Laplace transform

Remarks on RoC (contd)

Many hurdles are avoided if supp(x) is limited to finite interval or semi-axis.
For instance, if supp(x) = R, then Joy € R U {+o0} such that

{s€eC|Res>a,} CRoC and {s€C|Res<ay}NRoC=0
Cax C\Cax

(here Cq, stands for the closure of Cy, ). Particular cases:
— @y = —00 = RoC=C e.g. x(t) = e T 1(t)
— axy =400 = RoC=0 e.g. x(t) = et 1(t)

If x is bounded and supp(x) = [a, b], then RoC = C.

If the RoC of x is nonempty, then X can be extended beyond its RoC to the
whole C by the analytic continuation technique (don't ask what's that) and
we treat X = £{x} as a signal X : C — C, which may contain singularities.



(Bilateral) Laplace transform

Mind the RoC
Example 1: if x; = exp_; 1, i.e. x1(t) = e F1(t) = _!L\T then

ef(s+1)t

s+1

oo 1

0 :s+1

Xi(9) = [ (e de= [ et
R 0

Example 2: if xo = —P_1(expy 1), i.e. xo(t) = —e F1(—t) = q r, then

e—(s+1)t

s+1

0 1

—o0 s+1

0
Xo(s) = —/xz(t)e“dt: —/ e (st gy —
R —00




(Bilateral) Laplace transform

Mind the RoC
Example 1: if x; = exp_; 1, i.e. x1(t) = e F1(t) = _!L\T then

ef(s+1)t

s+1

o 1
0 s+1

Xi(9) = [ (e de= [ et
R 0

Example 2: if xo = —P_1(expy 1), i.e. xo(t) = —e F1(—t) = q r, then

0 —(s+1)t |0 1
Xa(s) = —/X2(t)65tdt = —/ e(sHDtgy — © =
R o s+1 -0 s+1
The only way to distinguish them is via their RoC's:
— RoCi =C_4 lims_oo e Tt =0 = Re(s+1) >0
— RoCy =C\C_; lime soe TNt =0 <= Re(s+1) <0

(note that RoC; N RoCy = @).



(Bilateral) Laplace transform
Basic properties

Assuming all involved signals have their support in Ry,

property time domain s-domain RoC
linearity | x = aix1 + axxa | X(s) = a1.X1(s) + a2X2(s) | Coy N Coy

time shift y =S%x Y(s) = e X(s) Cq,

time scaling | y =Pcx, ¢ >0 Y(s) = %X(é) Cca,
modulation y = X expg, Y(s) = X(s — so) Ca,+Res,

t-modulation y = xramp Y(s) = —2X(s) Cq,

differentiation? y =X Y(s) = sX(s) Ca,
convolution Z=Xxx*y Z(s) = X(s)Y(s) Ca,NCy,

2If lime—yo0 x(t)e ™" = 0 for all s € RoC, which is normally the case for xexp_ g, € Li.



(Bilateral) Laplace transform

Laplace transform of the rectangular pulse

If x = rect, then

1/2 e—st
X(s) :/x(t)e_Stdt:/ e 'dt =
R

—1/2 —S

1/2 e5/2 _ e—s/2

12 s

and the integral converges for all s. Hence, RoC = C for this signal.

Remark: Note that the function (%2 — e*/2)/s is entire, which follows by either

e *'dt,

lim = lim 1 or —_— =

es/2 —e s/2 65/2/2+ e 5/2/2 B e5/2 —e s/2 1/2
s—0 S s—0 1 a S B

—1/2

the first by L'H@pital’s rule, so the singularity of (e¥/2 — e™%/2)/s at s = 0 is removable.



(Bilateral) Laplace transform

Laplace transform of the rectangular pulse

If x = rect, then

1/2 e—st
X(s) :/x(t)e_Stdt:/ e 'dt =
R

—1/2 —S

1/2 eS/2 _ a—s/2

12 s

and the integral converges for all s. Hence, RoC = C for this signal.

Remark: Note that the function (%2 — e*/2)/s is entire, which follows by either

lim = lim 1 or A E—— e *'dt,

es/2 —e s/2 65/2/2+ e 5/2/2 B e5/2 —e s/2 1/2
50 s s—0 1 B S .

—1/2

/2 _ e75/2)/s at s = 0 is removable.

the first by L'Hépital’s rule, so the singularity of (e
Consequence:
— by time scaling, if y = rect, for some a > 0, then

e%?/2 _ e=%3/2  sinh(as/2)

Y(s) = (L{Py arect})(s) = . T s




(Bilateral) Laplace transform

Laplace transform of the step

If x =1, then
o0 T 1—esT
X(S) = /X(t)eStdt :/ e Stdt = lim / e S'dt = lim ————
R 0 T—oo Jo T—o0 5

Cases:

— if Res <0, then lim7_,oo|e™5T| = lim7_ o e (ReIT = ¢

— if s =0, then lims_g 1735_ST = T divergeas T — o©

. s lie—ij ,
— if s = jw for v # 0, then i doesn’t converge as T — o0
— if Res > 0, then lim7_,.0]|e 57| = lim7_,o e (ReSIT =

Thus, the integral converges iff Res > 0 and then
1

X(s) ==

()=

and RoC = Cq := {s € € | Res > 0}. If treated as a signal C — C, this X
has a singularity (pole) at s = 0.



(Bilateral) Laplace transform

Laplace transform of the step (contd)

Consequences: .
— ify=1xx, ie y(t)= / x(t)dt, then by the convolution property
—00
X
Y(s) = (s)
s

and its RoC is the intersection of Cg and the RoC of x.



(Bilateral) Laplace transform

Laplace transform of the step (contd)

Consequences: .
— ify=1xx, ie y(t)= / x(t)dt, then by the convolution property
—00
X
Y(s) = (s)
s

and its RoC is the intersection of Cg and the RoC of x.

t"1(t
— ify= p forne N, ie. y(t) = n( ) then by the t-modulation

1
Y(s) = prasy

and its RoC is still Cq. For example,

di(é):fs% — il{ﬂ-ramp}zil{ramp}:Si2
4(3)=-3 = £{ramp ramp} = £{ramp®}



(Bilateral) Laplace transform

Laplace transform of exponential

If x =-exp, 1 for A € C, then

° T
X(S) = /X(t)estdt:/ e*(S*A)tdt = lim / ef(sf){)tdt
R 0 0

T—oo
1— ef(sf}u)T
= lim —

T—oo s—A

and by already familiar arguments

and RoC = Cg.y := {s ¢ € | Res > Re A}, where Re(s — 1) > 0.

If treated as a signal C — C, this X has a singularity (pole) at s = A.



(Bilateral) Laplace transform

Laplace transform of sine wave
If x(t) = sin(wxt + ¢)1(t) for wy, ¢ € R, then (see Lect. 3, Slide 4)

(ejwn/z) . o i(¢—7/2)
x(t) = | ———

5 eja)xt + 5 e—ijt> ﬂ(t)

Hence, by linearity and the transform of the exponential,

X(s) = — + . = — + .
2(5 - wa) 2(5 =+ Ja)x) 2(5 - Ja)x) 2(5 + Ja)x)
. fsj(ejqb — e_.j¢) + a)X(ej¢ + e_.j¢)
a 2(s2 + w?)
ssin ¢ + wx cos ¢
s? + w?

and RoC = Cy.

If treated as a signal C — C, this X has singularities (poles) at s = +jwy.



(Bilateral) Laplace transform

Laplace transform of modulated sine wave

sin ¢ .
—AAAAA¢|M<0

x(t) = eMsin(oxt + ¢)1(t) = { 4 AAAA .
Q;VVUUV ifA>0

for wy, ¢, A € R, then by modulation

X(s) = (s —A)sing + wycos¢  ssing + w,cos¢ — Asing
B (s —1)2 + w2 24 2As+ w2+ A2

and RoC = C;.

If treated as a signal C — C, this X has singularities (poles) at s = A + jwx.



(Bilateral) Laplace transform

Laplace transform of the Dirac delta
If x = 4§, then
X(s) = / S(t)e tdt = e ;g =1
R

and RoC = C.



(Bilateral) Laplace transform

Laplace transform of the Dirac delta

If x =4, then
X(s) = / S(t)e tdt = e ;g =1
R

and RoC = C.

Consequence:
— if y =56 fort € R, i.e. y(t) = 8(t + 1), then

Y(s) =€

by the time shift property.



(Bilateral) Laplace transform

Unilateral (one-sided) transform

The transform of x : R — [F of the form

/oox(t)e_Stdt

is known as its unilateral (or one-sided) Laplace transform. It is, in fact, the
bilateral Laplace transform of x1. The bi- and unilateral Laplace transforms
coincide if supp(x) C Ry, in which case x = x1.

The properties of the one-sided Laplace transform are similar to those of its
two-sided counterpart, with some deviations, like

— if y(t) = x(t), then its unilateral transform Y (s) = sX(s) — x(07)
— time shift is not well defined if only a part of the support is taken into
account, as is done in the unilateral transform, requiring some tricks



(Bilateral) Laplace transform

Fourier vs. Laplace

The relations

G0 = [

R

x(t)e ?*dt and (S{x})(s):/x(t)e_“dt

R

suggest that §{x} = £{x}|s=j». This is why we use the notation X(jw) for
the Fourier.



(Bilateral) Laplace transform

Fourier vs. Laplace

The relations
(S{x})(ja)):/mx(t)e_j“’tdt and (S{x})(s):/mx(t)e_“dt

suggest that §{x} = £{x}|s=j». This is why we use the notation X(jw) for
the Fourier. However, certain care shall be taken with this relation, it is

— true only if jJR C RoC of the Laplace transform of x,

i.e. only if x is Fourier transformable.

Example (1)
If x(t) = e *1(t) = [, then X(s) = 1/(s + 1). If ¥ = X|s—jo, then
Y(jw) = = FHYD() =e"1(t) = x(¢)

jo+1
(see Lect. 3, Slide 40), because jR C RoC = C_;.



(Bilateral) Laplace transform

Fourier vs. Laplace (contd)

Example (2)
If x(t) = e'1(t) = E , then X(s) =1/(s —1). But Y = X|s—je has

0 t

V(o) = —— =  FHYNE) = —el(—1) = — = £ x(1)

jo —1
because jR ¢ RoC = C;.

In Mathematica: InverseFourierTransform with FourierParameters->{1,-1}.



(Bilateral) Laplace transform

Fourier vs. Laplace (contd)

Example (2)
If x(t) = e'1(t) = E , then X(s) =1/(s —1). But Y = X|s—je has

Vio)= g = @YD = et = £ ()
because jR ¢ RoC = C;.
Example (3)
If x(t) = 1(t), then X(s) =1/s. If Y = X|s—jo, then
V(i) = o= # -+ m(0) = X(io)

(see Lect. 3, Slide 41), because jR ¢ RoC = Cy.

In Mathematica: InverseFourierTransform with FourierParameters->{1,-1}.



(Bilateral) Laplace transform

The final value theorem

Theorem
If x: R — [F with supp(x) C Ry is converging, then

lim x(t) :sli_rg)sX(s) = Res(X, 0).

t—o00



(Bilateral) Laplace transform

The final value theorem

Theorem
If x: R — [F with supp(x) C Ry is converging, then

lim x(t) :sli_rQ)sX(s) = Res(X, 0).

t—o00

Example
Let x(t) = e*t sin(wxt + ¢)1(t), for which

_ ssing + wxcosg — Asing

X(s) =
() $2 + 215+ w2 + A2
In this case
_ . S(ssing + wycosp — Asing)
limsX(s) = =
ST;E)S (S) sm) s2 4+ 2)s + Cl)>2( + A2 0

equals lim;_,o x(t) only if A < 0, otherwise this 0 makes no sense.



(Bilateral) Laplace transform

The initial value theorem

Theorem
If x: R — F with supp(x) C Ry is such that x(0") exists, then

limx(t)= lim sX(s).

t—0 seR,s—o0



(Bilateral) Laplace transform

The initial value theorem

Theorem
If x: R — F with supp(x) C Ry is such that x(0") exists, then

li t)= | X(s).
tfbx() serklgloos (s)

Example
Let x(t) = e*t sin(wxt + ¢)1(t), for which

_ ssing + wxcosg — Asing

X =
() s2 4+ 2As + w2 + A2
In this case
_ . s%sing + s(wx cos¢ — Asing) _
SILET;OSX(S) _slrgo s2 4+ 2As + a)>2( + A2 =sing = X(O)’

indeed.
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(Bilateral) z transform



(Bilateral) z transform
Definition
The bilateral (two-sided) z-transform 3{x} of a signal x: Z — F is

X(2) = (30)(2) =) Itz

teZ

defined over those z € C for which the sum converges (again, the RoC). If

z = yejg, then

Zx[t]z_t = Z(X[t])/_t) e 0t

teZ teZ
is the DTFT of xexpy/, and the condition x exp; |, € £1 ensures that this
z is in the RoC. Like in the Laplace transform case, we mostly z-transform
signals x with supp(x) C Zy. For such signals Ja, € Ry U {oo} such that
{zeC||z] > ax} CRoCand {z € C ||z] <ax} NRoC = 2.



(Bilateral) z transform
Definition
The bilateral (two-sided) z-transform 3{x} of a signal x: Z — F is

X(2) = (30)(2) =) Itz

teZ

defined over those z € C for which the sum converges (again, the RoC). If

z = yeje, then _
Zx[t]z_t = Z(X[t]y_t) e 10t

teZ teZ

is the DTFT of xexpy/, and the condition x exp; |, € £1 ensures that this
z is in the RoC. Like in the Laplace transform case, we mostly z-transform
signals x with supp(x) C Zy. For such signals Ja, € Ry U {oo} such that
{zeC||z] > ax} CRoCand {z € C ||z] <ax} NRoC = 2.

If the RoC of x is nonempty, then X can be extended beyond its RoC to the
whole C by the analytic continuation technique and we treat X = 3{x} as
a signal X : C — C, which may contain singularities.



(Bilateral) z transform

Basic properties

Assuming all involved signals have their support in Z,

property time domain z-domain RoC
linearity | x = a1x1 + axxa | X(2) = a1.X1(z) + a2 X2(2) N
time shift y =% Y(z) =2z"X(2) RoCy
modulation y = X expy Y(z) = X(z/A) |A|RoCy
t-modulation y = xramp Y(z) = —z8&X(2) RoCy
convolution W= X%y W(z) = X(2)Y(z) N



(Bilateral) z transform

z-transform of the pulse

If x =4, then

X(z)=) 8tz t=2"=1

tez
and RoC = C.



(Bilateral) z transform

z-transform of the pulse

If x =4, then
X(z)=) 8tz t=2"=1
tez
and RoC = C.
Consequence:

— ify =5%;6 fort € Z, i.e. y[t] = §[t + 7], then
Y(z)=2°

by the time shift property.



(Bilateral) z transform

z-transform of the step

If x =1, then
" ¢ T t zZ — ZiT
X = = = | = I - 4
=Tt = ¥ g St L5
tezZ tezZ ., t=0
Cases:
— i |z < 1, then lim7 00|z~ T| = lim7o0]2z| T = 00

— if z=1, then lim,_1 % =T + 1 diverge as T — o0
— if z=¢l for § # 0, then e 197 doesn’t converge as T — oo
— if |z| > 1, then lim7 00|z T| = lim75|z| 7T =0

Thus, the sum converges iff |z| > 1 and then

and RoC = {z € C | |z| > 1}. If treated as a signal C — C, this X has a
singularity (pole) at z = 1.



(Bilateral) z transform

z-transform of exponential

If x =-exp, 1 for A € C, then

X(e) = ol = Y et = i S(2)

tez teZ, t=0
_ —-T _ -T
— lim z/A —(z/A) — i Z A(z/2)
T—o0 Z/A -1 T—o0 z—A

and by already familiar arguments

z

z—A

X(z) =

and RoC={ze C||z| > |A

}, where |z/A| > 1.

If treated as a signal C — C, this X has a singularity (pole) at z = A.



(Bilateral) z transform

z-transform of sine wave
If x[t] = sin[fct + ¢]|1[t] for Ox,¢ € R, then (see Lect. 3, Slide 4)

—i(¢p—7/2) .
ey il

(ejgx)t +

j(p—m/2)
x[t] = (e

Hence, by linearity and the transform of the exponential,
- + - = - -+ .
2(z —eifx)  2(z—e7i0)  2(z—elx)  2(z— e if)

_ z(zsing +sin(bx — ¢))
 z2_2cosbyz+1

X(z) =

and RoC={zeC||z| > 1}.

If treated as a signal C — C, this X has singularities (poles) at z = eFifx,



(Bilateral) z transform

z-transform of modulated sine wave

sin ¢1 .
h'lll‘m ettt i [A] <1

x[t] = At sin[0,t + ¢]1[t] = S”“;‘N.MJH»”HHT‘ i 1A] > 1

for O, ¢, A € R, then by modulation

z(zsin¢g + Asin(0x — ¢))
72 —2) cos By z + A2

X(z) =

and RoC={z e C||z| > |A|}.

If treated as a signal C — C, this X has singularities (poles) at z = Aetifx.



(Bilateral) z transform

The final and initial value theorems

Theorem
If x:Z — [ with supp(x) C Z4 is converging, then

tILrgo x[t] = ZIi_ngl(z —1)X(z) = Res(X. 1)

Theorem
If x:Z — [ with supp(x) C Z4 is such that x[0] exists, then

x[0] = lim X(z).

zeR,z—

Proof : follows directly from X(z) = x[0] + x[1]z7! + x[2]z72 + - -~

O



Solving differential equations

Outline

Solving differential equations with the Laplace transform



Solving differential equations

Thermometer model

—

A mercury thermometer is a system mapping the ambient temperature into
the temperature of the mercury inside it (which, in turn, changes its volume
as a result). Assuming that

— the heat transfer coefficient is constant and

— there is no thermal radiation in heat transfer
the Newton's law of cooling yields that the mercury temperature 6 satisfies

Té(t) = Gamb(t) - 9(1.'),

where 0, is the ambient temperature and t > 0 is a parameter dependent
on the thermal properties of the thermometer.



Solving differential equations

Thermometer model

—

A mercury thermometer is a system mapping the ambient temperature into
the temperature of the mercury inside it (which, in turn, changes its volume
as a result). Assuming that

— the heat transfer coefficient is constant and

— there is no thermal radiation in heat transfer
the Newton's law of cooling yields that the mercury temperature 6 satisfies

Té(t) = Gamb(t) - 9(1.'),

where 0, is the ambient temperature and t > 0 is a parameter dependent
on the thermal properties of the thermometer. Assuming that 6(t) = 6y for
all t < 0, the model in terms of deviations from 6 is

() + 8(t) = Bomp(t),
where 0(t) = 0(t) — 6 and Oamb(t) = Oamb(t) — b with supp(d) = R...



Solving differential equations

Thermometer model in the s-domain

By the linearity and differentiation properties of the Laplace transform, the
model in the s-domain reads as the algebraic relation

éamb(s)
ts+1°

150(s) + O(s) = Gamb(s) = ©O(s) =

Solution sequence:
1. partial fraction expansion of © with real rational elements
2. inverse Laplace transform of each simple fractions
partial fractions are either first- or second-order real-rational elements, whose inverse
Laplace transforms we already know; if a pole is not simple, then the t-modulation

property of the Laplace transform shall be used



Solving differential equations

Thermometer model: solution for the step input

If éamb = 6,1 for some 6; € R, then

~ 01 Res(@ 0) Res(6,-1/1)
() = s(ts+1) s s+1/t

because both poles are simple. Residues are

th

Res(©,0) = sll—% sO(s) = sll_rpo ] =6
and
. < .6 5
R -1 I 1/1)0(s) = | — =-0
eS( /T) s—>l—n1/r(5+ /T) (S) s—>l—rq/1: TS !
Thus,
o h by o
O(s) < Eye 0(t) = 61(1




Solving differential equations
Mass-spring model

X —=

AMAAAAA m
LAAAAAAALL

Assumptions:
— spring force is proportional to position differences (Hooke's law)
— we may neglect friction, force misalignment, etc

Supposing zero spring force at x = 0, by Newton's second law
mx(t) = f(t) + fapring(t) = £(t) — kx(t)

or, equivalently,
mx(t) + kx(t) = f(¢t).



Solving differential equations

Mass-spring model in the s domain

By the linearity and differentiation properties of the Laplace transform, the
model in the s-domain reads as the algebraic relation

F(s)

ms’X(s) + kX(s) = F(s) <= X(s)= ek

The denominator polynomial has roots at

|k
s1,2 = £jy/ -

which are pure imaginary.



Solving differential equations

Mass-spring model: solution for the step input

If f = f1 for some f; € R, then

removable singularity at s = 0

B f _ Res(X,0) f Res(X, 0)
X(s) = s(mszljL k) s (s( 1 >’

ms? + k) s

(to avoid dealing with complex poles and residues). The residue at s =0 is

. . f fi
SO0 = X = M ok ~ %

so that

f f f ho(l s
X = = - - ==
(s) ks (s(ms2 + k) ks) k <s s? + k/m)

Hence,

x() = 21— cos(yimn) 19 = [ \ [\ ]

0 2m\/m/k t
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