Fourier transforms of some standard signals

Linear Systems (034032) lecture no. 3

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Fourier transforms of some standard signals

Example 0

A signal y is observed via an imperfect sensor, where the measured signal is

$$y_{\rm m} = y + n$$

for (unknown) additive noise n reflecting sensor inaccuracies. The question then is

- how signal (y) can be recovered from its corrupt measurements (y_m) ? This might appear a tough task, for there is no way we can separate y from n in the time domain...

Fourier transforms of some standard signals

Fourier series

Fourier transform

Fourier transforms of some standard signals

Fourier transforms of some standard signals

Fourier series

Fourier transform

Fourier transforms of some standard signals

Harmonic signal

Signal $\alpha = a \exp_{j\omega} : \mathbb{R} \to \mathbb{C}$, $\alpha(t) = a e^{j\omega t} = |a| e^{j(\omega t + \arg(a))} = \underbrace{-\tau}_{\tau} \underbrace{-\tau}_{\mathbb{R}} \underbrace{+}_{\tau}$

for $a \in \mathbb{C}$ and $\omega \in \mathbb{R}$ is called harmonic signal with frequency ω , amplitude |a|, and initial phase $\arg(a)$. Because

$$\alpha(t + \frac{2\pi}{\omega}k) = ae^{j\omega(t + 2\pi k/\omega)} = ae^{j\omega t + j2\pi k} = ae^{j\omega t}e^{j2\pi k} = ae^{j\omega t} = \alpha(t)$$

for all $k \in \mathbb{Z}$, the harmonic signal is $\frac{2\pi}{|\omega|}$ -periodic (ω may be negative).

Euler's formula $e^{\mu} = \cos \theta + j \sin \theta$ can be used to connect the (complex) harmonic signal with real sinusoids:

$$\sin(\omega t + \phi) = a e^{j\omega t} + \overline{a} e^{-j\omega t}, \quad a = 0.5 e^{j(\phi - \pi/2)}$$

(harmonics with ω and $-\omega$ come together in real-valued signals).

Harmonic signal

Signal $\alpha = a \exp_{j\omega} : \mathbb{R} \to \mathbb{C}$, $\alpha(t) = a e^{j\omega t} = |a| e^{j(\omega t + \arg(a))} = \underbrace{-\tau}_{\tau} \underbrace{-\tau}_{\mathbb{R}} \underbrace{+}_{\tau}$

for $a \in \mathbb{C}$ and $\omega \in \mathbb{R}$ is called harmonic signal with frequency ω , amplitude |a|, and initial phase $\arg(a)$. Because

$$\alpha(t + \frac{2\pi}{\omega}k) = ae^{j\omega(t + 2\pi k/\omega)} = ae^{j\omega t + j2\pi k} = ae^{j\omega t}e^{j2\pi k} = ae^{j\omega t} = \alpha(t)$$

for all $k \in \mathbb{Z}$, the harmonic signal is $\frac{2\pi}{|\omega|}$ -periodic (ω may be negative).

Euler's formula $e^{j\theta} = \cos \theta + j \sin \theta$ can be used to connect the (complex) harmonic signal with real sinusoids:

$$\sin(\omega t + \phi) = a e^{j\omega t} + \overline{a} e^{-j\omega t}, \quad a = 0.5 e^{j(\phi - \pi/2)}$$

(harmonics with ω and $-\omega$ come together in real-valued signals).

Harmonic signal (contd)

The signal $a_1 \exp_{j\omega_1}$ is said to be faster (slower) than $a_2 \exp_{j\omega_2}$ if $|\omega_1| > |\omega_2|$ $(|\omega_1| < |\omega_2|)$. Indeed,

$$x_1 = \overbrace{\tau_t}^{in}$$
 is faster than $x_2 = \overbrace{\tau_t}^{in}$

just because

$$rac{|\dot{x}_1(t)|}{|x_1(t)|} = |\omega_1| > |\omega_2| = rac{|\dot{x}_2(t)|}{|x_2(t)|}, \quad orall t$$

Note that there is no "the fastest" continuous-time signals.

wer
$$P_{a\,\exp_{\mathbf{j}\omega}} = \frac{1}{T} \int_0^T |ae^{\mathbf{j}\omega t}|^2 dt = \frac{|a|^2}{T} \int_0^T dt = |a|^2$$

Harmonic signal (contd)

The signal $a_1 \exp_{j\omega_1}$ is said to be faster (slower) than $a_2 \exp_{j\omega_2}$ if $|\omega_1| > |\omega_2|$ $(|\omega_1| < |\omega_2|)$. Indeed,

$$x_1 = \overbrace{\tau_t}^{\text{in}}$$
 is faster than $x_2 = \overbrace{\tau_t}^{\text{in}}$

just because

$$rac{|\dot{x}_1(t)|}{|x_1(t)|} = |\omega_1| > |\omega_2| = rac{|\dot{x}_2(t)|}{|x_2(t)|}, \quad orall t$$

Note that there is no "the fastest" continuous-time signals.

Power

$$P_{a\exp_{j\omega}} = \frac{1}{T} \int_0^T |ae^{j\omega t}|^2 \mathrm{d}t = \frac{|a|^2}{T} \int_0^T \mathrm{d}t = |a|^2$$

Fourier series of continuous signals

If $x: \mathbb{R} \to \mathbb{R}$ is T-periodic and continuous, then at every t

$$X(t) = \sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j}\omega_0 k t} = \sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j}(2\pi/T)kt},$$

where

$$X[k] = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \mathrm{e}^{-\mathrm{j}\omega_0 kt} \mathrm{d}t = \frac{1}{T} \int_{a}^{a+T} x(t) \mathrm{e}^{-\mathrm{j}\omega_0 kt} \mathrm{d}t \in \mathbb{C}$$

are known as Fourier coefficients of x and

$$\omega_0 := \frac{2\pi}{T}$$

is known as its fundamental frequency. The *T*-periodic $x_N : \mathbb{R} \to \mathbb{R}$ with

$$x_N(t) := \sum_{k=-N}^{N} X[k] \mathrm{e}^{\mathrm{j}\omega_0 k t}$$

is known as a partial sum of the Fourier series of x.

Let

Fourier coefficients:

$$\begin{aligned} X[k] &= \frac{1}{T} \int_{-T/2}^{T/2} \operatorname{tent}_{T/2}(t) \mathrm{e}^{-\mathrm{j}\omega_0 kt} \mathrm{d}t = \frac{1}{T} \int_{-T/2}^{T/2} \left(1 - \frac{2|t|}{T}\right) \mathrm{e}^{-\mathrm{j}\omega_0 kt} \mathrm{d}t \\ &= \frac{1}{T} \left(\int_{-T/2}^{0} \left(1 + \frac{2t}{T}\right) \mathrm{e}^{-\mathrm{j}\omega_0 kt} \mathrm{d}t + \int_{0}^{T/2} \left(1 - \frac{2t}{T}\right) \mathrm{e}^{-\mathrm{j}\omega_0 kt} \mathrm{d}t \right) \\ &= \frac{1}{T} \left(\frac{(1 - \mathrm{e}^{\mathrm{j}\pi k} + \mathrm{j}\pi k)T}{2\pi^2 k^2} + \frac{(1 - \mathrm{e}^{-\mathrm{j}\pi k} - \mathrm{j}\pi k)T}{2\pi^2 k^2} \right) \\ &= \frac{1 - \cos(\pi k)}{\pi^2 k^2} = \frac{1 - (-1)^k}{\pi^2 k^2} = \begin{cases} 1/2 & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \text{ and is even} \\ 2/(\pi k)^2 & \text{if } k \text{ is odd} \end{cases} \end{aligned}$$

Fourier transforms of some standard signals

Example 1 (contd)

Partial sums:

Let

$$s(t) = egin{cases} 8t^2 & ext{if } 0 \leq t \leq 1/4 \ -8t^2 + 8t - 1 & ext{if } 1/4 \leq t \leq 3/4 \ 8(t-1)^2 & ext{if } 3/4 \leq t \geq 1 \ 0 & ext{otherwise} \end{cases}$$

and define T-periodic

$$x = \sum_{i \in \mathbb{Z}} \mathbb{S}_{iT} \mathbb{P}_{1/T} s = \underbrace{\qquad}_{-\dot{T}/2} \underbrace{\qquad}_{0} \underbrace{\qquad}_{T/2} \underbrace{\qquad}_{t}$$

Fourier coefficients:

$$X[k] = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j\omega_0 kt} dt = \frac{1}{T} \int_0^T s(t/T) e^{-j\omega_0 kt} dt$$
$$= \frac{8(-1)^k \sin(\pi k/2)}{\pi^3 k^3} = \begin{cases} 1/2 & \text{if } k = 0\\ 0 & \text{if } k \neq 0 \text{ and is even}\\ 8(-1)^{(k+1)/2}/(\pi k)^3 & \text{if } k \text{ is odd} \end{cases}$$

Example 2 (contd)

Partial sums:

Piecewise-smooth signals

A *T*-periodic signal x is said to be piecewise smooth if it's differentiable and has continuous derivative everywhere on [0, T] with a possible exception of a finite number of distinct t_i , at which $x(t_i^+)$, $x(t_i^-)$, $\dot{x}(t_i^+)$ and $\dot{x}(t_i^-)$ exist in the sense of the existence of

$$x(t_i^+) := \lim_{h\downarrow 0} x(t_i + h), \quad x(t_i^-) := \lim_{h\downarrow 0} x(t_i - h), \quad \text{etc}$$

Example:

$$x = \sum_{i \in \mathbb{Z}} \mathbb{S}_{(i-\eta/2)T} \operatorname{rect}_{\eta T} =$$

for $\eta \in (0, 1)$.

The notion extends to non-periodic functions, which are co-periodic, in a sense to that case we need continuous derivatives everywhere except a counted number points t_i , at which $x_i(\xi^c)$, $x_i(\xi^c)$, $x_i(\xi^c)$, and $x_i(\xi^c)$ exist.

Piecewise-smooth signals

A *T*-periodic signal x is said to be piecewise smooth if it's differentiable and has continuous derivative everywhere on [0, T] with a possible exception of a finite number of distinct t_i , at which $x(t_i^+)$, $x(t_i^-)$, $\dot{x}(t_i^+)$ and $\dot{x}(t_i^-)$ exist in the sense of the existence of

$$x(t_i^+) := \lim_{h\downarrow 0} x(t_i + h), \quad x(t_i^-) := \lim_{h\downarrow 0} x(t_i - h), \quad \text{etc}$$

Example:

$$x = \sum_{i \in \mathbb{Z}} \mathbb{S}_{(i-\eta/2)T} \operatorname{rect}_{\eta T} =$$

for $\eta \in (0, 1)$.

Remark The notion extends to non-periodic functions, which are ∞ -periodic, in a sense. In that case we need continuous derivatives everywhere except a counted number points t_i , at which $x(t_i^+)$, $x(t_i^-)$, $\dot{x}(t_i^+)$ and $\dot{x}(t_i^-)$ exist.

Fourier series of piecewise-smooth signals

Everything you always wanted to know about Fourier peculiarities* (*but were afraid to ask)

If $x: \mathbb{R} \to \mathbb{R}$ is T-periodic and piecewise smooth, then at every t

$$\frac{x(t^+) + x(t^-)}{2} = \sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j}\omega_0 k t}$$

Let $X : \mathbb{Z} \to \mathbb{C}$ be the signal comprising the Fourier coefficients. If $X \in \ell_1$, then

$$\lim_{N\to\infty} x_N(t) = \lim_{N\to\infty} \sum_{k=-N}^N X[k] e^{j\omega_0 kt}$$

converges to x(t) at every t and the limit is necessarily continuous $X \notin \ell_1$, then the partial sum converges only in the ℓ_2 sense, i.e.

$$\lim_{N\to\infty} \|x-x_N\|_2 = 0$$

Fourier series of piecewise-smooth signals

Everything you always wanted to know about Fourier peculiarities* (*but were afraid to ask)

If $x: \mathbb{R} \to \mathbb{R}$ is T-periodic and piecewise smooth, then at every t

$$\frac{x(t^+) + x(t^-)}{2} = \sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j}\omega_0 k t}$$

Let $X: \mathbb{Z} \to \mathbb{C}$ be the signal comprising the Fourier coefficients. If $X \in \ell_1$, then

$$\lim_{N\to\infty} x_N(t) = \lim_{N\to\infty} \sum_{k=-N}^N X[k] e^{j\omega_0 kt}$$

converges to x(t) at every t and the limit is necessarily continuous $X \notin \ell_1$, then the partial sum converges only in the ℓ_2 sense, i.e.

$$\lim_{N\to\infty}\|x-x_N\|_2=0$$

Let

$$x = \sum_{i \in \mathbb{Z}} \mathbb{S}_{(i-\eta/2)T} \operatorname{rect}_{\eta T} =$$

Fourier coefficients:

$$X[k] = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j\omega_0 kt} dt = \frac{1}{T} \int_0^T x(t) e^{-j\omega_0 kt} dt$$
$$= \frac{1}{T} \int_0^{\eta T} e^{-j\omega_0 kt} dt$$
$$= \frac{\sin(2\pi\eta k)}{2\pi k} - j \frac{1 - \cos(2\pi\eta k)}{2\pi k}$$

(with $X[0] = \eta$).

Example 3 (contd)

Partial sums:

Gibbs phenomenon

Near every discontinuity point of x,

$$x_{N}\left(t+\frac{T}{2N+1}\right)-x(t^{+})\xrightarrow{N\to\infty}\left(\underbrace{\frac{1}{\pi}\int_{0}^{\pi}\operatorname{sinc}(t)\mathrm{d}t-\frac{1}{2}}_{\approx0.089549}\right)\left(x(t^{+})-x(t^{-})\right)$$

and

$$x_N(t-\frac{T}{2N+1})-x(t^-)\xrightarrow{N\to\infty}\left(rac{1}{\pi}\int_0^{\pi}\operatorname{sinc}(t)\mathrm{d}t-rac{1}{2}
ight)(x(t^-)-x(t^+))$$

like in

Some properties

property	signal	Fourier coefficients
linearity	$x = a_1 x_1 + a_2 x_2$	$X[k] = a_1 X_1[k] + a_2 X_2[k]$
time shift	$y = S_{\tau} x$	$Y[k] = \mathrm{e}^{\mathrm{j}\omega_0 au k} X[k]$
time reversal	$y = \mathbb{P}_{-1}x$	Y[k] = X[-k]
conjugation	$y = \overline{x}$	$Y[k] = \overline{X[-k]}$
convolution	z = x * y	Z[k] = X[k]Y[k]

Consequently, if x is real-valued (codomain is \mathbb{R}), then $X[k] = \overline{X[-k]}$ - i.e. |X[k]| = |X[-k]| and $\arg(X[k]) = -\arg(X[k])$ and all information is in X[k] for $k \in \mathbb{Z}_+$.

Remember, $(\mathbb{S}_{\tau}x)(t) = x(t+\tau)$ and $(\mathbb{P}_{\varsigma}x)(t) = x(\varsigma t)$.

1

Fourier transforms of some standard signals

Meaning

The expansion

$$X(t) = \sum_{k \in \mathbb{Z}} X[k] \mathrm{e}^{\mathrm{j}\omega_0 k t}$$

means that every T-periodic x is a superposition of elementary harmonics

$$lpha_{x,k}(t) \coloneqq X[k] \mathrm{e}^{\mathrm{j}\omega_0 k t}$$

whose frequencies are multiples of the fundamental frequency $\omega_0 = 2\pi/T$.

The discrete signal $X : \mathbb{Z} \to \mathbb{C}$ comprised of Fourier coefficients is known as the (line) spectrum of x. In other words, - T-periodic x can be equivalently represented by the discrete-time X, known as the frequency-domain representation of x.

Meaning

The expansion

$$\mathsf{x}(t) = \sum_{k \in \mathbb{Z}} X[k] \mathsf{e}^{\mathsf{j}\omega_0 k t}$$

means that every T-periodic x is a superposition of elementary harmonics

$$lpha_{x,k}(t) \coloneqq X[k] \mathrm{e}^{\mathrm{j}\omega_0 k t}$$

whose frequencies are multiples of the fundamental frequency $\omega_0 = 2\pi/T$.

The discrete signal $X : \mathbb{Z} \to \mathbb{C}$ comprised of Fourier coefficients is known as the (line) spectrum of x. In other words,

- T-periodic x can be equivalently represented by the discrete-time X, known as the frequency-domain representation of x.

Fourier transforms of some standard signals

Parseval identity

Theorem

If T-periodic x is piecewise smooth, then

$$P_x = \sum_{k \in \mathbb{Z}} |X[k]|^2.$$

Proof: Because $|c|^2 = c\overline{c}$, $P_x = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \overline{x(t)} dt = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \overline{\left(\sum_{k \in \mathbb{Z}} X[k] e^{j\omega_0 kt}\right)} dt$ $= \sum_{k \in \mathbb{Z}} \left(\frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j\omega_0 kt}\right) dt \overline{X[k]}$ $= \sum_{k \in \mathbb{Z}} X[k] \overline{X[k]} = \sum_{k \in \mathbb{Z}} |X[k]|^2$

Fourier transforms of some standard signals

Parseval identity: meaning

The Parseval identity effectively says that

$$P_x = \sum_{k \in \mathbb{Z}} P_{\alpha_{x,k}}$$

i.e. the power of x equals the sum of powers of all its harmonic components in the expansion $x = \sum_k \alpha_{x,k}$. This, in turn, implies that

harmonics with largest amplitudes dominate the behavior of x

if dominating harmonics are high, x is fast

Parseval identity: meaning

The Parseval identity effectively says that

$$P_x = \sum_{k \in \mathbb{Z}} P_{\alpha_{x,k}}$$

i.e. the power of x equals the sum of powers of all its harmonic components in the expansion $x = \sum_k \alpha_{x,k}$. This, in turn, implies that

- harmonics with largest amplitudes dominate the behavior of x

- if dominating harmonics are low, x is slow

- if dominating harmonics are high, x is fast

Decay of Fourier coefficients

In general, the faster |X[k]| decays as |k| grows, the smoother x is, because faster harmonics have then smaller effect on x, cf.

Fourier series

Fourier transform

Fourier transforms of some standard signals

Fourier series

Fourier transform

Fourier transforms of some standard signals

Definition

The Fourier transform $\mathfrak{F}\{x\}$ of a signal x is the signal $X : \mathbb{R} \to \mathbb{C}$ such that

$$X(j\omega) = (\mathfrak{F}{x})(j\omega) := \int_{\mathbb{R}} x(t) e^{-j\omega t} dt$$

('j ω ' is used for a technical reason to be clarified one day). It is well defined if $x \in L_1$ (plus some mild technical assumptions) and then

$$x(t) = \frac{1}{2\pi} \int_{\mathbb{R}} X(j\omega) e^{j\omega t} d\omega =: (\mathfrak{F}^{-1}\{X\})(t)$$

at every *t*. The latter integral is referred to as the inverse Fourier transform.

If $x \in L_2$, then the Fourier integral converges only in the (weaker) L_2 -norm sense, $||x - \mathfrak{F}^{-1}\{X_N\}||_2 \to 0$. We can then still extend the transform to L_2 signals. The use of distributions facilitates extending the Fourier transform to yet wider classes of signals.

Meaning

Similarly to the Fourier series, the relation

$$\mathbf{x}(t) = rac{1}{2\pi} \int_{\mathbb{R}} \mathbf{X}(\mathrm{j}\omega) \mathrm{e}^{\mathrm{j}\omega t} \mathrm{d}\omega$$

means that

- aperiodic x is also a superposition of elementary harmonics $\alpha_{x,\omega}$, with $\alpha_{x,\omega}(t) = \frac{1}{2\pi} X(j\omega) e^{j\omega t}$,

now with a continuum of frequencies ω (measured in radians per time unit).

The signal X is then called the spectrum or frequency-domain representation of x, with the amplitude spectrum |X| and the phase spectrum $\arg(X)$.

The value X(j0) = X(0) is the average of x over all its domain, i.e. R.

Meaning

Similarly to the Fourier series, the relation

$$\mathbf{x}(t) = rac{1}{2\pi} \int_{\mathbb{R}} \mathbf{X}(\mathbf{j}\omega) \mathrm{e}^{\mathbf{j}\omega t} \mathrm{d}\omega$$

means that

- aperiodic x is also a superposition of elementary harmonics $\alpha_{x,\omega}$, with $\alpha_{x,\omega}(t) = \frac{1}{2\pi} X(j\omega) e^{j\omega t}$,

now with a continuum of frequencies ω (measured in radians per time unit).

The signal X is then called the spectrum or frequency-domain representation of x, with the amplitude spectrum |X| and the phase spectrum $\arg(X)$.

The value X(j0) = X(0) is the average of x over all its domain, i.e. \mathbb{R} .

Fourier transforms of some standard signals

Example 1

Kinneret water level from Sep 1993 to Sep 2004

and its amplitude spectrum (with $h_{red,up}$ taken as zero)

Peaks at $\omega=\pm 2\pi$ [rad/year] reflect the annual cycle.

Kinneret water level from Sep 1993 to Sep 2004

and its amplitude spectrum (with $h_{red,up}$ taken as zero)

Peaks at $\omega = \pm 2\pi \; [{\rm rad}/{\rm year}]$ reflect the annual cycle.

Two L_1 signals x_1 and x_2 , with

are hardly distinguishable in the time domain. But they are quite different, e.g. the average $\int_{\mathbb{R}} x_1(t) dt \approx 0 \neq 0.62 \approx \int_{\mathbb{R}} x_2(t) dt$.

Two L_1 signals x_1 and x_2 , with

are hardly distinguishable in the time domain. But they are quite different, e.g. the average $\int_{\mathbb{R}} x_1(t) dt \approx 0 \neq 0.62 \approx \int_{\mathbb{R}} x_2(t) dt$. These differences are visible in their spectra

Fourier series

Fourier transform

Fourier transforms of some standard signals

Example 0 (contd)

The question was

- how signal (y) can be recovered from its corrupt measurements (y_m) ?

This might appear a tough task, for there is no way we can separate y from n in the time domain...

suggesting that the frequency-domain viewpoint is valuable 1

Fourier transforms of some standard signals

Example 0 (contd)

The question was

- how signal (y) can be recovered from its corrupt measurements (y_m) ?

This might appear a tough task, for there is no way we can separate y from n in the time domain... But in the frequency domain these signals are well separated,

suggesting that the frequency-domain viewpoint is valuable¹.

¹However, we yet to learn how to fully exploit it efficiently.

Basic properties

property	time domain	frequency domain
linearity	$x = a_1 x_1 + a_2 x_2$	$X(j\omega) = a_1 X_1(j\omega) + a_2 X_2(j\omega)$
duality	$y = X _{\omega = t}$	$Y(j\omega) = 2\pi x(-\omega)$
time shift	$y = \$_{\tau} x$	$Y(j\omega) = e^{j\omega au} X(j\omega)$
time scaling	$y = \mathbb{P}_{\varsigma} x$	$Y(j\omega) = \frac{1}{ \varsigma }X(j\omega/\varsigma)$
conjugation	$y = \overline{x}$	$Y(j\omega) = \overline{X(-j\omega)}$
modulation	$y = x \exp_{j\omega_0}$	$Y(j\omega) = X(j(\omega - \omega_0))$
${\sf differentiation}^2$	$y = \dot{x}$	$Y(j\omega) = j\omega X(j\omega)$
convolution	z = x * y	$Z(j\omega) = X(j\omega)Y(j\omega)$

... provided all involved transforms exist

²If $\lim_{t\to\pm\infty} x(t) = 0$, which is normally the case for $x \in L_1$.

Basic properties: duality

If $y = X|_{\omega=t}$, i.e. y(t) = X(jt), where $X = \mathfrak{F}\{x\}$, then

$$Y(j\omega) = \int_{\mathbb{R}} X(jt) e^{-j\omega t} dt \Big|_{t=\tilde{\omega}} = 2\pi \left(\frac{1}{2\pi} \int_{\mathbb{R}} X(j\tilde{\omega}) e^{j\tilde{\omega}(-\omega)} d\tilde{\omega} \right)$$
$$= 2\pi x(-\omega)$$

because

$$x(t) = \frac{1}{2\pi} \int_{\mathbb{R}} X(j\omega) e^{j\omega t} d\omega$$

Basic properties: time shift

If $y = S_{\tau}x$, i.e. $y(t) = x(t + \tau)$, then

$$\begin{split} Y(j\omega) &= \int_{\mathbb{R}} x(t+\tau) e^{-j\omega t} dt \Big|_{s=t+\tau} = \int_{\mathbb{R}} x(s) e^{-j\omega(s-\tau)} ds \\ &= e^{j\omega \tau} \int_{\mathbb{R}} x(s) e^{-j\omega s} ds \\ &= e^{j\omega \tau} X(j\omega) \end{split}$$

Basic properties: time scaling

If $y = \mathbb{P}_{\varsigma} x$, i.e. $y(t) = x(\varsigma t)$, then

$$Y(j\omega) = \int_{\mathbb{R}} x(\varsigma t) e^{-j\omega t} dt \Big|_{s=\varsigma t} = \begin{cases} \int_{-\infty}^{\infty} x(s) e^{-j\omega s/\varsigma} d(s/\varsigma) & \text{if } \varsigma > 0\\ \int_{-\infty}^{\infty} x(s) e^{-j\omega s/\varsigma} d(s/\varsigma) & \text{if } \varsigma < 0 \end{cases}$$

$$= \begin{cases} \frac{1}{\varsigma} \int_{-\infty}^{\infty} x(s) e^{-j(\omega/\varsigma)s} ds & \text{if } \varsigma > 0 \\ -\frac{1}{\varsigma} \int_{-\infty}^{\infty} x(s) e^{-j(\omega/\varsigma)s} ds & \text{if } \varsigma < 0 \end{cases}$$
$$= \frac{1}{|\varsigma|} \int_{\mathbb{R}} x(s) e^{-j(\omega/\varsigma)s} ds$$
$$= \frac{1}{|\varsigma|} X(j \omega/\varsigma)$$

Basic properties: conjugation

If $y = \overline{x}$ (complex conjugate), then

$$Y(j\omega) = \int_{\mathbb{R}} \overline{x(t)} e^{-j\omega t} dt = \int_{\mathbb{R}} \overline{x(t)} \overline{e^{-j\omega t}} dt = \int_{\mathbb{R}} x(t) e^{j\omega t} dt$$
$$= \overline{\int_{\mathbb{R}} x(t)} e^{-j(-\omega)t} dt$$
$$= \overline{X(-j\omega)}$$

If $x:\mathbb{R} \to \mathbb{R}$ (real valued), then $y=\overline{x}=x$, so that

$$X(\mathsf{j}\omega)=\overline{X(-\mathsf{j}\omega)},$$

i.e. we may look only at the spectrum over $\omega \ge 0$. If, in addition, $x = \mathbb{P}_{-1}x$ (such functions are called *even*), then by the time scaling property

$$X(j\omega) = X(-j\omega) = \overline{X(-j\omega)}.$$

Hence, if x is real valued and even, then X is real valued and even as well.

Basic properties: modulation

If $y = x \exp_{j\omega_0}$, i.e. $y(t) = x(t)e^{j\omega_0 t}$, then

$$Y(j\omega) = \int_{\mathbb{R}} x(t) e^{j\omega_0 t} e^{-j\omega t} dt = \int_{\mathbb{R}} x(t) e^{-j(\omega - \omega_0)t} dt$$
$$= X(j(\omega - \omega_0))$$

By linearity and modulation, if

$$y(t) = \sin(\omega_0 t + \phi)x(t) = ae^{j\omega_0 t}x(t) + \overline{a}e^{-j\omega_0 t}x(t),$$

where $a := 0.5 e^{j(\phi - \pi/2)}$, then

$$Y(j\omega) = aX(j(\omega - \omega_0)) + \overline{a}X(j(\omega + \omega_0))$$

Basic properties: differentiation

If
$$y = \dot{x}$$
, i.e. $y(t) = \frac{d}{dt}x(t)$, and $\lim_{t \to \pm \infty} x(t) = 0$, then

$$Y(j\omega) = \int_{\mathbb{R}} \dot{x}(t) e^{-j\omega t} dt = x(t) e^{-j\omega t} \Big|_{-\infty}^{\infty} - \int_{\mathbb{R}} x(s) \left(\frac{d}{dt} e^{-j\omega t}\right) dt$$
$$= j\omega \int_{\mathbb{R}} x(t) e^{-j\omega t} dt$$
$$= j\omega X(j\omega)$$

because

$$\int_{a}^{b} \dot{f}(t)g(t)dt = f(t)g(t)\Big|_{a}^{b} - \int_{a}^{b} f(t)\dot{g}(t)dt$$

(integration by parts).

Similar arguments apply to the inverse Fourier, so

$$y(t) = -jtx(t) \iff Y(j\omega) = \frac{d}{d\omega}X(j\omega)$$

Basic properties: convolution

If z = x * y, then Ζ

$$(j\omega) = \int_{\mathbb{R}} \int_{\mathbb{R}} x(t-s)y(s)dse^{-j\omega t}dt = \int_{\mathbb{R}} \int_{\mathbb{R}} x(t-s)y(s)e^{-j\omega t}dtds$$
$$= \int_{\mathbb{R}} \underbrace{\int_{\mathbb{R}} x(t-s)e^{-j\omega t}dt}_{\mathfrak{F}\{s-sx\}} y(s)ds$$
$$= \int_{\mathbb{R}} X(j\omega)e^{-j\omega s}y(s)ds \qquad (by the time shift property)$$
$$= X(j\omega)\int_{\mathbb{R}} y(s)e^{-j\omega s}ds$$
$$= X(j\omega)Y(j\omega)$$

the (unproven) fact that $x, y \in L_1 \implies x * y \in L_1$ is required in this proof.

Fourier transforms of some standard signals

Parseval's theorem

Theorem If $x \in L_1 \cap L_2$, then

$$\|x\|_{2}^{2} = \int_{\mathbb{R}} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{\mathbb{R}} |X(j\omega)|^{2} d\omega = \frac{1}{2\pi} \|X\|_{2}^{2}$$

In other words,

- the energy of x equals the energy of $\mathfrak{F}\{x\}$, modulo the factor $1/(2\pi)$.

Fourier transforms of some standard signals

Fourier series

Fourier transform

Fourier transforms of some standard signals

Rectangular pulse

If x = rect, then

$$X(j\omega) = \int_{\mathbb{R}} x(t) e^{-j\omega t} dt = \int_{-1/2}^{1/2} e^{-j\omega t} dt = \frac{e^{-j\omega t}}{-j\omega} \Big|_{-1/2}^{1/2} = \frac{e^{j\omega/2} - e^{-j\omega/2}}{j\omega}$$
$$= \frac{e^{j\omega/2} - e^{-j\omega/2}}{2j\omega/2} = \frac{\sin(\omega/2)}{\omega/2} = \operatorname{sinc}(\omega/2) = \underbrace{\int_{0}^{1/2} e^{-j\omega/2}}_{0/2\pi 4\pi - \omega}$$

Consequences:

— by time scaling, if $y = \text{rect}_a$ for some a > 0, then

 $Y(j\omega) = (\mathfrak{F}_{1/a}\operatorname{rect})(\omega) = a\operatorname{sinc}(rac{a}{2}\omega) = a(\mathbb{P}_{1/2}\operatorname{sinc})(\omega)$

– by duality and time scaling, if $y = \mathbb{P}_{1/2}$ sinc and $z = \mathbb{P}_{c}$ sinc, then

 $Y(j\omega) = 2\pi \operatorname{rect}(\omega) \quad \text{and} \quad Z(j\omega) = \frac{\pi}{5} \operatorname{rect}_{25}(\omega)$ and that $\operatorname{rect}(-\omega) = \operatorname{rect}(\omega)$ and $\mathbb{F}_5 \sin c = \mathbb{F}_{25}\mathbb{F}_{1/2} \sin c$.

Rectangular pulse

If x = rect, then

$$X(j\omega) = \int_{\mathbb{R}} x(t) e^{-j\omega t} dt = \int_{-1/2}^{1/2} e^{-j\omega t} dt = \frac{e^{-j\omega t}}{-j\omega} \Big|_{-1/2}^{1/2} = \frac{e^{j\omega/2} - e^{-j\omega/2}}{j\omega} = \frac{e^{j\omega/2} - e^{-j\omega/2}}{2j\omega/2} = \frac{\sin(\omega/2)}{\omega/2} = \frac{\sin(\omega/2)}{\omega/2} = \frac{\sin(\omega/2)}{\omega/2} = \frac{1}{2\pi 4\pi} \frac{1}{\omega}$$

Consequences:

- by time scaling, if $y = \text{rect}_a$ for some a > 0, then

$$Y(j\omega) = (\mathfrak{F}\{\mathbb{P}_{1/a} \operatorname{rect}\})(\omega) = \operatorname{a}\operatorname{sinc}\left(\frac{a}{2}\omega\right) = \operatorname{a}(\mathbb{P}_{1/2}\operatorname{sinc})(\omega)$$

- by duality and time scaling, if $y = \mathbb{P}_{1/2}$ sinc and $z = \mathbb{P}_{\varsigma}$ sinc, then

$$Y(j\omega) = 2\pi \operatorname{rect}(\omega)$$
 and $Z(j\omega) = \frac{\pi}{\varsigma} \operatorname{rect}_{2\varsigma}(\omega)$

(mind that $\operatorname{rect}(-\omega) = \operatorname{rect}(\omega)$ and $\mathbb{P}_{\varsigma} \operatorname{sinc} = \mathbb{P}_{2\varsigma} \mathbb{P}_{1/2} \operatorname{sinc}$).

Rectangular pulse: examples

Triangular pulse

Remember (Lect. 2, Slide 12) that tent = rect * rect. So if x = tent, then

$$X(j\omega) = (\mathfrak{F}\{\text{rect} * \text{rect}\})(j\omega) = \text{sinc}^2(\omega/2) = \underbrace{1}_{0 \ 2\pi \ 4\pi \ \omega}$$

by the convolution property of the Fourier transform.

Consequence: — by time scaling, if $y = tent_a$ for some a > 0, then $Y(j\omega) = (\mathfrak{F}_{1/a}tent\})(\omega) = a \operatorname{sinc}^2(\frac{a}{2})$

Triangular pulse

Remember (Lect. 2, Slide 12) that tent = rect * rect. So if x = tent, then

$$X(j\omega) = (\mathfrak{F}\{\text{rect} * \text{rect}\})(j\omega) = \operatorname{sinc}^{2}(\omega/2) = \underbrace{1}_{0 \ 2\pi \ 4\pi \ \omega}$$

by the convolution property of the Fourier transform.

Consequence:

- by time scaling, if $y = tent_a$ for some a > 0, then

$$Y(j\omega) = (\mathfrak{F}\{\mathbb{P}_{1/a} \operatorname{tent}\})(\omega) = a\operatorname{sinc}^2(\frac{a}{2}\omega)$$

Exponent with support in \mathbb{R}_+

If $x = \exp_{\lambda} 1$ for $\lambda \in \mathbb{R}$, then $x \in L_1$ iff $\lambda < 0$ and in that case

$$X(j\omega) = \int_{\mathbb{R}} e^{\lambda t} \mathbb{1}(t) e^{-j\omega t} dt = \int_{\mathbb{R}_+} e^{(\lambda - j\omega)t} dt = \frac{e^{(\lambda - j\omega)t}}{\lambda - j\omega} \Big|_0^{\infty} = \frac{1}{j\omega - \lambda}$$

The same formula holds if $\lambda \in \mathbb{C}$ and $\operatorname{Re} \lambda < 0$.

Consequences:

by differentiation with respect to frequency,

$$y(t) = \frac{t^n}{n!} e^{\lambda t} \mathbb{I}(t) \iff Y(j\omega) = \frac{1}{(j\omega - \lambda)^{n+1}}$$

— by linearity and modulation, if $y(t)= \sin(\omega_0 t+\phi) {
m e}^{\lambda t} \mathbb{I}(t),$ then

$$Y(\mathrm{j}\omega)=rac{\omega_0\cos\phi+(\mathrm{j}\omega-\lambda)\sin\phi}{(\mathrm{j}\omega-\lambda)^2+\omega_0^2}$$

Exponent with support in \mathbb{R}_+

If $x = \exp_{\lambda} 1$ for $\lambda \in \mathbb{R}$, then $x \in L_1$ iff $\lambda < 0$ and in that case

$$X(j\omega) = \int_{\mathbb{R}} e^{\lambda t} \mathbb{1}(t) e^{-j\omega t} dt = \int_{\mathbb{R}_+} e^{(\lambda - j\omega)t} dt = \frac{e^{(\lambda - j\omega)t}}{\lambda - j\omega} \Big|_0^{\infty} = \frac{1}{j\omega - \lambda}$$

The same formula holds if $\lambda\in\mathbb{C}$ and $\text{Re}\,\lambda<0.$

Consequences:

by differentiation with respect to frequency,

$$y(t) = rac{t^n}{n!} \mathrm{e}^{\lambda t} \mathbb{1}(t) \iff Y(\mathrm{j}\omega) = rac{1}{(\mathrm{j}\omega - \lambda)^{n+1}}$$

- by linearity and modulation, if $y(t)= \sin(\omega_0 t + \phi) \mathsf{e}^{\lambda t} \mathbb{1}(t)$, then

$$Y(j\omega) = \frac{\omega_0 \cos \phi + (j\omega - \lambda) \sin \phi}{(j\omega - \lambda)^2 + \omega_0^2}$$

Dirac delta (not quite rigorous, still true)

If $x = \delta$, then by the sifting property

$$X(j\omega) = \int_{\mathbb{R}} \delta(t) e^{-j\omega t} dt = e^{-j\omega t} \Big|_{t=0} = 1$$

i.e. $\mathfrak{F}\{\delta\}$ contains all harmonics with equal weights, $1/(2\pi).$

- by duality and the fact that $\delta(\omega) = \delta(-\omega)$, if y = 1 (constant), then $Y(j\omega) = 2\pi\delta(\omega)$

- by modulation, if $y = \exp_{i\omega_0}$, then

 $Y(\mathbf{j}\omega) = 2\pi\delta(\omega - \omega_0)$

— by linearity, if $y(t)=\sin(\omega_0 t+\phi)$, then

 $\pi e^{j(\pi/2-\phi)}\delta(\omega+\omega_0) - \pi e^{j(\pi/2+\phi)}\delta(\omega-\omega_0)$

Dirac delta (not quite rigorous, still true)

If $x = \delta$, then by the sifting property

$$X(j\omega) = \int_{\mathbb{R}} \delta(t) e^{-j\omega t} dt = e^{-j\omega t} |_{t=0} = 1$$

i.e. $\mathfrak{F}{\delta}$ contains all harmonics with equal weights, $1/(2\pi)$. Consequences:

 $-\,$ by duality and the fact that $\delta(\omega)=\delta(-\omega),$ if ${\sf y}={\sf 1}$ (constant), then

$$Y(j\omega) = 2\pi\delta(\omega)$$

- by modulation, if $y = \exp_{j\omega_0}$, then

$$Y(j\omega) = 2\pi\delta(\omega - \omega_0)$$

- by linearity, if $y(t) = \sin(\omega_0 t + \phi)$, then

$$Y(j\omega) = \pi e^{j(\pi/2 - \phi)} \delta(\omega + \omega_0) - \pi e^{j(\pi/2 + \phi)} \delta(\omega - \omega_0)$$

Step (no proofs, still true)

If x = 1, then

$$X(j\omega) = rac{1}{j\omega} + \pi \delta(\omega)$$

(think of $1 = \lim_{\lambda \uparrow 0} \exp_{\lambda} 1$ and $1 = 1 + \mathbb{P}_{-1} 1$ as a kind of weak rationale).

Consequence:
- if
$$y(t) = \int_{-\infty}^{t} x(t) dt$$
, then
 $Y(j\omega) = \frac{1}{i\omega} X(j\omega) + \pi X(0)\delta(\omega)$.

because y = 1 * x (Lect. 2, Slide 12), the convolution property of the Fourier transform, and the fact that $x\delta = x(0)\delta$ (Lect. 2, Slide 16).

Step (no proofs, still true)

If x = 1, then

$$X(j\omega) = rac{1}{j\omega} + \pi \delta(\omega)$$

(think of $1 = \lim_{\lambda \uparrow 0} \exp_{\lambda} 1$ and $1 = 1 + \mathbb{P}_{-1} 1$ as a kind of weak rationale).

Consequence: - if $y(t) = \int_{-\infty}^{t} x(t) dt$, then $Y(j\omega) = \frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega)$

because y = 1 * x (Lect. 2, Slide 12), the convolution property of the Fourier transform, and the fact that $x\delta = x(0)\delta$ (Lect. 2, Slide 16).