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Discrete-time frequency-domain analysis

Discrete harmonic signal

Signal o = aexpo : Z = C,

In|

Q' .
_ el o eOttare(a)) — Lo N 4] r
oft] = ael’t = |ale gla)) = ﬁ" _ﬁ,fyz

for a€ C and 6 € R is called harmonic signal with frequency 8, amplitude
|a|, and initial phase arg(a). Given T € N,

a[t+T] — 20l0(t+T) _ Jod0t+i0T _ 0t 6T _ a[t] Q0T
so that
aft+ T)=aft] <= T =1 <= |0|T =2k forkeN

and this condition is independent of t. Therefore,

27k
— «is T-periodic iff 3k € N such that |§] = %

which happens iff 27/|60] € Q.



Discrete-time frequency-domain analysis

Discrete harmonic signal (contd)

Because
eJ(9+2ﬂ)t _ eJGteﬂﬂt _ eJGt’
shifting 6 by a multiple of 27 does not change the harmonic signal. Hence,
— discrete frequencies only make sense on intervals of the length 2.

Thereafter we use the convention that 6 € [—x, 7|, which is a choice.



Discrete-time frequency-domain analysis

Discrete harmonic signal (contd)

Because
eJ(9+27'r)t _ eJGteJ2ﬂt _ eJGt’

shifting 6 by a multiple of 27 does not change the harmonic signal. Hence,
— discrete frequencies only make sense on intervals of the length 2.

Thereafter we use the convention that 6 € [—x, 7|, which is a choice.

The normalized change at each step of the harmonic signal,

2ei0(t+1)

gei0t

oft + 1] — ]| _
o]

’

. 9
1= e —1 :2" Z
‘ le | sin -

is independent of t and increases with |0| (provided 6 € [—x, 7], of course).
It is thus still justifiable to say that

— aiexp,je, is faster (slower) than azexp s, if |61] > |62] (|01] < |62]).
The fastest harmonic signal is that for § = +7, for which «[t] = a(—1)".



Discrete-time frequency-domain analysis

Discrete-time Fourier transform

The discrete-time Fourier transform (DTFT) of a discrete signal x : Z — R
is the signal X : [—m, 7] — C such that

X() = (F{x})(e?) 1= Y x[t]e

tezZ

where 0 is called the angular frequency (in radians per step). The DTFT is
well defined (uniform convergence, continuous X) if x € £; and then

A= [ X(e)e a0 = (X))

If the domain of X is extended to R, then X is a 27-periodic function of 6.



Discrete-time frequency-domain analysis

Discrete-time Fourier transform

The discrete-time Fourier transform (DTFT) of a discrete signal x : Z — R
is the signal X : [—m, 7] — C such that

X(&%) = (3{x})(€?) == Y xt]e

where 0 is called the angular frequency (in radians per step). The DTFT is
well defined (uniform convergence, continuous X) if x € £1 and then

A= / X()e%db = (571{X})(e”)

If the domain of X is extended to R, then X is a 27-periodic function of 6.

If x € £5, then the DTFT sum might converge only in the (weaker) £2-norm
sense, so that X is defined almost everywhere and might not be continuous
or even bounded. The use of distributions facilitates extending the DTFT to
yet wider classes of signals.



Discrete-time frequency-domain analysis

Meaning

Similarly to the continuous-time case, the relation

L™, 0y 0t
X[t] = g X(e )e d@
-7

means that
— X is a superposition of elementary harmonics %X(eje)expeje,

with a continuum of frequencies 6, although now in the final range [—7, ].



Discrete-time frequency-domain analysis

Meaning

Similarly to the continuous-time case, the relation

L™, 0y 0t
X[t] = g X(e )e d@
-7

means that
— X is a superposition of elementary harmonics %X(eje)expeje,

with a continuum of frequencies 6, although now in the final range [—7, ].

The signal X is then called the spectrum or frequency-domain representation
of x, with the amplitude spectrum |X| and the phase spectrum arg(X).

The value X(e%) = X(1) is the average of x over all its domain, i.e. Z.



Discrete-time frequency-domain analysis

Example

“slow” signal “fast” signal

x[t] x[t]




Discrete-time frequency-domain analysis

Example

“slow” signal “fast” signal

x[t] x[t]

el

t

I
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]
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X(e)] X ()]
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Discrete-time frequency-domain analysis

Basic properties

property time domain frequency domain
linearity | x = ayxy + aoxo | X(e?) = a1 X1(el?) + ap X (ei?)
time shift y =Sx Y () = elf7 X (el?)
time reversal y =P_1x Y (el?) = X(e719)
conjugation y=X Y (elf) = m

modulation

convolution

Yy = X exp,i6,

Z=Xxx%xYy

Parseval: if x € €5, then

I3 = Yo aP = 5 [ " X ()20

teZ

Y (el?) = X(el(0—0))
Z(e) = X(e7) Y ()

—7T

Remember, ($:x)[t] = x[t + 7] and (P-1x)[t] = x[—t].



Discrete-time frequency-domain analysis

DTFTs of some discrete signals

x[t] X(el?), 0 c[ -7 7] condition
B[E] = eeeeeneeisnensenns 1
1[t] = wwereee] LT 4 75(6)
1—eif
U] = o 220 o <1
1— re 0
elfot =~ 1L 2 rectyn (0) Y 8(6 — 6o — 27i) o] < 7
icz
sinc[ant] = SR ;rectgnn[G] 0<n<l1
o i —In(2 —2cos @) cos O
1+ [t

+ (m —16])sin|0] — 1



Discrete-time frequency-domain analysis

Discrete Fourier transform

The discrete counterpart of the Fourier series is called the discrete Fourier
transform (DFT). Namely, if x : Z — R is T-periodic, then at every t

1 T-1
X[t] _ ? X[k]eﬂntk/T
k=0
where
T-1
X[k] = Z X[t]e_jznk t/T, ke Zy 171
t=0

Note that each harmonic in the DFT, ei27tk/T s 3 T-periodic function of
t. The DFT plays an important role in

— numerical algorithms (including numerical Fourier transforms, via FFT)
— image processing

but is less prominent in the context of linear systems studied in this course.



A/D in the frequency domain
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A/D conversion in the frequency domain



A/D in the frequency domain

The ideal sampler: what do we know
It maps continuous-time signals x : R — R to discrete signals x : Z — R as
x[i] = x(ih), Vi

for a given sampling period h > 0 (we assume periodic sampling hereafter).
We may also think in terms of the sampling frequency ws := 27/ h (radians
per time unit).



A/D in the frequency domain

The ideal sampler: what do we know

It maps continuous-time signals x : R — R to discrete signals x : Z — R as
x[i] = x(ih), Vi

for a given sampling period h > 0 (we assume periodic sampling hereafter).
We may also think in terms of the sampling frequency ws := 27/ h (radians
per time unit).

Sometimes it's convenient to think of X not over the abstract Z, but rather
over {...,—2h,—h,0, h,2h, ...}, i.e. synchronized with the analog time t:

30.8°C

we L] \\\m\\\HH\HHHmmmmm,,m,,,,,,,,,,,

0 6 12 18 24 30 36 42 48 54 60 66 72
1400 15:00 16:00 17:00 18:00 19:00 20:00 21:00 2200 23:00  0:00  1:00  2:00




A/D in the frequency domain

Sampling: a key question

} l
11 70
01 I 01 I

The question of
— what is lost in transforming the domain R to the domain Z

might not be straightforward to address in the time domain.



A/D in the frequency domain

Sampling: a key question

0 t NS 0 NS T
\ l
i i
01 I 01 I

The question of
— what is lost in transforming the domain R to the domain Z

might not be straightforward to address in the time domain. Is it apparent
that sampling x is problematic, whereas in sampling y we loose nothing for
the very same sampling period h?



A/D in the frequency domain

Sampling: a key question (contd)

X(jw) X(jo)
—7t/h 7/h © —x/h 7/h ©
h=ho | 1 h=ho/2

X(e?)

X (i)
- 0 7 9 - 0 0

Let's try to understand
— what is lost in transforming (squeezing) the domain R to [, ].



A/D in the frequency domain

Periodic summation

Consider a function x : R — [, its periodic summation with period T is

XT ::ZS,’TX - XT(t):ZX(t+iT)

ieZ ieZ

The function x7 : R — F is T-periodic, because

)r(t+ T) = ox(t+iT+T)| = x(t+iT) = xr(t
. J=1 .
ieZ JEZ



A/D in the frequency domain

Periodic summation

Consider a function x : R — [, its periodic summation with period T is

XT = ZSiTX = x7(t) = Zx(t +iT)

ieZ ieZ

The function x7 : R — F is T-periodic, because

)r(t+ T) = ox(t+iT+T)| = x(t+iT) = xr(t
. J=1 .
ieZ JEZ

Example: if x = tent, then

if T=

Wl

~T/2 0 T)2 t

XT = L
MM if T =

T2 0 T2 t

wlo



A/D in the frequency domain

Periodic summation of continuous-time spectra
Let x be a continuous-time signal with the frequency response X, say

X(jw)

o T\

—27/h 0 2n/h w

and consider its periodic summation with the period T = 27/h,

XZﬂ/h(j(U)

Xompl(i) = 3- XU+ 1)) =

—x/h 0 7/h w

Because this function is periodic, it can be expanded into the Fourier series
Xon/n(i®©) = 3 kez Xom/nlk]e™ @ (the fundamental frequency is wy = h).



A/D in the frequency domain

Fourier coefficients of Xo/n(jo)

By the definition of Fourier coefficient and taking into account that wg = h,

1 t/h )
Xom/nlk] = 27/h in/h(w)e_mkwdw
h m/h 2 jkhw j2m ki
=5 i X(j(w 4+ FFi))e " dw e
ieZ =1
h n/h

X(_](a) + 2Tni))e—jkh(a)+27ri/h)dw

= 27
T iez /—7/h

h @i+a/h
= Z/( X(jn)e J"khdn‘

2m = J2i-1)m/h

n=w-+2mi/h

w=n

h 1 :
=5 X(Jw)er( kh) dew cf. x(t) = o, ,/ne X(jw)e! dw

= hx(—kh)



A/D in the frequency domain

Fourier series of Xo,/4(jo)
Thus
Xomyn(jo) =) hx(—kh)el™® =h>  x(ih)e ih)
kez i€eZ
At the same time, the DTFT of X such that if X[i] = x(ih) satisfies
X(e?) = K[l = " x(ih)e ¥
ieZ i€eZ
Hence, the DTFT of the sampled signal x
_ 1 _
X = ElPl/hXQn/h = X(%) = Exzn/h( %)

i.e.it's the periodic summation, whose period equals the sampling frequency
ws, of the spectrum of the continuous-time x, scaled by the factor 1/h both
in amplitude and in frequency.



A/D in the frequency domain
Spectrum of sampled signal

X(jo) spectrum of X:

oo 1 Oomi
R(elf) = 3 37 X (i)
ieZ

—27/h 0 27/h @

J periodic summation

Xor/n(j '
o /n(j0) Nyquist frequency
T W
Wy = — = —
" h 2
—x/h 0  x/h w
1 scaling by 1
X(efh) X(e”)
O=wh
—_—



A/D in the frequency domain

Spectrum of sampled signal: aliasing

h)_((ejam) hX(eJ(HQh)

N

o ,

¢ ? T ¢
w_3 w_o w_1 wp w1 w; @

The spectrum of X at each discrete frequency 8y = wph is a
— blend of analog spectra at all analog frequencies w; := wg + wsi, | € Z.

In this process every w; effectively tries to alias as 6y. This phenomenon is
then dubbed aliasing, with respect to the base frequency wyg.



A/D in the frequency domain

Spectrum of sampled signal: aliasing

h)_((ejmy) hX(eJ(HQh)

N

L »e

o ,

¢ ? T ¢
w_3 w_o w_1 wp w1 w; @

The spectrum of X at each discrete frequency 8y = wph is a
— blend of analog spectra at all analog frequencies w; := wg + wsi, | € Z.

In this process every w; effectively tries to alias as 6y. This phenomenon is
then dubbed aliasing, with respect to the base frequency wy.

Aliasing means information loss, we can no longer tell X(jw;) from X(jo;)
in their effect on X(el®0"), unless we know how they depend on each other.
For instance, in this particular case X (el“°") has significant contributions of
both X(jwo) and X(jw—1) for most wg > 0, which is problematic indeed.



A/D in the frequency domain
Aliasing: examples

Two sine waves: Remember (Lect. 2, Slide 35)

AAAAAAARARAANN

"""""""'v sampling with h = 4
o N W
S N

They are both of the form sin(w;t + 2.6) for w1 = 2”“ and wy = 7. With
h = 4 the dominant frequencies of their spectra allas as Oy = a)oh = 1:

2 2
w1 =wo+1- ch and wr» =wg+0- Tn

That's why sampled versions of both these signals are the same, sin[t + 2.6].



A/D in the frequency domain

Aliasing: examples (contd)

Wagon-wheel effect: ‘/ @ (shot with 12 FPS frame rate)



A/D in the frequency domain

Aliasing: examples (contd)

Wagon-wheel effect: ‘/ @ (shot with 12 FPS frame rate)

.y ;- downsampling
Moiré pattern: |}




A/D in the frequency domain

Frequency folding

If x is real-valued and even, then so is X and X can be also constructed via
the folding procedure:

X(jo) S hX (&%)

/_ (jwo) h S X(ioo)
X(er \ _ e X(jo_1)
X(jo-2) X(jen) o :

w_> w_1

o
&
g
S
o
&
Bl

SEENAY

0 o 2wy 3wy |lw| 0 Wy 3w




D/A in the frequency domain

Outline

D/A conversion in the frequency domain



D/A in the frequency domain

The zero-order-hold: what do we know

It maps discrete signals X : Z — R to continuous-time signals x : R — R as
x(t) = x[i], Vte (ih, (i+1)h)

for a given sampling period h > 0.



D/A in the frequency domain

Spectrum of x

By the definition of the Fourier transform,

H wt (I+1)h wt
X(JOJ)I/[R t)e dt—Z/ x(t)e @tdt

ieZ

(i+1)h (i+1)h
_Z/ Zli]eotde = 3 x[]/ eIt gy
ieZ

i€eZ
e—iwhi _ e—Ja)h(:+1)

—éxn( ) =S

—joh

= Zx[ e ihi L of. X(l) = Z)?[i]e 19
i€Z ieZ
1 joh . h . _ .
=h J:);h X(eoh = hsinc(%) e I0h/2 X (o)

(note that X is ws-periodic as a function of w).



D/A in the frequency domain

Example

With X as above,

X(eoh)

—éws —&)5 u‘)s 2(;J5 @]
X
h|sinc(wh/2)|

—2ws —ws 0 ws 2ws 2]

—2ws —ws 0 ws 2w @]
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The Sampling Theorem



The Sampling Theorem

Sampling in the time domain (contd)

N, N
I T S t NS 0 NS T
} i
x[i] 1]
01 I 01 I

We saw why sampling of x is problematic (strong aliasing, X is qualitatively
different from X). But

— why do we loose nothing in sampling y 7



The Sampling Theorem

Frequency-domain viewpoint

Spectrum of y is

Y (jo)
y(t)
>

—/h 0




The Sampling Theorem

Frequency-domain viewpoint

Spectrum of y is

Y(jw)
y(t)
—
—n/h 0 w/h 3]
hence the spectrum of ¥ is
y(ejwh) V(eje)
O=wh
—
7(‘uN d u)N 0] -7 0 T 0

has no contributions of Y at aliased frequencies (Y (jw;) =0 for all i # 0).
As a result, Y is merely a scaled version of Y and sampling is lossless here.



The Sampling Theorem

Frequency-domain viewpoint

Spectrum of y is

Y (jo)
y(t)
—
—n/h 0 w/h w
hence the spectrum of ¥ is
Y (el*h) Y (ei)
O=wh
—
7(‘:)N (j u;N w —7 0 T 0

has no contributions of Y at aliased frequencies (Y (jw;) =0 for all i # 0).
As a result, Y is merely a scaled version of Y and sampling is lossless here.
This conclusion obviously applies to

— all signals whose spectrum has support within [—wy, wy] (bandlimited).



The Sampling Theorem
Reconstructing x from its lossless sampling

If supp(X) C [—on, wy], then X(ei®") = 1 X(jow) for all ® € [~wy, wy] and

x(t) = 1/X(jw)ej‘”fda) U X(jo)e!t dw
2 27 J_wy
x[i]eI@hi i@t qq,
2CUN —wp % [ ]
j(t—ih)w \ |@N
% —Ja)hleja)tdw — X <e>
2a) []/a)N ; szN G TN
(t—ih)on _ o—i(t—ih)w sin((t — ih)wy)
= ZX[ ] it Z ey v t — ih)wy
icz ieZ
= Zx[i] sinc((t — ih)wy)
i€Z

In other words, signals that are bandlimited within [—wy, wy] are uniquely
described by their periodic samples.



The Sampling Theorem
The Sampling Theorem
Theorem (Whittaker-Kotel'nikov-Shannon)

If supp(X) C [—wn, wy], then x can be perfectly recovered from its sampled
measurements as

x =Y x(ih)S_jpPuysine = x(t) =Y x(ih)sinc((t - ih)wn)

ieZ ieZ

known as the sinc-interpolator (sinc hold).



The Sampling Theorem

The Sampling Theorem
Theorem (Whittaker-Kotel'nikov-Shannon)

If supp(X) C [—wn, wy], then x can be perfectly recovered from its sampled
measurements as

x =Y x(ih)S_jpPuysine = x(t) =Y x(ih)sinc((t - ih)wn)
i€z i€z
known as the sinc-interpolator (sinc hold).

The sinc-interpolator acts as

vl




The Sampling Theorem

The Sampling Theorem
Theorem (Whittaker-Kotel'nikov-Shannon)

If supp(X) C [—wn, wy], then x can be perfectly recovered from its sampled
measurements as

x =Y x(ih)S_jpPuysine = x(t) =Y x(ih)sinc((t - ih)wn)
i€z i€z
known as the sinc-interpolator (sinc hold).
The sinc-interpolator acts as

ylil Z[i]|
2 0 1




The Sampling Theorem

The Sampling Theorem
Theorem (Whittaker-Kotel'nikov-Shannon)

If supp(X) C [—wn, wy], then x can be perfectly recovered from its sampled
measurements as

x =Y x(ih)S_jpPuysine = x(t) =Y x(ih)sinc((t - ih)wn)
i€z i€z
known as the sinc-interpolator (sinc hold).
The sinc-interpolator acts as

—te
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