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A signal y is observed via an imperfect sensor, where the measured signal is

Ym=y+n
for (unknown) additive noise n reflecting sensor inaccuracies. The question
then is
— how signal (y) can be recovered from its corrupt measurements (ym) ?

This might appear a tough task, for there is no way we can separate y from
n in the time domain. ..

Outline

Fourier series

Harmonic signal
Signal o = aexpj, : R = C,

O{(t) — aejwt _ ‘a‘ej(wtfarg(a)) _

for a € C and w € R is called harmonic signal with frequency w, amplitude
|a|, and initial phase arg(a). Because

Ol(t-}- %rk) _ aer(t+2nk/a)) _ aert+J2nk _ aeja)teJZJ'[k — 200t — Ol(t)

2 _

for all kK € Z, the harmonic signal is ]

periodic (w may be negative).

Euler's formula e = cos@ + jsinf can be used to connect the (complex)
harmonic signal with real sinusoids:

sin(wt + ¢) = ae®t + 3719t 3 =0.56¢-7/2)

(harmonics with @ and —@ come together in real-valued signals).




Harmonic signal (contd)

The signal ajexp;,, is said to be faster (slower) than azexpjq, if |w1| > |w2|
(Jw1] < |w2]). Indeed,

is faster than x» = —

just because

|[x1(t)]

[%2(t)]
xa(2)] Pa(t)]

Note that there is no “the fastest” continuous-time signals.

= |w1| > |w2| =

Fourier series of continuous signals

If x: R — R is T-periodic and continuous, then at every t

x(t) =) X[k]elokt ,

kez
where
1 T/2 )
X[k] = / x(t)e ikt 4t ecC
TJ_1/2
are known as Fourier coefficients of x and
21
wo = 7

is known as its fundamental frequency. The T-periodic xy : R — R with

N
x(t) =Y X[k]elokt

k=—N

is known as a partial sum of the Fourier series of x.

Power

Proe, = L [ aeotpar = 2 [T o

aexpj,, T Jo T Jy
Example 1
Let
1
x =) SiTtentr); = \W/
i€EZ -T/2 0 T/2 t

Fourier coefficients:

X[k] = l T tent (t)e—jwoktdt_ l T/ 1— M o Iwokt 4y
T g TP I A T

1/ (° 2t\ . T/2 2t\ .
= — 1 —_ _Jkatdt 1—- == —Ja)oktdt

_1((1—ej”k—i—jnk)T (1—e‘j”k—jnk)T)

T 272k? 272k?

1/2 if k=0

0 if k # 0 and is even
2/(mk)? if k is odd

_ 1—cos(rk) 1—(-1)k
2 TV

Example 1 (contd)

Partial sums:




Example 2

Let
8t2 ifo<t<1/4
s(t) = —8t2+8t—1 if1/4<t<3/4
8(t — 1)? if3/4<t>1
0 otherwise

and define T-periodic

1

ez “T/2 0 T/2 t

Fourier coefficients:

1 T/2 ) 1 T )
X[k] = T/ x(t)e i@kt d¢ = T/ s(t/ T)e i@kt gt
~T/2 0
1/2 if k=0
8(—1)* sin(rk/2) / | _
= 33 =40 if k # 0 and is even

8(—1) k12 (k)3 if k is odd

Example 2 (contd)

Partial sums:

o

t

VaVaN

0 t

Piecewise-smooth signals

A T-periodic signal x is said to be piecewise smooth if it's differentiable and
has continuous derivative everywhere on [0, T] with a possible exception of
a finite number of distinct t;, at which x(t;"), x(t;7), x(t") and x(t;) exist
in the sense of the existence of

X() = limx(t B x(67) = limx(t = h). ete

Example:

Xzzg(i—n/z)rreCtnTzl_l [ ] 1!_|T Tl_l |

iez

for n € (0,1).

Remark The notion extends to non-periodic functions, which are co-periodic, in a sense.
In that case we need continuous derivatives everywhere except a counted number points
t;, at which x(t;"), x(t,), x(t;") and x(t,") exist.

Fourier series of piecewise-smooth signals

Everything you always wanted to know about Fourier peculiarities™
If x: R — R is T-periodic and piecewise smooth, then at every t
x(t7) +x(t7) jwokt
5 =) X[k]e®
kez

Let X : Z — C be the signal comprising the Fourier coefficients. If
X € £y, then

N
li = i X|[k]elwokt
NinooXN(t) NE)noo k—Z—:N [ ]e

converges to x(t) at every t and the limit is necessarily continuous
X & {1, then the partial sum converges only in the {5 sense, i.e.

li — =0
Jim lx = xnll2




Example 3
Let
X = Z S(i—n/2)T rectyT = |_| |_| I_l |_| [
i€Z t

Fourier coefficients:

1 T/2 . 1 T )
X[k] = / x(t)e i@kt dt — T/ x(t)e i@kt 4
0

- / —onktdt

_sin(2mnk) 1 — cos(2mnk)
- 27k - 2k

(with X[0] = 7).

Example 3 (contd)

Partial sums:

/\v/\/ﬁ\v/\/j

/\\ //\\ /\\ //\\ ¥,

erivv

/\\,_AV/\ Q\VA_AV/\,,AJ

N =33: j

|
|

o+

Gibbs phenomenon

Near every discontinuity point of x,

v (t+ gitg) — x(£7) A2 (711 /On sinc(t)dt—;)(x(ﬁ)—x(t))

~0.089549
and

vt — sifg) — x(t7) 22 (i /On sinc(t)dt — ;) (x(£) - x(t"))

like in

N =33 1.08951 A P
—— N =100
— N =400

T/(2N +1) T/40 t

Some properties

property signal Fourier coefficients

linearity | x = a1x1 + axxo | X[k] = a1 X1[k] + a2 Xz[K]

time shift y =Sx Y[k] = el*0Tk X[K]
time reversal y =P_1x Y [k] = X[—kK]
conjugation y =X Y[k] = X[-K]

convolution Z=Xxy Z[k] = X[k]Y[K]

Consequently, if x is real-valued (codomain is R), then X[k] = X[—K]
— ie |X[K]| = |X[—K]| and arg(X[k]) = — arg(X[k])
and all information is in X[k] for k € Z ..

Remember, ($:x)(t) = x(t + 7) and (P x)(t) = x(st).




Meaning

The expansion

=) X[K]eiK

kez

means that every T-periodic x is a superposition of elementary harmonics
e k(£) 1= X[K] &K

whose frequencies are multiples of the fundamental frequency wg = 27/ T.

The discrete signal X : Z — C comprised of Fourier coefficients is known
as the (line) spectrum of x. In other words,

— T-periodic x can be equivalently represented by the discrete-time X,

known as the frequency-domain representation of x.

Parseval identity

Theorem
If T-periodic x is piecewise smooth, then

Px= Y IXIK][.

kezZ

Proof : Because |c|? = ct,

p_ /T/2 /T/z () ZX[k]erokt>

T/2

kez
(LT etk g XTR
_ é(T/Tpx(t) >th[k]
= > X[KIXTK] = Y _IX[KP
kezZ kez

Parseval identity: meaning

The Parseval identity effectively says that

Pe=Y Pa,

kez
i.e. the power of x equals the sum of powers of all its harmonic components
in the expansion x = ), ax k. This, in turn, implies that
— harmonics with largest amplitudes dominate the behavior of x

— if dominating harmonics are low, x is slow

[ XfK]| x(t)

e 1 1.
6 -5 -4-3-2-10 1 2 3 4 5 6k \ t

— if dominating harmonics are high, x is fast

{ XAl ‘ l o

1
6543210125A5k

Decay of Fourier coefficients

In general, the faster | X[k]| decays as |k| grows, the smoother x is, because
faster harmonics have then smaller effect on x, cf.

I I 0 O P
NN =

/2 0 T/2 t
! 8sin(k/2)|
SN N\ NS N\ x = B
—-T/2 0 T/2 t | [ :” 7-[3‘/(‘3




Outline

Fourier transform

Definition
The Fourier transform §{x} of a signal x is the signal X : R — C such that
X(io) = F0x)ie) = [ x()e e
R

(‘jo' is used for a technical reason to be clarified one day). It is well defined
if x € Ly (plus some mild technical assumptions) and then

1 .
x(t) = > / X(jo)etdo = (F-HX})(t)
27 R
at every t. The latter integral is referred to as the inverse Fourier transform.

If x € Ly, then the Fourier integral converges only in the (weaker) Ly-norm
sense, ||x — 1 Xn}l2 — 0. We can then still extend the transform to L
signals. The use of distributions facilitates extending the Fourier transform
to yet wider classes of signals.

Meaning

Similarly to the Fourier series, the relation

1 .
x(t) = 271/[RX(ja))edea)

means that

— aperiodic x is also a superposition of elementary harmonics oy 4, with
Uxo(t) = =X (jo)e®t,

now with a continuum of frequencies w (measured in radians per time unit).

The signal X is then called the spectrum or frequency-domain representation
of x, with the amplitude spectrum |X| and the phase spectrum arg(X).

The value X(jO) = X(0) is the average of x over all its domain, i.e. R.

Example 1
Kinneret water level from Sep 1993 to Sep 2004

*' EAVAY,

red, low

hbtack
1994 1996 1998 2000 2002 2004 t

and its amplitude spectrum (with hyeq up taken as zero)

ol gl

-2 0 21  [rad/year]

Peaks at @ = 42 [rad/year] reflect the annual cycle.




Example 2

Two L; signals x; and xp, with
alt) 8 cos(2m t)9+ cos(4rmt) o—t2/10

38 2t 1
xo(t) = —COS( g )+ e*tz/10

are hardly distinguishable in the time domain. But they are quite different,
e.g. the average [, xi(t)dt =~ 0 # 0.62 = [ x2(t)dt. These differences are
visible in their spectra

2.4911 X
X

0.6228,

AN ‘ ‘ A

—4x -2 2r An &)

Example 0 (contd)

%Mﬂd&mvv&@&
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— how signal (y) can be recovered from its corrupt measurements (ym)?

The question was

This might appear a tough task, for there is no way we can separate y from
n in the time domain ... But in the frequency domain these signals are well

separated,
Yon N? Y
_ A

suggesting that the frequency-domain viewpoint is valuablel.

'However, we yet to learn how to fully exploit it efficiently.

Basic properties

property time domain frequency domain

linearity | x = a1x1 + axxo | X(jw) = a1 X1(jo) + ax Xo(jw)

duality y = X|w=t Y(jo) = 2nx(—w)

time shift y = Sx Y(jw) = T X(jo)
time scaling y = Pcx Y(jw) = ‘?1|X(j w/c)
conjugation y =X Y(jw) = X(—jw)

Y(jo) = X(i(e — wo))
Y(jo) = joX(jw)
Z(jo) = X(jo) Y (jo)

modulation Y = X eXPjgp,

differentiation? y=x

convolution Z=Xx%xYy

... provided all involved transforms exist

21f lim e too x(t) = 0, which is normally the case for x € L;.

Basic properties: duality
If y = X|w=t, i.e. y(t) = X(jt), where X = F{x}, then
Y (jo) :/X(jt)e—iwfdt) =2 (I/X(j(z))e@(—@dca)
R t=w 27 R
=2 x(—w)

because




Basic properties: time shift

If y = S¢x, ie. y(t) = x(t + 1), then
Y(jw) = /x(t + 1)e I0tdt
R

= ej“”/x(s)e_j“’sds
R

= " X(jw)

_ / x(s)e @D ds
S=t+7T R

Basic properties: time scaling

If y = Pcx, i.e. y(t) = x(st), then

/OO x(s)e1®s/sd(s/c) if¢c >0

—00

Y (joo) = /[Rx(gt)ej“’tdt

s=ct

/oo x(s)e1%/Sd(s/¢) if¢ <0

1/ x(s)e H@/S)sds  if ¢ >0
s/
1 [ -
—/ x(s)e I@/S)ds ifc <0
S J-—x
1 .
_ /X(S)e_J(w/g)st
sl Jr
L X(jw/s)
= A AUw/¢
14

Basic properties: conjugation

If y =X (complex conjugate), then
Y (jo) = / e ot — / x(t)etdr — / X(t)eiotdt
R R R

:/x(t)e—J(_“’)tdt
R
- X(0)

If x : R — R (real valued), then y =X = x, so that

X(jw) = X(—jw),

i.e.we may look only at the spectrum over w > 0. If, in addition, x = P_1x
(such functions are called even), then by the time scaling property

X(jo) = X(—jw) = X(—jo).

Hence, if x is real valued and even, then X is real valued and even as well.

Basic properties: modulation

If y = X expjy, i-. y(t) = x(t)el®0t, then

Y(jo) = /[R x(t)ei™te 0t ds — /[R x(t)e @@t gy
= X(j(w — w0))

By linearity and modulation, if
y(t) = sin(wot + ¢)x(t) = ael®tx(t) + Fe 1?0t x(t),
where a:= 0.5ei(#=7/2) then

Y(jo) = aX(j(w — wo)) + aX(j(@ + wo))




Basic properties: differentiation

If y =x, i.e y(t) = %x(t), and lim;— 4o x(t) = 0, then

Y(jw) = /[R>'<(t)e_j‘"tdt:x(t)e_j‘"tio /x(s)( e ot dt
:ja)/[R x(t)e i®tdt

= jo X(jo)

because

(integration by parts).

Similar arguments apply to the inverse Fourier, so

y(t) = —jtx(t) <= Y(jo) = GX(jo)

Basic properties: convolution

If z=xx*y, then

Z(ja)):/R/Rx(t—s)y(s)dse_j“’tdt:/R/Rx(t—s)y(s)e_j“’tdtds
:/[R/[Rx(t—s)ej"’tdty(s)ds

F{S—sx}

= / X(jw)e Sy (s)ds
R

= X(ja))/[R y(s)e ®sds
= X(jo)Y (joo)

(by the time shift property)

the (unproven) fact that x,y € L1 = xxy € L is required in this proof.

Parseval's theorem

Theorem
If xe€ LiN Ly, then

1 . 1
I3 = [ Ix(OP et = 5 [ X(0)Pdo = 5 1XI3

In other words,

— the energy of x equals the energy of F{x}, modulo the factor 1/(2x).

Outline

Fourier transforms of some standard signals




Rectangular pulse

If x = rect, then

. 1/2 . e_jwt 1/2 e.jw/2 — e_jw/2
X(jo) :/x(t)erfdt:/ eiotgy - & |2 &M m e
R 1/2 —Jw 1-1/2 Jo
el®/2 _ e7i0/2 sin(w/2) /
2jw/2 w2 oncle/2) A\~

Consequences:

— by time scaling, if y = rect, for some a > 0, then
Y (jo) = (F{Py/arect})(w) = asinc(3w) = a(Py/;sinc)(w)
— by duality and time scaling, if y = P, sinc and z = P¢ sinc, then
Y(jo) = 27 rect(w) and  Z(jo) = - rectac (o)
S

(mind that rect(—w) = rect(w) and P sinc = Poc Py /5 sinc).

Rectangular pulse: examples

x(t) = recty(t) Xi(jw) = 2sinc(w)

[T ]

~1 1 t

X(t) = recty(t) Xo(jw) = 4sinc(2w)

-2 2 t J \4

x3(t) = rectg(t) X3(jw) = 8sinc(4w)

- V/\V/\V v/\vl\v
4 4

xa(t) = rectg(t) cos(wot) Xs(i(@ + @0)) + Xs(j(w — wo))

Xa(jo) =

A /\ N A /\ ~
—4 4 t N anY ViV

Triangular pulse

Remember (Lect. 2, Slide 12) that tent = rect x rect. So if x = tent, then

X(jw) = (§{rect*rect})(jw) = sinc?(w/2) = A

0 27 4x ®

by the convolution property of the Fourier transform.

Consequence:

— by time scaling, if y = tent, for some a > 0, then

Y(jo) = (F{Py/, tent})(w) = asincz(ga))

Exponent with support in R

If x =exp, 1 for A € R, then x € L; iff A <0 and in that case

e(A_J.a’)i-L o0 1

X(J'a))Z/[Re’“]](t)ej“’tdt:/[R eA-io)tyy — o o
+

The same formula holds if A € C and ReA < 0.

Consequences:

— by differentiation with respect to frequency,

Y ; 1
7O = () = Vi) = o
— by linearity and modulation, if y(t) = sin(wot + ¢)e*t1(t), then

.\ wocos¢ + (jo — A)sing
N




Dirac delta

If x = &, then by the sifting property
X(jo) = / §(t)e I¥tdt = e 1@t _ =1
R

i.e. §{38} contains all harmonics with equal weights, 1/(27).
Consequences:
— by duality and the fact that §(w) = §(—w), if y = 1 (constant), then

Y(jw) = 276(w)
— by modulation, if y = expj,,,, then
Y () = 276(e — o)
— by linearity, if y(t) = sin(wot + ¢), then

Y (jo) = ne™279§(w + wp) — 72§ (0 — ap)

Step
If x =1, then .
X(jw) = i + 7é(w)

(think of T =limygexp; 1 and 1 =1+ P_;1 as a kind of weak rationale).

Consequence:
- ify(t):/ x(t)dt, then

—00

Y (jo) = J.fuxow) X (0)8(w)

because y = 1% x (Lect. 2, Slide 12), the convolution property of the
Fourier transform, and the fact that x§ = x(0)8 (Lect. 2, Slide 16).
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