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Discrete harmonic signal

Signal ˛ = a expej� : Z→ C,

˛[t] = aej�t = |a|ej(�t+arg(a)) =

for a ∈ C and � ∈ R is called harmonic signal with frequency � , amplitude
|a|, and initial phase arg(a). Given T ∈ N,

˛[t +T ] = aej�(t+T ) = aej�t+j�T = aej�t ej�T = ˛[t] ej�T

so that

˛[t + T ] = ˛[t] ⇐⇒ ej�T = 1 ⇐⇒ |� |T = 2�k for k ∈ N

and this condition is independent of t. Therefore,

− ˛ is T -periodic iff ∃k ∈ N such that |� | = 2�k

T
,

which happens iff 2�=|� | ∈ Q.
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Discrete harmonic signal (contd)

Because
ej(�+2�)t = ej�t ej2�t = ej�t ;

shifting � by a multiple of 2� does not change the harmonic signal. Hence,

− discrete frequencies only make sense on intervals of the length 2� .

Thereafter we use the convention that � ∈ [−�; �], which is a choice.

The normalized change at each step of the harmonic signal,

|˛[t + 1]− ˛[t]|
|˛[t]| =

∣∣∣∣aej�(t+1)

aej�t
− 1

∣∣∣∣ = |ej� − 1| = 2
∣∣∣sin �

2

∣∣∣;
is independent of t and increases with |� | (provided � ∈ [−�; �], of course).
It is thus still justifiable to say that

− a1expej�1 is faster (slower) than a2expej�2 if |�1| > |�2| (|�1| < |�2|).
The fastest harmonic signal is that for � = ±� , for which ˛[t] = a(−1)t .
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Discrete-time Fourier transform

The discrete-time Fourier transform (DTFT) of a discrete signal x : Z→ R
is the signal X : [−�; �]→ C such that

X (ej� ) = (F{x})(ej� ) ··=
∑
t∈Z

x [t]e−j�t

where � is called the angular frequency (in radians per step). The DTFT is
well defined (uniform convergence, continuous X ) if x ∈ `1 and then

x [t] =
1

2�

∫ �

−�
X (ej� )ej�t d� =·· (F−1{X})(ej� )

If the domain of X is extended to R, then X is a 2�-periodic function of � .

If x ∈ `2, then the DTFT sum might converge only in the (weaker) `2-norm
sense, so that X is defined almost everywhere and might not be continuous
or even bounded. The use of distributions facilitates extending the DTFT to
yet wider classes of signals.
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Meaning

Similarly to the continuous-time case, the relation

x [t] =
1

2�

∫ �

−�
X (ej� )ej�t d�

means that

− x is a superposition of elementary harmonics 1
2�X (ej� ) expej� ,

with a continuum of frequencies � , although now in the final range [−�; �].

The signal X is then called the spectrum or frequency-domain representation
of x , with the amplitude spectrum |X | and the phase spectrum arg(X ).

The value X (ej0) = X (1) is the average of x over all its domain, i.e. Z.
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Example

“slow” signal “fast” signal

x [t]

t

x [t]

t

↕ ↕
|X (ej� )|

�−� 0 �

|X (ej� )|

�−� 0 �
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Basic properties

property time domain frequency domain

linearity x = a1x1 + a2x2 X (ej� ) = a1X1(e
j� ) + a2X2(e

j� )

time shift y = S�x Y (ej� ) = ej��X (ej� )

time reversal y = P−1x Y (ej� ) = X (e−j� )

conjugation y = x Y (ej� ) = X (e−j� )

modulation y = x expej�0 Y (ej� ) = X (ej(�−�0))

convolution z = x ∗ y Z (ej� ) = X (ej� )Y (ej� )

Parseval: if x ∈ `2, then

∥x∥22 =
∑
t∈Z

|x [t]|2 = 1

2�

∫ �

−�
|X (ej� )|2d� =

1

2�
∥X∥22

Remember, (S�x)[t] = x [t + � ] and (P−1x)[t] = x [−t].
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DTFTs of some discrete signals

x [t] X (ej� ); � ∈ [−�; �] condition

ı[t] = 1

1[t] =
1

1− e−j�
+ �ı(�)

�t1[t] =
1

1− �e−j�
|�| < 1

ej�0t = 2� rect2�(�)
∑
i∈Z

ı(� − �0 − 2� i) |�0| ≤ �

sinc[��t] =
1

�
rect2��[� ] 0 < � ≤ 1

1

1 + |t| =
− ln(2− 2 cos �) cos �

+ (� − |� |) sin|� | − 1
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Discrete Fourier transform

The discrete counterpart of the Fourier series is called the discrete Fourier
transform (DFT). Namely, if x : Z→ R is T -periodic, then at every t

x [t] =
1

T

T−1∑
k=0

X [k]ej2�t k=T ;

where

X [k] =
T−1∑
t=0

x [t]e−j2�k t=T ; k ∈ Z0::T−1

Note that each harmonic in the DFT, ej2�t k=T , is a T -periodic function of
t. The DFT plays an important role in

− numerical algorithms (including numerical Fourier transforms, via FFT)

− image processing

− . . .

but is less prominent in the context of linear systems studied in this course.
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The ideal sampler: what do we know

It maps continuous-time signals x : R→ R to discrete signals x̄ : Z→ R as

x̄ [i ] = x(ih); ∀i

for a given sampling period h > 0 (we assume periodic sampling hereafter).
We may also think in terms of the sampling frequency !s ··= 2�=h (radians
per time unit).

Sometimes it’s convenient to think of x̄ not over the abstract Z, but rather
over {: : : ;−2h;−h; 0; h; 2h; : : :}, i.e. synchronized with the analog time t:
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Sampling: a key question

x(t)

t0 h

y (t)

t0 h

↓ ↓
x̄ [i ]

i0 1

ȳ [i ]

i0 1

The question of

− what is lost in transforming the domain R to the domain Z

might not be straightforward to address in the time domain. Is it apparent
that sampling x is problematic, whereas in sampling y we loose nothing for
the very same sampling period h ?
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Sampling: a key question (contd)

X (j!)

!−�=h 0 �=h

X (j!)

!−�=h 0 �=h

h=h0 ↓ h=h0 h=h0=2 ↓ h=h0=2

X̄ (ej� )

�−� 0 �

X̄ (ej� )

�−� 0 �

Let’s try to understand

− what is lost in transforming (squeezing) the domain R to [−�; �].
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Periodic summation

Consider a function x : R→ F , its periodic summation with period T is

xT ··=
∑
i∈Z

SiT x =⇒ xT (t) =
∑
i∈Z

x(t + iT )

The function xT : R→ F is T -periodic, because

xT (t + T ) =
∑
i∈Z

x(t + iT + T )
∣∣∣
j=i+1

=
∑
j∈Z

x(t + jT ) = xT (t)

Example: if x = tent, then

xT =


t−T=2 0 T=2

1

if T = 4
3

t−T=2 0 T=2

1

if T = 5
3
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Periodic summation of continuous-time spectra

Let x be a continuous-time signal with the frequency response X , say

X (j!) =

X (j!)

!−2�=h 0 2�=h

and consider its periodic summation with the periodT = 2�=h,

X2�=h(j!) =
∑
i∈Z

X (j(! + 2�
h i)) =

X2�=h(j!)

!−2�=h −�=h 0 �=h 2�=h

Because this function is periodic, it can be expanded into the Fourier series
X2�=h(j!) =

∑
k∈Z X2�=h[k]e

jhk! (the fundamental frequency is !0 = h).
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Fourier coefficients of X2�=h(j!)

By the definition of Fourier coefficient and taking into account that !0 = h,

X2�=h[k] =
1

2�=h

∫ �=h

−�=h
X2�=h(!)e

−jhk!d!

=
h

2�

∫ �=h

−�=h

∑
i∈Z

X (j(! + 2�
h i))e−jkh!d! e−j2�ki︸ ︷︷ ︸

=1

=
h

2�

∑
i∈Z

∫ �=h

−�=h
X (j(! + 2�

h i))e−jkh(!+2� i=h)d!
∣∣∣
�=!+2� i=h

=
h

2�

∑
i∈Z

∫ (2i+1)�=h

(2i−1)�=h
X (j�)e−j�khd�

∣∣∣
!=�

=
h

2�

∫
R

X (j!)ej!(−kh)d! cf. x(t) =
1

2�

∫
R

X (j!)ej!t d!

= hx(−kh)
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Fourier series of X2�=h(j!)

Thus

X2�=h(j!) =
∑
k∈Z

hx(−kh)ejhk!
∣∣∣
i=−k

= h
∑
i∈Z

x(ih)e−j(h!)i

At the same time, the DTFT of x̄ such that if x̄ [i ] = x(ih) satisfies

X̄ (ej� ) =
∑
i∈Z

x̄ [i ]e−j� i =
∑
i∈Z

x(ih)e−j� i

Hence, the DTFT of the sampled signal x̄

X̄ =
1

h
P1=hX2�=h =⇒ X̄ (ej� ) =

1

h
X2�=h(j

�
h ) =

1

h

∑
i∈Z

X (j�+2� i
h )

i.e. it’s the periodic summation, whose period equals the sampling frequency
!s, of the spectrum of the continuous-time x , scaled by the factor 1=h both
in amplitude and in frequency.
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Spectrum of sampled signal

X (j!)

!−2�=h 0 2�=h

X̄ (ej� ) =
1

h

∑
i∈Z

X (j�+2� i
h )

periodic summation ↓ periodic summation

spectrum of x̄ :

X2�=h(j!)

!−2�=h −�=h 0 �=h 2�=h

!N
··=

�

h
=
!s

2

scaling by 1
h
↓ scaling by 1

h

Nyquist frequency

X̄ (ej!h)

!−!s −!N 0 !N !s

�=!h−−−−→

X̄ (ej� )

�−� 0 �
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Spectrum of sampled signal: aliasing

hX̄ (ej!h)

!!−3 !−2 !−1 !0 !1 !2

hX̄ (ej!0h)

!N

0

!N

The spectrum of x̄ at each discrete frequency �0 = !0h is a

− blend of analog spectra at all analog frequencies !i ··= !0+!si , i ∈ Z.

In this process every !i effectively tries to alias as �0. This phenomenon is
then dubbed aliasing, with respect to the base frequency !0.

Aliasing means information loss, we can no longer tell X (j!i ) from X (j!j)
in their effect on X̄ (ej!0h), unless we know how they depend on each other.
For instance, in this particular case X̄ (ej!0h) has significant contributions of
both X (j!0) and X (j!−1) for most !0 > 0, which is problematic indeed.
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Aliasing: examples

Two sine waves: Remember (Lect. 2, Slide 35)

t0

t0


sampling with h = 4−−−−−−−−−−−−−−−→

i0

They are both of the form sin(!i t + 2:6) for !1 =
2�+1

4 and !2 =
1
4 . With

h = 4 the dominant frequencies of their spectra alias as �0 = !0h = 1:

!1 = !0 + 1 · 2�
h

and !2 = !0 + 0 · 2�
h

That’s why sampled versions of both these signals are the same, sin[t +2:6].
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Aliasing: examples (contd)

Wagon-wheel effect:
83
rpm

(shot with 12 FPS frame rate)

Moiré pattern:
downsampling−−−−−−−−→
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Frequency folding

If x is real-valued and even, then so is X and X̄ can be also constructed via
the folding procedure:

0!−2

X (j!−2)

!−1

X (j!−1)

!0

X (j!0)

!1

X (j!1)

X (j!)

!

0 !N 2!N 3!N |!| 0 !N 3!N

X (j!−1)

X (j!0)

.

.

.

hX̄ (ej�0 )

0 ��0

→

↓

→

↑
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The zero-order-hold: what do we know

It maps discrete signals x̄ : Z→ R to continuous-time signals x : R→ R as

x(t) = x̄ [i ]; ∀t ∈ (ih; (i + 1)h)

for a given sampling period h > 0.
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Spectrum of x

By the definition of the Fourier transform,

X (j!) =

∫
R

x(t)e−j!t dt =
∑
i∈Z

∫ (i+1)h

ih
x(t)e−j!t dt

=
∑
i∈Z

∫ (i+1)h

ih
x̄ [i ]e−j!t dt =

∑
i∈Z

x̄ [i ]

∫ (i+1)h

ih
e−j!t dt

=
∑
i∈Z

x̄ [i ]

(
e−j!t

−j!

)∣∣∣(i+1)h

ih
=

∑
i∈Z

x̄ [i ]
e−j!hi − e−j!h(i+1)

j!

=
∑
i∈Z

x̄ [i ]e−j!hi 1− e−j!h

j!
cf. X̄ (ej� ) =

∑
i∈Z

x̄ [i ]e−j� i

= h
1− e−j!h

j!h
X̄ (ej!h) = h sinc

(!h
2

)
e−j!h=2X̄ (ej!h)

(note that X̄ is !s-periodic as a function of !).
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Example

With x̄ as above,

X̄ (ej!h)

!0−!s !s−2!s 2!s

×
h|sinc(!h=2)|

!0−!s !s−2!s 2!s

=

|X (j!)|

!0−!s !s−2!s 2!s
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Sampling in the time domain (contd)

x(t)

t0 h

y (t)

t0 h

↓ ↓
x̄ [i ]

i0 1

ȳ [i ]

i0 1

We saw why sampling of x is problematic (strong aliasing, X̄ is qualitatively
different from X ). But

− why do we loose nothing in sampling y ?
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Frequency-domain viewpoint

Spectrum of y is

y (t)

t0 h

←→

Y (j!)

!−�=h 0 �=h

hence the spectrum of ȳ is

Ȳ (ej!h)

!−!s −!N 0 !N !s

�=!h←−−→

Ȳ (ej� )

�−� 0 �

has no contributions of Y at aliased frequencies (Y (j!i ) = 0 for all i ̸= 0).
As a result, Ȳ is merely a scaled version of Y and sampling is lossless here.
This conclusion obviously applies to

− all signals whose spectrum has support within [−!N; !N] (bandlimited).
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Reconstructing x from its lossless sampling

If supp(X ) ⊂ [−!N; !N], then X̄ (ej!h) = 1
hX (j!) for all ! ∈ [−!N; !N] and

x(t) =
1

2�

∫
R

X (j!)ej!t d! =
h

2�

∫ !N

−!N

X̄ (j!)ej!t d!

=
1

2!N

∫ !N

−!N

∑
i∈Z

x̄ [i ]e−j!hi ej!t d!

=
1

2!N

∑
i∈Z

x̄ [i ]

∫ !N

−!N

e−j!hi ej!t d! =
∑
i∈Z

x̄ [i ]
1

2!N

(
ej(t−ih)!

j(t − ih)

)∣∣∣∣!N

−!N

=
∑
i∈Z

x̄ [i ]
ej(t−ih)!N − e−j(t−ih)!N

j2(t − ih)!N

=
∑
i∈Z

x̄ [i ]
sin((t − ih)!N)

(t − ih)!N

=
∑
i∈Z

x̄ [i ] sinc((t − ih)!N)

In other words, signals that are bandlimited within [−!N; !N] are uniquely
described by their periodic samples.
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The Sampling Theorem

Theorem (Whittaker-Kotel’nikov-Shannon)

If supp(X ) ⊂ [−!N; !N], then x can be perfectly recovered from its sampled
measurements as

x =
∑
i∈Z

x(ih)S−ihP!N
sinc =⇒ x(t) =

∑
i∈Z

x(ih) sinc((t − ih)!N)

known as the sinc-interpolator (sinc hold).

The sinc-interpolator acts as

ȳ [i ]

i−2 −1 0 1 2

z̄ [i ]

i−2 −1 0 1 2

↓ ↓
y (t)

t−2h −h 0 h 2h

z(t)

t−2h −h 0 h 2h
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