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Example 0
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A signal y is observed via an imperfect sensor, where the measured signal is

Ym=y+n
for (unknown) additive noise n reflecting sensor inaccuracies. The question
then is
— how signal (y) can be recovered from its corrupt measurements (ym) ?

This might appear a tough task, for there is no way we can separate y from
n in the time domain. ..
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Fourier series

Fourier transform

Fourier transforms of some standard signals



Fourier series



Fourier series

Harmonic signal

Signal & = aexpj, : R = C,

(X(t) _ aejwt ‘a eJ (wt+arg(a)) —

for a € C and w € R is called harmonic signal with frequency w, amplitude
|a|, and initial phase arg(a). Because

Ol(t + %rk) _ aer(t+27rk/a)) _ aert+J27rk _ aerteJ27rk — qel9t — Ot(t)

for all k € Z, the harmonic signal is | | -periodic (@ may be negative).



Fourier series

Harmonic signal

Signal & = aexpj, : R = C,

(X(t) — aeja)t — |3 ej((ut farg(a)) — @ 5

for a € C and w € R is called harmonic signal with frequency w, amplitude
|a|, and initial phase arg(a). Because

Ol(t + %rk) _ aeja)(t+27rk/a)) _ aejwt+j27rk _ aejwtej27rk _ aejwt _ Ol(t)
for all k € Z, the harmonic signal is 2Z-periodic (w may be negative).

o]

Euler's formula e/ = cos@ + jsin# can be used to connect the (complex)
harmonic signal with real sinusoids:

sin(wt + ¢) = ae®t 4 ge 19t 3 =0.5el(¢7/2)

(harmonics with @ and —w come together in real-valued signals).



Fourier series

Harmonic signal (contd)

The signal ajexp,, is said to be faster (slower) than azexp;q,, if |w1] > |w2]
(Jw1| < |w2|). Indeed,

is faster than xp = —

just because

(1)

%2 ()]
x1(t)] xa(t)]

Note that there is no “the fastest” continuous-time signals.

= |w1] > |w2| =

vt



Fourier series

Harmonic signal (contd)

The signal ajexp,, is said to be faster (slower) than azexp;q,, if |w1] > |w2]
(Jw1| < |w2|). Indeed,

is faster than x» = —

just because

(1)

Ja(t)
x1(0) PG

Note that there is no “the fastest” continuous-time signals.

= |w1] > |w2| =

Power

17 jot|2 |a|2 T 2
Paexpjw:7 . \ae ‘dt:? ; dt:|a|



Fourier series

Fourier series of continuous signals

If x: R — R is T-periodic and continuous, then at every t

x(t) =) X[k]el®okt ,
kez
where
1 T/2 )
X[k] = / x(t)e i@kt d¢ eC
T 1)
are known as Fourier coefficients of x and
2
wo = T

is known as its fundamental frequency. The T-periodic xy : R — R with

N
xu(t) =) X[k]el®okt

k=—N

is known as a partial sum of the Fourier series of x.



Fourier series

Example 1
Let
X = Z Sittentr), = \W/
icz B PR R ;
Fourier coefficients:
X[k] =

- tent t)e @kt — / (1 — —)e Jjwokt 4+
S 1+)e1w°fdt+/ (1- 5 )eionqr
T( ~T/2 T 0 T)

_ L (A= )T (e jrl)T

T 212k2 5n2k2

1/2 if k=0
_ 1—cos(rk) 1—(-1)k /

2/(mk)?

if Kk #0 and is even
if k is odd



Fourier series

Example 1 (contd)

Partial sums:




Fourier series

Example 2

Let
8t? ifo<t<1/4
o(t) = —8t24+8t—1 ifl1/4<t<3/4
8(t — 1)? if3/4<t>1
0 otherwise

and define T-periodic
x= SirPyrs= AM
icz ~T/2 0 T)2 t
Fourier coefficients:
1 T/2 . 1 T .
X[K] = / x(t)e w0kt g — / st/ T)e ookt g¢
TJ 1) T Jo
1/2 if k=0
=40 if k # 0 and is even
8(—1)k*tD/2/ (k)3 if k is odd

8(—1)ksin(mk/2)
m3k3




Fourier series

Example 2 (contd)

Partial sums:




Fourier series

Piecewise-smooth signals

A T-periodic signal x is said to be piecewise smooth if it's differentiable and
has continuous derivative everywhere on [0, T] with a possible exception of
a finite number of distinct t;, at which x(¢;"), x(t;), x(t;") and x(t;") exist
in the sense of the existence of

.= | ; )= P —
x(t) = Ififax(t, +h), x(t7) Iiiirax(t, h), etc

Example:

o= sy =[ 11T 1]
1

ieZ

for n € (0,1).



Fourier series

Piecewise-smooth signals

A T-periodic signal x is said to be piecewise smooth if it's differentiable and
has continuous derivative everywhere on [0, T] with a possible exception of
a finite number of distinct t;, at which x(¢;"), x(t;), x(t;") and x(t;") exist
in the sense of the existence of

Y .= | ; )= P —
x(t) = lilf(}x(t' +h), x(t7) If:irax(t, h), etc

Example:

o= sy =[ 11T 1]
1

ieZ

for n € (0,1).

Remark The notion extends to non-periodic functions, which are co-periodic, in a sense.
In that case we need continuous derivatives everywhere except a counted number points
t;, at which x(t;"), x(t7), x(t") and x(t;") exist.



Fourier series

Fourier series of piecewise-smooth signals
Everything you always wanted to know about Fourier peculiarities™
If x: R — R is T-periodic and piecewise smooth, then at every t

M Zx[k]ejwokt

2
keZ



Fourier series
Fourier series of piecewise-smooth signals
Everything you always wanted to know about Fourier peculiarities™
If x: R — Ris T-periodic and piecewise smooth, then at every t
(t+) + X jwokt
M) _ 5~ Xiue

keZ

Let X : Z — C be the signal comprising the Fourier coefficients. If
X € {1, then

N
limxy(t) = i X([k]el@okt
NinooXN( ) Ninoo k—ZN [ ]e

converges to x(t) at every t and the limit is necessarily continuous

X & {1, then the partial sum converges only in the £; sense, i.e.

lim []x —xyl2 = 0
Ngﬂoollx xn|l2



Fourier series

Example 3
Let

x=) S n/zrreCtnT—l_l [ ] l_l |_|

i€EZ
Fourier coefficients:

1 T/2 . 1 T .
X[ = L / x(t)eoRdr = = / x(£)e @0kt g
0

T/2

_ = / 7Ja)0ktdt

_sin(2mnk) 1 — cos(2mnk)
ok 3 onk

(with X[0] = 7).



Fourier series

Example 3 (contd)

Partial sums:
/\ /\ /\ /N /f
N=1:
\// N \ t
/™\ /\ N\ /\
N2 /
S\
N=33: [




Fourier series

Gibbs phenomenon

Near every discontinuity point of x,

xn(t+ o) — x(t7) Moo, <71T /on sinc(t)dt — ;) (x(tT) — x(t7))

~0.089549
and

vt — ) — x(t) 2 (711 /On sinc(¢)dt — ;) (x(t7) - x(t1)

like in

N=33 1.0895] A =
— N =100
— N =400

>V T/(2N+1) T/40 t



Fourier series

Some properties

property signal Fourier coefficients
linearity | x = ayx1 + apxa | X[k] = a1 X1[k] + a2 Xz[K]
time shift y =S%:x Y[k] = el“oTh X[K]
time reversal y =P_1x Y[k] = X[—K]
conjugation y=X Y[k] = X[—k]
convolution Z=Xxx*y Z[k] = X[k]Y[K]

Consequently, if x is real-valued (codomain is R), then X[k] = X[—K]
— i.e. |X[k]| = | X[—K]| and arg(X[k]) = — arg(X[k])
and all information is in X[k] for k € Z ..

Remember, (Scx)(t) = x(t + 7) and (P x)(t) = x(st).



Fourier series

Meaning

The expansion

x(t) =) X[k]e*okt

kez

means that every T-periodic x is a superposition of elementary harmonics
e k(t) 1= X[K] &0kt

whose frequencies are multiples of the fundamental frequency wg = 27/ T.



Fourier series

Meaning

The expansion

x(t) =) X[k]e*okt

kez

means that every T-periodic x is a superposition of elementary harmonics
e k(t) 1= X[K] &0kt

whose frequencies are multiples of the fundamental frequency wg = 27/ T.

The discrete signal X : Z — C comprised of Fourier coefficients is known
as the (line) spectrum of x. In other words,

T-periodic x can be equivalently represented by the discrete-time X,

known as the frequency-domain representation of x.



Fourier series

Parseval identity

Theorem
If T-periodic x is piecewise smooth, then

Px= Y IXIKIP

kez
Proof : Because |c|? = cc,
T/2 1 T/2 .
/ x(t)x(t)dt = / X(t)(z X[k]ejwokt)dt
T/2 TJ 1) ez
/2
=>. ( / —onkf> dt X[k]
kez 772

= 3" XKXTK = S IXIKIP

kez kez



Fourier series

Parseval identity: meaning
The Parseval identity effectively says that
PX = Z Pax.k
kez

i.e. the power of x equals the sum of powers of all its harmonic components
in the expansion x = Zk Oy, k. This, in turn, implies that
— harmonics with largest amplitudes dominate the behavior of x



Fourier series

Parseval identity: meaning
The Parseval identity effectively says that
PX = Z Pax.k
kez

i.e. the power of x equals the sum of powers of all its harmonic components
in the expansion x = Zk Oy, k. This, in turn, implies that
— harmonics with largest amplitudes dominate the behavior of x
— if dominating harmonics are low, x is slow

x(t),
1] | 2 T2

—6 -5 4-3-2-10 1 2 3 4 5 6k _~ t

— if dominating harmonics are high, x is fast

XAl

[XTK]|




Fourier series

Decay of Fourier coefficients

In general, the faster | X[k]| decays as |k| grows, the smoother x is, because
faster harmonics have then smaller effect on x, cf.

] T ] [ sin(nk
[ ] — X1k = =
nr r t
/ 1 — cos(mk)
\M/\/ s IX[K]| = —
—T/2 0 T/2 t

1 H k
VAVAVAVANE R Lo

—T/2 0 T/2 t



Fourier transform



Fourier transform
Definition

The Fourier transform §{x} of a signal x is the signal X : R — C such that

X(0) = 301 ) = / x(t)e 9t dt

(‘joo' is used for a technical reason to be clarified one day). It is well defined
if x € Ly (plus some mild technical assumptions) and then

1 .
x(t) = /X(Ja))e“‘”dw = (FHXN(1)
2 R
at every t. The latter integral is referred to as the inverse Fourier transform.

If x € Ly, then the Fourier integral converges only in the (weaker) Ly-norm
sense, ||x — F H{Xn}||2 — 0. We can then still extend the transform to L
signals. The use of distributions facilitates extending the Fourier transform
to yet wider classes of signals.




Fourier transform

Meaning

Similarly to the Fourier series, the relation

x(t) = /X jw)e?tdw

means that
— aperiodic x is also a superposition of elementary harmonics oy 4, with
xo(t) = 7z X (j0)e,

now with a continuum of frequencies @ (measured in radians per time unit).



Fourier transform

Meaning

Similarly to the Fourier series, the relation
x(t) = /X jw)e?tdw

means that

— aperiodic x is also a superposition of elementary harmonics oy 4, with
xo(t) = 7z X (j0)e,

now with a continuum of frequencies @ (measured in radians per time unit).

The signal X is then called the spectrum or frequency-domain representation
of x, with the amplitude spectrum |X| and the phase spectrum arg(X).

The value X(j0) = X(0) is the average of x over all its domain, i.e. R.



Fourier transform

Example 1
Kinneret water level from Sep 1993 to Sep 2004

M

hblack

hreg

Bred.jon

1996 1998 2000 2002 2004 t

and its amplitude spectrum (with hyeq up taken as zero)

—2n 0 27  [rad/year]



Fourier transform

Example 1
Kinneret water level from Sep 1993 to Sep 2004

M

hblack

hred

Bred.jon

1996 1998 2000 2002 2004 t

and its amplitude spectrum (with hyeq up taken as zero)

—27 0 27  [rad/year]

Peaks at w = +27 [rad/year| reflect the annual cycle.



Fourier transform

Example 2

Two L; signals x; and xp, with

8 2t 4rt

al(t) cos(2m )9+ cos(4m )eftz/lo
8 2rt)+1 _p

Xg(t) COS( ;T ) et /10

are hardly distinguishable in the time domain. But they are quite different,
e.g. the average [, xi(t)dt ~ 0 # 0.62 ~ [, x(t)dt.



Fourier transform

Example 2

Two L; signals x; and xp, with

8 2t Art
sal(t) - cos(2m )9+cos( v )efﬁ/lo

8 2t) +1
xao(t) = —COS( ;T ) F e t°/10

are hardly distinguishable in the time domain. But they are quite different,
e.g. the average [, xi(t)dt ~ 0% 0.62 ~ [, x2(t)dt. These differences are
visible in their spectra

24911 X

— X

0.6228,

—4r —2m 0 2m 4 <]



Fourier transform

Example 0 (contd)

Wq’%ﬂmﬁvﬁmﬂ
WMM

— how signal (y) can be recovered from its corrupt measurements (ym) ?

The question was

This might appear a tough task, for there is no way we can separate y from
n in the time domain . ..




Fourier transform

Example 0 (contd)

Wq’%ﬂmﬁvﬁw&
-

— how signal (y) can be recovered from its corrupt measurements (ym) ?

The question was

This might appear a tough task, for there is no way we can separate y from
n in the time domain ... But in the frequency domain these signals are well

separated,
Yo ’VT Y
L AA

suggesting that the frequency-domain viewpoint is valuable?.

"However, we yet to learn how to fully exploit it efficiently.



Fourier transform

Basic properties

property time domain frequency domain
linearity | x = a;x1 + axxo | X(jo) = a1 X1(jo) + a2X2(jw)
duality y = X|o=t Y(jo) = 27x(—w)
time shift y =%x Y(jw) = " X(jw)
time scaling y = Pcx Y(jw) = ﬁX(j w/<c)
conjugation y=Xx Y(jw) = X(—jw)

modulation
differentiation?

convolution

Y = X &XPjy,
y=x

Z=Xx%xYy

... provided all involved transforms exist

Y(jo) = X(i(w — wo))
Y(jo) = joX(jo)
Z(jo) = X(jo)Y (jo)

2If lim¢— £00 x(t) = 0, which is normally the case for x € L;.



Fourier transform
Basic properties: duality
If y = X|w=¢, i.e. y(t) = X(jt), where X = F{x}, then

Y (jw) = /[RX(jt)e_j“’tdt =2 (;T/RX(ja"))ejd’(_“’)dd)>

= 2nx(—w)

because .
x(t) = — / X(jo)e!®tdw
JR



Fourier transform

Basic properties: time shift

If y =Sex, i.e. y(t) = x(t + 1), then
Y(jw) = /x(t + 1)e I0tdt
R

= ejm/x(s)e_jwsds
R
= X (jo)

_ —jo(s—7) 4
e /[Rx(s)e s



Fourier transform

Basic properties: time scaling
If y = Pcx, i.e. y(t) = x(gt), then

/ " x(s)e 5 d(s/c)

s=ct

Y(jo)= [ x(ct)e ®tdt .
S [ X dsss)

1/ x(s)e I@/S)sds  if ¢ >0

S J-

—1/ x(s)e H@/S)sds if ¢ <0
S J-x

- 1/x(s)e‘j(“’/g)sds
’§| R

1.
= HX(JCU/S)

if ¢ >0

if¢ <0



Fourier transform
Basic properties: conjugation

If y =X (complex conjugate), then
Y (jo) = / x(t)e @tde = / x(t)ewtdt = / x(t)eiwtdt
R R R
= /X(t)ej(w)tdt
R

= X(~jo)

If x: R — R (real valued), then y =X = x, so that

X(jw) = X(=jo),

i.e. we may look only at the spectrum over w > 0. If, in addition, x = P_1x
(such functions are called even), then by the time scaling property

X(jo) = X(=jo) = X(=jo).

Hence, if x is real valued and even, then X is real valued and even as well.



Fourier transform

Basic properties: modulation

If y = X expjy,. i-e. y(t) = x(t)el*0!, then

Y(Ja)) :/X(t)ejwoteja)tdt:/x(t)ej(wwo)tdt
R R
= X(j(@ — o))

By linearity and modulation, if
y(t) = sin(wot + ¢)x(t) = ael®tx(t) + ae 0 x(t),
where a:= 0.5e/(#=7/2) then

Y(jw) = aX(j( — wo)) +aX(j(w + wo))



Fourier transform

Basic properties: differentiation

If y =x, ie. y(t) = %x(t), and lim;_, 4+ x(t) = 0, then

- —/Rx(s)((ftej“’t)dt

—0o0

Y(Ja)) — /[R).((t)ejwtdt — X(t)efjwt

= ja)/ x(t)e @ dt
R
= jo X(jo)

because

(integration by parts).

Similar arguments apply to the inverse Fourier, so

y(t) = —jtx(t) <= Y(jo) = £ X(jo)



Fourier transform

Basic properties: convolution

If z=xxy, then

Z(jw) // (t —s)y(s)dse™ J“’tdt—// (t — s)y(s)e ®tdtds
// e tdt y(s)ds

S{Tb—sx}
= / X(jw)e 9y (s)ds (by the time shift property)
R

= X(ja))/[R y(s)e 1®sds
= X(jo)Y (joo)

the (unproven) fact that x,y € L1 = x*y € L; is required in this proof.



Fourier transform

Parseval's theorem

Theorem
If x € LN Ly, then

1 1
2 2.0, CNR2 ey — 2
HX||2—/[R|X(t)| dt = 2n/[R’X(Jw)’ do = o—[IXIl2

In other words,

— the energy of x equals the energy of F{x}, modulo the factor 1/(2x).



Fourier transforms of some standard signals

Outline

Fourier transforms of some standard signals



Fourier transforms of some standard signals

Rectangular pulse

If x = rect, then

. 1/2 . e_ja)t 1/2 ejw/2 — e_jw/z
X() = [ (e @tae= [ et S0 S e
R —-1/2 —Jw 1-1/2 jw
el®/2 _ e=i0/2 sin(w/2) /
2jw/2 w2~ oncl/2) A\~



Fourier transforms of some standard signals

Rectangular pulse

If x = rect, then

. 1/2 . e_ja)t 1/2 ejw/2 — e_jw/z
X(jw) = / x(t)e 1®tdt = / e 10tdt = — -
R 1/2 —Jw 1-1/2 jw
el®/2 _ e=i0/2 sin(w/2) /
= p— = i 2 =
2jw/2 w2~ oncl/2)

0 277%n [

Consequences:

— by time scaling, if y = rect, for some a > 0, then
Y (jw) = (§{Py/arect})(w) = asinc(3w) = a(Py /5 sinc)(w)
— by duality and time scaling, if y = [P, sinc and z = P¢ sinc, then
Y(jw) =27 rect(w) and Z(jw) = g rectoc ()

(mind that rect(—w) = rect(w) and P¢ sinc = Pac Py 5 sinc).



Fourier transforms of some standard signals

Rectangular pulse: examples

xa(t) = recty(t) Xa(joo) = 2sinc(w)

-1 1 t 2

Xo(t) = recty(t) Xo(jo) = 4sinc(2w)

= 2 ¢ T ®

x3(t) = rectg(t) X3(jw) = 8sinc(4w)

_ -

v/\V/\ I\V
s PR VIV ¢

xa(t) = rectg(t) cos(wpt) Xe(jo) =

—4 4 t Vol VeV @

Xa(j(@ + o)) + Xs(j(@ — @)
2




Fourier transforms of some standard signals

Triangular pulse

Remember (Lect. 2, Slide 12) that tent = rect * rect. So if x = tent, then

X(jw) = (F{rect*rect})(jw) = sinc?(w/2) = /IY\

0 27 4r w

by the convolution property of the Fourier transform.



Fourier transforms of some standard signals

Triangular pulse

Remember (Lect. 2, Slide 12) that tent = rect * rect. So if x = tent, then

X(jw) = (F{rect*rect})(jw) = sinc?(w/2) = /IY\

0 27 4r w

by the convolution property of the Fourier transform.

Consequence:

— by time scaling, if y = tent, for some a > 0, then

Y(jo) = (§{Py/,tent})(w) = asinc®(2w)



Fourier transforms of some standard signals

Exponent with support in R

If x =expy 1 for A € R, then x € Ly iff A < 0 and in that case

e(l_jw)t o) 1

X(Jw)Z/Re“ﬂ(t)ej“’tdt:/R eA-io)tys — o o7
+

The same formula holds if A € C and ReA < 0.



Fourier transforms of some standard signals

Exponent with support in R

If x =expy 1 for A € R, then x € Ly iff A < 0 and in that case

e(l_jw)t o) 1

X(ja)):/[Re)\‘tﬂ(t“)ej“’tdt“:/[R eA-io)tgr —
+

The same formula holds if A € C and Re A < 0.

A—jw lo :ja)—)t

Consequences:

— by differentiation with respect to frequency,

MO = SeI(t) = V(o) = e

— by linearity and modulation, if y(t) = sin(wot + ¢)e*t1(t), then

wocos P + (jo — A)sing
(jo — A2 + o

Y(jo) =



Fourier transforms of some standard signals

Dirac delta

If x =6, then by the sifting property
DA ST
R

i.e. §{6} contains all harmonics with equal weights, 1/(27).



Fourier transforms of some standard signals

Dirac delta

If x =6, then by the sifting property
P
R

i.e. §{6} contains all harmonics with equal weights, 1/(27).
Consequences:
— by duality and the fact that §(w) = §(—w), if y = 1 (constant), then

Y(jw) =276(w)
— by modulation, if y = expj,,, then
Y(jw) =278(w — wo)
— by linearity, if y(t) = sin(wot + ¢), then

Y (jo) = 7279§(w + wp) — 72 §(w — wy)



Fourier series Fourier transform Fourier transforms of some standard signals

Step (no proofs, still true)
If x =1, then )
X(jw) = i + né(w)

(think of T =limysgexpy Tand 1 =1+ P11 as a kind of weak rationale).



Fourier transforms of some standard signals

Step

If x =1, then )
X(jw) = — )
(j0) = 5 + 78(0)

(think of T =limy4gexpy Tand 1 =1+ P11 as a kind of weak rationale).

Consequence: .

- ify(t):/ x(t)dt, then

—00

Y (jo) = J.(1D><(jw) + X (0)8()

because y = 1% x (Lect. 2, Slide 12), the convolution property of the
Fourier transform, and the fact that x§ = x(0)§ (Lect. 2, Slide 16).
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