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Example 0

yym
n

A signal y is observed via an imperfect sensor, where the measured signal is

ym = y + n

for (unknown) additive noise n reflecting sensor inaccuracies. The question
then is

− how signal (y) can be recovered from its corrupt measurements (ym) ?

This might appear a tough task, for there is no way we can separate y from
n in the time domain . . .
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Fourier series Fourier transform Fourier transforms of some standard signals

Harmonic signal

Signal ˛ = a expj! : R→ C,

˛(t) = aej!t = |a|ej(!t+arg(a)) =

for a ∈ C and ! ∈ R is called harmonic signal with frequency !, amplitude
|a|, and initial phase arg(a). Because

˛(t + 2�
! k) = aej!(t+2�k=!) = aej!t+j2�k = aej!t ej2�k = aej!t = ˛(t)

for all k ∈ Z, the harmonic signal is 2�
|!| -periodic (! may be negative).

Euler’s formula ej� = cos � + j sin � can be used to connect the (complex)
harmonic signal with real sinusoids:

sin(!t + �) = aej!t + ae−j!t ; a = 0:5ej(�−�=2)

(harmonics with ! and −! come together in real-valued signals).
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Harmonic signal (contd)

The signal a1expj!1
is said to be faster (slower) than a2expj!2

if |!1| > |!2|
(|!1| < |!2|). Indeed,

x1 = is faster than x2 =

just because
|ẋ1(t)|
|x1(t)|

= |!1| > |!2| =
|ẋ2(t)|
|x2(t)|

; ∀t

Note that there is no “the fastest” continuous-time signals.

Power

Pa expj!
=

1

T

∫ T

0
|aej!t |2dt = |a|

2

T

∫ T

0
dt = |a|2
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|ẋ1(t)|
|x1(t)|

= |!1| > |!2| =
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Fourier series of continuous signals

If x : R→ R is T -periodic and continuous, then at every t

x(t) =
∑
k∈Z

X [k]ej!0kt =
∑
k∈Z

X [k]ej(2�=T )kt ;

where

X [k] =
1

T

∫ T=2

−T=2
x(t)e−j!0kt dt =

1

T

∫ a+T

a
x(t)e−j!0kt dt ∈ C

are known as Fourier coefficients of x and

!0 ··=
2�

T

is known as its fundamental frequency. The T -periodic xN : R→ R with

xN(t) ··=
N∑

k=−N

X [k]ej!0kt

is known as a partial sum of the Fourier series of x .
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Example 1

Let

x =
∑
i∈Z

SiT tentT=2 =
t0−T=2 T=2

1

Fourier coefficients:

X [k] =
1

T

∫ T=2

−T=2
tentT=2(t)e

−j!0kt dt =
1

T

∫ T=2

−T=2

(
1− 2|t|

T

)
e−j!0kt dt

=
1

T

(∫ 0

−T=2

(
1 +

2t

T

)
e−j!0kt dt +

∫ T=2

0

(
1− 2t

T

)
e−j!0kt dt

)
=

1

T

(
(1− ej�k + j�k)T

2�2k2
+

(1− e−j�k − j�k)T

2�2k2

)

=
1− cos(�k)

�2k2
=

1− (−1)k
�2k2

=


1=2 if k = 0

0 if k ̸= 0 and is even

2=(�k)2 if k is odd
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Example 1 (contd)

Partial sums:

N = 1 :

t0

N = 3 :

t0

N = 5 :

t0

N = 51 :

t0



Fourier series Fourier transform Fourier transforms of some standard signals

Example 2

Let

s(t) =


8t2 if 0 ≤ t ≤ 1=4

−8t2 + 8t − 1 if 1=4 ≤ t ≤ 3=4

8(t − 1)2 if 3=4 ≤ t ≥ 1

0 otherwise

and define T -periodic

x =
∑
i∈Z

SiTP1=T s =
t0−T=2 T=2

1

Fourier coefficients:

X [k] =
1

T

∫ T=2

−T=2
x(t)e−j!0kt dt =

1

T

∫ T

0
s(t=T )e−j!0kt dt

=
8(−1)k sin(�k=2)

�3k3
=


1=2 if k = 0

0 if k ̸= 0 and is even

8(−1)(k+1)=2=(�k)3 if k is odd



Fourier series Fourier transform Fourier transforms of some standard signals

Example 2 (contd)

Partial sums:

N = 0 :

t0

N = 1 :

t0

N = 3 :

t0

N = 5 :

t0
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Piecewise-smooth signals

AT -periodic signal x is said to be piecewise smooth if it’s differentiable and
has continuous derivative everywhere on [0;T ] with a possible exception of
a finite number of distinct ti , at which x(t+i ), x(t−i ), ẋ(t+i ) and ẋ(t−i ) exist
in the sense of the existence of

x(t+i ) ··= lim
h↓0

x(ti + h); x(t−i ) ··= lim
h↓0

x(ti − h); etc

Example:

x =
∑
i∈Z

S(i−�=2)T rect�T =
t0 �T T

1

for � ∈ (0; 1).

Remark The notion extends to non-periodic functions, which are ∞-periodic, in a sense.
In that case we need continuous derivatives everywhere except a counted number points
ti , at which x(t+i ), x(t

−
i ), ẋ(t+i ) and ẋ(t−i ) exist.



Fourier series Fourier transform Fourier transforms of some standard signals

Piecewise-smooth signals

AT -periodic signal x is said to be piecewise smooth if it’s differentiable and
has continuous derivative everywhere on [0;T ] with a possible exception of
a finite number of distinct ti , at which x(t+i ), x(t−i ), ẋ(t+i ) and ẋ(t−i ) exist
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Fourier series of piecewise-smooth signals
Everything you always wanted to know about Fourier peculiarities? (?but were afraid to ask)

If x : R→ R is T -periodic and piecewise smooth, then at every t

x(t+) + x(t−)

2
=

∑
k∈Z

X [k]ej!0kt

Let X : Z→ C be the signal comprising the Fourier coefficients. If

X ∈ `1, then

lim
N→∞

xN(t) = lim
N→∞

N∑
k=−N

X [k]ej!0kt

converges to x(t) at every t and the limit is necessarily continuous

X ̸∈ `1, then the partial sum converges only in the `2 sense, i.e.

lim
N→∞

∥x − xN∥2 = 0
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Example 3

Let

x =
∑
i∈Z

S(i−�=2)T rect�T =
t0 �T T

1

Fourier coefficients:

X [k] =
1

T

∫ T=2

−T=2
x(t)e−j!0kt dt =

1

T

∫ T

0
x(t)e−j!0kt dt

=
1

T

∫ �T

0
e−j!0kt dt

=
sin(2��k)

2�k
− j

1− cos(2��k)

2�k

(with X [0] = �).
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Example 3 (contd)

Partial sums:

N = 1 :

t0

N = 2 :

t0

N = 5 :

t0

N = 33 :

t0
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Gibbs phenomenon

Near every discontinuity point of x ,

xN
(
t + T

2N+1

)
− x(t+)

N→∞−−−−→
(
1

�

∫ �

0
sinc(t)dt − 1

2︸ ︷︷ ︸
≈0:089549

)(
x(t+)− x(t−)

)
and

xN
(
t − T

2N+1

)
− x(t−)

N→∞−−−−→
(
1

�

∫ �

0
sinc(t)dt − 1

2

)(
x(t−)− x(t+)

)
like in

tT=(2N + 1)0 T=40

1.0895N = 33
N = 100
N = 400
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Some properties

property signal Fourier coefficients

linearity x = a1x1 + a2x2 X [k] = a1X1[k] + a2X2[k]

time shift y = S�x Y [k] = ej!0�kX [k]

time reversal y = P−1x Y [k] = X [−k]
conjugation y = x Y [k] = X [−k]
convolution z = x ∗ y Z [k] = X [k]Y [k]

Consequently, if x is real-valued (codomain is R), then X [k] = X [−k]
− i.e. |X [k]| = |X [−k]| and arg(X [k]) = − arg(X [k])

and all information is in X [k] for k ∈ Z+.

Remember, (S�x)(t) = x(t + �) and (P&x)(t) = x(&t).
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Meaning

The expansion

x(t) =
∑
k∈Z

X [k]ej!0kt

means that every T -periodic x is a superposition of elementary harmonics

˛x;k(t) ··= X [k]ej!0kt

whose frequencies are multiples of the fundamental frequency !0 = 2�=T .

The discrete signal X : Z→ C comprised of Fourier coefficients is known
as the (line) spectrum of x . In other words,

− T -periodic x can be equivalently represented by the discrete-time X ,

known as the frequency-domain representation of x .



Fourier series Fourier transform Fourier transforms of some standard signals

Meaning

The expansion

x(t) =
∑
k∈Z

X [k]ej!0kt

means that every T -periodic x is a superposition of elementary harmonics

˛x;k(t) ··= X [k]ej!0kt

whose frequencies are multiples of the fundamental frequency !0 = 2�=T .

The discrete signal X : Z→ C comprised of Fourier coefficients is known
as the (line) spectrum of x . In other words,

− T -periodic x can be equivalently represented by the discrete-time X ,

known as the frequency-domain representation of x .



Fourier series Fourier transform Fourier transforms of some standard signals

Parseval identity

Theorem
If T -periodic x is piecewise smooth, then

Px =
∑
k∈Z

|X [k]|2:

Proof : Because |c |2 = cc ,

Px =
1

T

∫ T=2

−T=2
x(t)x(t)dt =

1

T

∫ T=2

−T=2
x(t)

(∑
k∈Z

X [k]ej!0kt
)
dt

=
∑
k∈Z

(
1

T

∫ T=2

−T=2
x(t)e−j!0kt

)
dt X [k]

=
∑
k∈Z

X [k]X [k] =
∑
k∈Z

|X [k]|2
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Parseval identity: meaning

The Parseval identity effectively says that

Px =
∑
k∈Z

P˛x;k

i.e. the power of x equals the sum of powers of all its harmonic components
in the expansion x =

∑
k ˛x;k . This, in turn, implies that

− harmonics with largest amplitudes dominate the behavior of x
− if dominating harmonics are low, x is slow

|X [k]|

k0 1−1 2−2 3−3 4−4 5−5 6−6

←→

x(t)

t
−T=2 T=2

− if dominating harmonics are high, x is fast

|X [k]|

k0 1−1 2−2 3−3 4−4 5−5 6−6

←→

x(t)

t
−T=2 T=2
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Decay of Fourier coefficients

In general, the faster |X [k]| decays as |k | grows, the smoother x is, because
faster harmonics have then smaller effect on x , cf.

t0 �T T

1

−→ |X [k]| = sin(��k)

� |k |

t0−T=2 T=2

1

−→ |X [k]| = 1− cos(�k)

�2k2

t0−T=2 T=2

1

−→ |X [k]| = 8|sin(�k=2)|
�3|k |3
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Definition

The Fourier transform F{x} of a signal x is the signal X : R→ C such that

X (j!) = (F{x})(j!) ··=
∫

R

x(t)e−j!t dt

(‘j!’ is used for a technical reason to be clarified one day). It is well defined
if x ∈ L1 (plus some mild technical assumptions) and then

x(t) =
1

2�

∫
R

X (j!)ej!t d! =·· (F−1{X})(t)

at every t. The latter integral is referred to as the inverse Fourier transform.

If x ∈ L2, then the Fourier integral converges only in the (weaker) L2-norm
sense, ∥x − F−1{XN}∥2 → 0. We can then still extend the transform to L2
signals. The use of distributions facilitates extending the Fourier transform
to yet wider classes of signals.
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Meaning

Similarly to the Fourier series, the relation

x(t) =
1

2�

∫
R

X (j!)ej!t d!

means that

− aperiodic x is also a superposition of elementary harmonics ˛x;! , with
˛x;!(t) =

1
2�X (j!)ej!t ,

now with a continuum of frequencies ! (measured in radians per time unit).

The signal X is then called the spectrum or frequency-domain representation
of x , with the amplitude spectrum |X | and the phase spectrum arg(X ).

The value X (j0) = X (0) is the average of x over all its domain, i.e. R.
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Example 1

Kinneret water level from Sep 1993 to Sep 2004

t
hblack

hred,low

hred,up

1994 1996 1998 2000 2002 2004

and its amplitude spectrum (with hred,up taken as zero)

! [rad/year]−2� 0 2�

Peaks at ! = ±2� [rad/year] reflect the annual cycle.
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Example 2

Two L1 signals x1 and x2, with

x1(t) =
8 cos(2�t) + cos(4�t)

9
e−t2=10

x2(t) =
8 cos(2�t) + 1

9
e−t2=10

= t

1

−1

x1
x2

are hardly distinguishable in the time domain. But they are quite different,
e.g. the average

∫
R
x1(t)dt ≈ 0 ̸= 0:62 ≈

∫
R
x2(t)dt. These differences are

visible in their spectra

!

0.6228

2.4911

−4� −2� 0 2� 4�

X1

X2
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Example 0 (contd)

yym
n

The question was

− how signal (y) can be recovered from its corrupt measurements (ym) ?

This might appear a tough task, for there is no way we can separate y from
n in the time domain . . . But in the frequency domain these signals are well
separated,

YYm N

suggesting that the frequency-domain viewpoint is valuable1.
1

However, we yet to learn how to fully exploit it efficiently.
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Basic properties

property time domain frequency domain

linearity x = a1x1 + a2x2 X (j!) = a1X1(j!) + a2X2(j!)

duality y = X |!=t Y (j!) = 2�x(−!)
time shift y = S�x Y (j!) = ej!�X (j!)

time scaling y = P&x Y (j!) = 1
|& |X (j!=&)

conjugation y = x Y (j!) = X (−j!)
modulation y = x expj!0

Y (j!) = X (j(! − !0))

differentiation2 y = ẋ Y (j!) = j!X (j!)

convolution z = x ∗ y Z (j!) = X (j!)Y (j!)

. . . provided all involved transforms exist

2If limt→±∞ x(t) = 0, which is normally the case for x ∈ L1.
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Basic properties: duality

If y = X |!=t , i.e. y(t) = X (jt), where X = F{x}, then

Y (j!) =

∫
R

X (jt)e−j!t dt
∣∣∣
t=!̃

= 2�

(
1

2�

∫
R

X (j!̃)ej!̃(−!)d!̃

)
= 2�x(−!)

because

x(t) =
1

2�

∫
R

X (j!)ej!t d!
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Basic properties: time shift

If y = S�x , i.e. y(t) = x(t + �), then

Y (j!) =

∫
R

x(t + �)e−j!t dt
∣∣∣
s=t+�

=

∫
R

x(s)e−j!(s−�)ds

= ej!�
∫

R

x(s)e−j!s ds

= ej!�X (j!)
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Basic properties: time scaling

If y = P&x , i.e. y(t) = x(&t), then

Y (j!) =

∫
R

x(&t)e−j!t dt
∣∣∣
s=&t

=


∫ ∞

−∞
x(s)e−j!s=& d(s=&) if & > 0∫ −∞

∞
x(s)e−j!s=& d(s=&) if & < 0

=


1

&

∫ ∞

−∞
x(s)e−j(!=&)s ds if & > 0

− 1

&

∫ ∞

−∞
x(s)e−j(!=&)s ds if & < 0

=
1

|& |

∫
R

x(s)e−j(!=&)s ds

=
1

|& |X (j!=&)
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Basic properties: conjugation

If y = x (complex conjugate), then

Y (j!) =

∫
R

x(t)e−j!t dt =

∫
R

x(t)e−j!t dt =

∫
R

x(t)ej!t dt

=

∫
R

x(t)e−j(−!)t dt

= X (−j!)

If x : R→ R (real valued), then y = x = x , so that

X (j!) = X (−j!);

i.e. we may look only at the spectrum over ! ≥ 0. If, in addition, x = P−1x
(such functions are called even), then by the time scaling property

X (j!) = X (−j!) = X (−j!):

Hence, if x is real valued and even, then X is real valued and even as well.
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Basic properties: modulation

If y = x expj!0
, i.e. y(t) = x(t)ej!0t , then

Y (j!) =

∫
R

x(t)ej!0t e−j!t dt =

∫
R

x(t)e−j(!−!0)t dt

= X (j(! − !0))

By linearity and modulation, if

y(t) = sin(!0t + �)x(t) = aej!0tx(t) + ae−j!0tx(t);

where a ··= 0:5ej(�−�=2), then

Y (j!) = aX (j(! − !0)) + aX (j(! + !0))



Fourier series Fourier transform Fourier transforms of some standard signals

Basic properties: differentiation

If y = ẋ , i.e. y(t) = d
dt x(t), and limt→±∞ x(t) = 0, then

Y (j!) =

∫
R

ẋ(t)e−j!t dt = x(t)e−j!t
∣∣∣∞
−∞
−
∫

R

x(s)
(

d
dt e

−j!t
)
dt

= j!

∫
R

x(t)e−j!t dt

= j! X (j!)

because ∫ b

a
ḟ (t)g(t)dt = f (t)g(t)

∣∣∣b
a
−
∫ b

a
f (t)ġ(t)dt

(integration by parts).

Similar arguments apply to the inverse Fourier, so

y(t) = −jtx(t) ⇐⇒ Y (j!) = d
d!X (j!)
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Basic properties: convolution

If z = x ∗ y , then

Z (j!) =

∫
R

∫
R

x(t − s)y(s)dse−j!t dt =

∫
R

∫
R

x(t − s)y(s)e−j!t dtds

=

∫
R

∫
R

x(t − s)e−j!t dt︸ ︷︷ ︸
F{S−sx}

y(s)ds

=

∫
R

X (j!)e−j!sy(s)ds (by the time shift property)

= X (j!)

∫
R

y(s)e−j!s ds

= X (j!)Y (j!)

the (unproven) fact that x ; y ∈ L1 =⇒ x ∗ y ∈ L1 is required in this proof.
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Parseval’s theorem

Theorem
If x ∈ L1 ∩ L2, then

∥x∥22 =
∫

R

|x(t)|2dt = 1

2�

∫
R

|X (j!)|2d! =
1

2�
∥X∥22

In other words,

− the energy of x equals the energy of F{x}, modulo the factor 1=(2�).
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Rectangular pulse

If x = rect, then

X (j!) =

∫
R

x(t)e−j!t dt =

∫ 1=2

−1=2
e−j!t dt =

e−j!t

−j!
∣∣∣1=2
−1=2

=
ej!=2 − e−j!=2

j!

=
ej!=2 − e−j!=2

2j!=2
=

sin(!=2)

!=2
= sinc(!=2) =

!0 2� 4�

1

Consequences:

− by time scaling, if y = recta for some a > 0, then

Y (j!) = (F{P1=a rect})(!) = a sinc
(
a
2!

)
= a(P1=2 sinc)(!)

− by duality and time scaling, if y = P1=2 sinc and z = P& sinc, then

Y (j!) = 2� rect(!) and Z (j!) =
�

&
rect2& (!)

(mind that rect(−!) = rect(!) and P& sinc = P2&P1=2 sinc).



Fourier series Fourier transform Fourier transforms of some standard signals

Rectangular pulse

If x = rect, then

X (j!) =

∫
R

x(t)e−j!t dt =

∫ 1=2

−1=2
e−j!t dt =

e−j!t

−j!
∣∣∣1=2
−1=2

=
ej!=2 − e−j!=2

j!

=
ej!=2 − e−j!=2

2j!=2
=

sin(!=2)

!=2
= sinc(!=2) =

!0 2� 4�

1

Consequences:

− by time scaling, if y = recta for some a > 0, then

Y (j!) = (F{P1=a rect})(!) = a sinc
(
a
2!

)
= a(P1=2 sinc)(!)

− by duality and time scaling, if y = P1=2 sinc and z = P& sinc, then

Y (j!) = 2� rect(!) and Z (j!) =
�

&
rect2& (!)

(mind that rect(−!) = rect(!) and P& sinc = P2&P1=2 sinc).



Fourier series Fourier transform Fourier transforms of some standard signals

Rectangular pulse: examples

x1(t) = rect2(t)

t1−1

X1(j!) = 2 sinc(!)

!

x2(t) = rect4(t)

t2−2

X2(j!) = 4 sinc(2!)

!

x3(t) = rect8(t)

t4−4

X3(j!) = 8 sinc(4!)

!

x4(t) = rect8(t) cos(!0t)

t4−4

X4(j!) =
X3(j(! + !0)) + X3(j(! − !0))

2

!!0−!0
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Triangular pulse

Remember (Lect. 2, Slide 12) that tent = rect ∗ rect. So if x = tent, then

X (j!) =
(
F{rect ∗ rect}

)
(j!) = sinc2(!=2) =

!0 2� 4�

1

by the convolution property of the Fourier transform.

Consequence:

− by time scaling, if y = tenta for some a > 0, then

Y (j!) = (F{P1=a tent})(!) = a sinc2
(
a
2!

)
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Exponent with support in R+

If x = exp� 1 for � ∈ R, then x ∈ L1 iff � < 0 and in that case

X (j!) =

∫
R

e�t1(t)e−j!t dt =

∫
R+

e(�−j!)t dt =
e(�−j!)t

�− j!

∣∣∣∞
0

=
1

j! − �

The same formula holds if � ∈ C and Re� < 0.

Consequences:

− by differentiation with respect to frequency,

y(t) =
tn

n!
e�t1(t) ⇐⇒ Y (j!) =

1

(j! − �)n+1

− by linearity and modulation, if y(t) = sin(!0t + �)e
�t1(t), then

Y (j!) =
!0 cos� + (j! − �) sin�

(j! − �)2 + !2
0
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Dirac delta (not quite rigorous, still true)

If x = ı, then by the sifting property

X (j!) =

∫
R

ı(t)e−j!t dt = e−j!t
∣∣
t=0

= 1

i.e. F{ı} contains all harmonics with equal weights, 1=(2�).

Consequences:

− by duality and the fact that ı(!) = ı(−!), if y = 1 (constant), then

Y (j!) = 2�ı(!)

− by modulation, if y = expj!0
, then

Y (j!) = 2�ı(! − !0)

− by linearity, if y(t) = sin(!0t + �), then

Y (j!) = �ej(�=2−�)ı(! + !0)− �ej(�=2+�)ı(! − !0)
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Step (no proofs, still true)

If x = 1, then

X (j!) =
1

j!
+ �ı(!)

(think of 1 = lim�↑0 exp� 1 and 1 = 1 + P−11 as a kind of weak rationale).

Consequence:

− if y(t) =

∫ t

−∞
x(t)dt, then

Y (j!) =
1

j!
X (j!) + �X (0)ı(!)

because y = 1 ∗ x (Lect. 2, Slide 12), the convolution property of the
Fourier transform, and the fact that xı = x(0)ı (Lect. 2, Slide 16).
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