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Continuous-time signals

Basic definitions

Continuous-time signals are functions with domains in (a subset of) R, like
R, Ry:={tecR|t>0}, [ab]:={tcR|a<t=>hb},

and where the independent variable is understood as the continuous timel.
A subset of the domain in which a signal is nonzero is called its support,

supp(x) := {t € R [ x(¢) # 0}

A signal x is said to be
scalar-valued if the codomain is a scalar, like R or C (we use [ if either)
vector-valued if the codomain is a vector, like R" or C™

decaying if lim¢_0o x(t) =0

converging if lim¢_o x(t) = xss for some constant x5 from its codomain

!Normally, denoted t, although this is not essential.

Elementary signals

1

step: 1(t) = {0

ift>0_ ] —
ift<0 0 t

t ft>0
ramp: ramp(t) = tﬂ(t) = {0 :f t ; 0 B V
i t

rectangular pulse: rect,(t) = {

triangular pulse: tent,(t) = {

We use shortcuts

1 ifft]<a/2 |—1—|

0 if|t|>a/2 ~epoen 1

too
1_% !f|t|§a= £1> a>0
0 if [t] > a

a>0

rect := rect; and tent := tent;.




Elementary signals (contd)

1
sinusoidal: sin(wt + ¢) = W frequency w > 0, phase ¢

. t 1
sine cardinal: sinc(t) = smt( ) =

r\
T~ if A <0

0

/ ifA>0

~+

exponential: exp; (t) = exp(At) = ett =

,
o
~

Operations on signals: (amplitude) scaling

Given x : R — [ and a € [, the signal ax : R — [ (or a- x) satisfies

(ax)(t) = ax(t), VteR

Examples
2_
1«_
1= = 21=
0 t
0 t
1
ramp = — Eramp =
0 t 0 t

Operations on signals: addition
Given x:R— F and y : R — F, the signal x + y : R — [ satisfies
(x+y)(t) =x(t) +y(t), VteR

with x —y = x+ (—1-y).

Examples
\\ 2
expy + 1= 0 ;= \
+ T
11 0 t
0 t
NN\
N

X+y= + = /r\\/\//\ {\ ‘ /\ [:
SV v

Operations on signals: multiplication

Given x : R — F and y : R — [, the signal xy : R — [ (or x - y) satisfies

(y)(t) = x(t)y(t), VteR

Examples

S~——__ )

exp; 1= P = '\
X 0 t
1«
0 t

AN\
NOZEERN
Xy = X = =7 0 T t




Operations on signals: time scale (pace change)
Given x : R — [ and ¢ € R\ {0}, the signal Pcx : R — F satisfies
(Pex)(t) = x(st), VteR

Commutativity property: Pg,(Pg,x) = Pg e, x = Pe,(Pe, X)

Examples

Ll vs t

o N e N o< <1 (dilates)

I 1 t l 1/t

L -1 t

— [P,rect, = rect := rect; and P,tent; = tent := tent;

.
-1/s \ if ¢ > 1 (compresses)

/ : if ¢ = —1 (reverses time)

Operations on signals: time shift

Given x : R = [F and t € R, the signal $;x : R — [ satisfies
(Sex)(t) =x(t+71), VteR
Commutativity property: Sg; (S x) = Sti4X = 54,(51, %)

Examples

- X if T >0 (predicts)
_I_ 1-1 t

_71\5’;)
L1 1

“1-c \_ if T <0 (delays)

| -7t

— S$,01—5_,01 = rect,

Commuting $; and Pc: P (Scx) = $¢/c(Pex)

Operations on signals: convolution

Given x: R — F and y : R — F, the signal x *x y : R — [ satisfies

(x*y)(t):/[Rx(s)y(t—s)ds:/[Rx(t—s)y(s)ds, vt € R

like
X(S): of\ /\s of\ s
Vi -V
L _CaGwe) | o
D ) I i
x(s)y(t —5) = . : A
Properties:

— X*xy =yxX

— (ax) xy =a(xx*y)

— xx(y*xz)=(xxy)*z
— (x+y)xz=xxz+yxz

Convolution: examples

Convolution with step:
t

(ﬂ*x)(t):/[kﬂ(t—s)x(s)ds:/ x(s)ds

— o0

Convolution with rectangular pulse:

t+a/2
(recty = x)(t) = / rect,(t — s)x(s)ds = / x(s)ds
R t—a/2
Convolution of rectangular pulses: 0 if |t| > a
“t+a/2
t+a/2 .
(rect, * rect,)(t) = / rect,(s)ds — e/a/2 ds if—a<t<0
t—a/2 a2
= atent, / ds if0<t<a
Jt—a/2




Dirac delta: naive definition
Consider the family of signals d¢ such that
1/e
1
de(t) = grecte(t) = , €e>0
—€/2 €/2 t
satisfying

/de(t)dtzl, Ve
R

Define now Dirac delta as

6:=limd. = |

€l0 0 t

(although this limit is mathematically problematic).

Dirac delta: integral and more formal definition
We already know that
1 €/2
/f(t)de(t)dt = / f(t)dt,
R €J_¢/2

i.e. it equals the average value of f in the interval t € [—€/2,€/2]. We may
then expect that

/ f(t)s(t)dt = £(0)

whenever f is continuous at t = 0. This is actually a
— defining property for the Dirac delta distribution

(with some abuse of notation, a proper definition needs a measure notion).

Dirac delta: sifting property

Immediately from the definition,

/ f(t)S(tto)dt:/f(s+to)5(s)ds:/(Stof)(s)(?(s)ds:(Stof)(O)
JR R R
= f(to)

whenever f is continuous at t = tp.

If x is continuous for all its domain, then

(xx8)(t) = /[Rx(t —s)8(s)ds = x(t), WVt

In other words,
X * 3§ = X.

Dirac delta: more properties

— 8(t) = 0 whenever t # 0

b 0 fa>0vh<0
- givena<b,/ §(t)dt = I 2= =
a 1 fa<O0OAb>0

— 1(t) = /t 8(s)ds, for all ¢

—o0
think of 1 =limejo___ [

~ 5=
as: / f(t)(ad)(t)dt = af(0) whenever f is continuous at t =0
R

— & =1f(0)6 whenever f is continuous at t =0




Size matters

We frequently need to decide on whether a signal is ‘large’ or ‘small’, think

of
— measurements how accurate a measurement is?
— precipitation level was it a wet winter?

— blood sugar level is it normal?

Signal sizes are measured by norms, which are functions satisfying
1. [[x]| >0and |[x]| =0 <= x=0
2. ||lax|| = |a|||x||, Va € F homogeneity
3. x4yl < lIxIl +llyll

If the second condition of 1. does not hold, i.e. if ||x|| = 0 for certain x # 0,
then the function is called semi-norm.

positive definiteness

triangle inequality

Commonly used norms
L1 norm

Il = /R|x(t)|dt

If [|x||1 < oo, then we say that x € Ly and call it absolutely integrable.

L> norm

Il = ( [Ix(oPar)

If [|x||2 < oo, then we say that x € L, and call it square integrable.

Lo norm

[IXlo == sup|x(t)]
teR

If [|x|loc < 00, then we say that x € L, and call it bounded.

Norms: (lack of) equivalence
— if x =exp, for A <0, then
xe€Lly, x&€Lly, x¢€ L.
— if x=-expy 1 for A <0, then

xeli(Ixli=") xeb(xll= 55) x€Lls (xlx=1)

— if x = sinc, then

x¢€ Ly, but xely(|[x]o=+n) and x€ Ly (|x][oc =1)
— if x =1, then
x¢ Ly and x¢&Lp, but x€Lly ([x]w=1)
— if x = dg, then
x€li(Ixli=1), xela(xlo= 7). x€ Lo ([X[lc =)

Other measures of sizes
Energy

E, = /Ryx(t)ﬁdt = [Ix|3
)

Power (energy per unit time

M—00

L™ o
P, := lim / x(t)|“dt
* M J_pmy2
Properties:
— Ex < oo (finite-energy signals) — P, =0 v/ Px is a semi-norm

— x is bounded and have finite support = E, is finite and P, =0
— E.« = a’E, and P, = a’P, for every a € R




Periodic signals

We say that x is T-periodic if
— 3T > 0 such that x(t) = x(t + T) for all t

(otherwise, aperiodic). If x is T-periodic, then it's also kT-periodic Yk € N.

We normally refer to the smallest such T as the period.

Examples:
— if x(t) = sin(wt + ¢), then x is ZZ-periodic

— if x(t) = a1sin(2wot + ¢1) + a2 sin(3wot + ¢2), then x is Z-periodic

VA RYA WY A UVA WA
2 ViRV

Periodic signals: integral over a period

If x is T-periodic, then

[ o= [ sars [Mxwars [T e
:—/Oax(t)dt—f—/oTx(t)dt—i—/Oax(s—l— T)ds
:—/Oax(t)dt—f—/OTx(t)dt—i—/Oax(s)ds
:/OTx(t)dt

t=s+T

for every a € R.

Power of periodic signals

If x is T-periodic, then

1 [kT/2 iT— kT/2-|—T
= kh—>m0<>ﬁ 4<T/2|X(t)|2dt B kh—>m0<>ﬁ Z/T kT/2 Xl
k-1 .T T
= lim sz_%/o Ix(t)]?dt = lim Tk Ix(t)]?dt
1 T 2 2
= | e < max x(o)
If x(t) =sin(wt + ¢), then T = 2x/w and
Pe= o= OQW sin?(wt + ¢)dt = - /Ozn/w 1o C°S(22‘“t+ 29) 4
:& 2n/wdt—;

since sin? @ = (1 — cos(26)

~—

/2 and the integral of cos over a period is zero.
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Discrete-time signals




Basic definitions

Discrete-time signals are functions with domains in (a subset of) Z, like

Z, Zy:={tcZ|t>0}, N:={tecZ|t>1},
Zyp:={tcZ|a<t>b},

and where the independent variable is understood as the discrete time. A
subset of the domain in which a signal is nonzero is called its support, e.g.

supp(x) = {t € Z | x[t] # 0}

A signal x is said to be
scalar-valued if the codomain is a scalar, like R or C (we use [ if either)
vector-valued if the codomain is a vector, like R” or C™
decaying if lim¢_00 x[t] =0
converging if lim¢_o x[t] = xss for some constant xss from its codomain
periodic if 3T € N such that x[t] = x[t + T] for all t

Elementary signals

gL 00

st =3 £120 I

e == 1020- ]
sinusoidal?: sin[ft + ¢] — ﬂh”iHi'wT'im”q frequency 6 > 0, phase ¢

2Periodic only if 27/6 € Q (rational), the period equals 27/|6| only if 27/|0] € N.

Elementary signals (contd)

wall HHHHHH £2>1

H W UHHHW fo<h<t
exponential: expk[t]zkt: HHH f—1<A<0

HHHI HHH <1

Operations on discrete-time signals

Exactly as those on continuous-time signals®, mutatis mutandis.
Convolution: given x: Z — F and y : Z — [, signal xxy : Z — [ satisfies

(ex e = Yo xlshylt — 5] = Yo xle —slylsl, veez
Properties: < <

— Xky=Yy*X

— (ax)xy = a(x *y)

— xx(y*xz)=(xxy)*z

— (x+y)xz=xxz+yxz

— dxkx=x similar to the Dirac delta

Convolution with step:
t

(T[] = 1[t = slx[s] = 3 xs]

seZ s=—00

3The only exception is the time scaling, which is not well defined in the discrete time.




Commonly used norms for discrete signals

Ixlle =D _Ix[t]]

teZ

{1 norm

If [|x|l1 < oo, then we say that x € €1 and call it absolutely summable.

{5 norm

Il = (Slta?) "

teZ

If [|x||2 < oo, then we say that x € £ and call it square summable.

£~ norm

[IxXloo := sup|x[t]
tez

If [|x|loc < 00, then we say that x € £, and call it bounded.

Norms: (lack of) equivalence

if x = exp, for [A| <1, then

x&€ly, x&ly, x¢&lx.
if x =exp, 1 for |A| <1, then

1

x ey ([x]1 — Nimy

L xela (Ixll = 1) x € bo (xoe = 1)

1—|A

if x[t] =1/(1+ |t|), then

x @, but xely([x[o=1/% 1) and x€lo (|x]c=1)
if x =1, then

x&Z¥ly and x¢g{, but xe€ly (|x=1)

In the discrete case x € {1 — x €l — x € {.

Other measures of sizes

Energy
Ec:=) X[d][* = [Ix[13
tez
Power (energy per step)
M
_ 2
Py := M||m M Z |x[¢]]
t=—M

Properties:

— Ex < oo (finite-energy signals) — P, =0

— Eux = a°E, and P, = a®P; for every a € R

v/ Py is a semi-norm
— x is bounded and have finite support — E, is finite and P, =0

Outline

From continuous to discrete and back again




A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time
(digital) signal, say X, is known as sampling. If for all i € Z

)_<[I] = X(S,'), Si < Sit1
then the term ideal sampling is used.

Terminology:
— time instances s; are called sampling instances

— if s; = ih for some h > 0, we say that the sampling is periodic and call
h the sampling period

This ideal sampling operation is

— well defined only if x is continuous at each sampling instance s;.

Some other sampling algorithms

— averaging sampling

1 S; 1 Si
X[i]:s__m/ x(t)dt or K[i] :E/ x(t)dt
] 1— Si—1 Si—€

i— i

— Bol sampling

4.2469

WJwmmw,wmwmHHHHHHmwmmm

1113151719 2123 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
1 Mar 15

Feb1 Feb 15 Mar Apr1

each representative rate is calculated as

— average of randomly taken samples of banks rates in the last 2 hours
prior publishing (either 3:15pm or 12:15pm), excluding those deviating
from the sample average by more than two standard deviations

— the same as in the previous day on Saturdays, Sundays, and holidays
— exercising discretion in exceptional cases

A/D conversion: information loses

Sampling is frequently (but not always) a
— lossy process
in which some information about the analog signal x is lost. For example,

sampling with h = 4

/

and there is no way to recover the source (unless additional information is
available).

D/A conversion

A conversion of a discrete-time (digital) signal, say X, to a continuous-time
(analog) signal, say x, is known as hold (interpolation). Common choices:
zero-order hold (ZOH) acts as

x(t) = x[i], Vt € (si,si+1)

first-order hold (FOH or linear interpolator) acts as

X)) = S+ (4 2] - S Ve (ssi)

i+1

for given sampling instances s;. For example,

L el H= Rt

\

NS\ (FOH

>

)
)
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