Linear Systems (034032)

lecture no. 3

Leonid Mirkin

Faculty of Mechanical Engineering Technion-IIT
$\overline{8}$

Outline

Fourier series

Example 0

A signal y is observed via an imperfect sensor, where the measured signal is

$$
y_{\mathrm{m}}=y+n
$$

for (unknown) additive noise n reflecting sensor inaccuracies. The question then is

- how signal (y) can be recovered from its corrupt measurements $\left(y_{m}\right)$? This might appear a tough task, for there is no way we can separate y from n in the time domain...

Harmonic signal

Signal $\alpha=\operatorname{axp}_{\mathrm{j} \omega}: \mathbb{R} \rightarrow \mathbb{C}$,

$$
\alpha(t)=a \mathrm{e}^{\mathrm{j} \omega t}=|a| \mathrm{e}^{\mathrm{j}(\omega t+\arg (a))}=\overbrace{t}
$$

for $a \in \mathbb{C}$ and $\omega \in \mathbb{R}$ is called harmonic signal with frequency ω, amplitude $|a|$, and initial phase $\arg (a)$. Because

$$
\alpha\left(t+\frac{2 \pi}{\omega} k\right)=a^{\mathrm{j} \omega(t+2 \pi k / \omega)}=a \mathrm{e}^{\mathrm{j} \omega t+\mathrm{j} 2 \pi k}=a \mathrm{e}^{\mathrm{j} \omega t} \mathrm{e}^{\mathrm{j} 2 \pi k}=a \mathrm{e}^{\mathrm{j} \omega t}=\alpha(t)
$$

for all $k \in \mathbb{Z}$, the harmonic signal is $\frac{2 \pi}{|\omega|}$-periodic (ω may be negative).
Euler's formula $\mathrm{e}^{\mathrm{j} \theta}=\cos \theta+\mathrm{j} \sin \theta$ can be used to connect the (complex) harmonic signal with real sinusoids:

$$
\sin (\omega t+\phi)=a \mathrm{e}^{\mathrm{j} \omega t}+\overline{\mathrm{a}} \mathrm{e}^{-\mathrm{j} \omega t}, \quad a=0.5 \mathrm{e}^{\mathrm{j}(\phi-\pi / 2)}
$$

(harmonics with ω and $-\omega$ come together in real-valued signals).

Harmonic signal (contd)

The signal $a_{1} \exp _{\mathrm{j} \omega_{1}}$ is said to be faster (slower) than $a_{2} \exp { }_{\mathrm{j} \omega_{2}}$ if $\left|\omega_{1}\right|>\left|\omega_{2}\right|$ ($\left.\left|\omega_{1}\right|<\left|\omega_{2}\right|\right)$. Indeed,
$x_{1}=000 \mathrm{ar}$ is faster than $x_{2}=$
just because

$$
\frac{\left|\dot{x}_{1}(t)\right|}{\left|x_{1}(t)\right|}=\left|\omega_{1}\right|>\left|\omega_{2}\right|=\frac{\left|\dot{x}_{2}(t)\right|}{\left|x_{2}(t)\right|}, \quad \forall t
$$

Note that there is no "the fastest" continuous-time signals.

Power

$$
P_{\mathrm{a} \exp _{\mathrm{j} \omega}}=\frac{1}{T} \int_{0}^{T}\left|a e^{\mathrm{j} \omega t}\right|^{2} \mathrm{~d} t=\frac{|a|^{2}}{T} \int_{0}^{T} \mathrm{~d} t=|a|^{2}
$$

Example 1

Let

$$
x=\sum_{i \in \mathbb{Z}} \Phi_{i} \operatorname{tent}_{T / 2}=
$$

Fourier coefficients:

$$
\begin{aligned}
X[k] & =\frac{1}{T} \int_{-T / 2}^{T / 2} \operatorname{tent}_{T / 2}(t) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t=\frac{1}{T} \int_{-T / 2}^{T / 2}\left(1-\frac{2|t|}{T}\right) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t \\
& =\frac{1}{T}\left(\int_{-T / 2}^{0}\left(1+\frac{2 t}{T}\right) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t+\int_{0}^{T / 2}\left(1-\frac{2 t}{T}\right) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t\right) \\
& =\frac{1}{T}\left(\frac{\left(1-\mathrm{e}^{\mathrm{j} \pi k}+\mathrm{j} \pi k\right) T}{2 \pi^{2} k^{2}}+\frac{\left(1-\mathrm{e}^{-\mathrm{j} \pi k}-\mathrm{j} \pi k\right) T}{2 \pi^{2} k^{2}}\right) \\
& =\frac{1-\cos (\pi k)}{\pi^{2} k^{2}}=\frac{1-(-1)^{k}}{\pi^{2} k^{2}}= \begin{cases}1 / 2 & \text { if } k=0 \\
0 & \text { if } k \neq 0 \text { and is even } \\
2 /(\pi k)^{2} & \text { if } k \text { is odd }\end{cases}
\end{aligned}
$$

Fourier series of continuous signals

If $x: \mathbb{R} \rightarrow \mathbb{R}$ is T-periodic and continuous, then at every t

$$
x(t)=\sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j} \omega_{0} k t}=\sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j}(2 \pi / T) k t},
$$

where

$$
X[k]=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t=\frac{1}{T} \int_{a}^{a+T} x(t) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t \in \mathbb{C}
$$

are known as Fourier coefficients of x and

$$
\omega_{0}:=\frac{2 \pi}{T}
$$

is known as its fundamental frequency. The T-periodic $x_{N}: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
x_{N}(t):=\sum_{k=-N}^{N} X[k] \mathrm{e}^{\mathrm{j} \omega_{0} k t}
$$

is known as a partial sum of the Fourier series of x.

Example 1 (contd)

Partial sums:
$N=1$

Example 2

Let

$$
s(t)= \begin{cases}8 t^{2} & \text { if } 0 \leq t \leq 1 / 4 \\ -8 t^{2}+8 t-1 & \text { if } 1 / 4 \leq t \leq 3 / 4 \\ 8(t-1)^{2} & \text { if } 3 / 4 \leq t \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and define T-periodic

$$
x=\sum_{i \in \mathbb{Z}} \mathbb{S}_{i T} \mathbb{P}_{1 / T} s=
$$

Fourier coefficients:

$$
\begin{aligned}
X[k] & =\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t=\frac{1}{T} \int_{0}^{T} s(t / T) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t \\
& =\frac{8(-1)^{k} \sin (\pi k / 2)}{\pi^{3} k^{3}}= \begin{cases}1 / 2 & \text { if } k=0 \\
0 & \text { if } k \neq 0 \text { and is even } \\
8(-1)^{(k+1) / 2} /(\pi k)^{3} & \text { if } k \text { is odd }\end{cases}
\end{aligned}
$$

Piecewise-smooth signals

A T-periodic signal x is said to be piecewise smooth if it's differentiable and has continuous derivative everywhere on $[0, T]$ with a possible exception of a finite number of distinct t_{i}, at which $x\left(t_{i}^{+}\right), x\left(t_{i}^{-}\right), \dot{x}\left(t_{i}^{+}\right)$and $\dot{x}\left(t_{i}^{-}\right)$exist in the sense of the existence of

$$
x\left(t_{i}^{+}\right):=\lim _{h \downarrow 0} x\left(t_{i}+h\right), \quad x\left(t_{i}^{-}\right):=\lim _{h \downarrow 0} x\left(t_{i}-h\right), \quad \text { etc }
$$

Example:

$$
x=\sum_{i \in \mathbb{Z}} \mathbb{S}_{(i-\eta / 2) T} \operatorname{rect}_{\eta T}=\square \square \square \prod_{0}^{1} \prod_{n^{T}} \square_{t}
$$

for $\eta \in(0,1)$.
Remark The notion extends to non-periodic functions, which are ∞-periodic, in a sense In that case we need continuous derivatives everywhere except a counted number points t_{i}, at which $x\left(t_{i}^{+}\right), x\left(t_{i}^{-}\right), \dot{x}\left(t_{i}^{+}\right)$and $\dot{x}\left(t_{i}^{-}\right)$exist.

Example 2 (contd)

Partial sums:
$N=0$

$N=1$

$N=3$

$N=5$

Fourier series of piecewise-smooth signals

Everything you always wanted to know about Fourier peculiarities* (* but were afraid to ask)
If $x: \mathbb{R} \rightarrow \mathbb{R}$ is T-periodic and piecewise smooth, then at every t

$$
\frac{x\left(t^{+}\right)+x\left(t^{-}\right)}{2}=\sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j} \omega_{0} k t}
$$

Let $X: \mathbb{Z} \rightarrow \mathbb{C}$ be the signal comprising the Fourier coefficients. If $X \in \ell_{1}$, then

$$
\lim _{N \rightarrow \infty} x_{N}(t)=\lim _{N \rightarrow \infty} \sum_{k=-N}^{N} X[k] \mathrm{e}^{\mathrm{j} \omega_{0} k t}
$$

converges to $x(t)$ at every t and the limit is necessarily continuous $X \notin \ell_{1}$, then the partial sum converges only in the ℓ_{2} sense, i.e.

$$
\lim _{N \rightarrow \infty}\left\|x-x_{N}\right\|_{2}=0
$$

Example 3

Let

$$
x=\sum_{i \in \mathbb{Z}} \mathbb{S}_{(i-\eta / 2) T} \operatorname{rect}_{\eta T}=\square \square \square \prod_{0}^{1} \prod_{\eta T}
$$

Fourier coefficients:

$$
\begin{aligned}
X[k] & =\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t=\frac{1}{T} \int_{0}^{T} x(t) \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t \\
& =\frac{1}{T} \int_{0}^{\eta T} \mathrm{e}^{-\mathrm{j} \omega_{0} k t} \mathrm{~d} t \\
& =\frac{\sin (2 \pi \eta k)}{2 \pi k}-\mathrm{j} \frac{1-\cos (2 \pi \eta k)}{2 \pi k}
\end{aligned}
$$

(with $X[0]=\eta$).

Gibbs phenomenon

Near every discontinuity point of x,

$$
x_{N}\left(t+\frac{T}{2 N+1}\right)-x\left(t^{+}\right) \xrightarrow{N \rightarrow \infty}(\underbrace{\frac{1}{\pi} \int_{0}^{\pi} \operatorname{sinc}(t) \mathrm{d} t-\frac{1}{2}})\left(x\left(t^{+}\right)-x\left(t^{-}\right)\right)
$$

and
≈ 0.089549

$$
x_{N}\left(t-\frac{T}{2 N+1}\right)-x\left(t^{-}\right) \xrightarrow{N \rightarrow \infty}\left(\frac{1}{\pi} \int_{0}^{\pi} \operatorname{sinc}(t) \mathrm{d} t-\frac{1}{2}\right)\left(x\left(t^{-}\right)-x\left(t^{+}\right)\right)
$$

like in

Example 3 (contd)

Partial sums:
$N=1:$

$N=2:$

14/42

Some properties

property	signal	Fourier coefficients
linearity	$x=a_{1} x_{1}+a_{2} x_{2}$	$X[k]=a_{1} X_{1}[k]+a_{2} X_{2}[k]$
time shift	$y=\Phi_{\tau} X$	$Y[k]=\mathrm{e}^{\mathrm{j} \omega_{0} \tau k} X[k]$
time reversal	$y=\mathbb{P}_{-1} X$	$Y[k]=X[-k]$
conjugation	$y=\bar{X}$	$Y[k]=\overline{X[-k]}$
convolution	$z=x * y$	$Z[k]=X[k] Y[k]$

Consequently, if x is real-valued (codomain is \mathbb{R}), then $X[k]=\overline{X[-k]}$

- i.e. $|X[k]|=|X[-k]|$ and $\arg (X[k])=-\arg (X[k])$
and all information is in $X[k]$ for $k \in \mathbb{Z}_{+}$.

Meaning

The expansion

$$
x(t)=\sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j} \omega_{0} k t}
$$

means that every T-periodic x is a superposition of elementary harmonics

$$
\alpha_{x, k}(t):=X[k] \mathrm{e}^{\mathrm{j} \omega_{0} k t}
$$

whose frequencies are multiples of the fundamental frequency $\omega_{0}=2 \pi / T$.

The discrete signal $X: \mathbb{Z} \rightarrow \mathbb{C}$ comprised of Fourier coefficients is known as the (line) spectrum of x. In other words,

- T-periodic x can be equivalently represented by the discrete-time X,
known as the frequency-domain representation of x.

Parseval identity: meaning

The Parseval identity effectively says that

$$
P_{x}=\sum_{k \in \mathbb{Z}} P_{\alpha_{x, k}}
$$

i.e. the power of x equals the sum of powers of all its harmonic components in the expansion $x=\sum_{k} \alpha_{x, k}$. This, in turn, implies that

- harmonics with largest amplitudes dominate the behavior of x
- if dominating harmonics are low, x is slow

- if dominating harmonics are high, x is fast

Parseval identity

Theorem
If T-periodic x is piecewise smooth, then

$$
P_{X}=\sum_{k \in \mathbb{Z}}|X[k]|^{2}
$$

Proof: Because $|c|^{2}=c \bar{c}$,

$$
\begin{aligned}
P_{x} & =\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) \overline{x(t)} \mathrm{d} t=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) \overline{\left(\sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j} \omega_{0} k t}\right)} \mathrm{d} t \\
& =\sum_{k \in \mathbb{Z}}\left(\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) \mathrm{e}^{-\mathrm{j} \omega_{0} k t}\right) \mathrm{d} t \overline{X[k]} \\
& =\sum_{k \in \mathbb{Z}} X[k] \overline{X[k]}=\sum_{k \in \mathbb{Z}}|X[k]|^{2}
\end{aligned}
$$

Decay of Fourier coefficients

In general, the faster $|X[k]|$ decays as $|k|$ grows, the smoother x is, because faster harmonics have then smaller effect on x, cf.

$$
\longrightarrow|X[k]|=\frac{\sin (\pi \eta k)}{\pi|k|}
$$

Outline

Fourier transform

Meaning

Similarly to the Fourier series, the relation

$$
x(t)=\frac{1}{2 \pi} \int_{\mathbb{R}} X(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} \omega
$$

means that

- aperiodic x is also a superposition of elementary harmonics $\alpha_{x, \omega}$, with $\alpha_{x, \omega}(t)=\frac{1}{2 \pi} X(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega t}$,
now with a continuum of frequencies ω (measured in radians per time unit).

The signal X is then called the spectrum or frequency-domain representation of x, with the amplitude spectrum $|X|$ and the phase spectrum $\arg (X)$.

The value $X(\mathrm{j} 0)=X(0)$ is the average of x over all its domain, i.e. \mathbb{R}.

Definition

The Fourier transform $\mathfrak{F}\{x\}$ of a signal x is the signal $X: \mathbb{R} \rightarrow \mathbb{C}$ such that

$$
X(\mathrm{j} \omega)=(\mathfrak{F}\{x\})(\mathrm{j} \omega):=\int_{\mathbb{R}} x(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t
$$

(' $\mathrm{j} \omega$ ' is used for a technical reason to be clarified one day). It is well defined if $x \in L_{1}$ (plus some mild technical assumptions) and then

$$
x(t)=\frac{1}{2 \pi} \int_{\mathbb{R}} X(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} \omega=:\left(\mathfrak{F}^{-1}\{X\}\right)(t)
$$

at every t. The latter integral is referred to as the inverse Fourier transform.

If $x \in L_{2}$, then the Fourier integral converges only in the (weaker) L_{2}-norm sense, $\left\|x-\mathfrak{F}^{-1}\left\{X_{N}\right\}\right\|_{2} \rightarrow 0$. We can then still extend the transform to L_{2} signals. The use of distributions facilitates extending the Fourier transform to yet wider classes of signals.

Example 1

Kinneret water level from Sep 1993 to Sep 2004

and its amplitude spectrum (with $h_{\text {red, up }}$ taken as zero)

Peaks at $\omega= \pm 2 \pi[\mathrm{rad} /$ year $]$ reflect the annual cycle.

Example 2

Two L_{1} signals x_{1} and x_{2}, with

$$
\begin{aligned}
& x_{1}(t)=\frac{8 \cos (2 \pi t)+\cos (4 \pi t)}{9} \mathrm{e}^{-t^{2} / 10} \\
& x_{2}(t)=\frac{8 \cos (2 \pi t)+1}{9} \mathrm{e}^{-t^{2} / 10}
\end{aligned}
$$

are hardly distinguishable in the time domain. But they are quite different, e.g. the average $\int_{\mathbb{R}} x_{1}(t) \mathrm{d} t \approx 0 \neq 0.62 \approx \int_{\mathbb{R}} x_{2}(t) \mathrm{d} t$. These differences are visible in their spectra

Basic properties

property	time domain	frequency domain
linearity	$x=a_{1} x_{1}+a_{2} x_{2}$	$X(\mathrm{j} \omega)=a_{1} X_{1}(\mathrm{j} \omega)+a_{2} X_{2}(\mathrm{j} \omega)$
duality	$y=\left.X\right\|_{\omega=t}$	$Y(\mathrm{j} \omega)=2 \pi x(-\omega)$
time shift	$y=\mathbb{S}_{\tau} x$	$Y(\mathrm{j} \omega)=\mathrm{e}^{\mathrm{j} \omega \tau} X(\mathrm{j} \omega)$
time scaling	$y=\mathbb{P}_{\varsigma} x$	$Y(\mathrm{j} \omega)=\frac{1}{\|\varsigma\|} X(\mathrm{j} \omega / \varsigma)$
conjugation	$y=\bar{x}$	$Y(\mathrm{j} \omega)=\overline{X(-\mathrm{j} \omega)}$
modulation	$y=x \exp _{\mathrm{j} \omega_{0}}$	$Y(\mathrm{j} \omega)=X\left(\mathrm{j}\left(\omega-\omega_{0}\right)\right)$
differentiation ${ }^{2}$	$y=\dot{x}$	$Y(\mathrm{j} \omega)=\mathrm{j} \omega X(\mathrm{j} \omega)$
convolution	$z=x * y$	$Z(\mathrm{j} \omega)=X(\mathrm{j} \omega) Y(\mathrm{j} \omega)$

... provided all involved transforms exist

[^0]
Example 0 (contd)

The question was

- how signal (y) can be recovered from its corrupt measurements $\left(y_{m}\right)$? This might appear a tough task, for there is no way we can separate y from n in the time domain... But in the frequency domain these signals are well separated,

suggesting that the frequency-domain viewpoint is valuable ${ }^{1}$.
${ }^{1}$ However, we yet to learn how to fully exploit it efficiently.

Basic properties: duality

If $y=\left.X\right|_{\omega=t}$, i.e. $y(t)=X(j t)$, where $X=\mathfrak{F}\{x\}$, then

$$
\begin{aligned}
Y(\mathrm{j} \omega) & =\left.\int_{\mathbb{R}} X(\mathrm{j} t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t\right|_{t=\tilde{\omega}}=2 \pi\left(\frac{1}{2 \pi} \int_{\mathbb{R}} X(\mathrm{j} \tilde{\omega}) \mathrm{e}^{\mathrm{j} \tilde{\omega}(-\omega)} \mathrm{d} \tilde{\omega}\right) \\
& =2 \pi x(-\omega)
\end{aligned}
$$

because

$$
x(t)=\frac{1}{2 \pi} \int_{\mathbb{R}} X(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} \omega
$$

Basic properties: time shift

If $y=\Phi_{\tau} x$, i.e. $y(t)=x(t+\tau)$, then

$$
\begin{aligned}
Y(\mathrm{j} \omega) & =\left.\int_{\mathbb{R}} x(t+\tau) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t\right|_{s=t+\tau}=\int_{\mathbb{R}} x(s) \mathrm{e}^{-\mathrm{j} \omega(s-\tau)} \mathrm{d} s \\
& =\mathrm{e}^{\mathrm{j} \omega \tau} \int_{\mathbb{R}} x(s) \mathrm{e}^{-\mathrm{j} \omega s} \mathrm{~d} s \\
& =\mathrm{e}^{\mathrm{j} \omega \tau} X(\mathrm{j} \omega)
\end{aligned}
$$

Basic properties: conjugation

If $y=\bar{x}$ (complex conjugate), then

$$
\begin{aligned}
Y(\mathrm{j} \omega) & =\int_{\mathbb{R}} \overline{x(t)} \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\int_{\mathbb{R}} \overline{x(t) \overline{\mathrm{e}^{-\mathrm{j} \omega t}}} \mathrm{~d} t=\overline{\int_{\mathbb{R}} x(t) \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} t} \\
& =\overline{\int_{\mathbb{R}} x(t) \mathrm{e}^{-\mathrm{j}(-\omega) t} \mathrm{~d} t} \\
& =\overline{X(-\mathrm{j} \omega)}
\end{aligned}
$$

If $x: \mathbb{R} \rightarrow \mathbb{R}$ (real valued), then $y=\bar{x}=x$, so that

$$
X(\mathrm{j} \omega)=\overline{X(-\mathrm{j} \omega)}
$$

i.e. we may look only at the spectrum over $\omega \geq 0$. If, in addition, $x=\mathbb{P}_{-1} x$ (such functions are called even), then by the time scaling property

$$
X(\mathrm{j} \omega)=X(-\mathrm{j} \omega)=\overline{X(-\mathrm{j} \omega)}
$$

Hence, if x is real valued and even, then X is real valued and even as well.

Basic properties: time scaling

If $y=\mathbb{P}_{\varsigma} x$, i.e. $y(t)=x(\varsigma t)$, then

$$
\begin{aligned}
Y(\mathrm{j} \omega) & =\left.\int_{\mathbb{R}} x(\varsigma t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t\right|_{s=\varsigma t}= \begin{cases}\int_{-\infty}^{\infty} x(s) \mathrm{e}^{-\mathrm{j} \omega s / \varsigma} \mathrm{d}(s / \varsigma) & \text { if } \varsigma>0 \\
\int_{\infty}^{-\infty} x(s) \mathrm{e}^{-\mathrm{j} \omega s / \varsigma} \mathrm{d}(s / \varsigma) & \text { if } \varsigma<0\end{cases} \\
& = \begin{cases}\frac{1}{\varsigma} \int_{-\infty}^{\infty} x(s) \mathrm{e}^{-\mathrm{j}(\omega / \varsigma) s} \mathrm{~d} s & \text { if } \varsigma>0 \\
-\frac{1}{\zeta} \int_{-\infty}^{\infty} x(s) \mathrm{e}^{-\mathrm{j}(\omega / \varsigma) s} \mathrm{~d} s \quad \text { if } \varsigma<0\end{cases} \\
& =\frac{1}{|\varsigma|} \int_{\mathbb{R}} x(s) \mathrm{e}^{-\mathrm{j}(\omega / \varsigma) s} \mathrm{~d} s \\
& =\frac{1}{|\varsigma|} X(\mathrm{j} \omega / \varsigma)
\end{aligned}
$$

Basic properties: modulation

If $y=x \exp _{\mathrm{j} \omega_{0}}$, i.e. $y(t)=x(t) \mathrm{e}^{\mathrm{j} \omega_{0} t}$, then

$$
=x(t) \mathrm{e}^{\omega_{0} \tau}, \text { then }
$$

$$
\begin{aligned}
Y(\mathrm{j} \omega) & =\int_{\mathbb{R}} x(t) \mathrm{e}^{\mathrm{j} \omega_{0} t} \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\int_{\mathbb{R}} x(t) \mathrm{e}^{-\mathrm{j}\left(\omega-\omega_{0}\right) t} \mathrm{~d} t \\
& =X\left(\mathrm{j}\left(\omega-\omega_{0}\right)\right)
\end{aligned}
$$

By linearity and modulation, if

$$
y(t)=\sin \left(\omega_{0} t+\phi\right) x(t)=a \mathrm{e}^{\mathrm{j} \omega_{0} t} x(t)+\overline{\mathrm{a}} \mathrm{e}^{-\mathrm{j} \omega_{0} t} x(t),
$$

where $a:=0.5 \mathrm{e}^{\mathrm{j}(\phi-\pi / 2)}$, then

$$
Y(\mathrm{j} \omega)=a X\left(\mathrm{j}\left(\omega-\omega_{0}\right)\right)+\overline{\mathrm{a}} X\left(\mathrm{j}\left(\omega+\omega_{0}\right)\right)
$$

By $r(t)=\sin \left(\omega_{0}+\phi\right) x(t)$

Basic properties: differentiation

If $y=\dot{x}$, i.e. $y(t)=\frac{d}{d t} x(t)$, and $\lim _{t \rightarrow \pm \infty} x(t)=0$, then

$$
\begin{aligned}
Y(\mathrm{j} \omega) & =\int_{\mathbb{R}} \dot{x}(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\left.x(t) \mathrm{e}^{-\mathrm{j} \omega t}\right|_{-\infty} ^{\infty}-\int_{\mathbb{R}} x(s)\left(\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{-\mathrm{j} \omega t}\right) \mathrm{d} t \\
& =\mathrm{j} \omega \int_{\mathbb{R}} x(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t \\
& =\mathrm{j} \omega X(\mathrm{j} \omega)
\end{aligned}
$$

because

$$
\int_{a}^{b} \dot{f}(t) g(t) \mathrm{d} t=\left.f(t) g(t)\right|_{a} ^{b}-\int_{a}^{b} f(t) \dot{g}(t) \mathrm{d} t
$$

(integration by parts).
Similar arguments apply to the inverse Fourier, so

$$
y(t)=-\mathrm{j} t x(t) \Longleftrightarrow Y(\mathrm{j} \omega)=\frac{\mathrm{d}}{\mathrm{~d} \omega} X(\mathrm{j} \omega)
$$

Parseval's theorem

Theorem
If $x \in L_{1} \cap L_{2}$, then

$$
\|x\|_{2}^{2}=\int_{\mathbb{R}}|x(t)|^{2} \mathrm{~d} t=\frac{1}{2 \pi} \int_{\mathbb{R}}|X(\mathrm{j} \omega)|^{2} \mathrm{~d} \omega=\frac{1}{2 \pi}\|X\|_{2}^{2}
$$

In other words,

- the energy of x equals the energy of $\mathfrak{F}\{x\}$, modulo the factor $1 /(2 \pi)$.

Basic properties: convolution

If $z=x * y$, then

$$
\begin{aligned}
Z(\mathrm{j} \omega) & =\int_{\mathbb{R}} \int_{\mathbb{R}} x(t-s) y(s) \mathrm{d} s \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\int_{\mathbb{R}} \int_{\mathbb{R}} x(t-s) y(s) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t \mathrm{~d} s \\
& =\int_{\mathbb{R}} \underbrace{\int_{\mathbb{R}} x(t-s) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t y(s) \mathrm{d} s}_{\mathfrak{R}\left\{\Phi_{-s} x\right\}} \\
& =\int_{\mathbb{R}} X(\mathrm{j} \omega) \mathrm{e}^{-\mathrm{j} \omega s} y(s) \mathrm{d} s \quad \quad \text { (by the time shift property) } \\
& =X(\mathrm{j} \omega) \int_{\mathbb{R}} y(s) \mathrm{e}^{-\mathrm{j} \omega s} \mathrm{~d} s \\
& =X(\mathrm{j} \omega) Y(\mathrm{j} \omega)
\end{aligned}
$$

the (unproven) fact that $x, y \in L_{1} \Longrightarrow x * y \in L_{1}$ is required in this proof.

Outline

Fourier transforms of some standard signals

Rectangular pulse

If $x=$ rect, then

$$
\begin{aligned}
X(\mathrm{j} \omega) & =\int_{\mathbb{R}} x(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\int_{-1 / 2}^{1 / 2} \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\left.\frac{\mathrm{e}^{-\mathrm{j} \omega t}}{-\mathrm{j} \omega}\right|_{-1 / 2} ^{1 / 2}=\frac{\mathrm{e}^{\mathrm{j} \omega / 2}-\mathrm{e}^{-\mathrm{j} \omega / 2}}{\mathrm{j} \omega} \\
& =\frac{\mathrm{e}^{\mathrm{j} \omega / 2}-\mathrm{e}^{-\mathrm{j} \omega / 2}}{2 \mathrm{j} \omega / 2}=\frac{\sin (\omega / 2)}{\omega / 2}=\operatorname{sinc}(\omega / 2)=
\end{aligned}
$$

Consequences:

- by time scaling, if $y=$ rect $_{a}$ for some $a>0$, then

$$
Y(\mathrm{j} \omega)=\left(\mathfrak{F}\left\{\mathbb{P}_{1 / a} \mathrm{rect}\right\}\right)(\omega)=\operatorname{a\operatorname {sinc}(\frac {a}{2}\omega)=a(\mathbb {P}_{1/2}\operatorname {sinc})(\omega),~}
$$

- by duality and time scaling, if $y=\mathbb{P}_{1 / 2} \operatorname{sinc}$ and $z=\mathbb{P}_{\varsigma}$ sinc, then

$$
Y(\mathrm{j} \omega)=2 \pi \operatorname{rect}(\omega) \quad \text { and } \quad Z(\mathrm{j} \omega)=\frac{\pi}{\varsigma} \operatorname{rect}_{2 \varsigma}(\omega)
$$

(mind that $\operatorname{rect}(-\omega)=\operatorname{rect}(\omega)$ and $\mathbb{P}_{S} \operatorname{sinc}=\mathbb{P}_{2 \varsigma} \mathbb{P}_{1 / 2} \operatorname{sinc}$).

Triangular pulse

Remember (Lect. 2, Slide 12) that tent $=$ rect $*$ rect. So if $x=$ tent, then

$$
X(\mathrm{j} \omega)=(\mathfrak{F}\{\operatorname{rect} * \operatorname{rect}\})(\mathrm{j} \omega)=\operatorname{sinc}^{2}(\omega / 2)=\bigcap_{0}^{1} \underbrace{}_{2 \pi 4 \pi} \omega
$$

by the convolution property of the Fourier transform.

Consequence:

- by time scaling, if $y=$ tent $_{a}$ for some $a>0$, then

$$
Y(\mathrm{j} \omega)=\left(\mathfrak{F}\left\{\mathbb{P}_{1 / a} \text { tent }\right\}\right)(\omega)=\operatorname{asinc}^{2}\left(\frac{a}{2} \omega\right)
$$

Rectangular pulse: examples

$x_{4}(t)=\operatorname{rect}_{8}(t) \cos \left(\omega_{0} t\right) \mid$
$\left.X_{4}(j \omega)=\frac{X_{3}\left(\mathrm{j}\left(\omega+\omega_{0}\right)\right)+X_{3}\left(\mathrm{j}\left(\omega-\omega_{0}\right)\right)}{2} \right\rvert\,$
${ }_{-4} \sqrt{ }{ }^{t}$

Exponent with support in \mathbb{R}_{+}

If $x=\exp _{\lambda} \mathbb{1}$ for $\lambda \in \mathbb{R}$, then $x \in L_{1}$ iff $\lambda<0$ and in that case

$$
X(\mathrm{j} \omega)=\int_{\mathbb{R}} \mathrm{e}^{\lambda t} \mathbb{1}(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\int_{\mathbb{R}_{+}} \mathrm{e}^{(\lambda-\mathrm{j} \omega) t} \mathrm{~d} t=\left.\frac{\mathrm{e}^{(\lambda-\mathrm{j} \omega) t}}{\lambda-\mathrm{j} \omega}\right|_{0} ^{\infty}=\frac{1}{\mathrm{j} \omega-\lambda}
$$

The same formula holds if $\lambda \in \mathbb{C}$ and $\operatorname{Re} \lambda<0$.
Consequences:

- by differentiation with respect to frequency,

$$
y(t)=\frac{t^{n}}{n!} \mathrm{e}^{\lambda t} \mathbb{1}(t) \Longleftrightarrow Y(\mathrm{j} \omega)=\frac{1}{(\mathrm{j} \omega-\lambda)^{n+1}}
$$

- by linearity and modulation, if $y(t)=\sin \left(\omega_{0} t+\phi\right) \mathrm{e}^{\lambda t} \mathbb{1}(t)$, then

$$
Y(\mathrm{j} \omega)=\frac{\omega_{0} \cos \phi+(\mathrm{j} \omega-\lambda) \sin \phi}{(\mathrm{j} \omega-\lambda)^{2}+\omega_{0}^{2}}
$$

Dirac delta (not quite rigorous, still true)

If $x=\delta$, then by the sifting property

$$
X(\mathrm{j} \omega)=\int_{\mathbb{R}} \delta(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t=\left.\mathrm{e}^{-\mathrm{j} \omega t}\right|_{t=0}=1
$$

i.e. $\mathfrak{F}\{\delta\}$ contains all harmonics with equal weights, $1 /(2 \pi)$.

Consequences:

- by duality and the fact that $\delta(\omega)=\delta(-\omega)$, if $y=1$ (constant), then

$$
Y(\mathrm{j} \omega)=2 \pi \delta(\omega)
$$

- by modulation, if $y=\exp _{\mathrm{j} \omega_{0}}$, then

$$
Y(\mathrm{j} \omega)=2 \pi \delta\left(\omega-\omega_{0}\right)
$$

- by linearity, if $y(t)=\sin \left(\omega_{0} t+\phi\right)$, then

$$
Y(\mathrm{j} \omega)=\pi \mathrm{e}^{\mathrm{j}(\pi / 2-\phi)} \delta\left(\omega+\omega_{0}\right)-\pi \mathrm{e}^{\mathrm{j}(\pi / 2+\phi)} \delta\left(\omega-\omega_{0}\right)
$$

Step (no proofs, still true)
If $x=\mathbb{1}$, then

$$
X(\mathrm{j} \omega)=\frac{1}{\mathrm{j} \omega}+\pi \delta(\omega)
$$

(think of $\mathbb{1}=\lim _{\lambda \uparrow 0} \exp _{\lambda} \mathbb{1}$ and $\mathbb{1}=\mathbb{1}+\mathbb{P}_{-\mathbb{1}} \mathbb{1}$ as a kind of weak rationale).

Consequence:

- if $y(t)=\int_{-\infty}^{t} x(t) \mathrm{d} t$, then

$$
Y(\mathrm{j} \omega)=\frac{1}{\mathrm{j} \omega} X(\mathrm{j} \omega)+\pi X(0) \delta(\omega)
$$

because $y=\mathbb{1} * x$ (Lect. 2, Slide 12), the convolution property of the Fourier transform, and the fact that $x \delta=x(0) \delta$ (Lect. 2, Slide 16).

[^0]: ${ }^{2}$ If $\lim _{t \rightarrow \pm \infty} x(t)=0$, which is normally the case for $x \in L_{1}$.

