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Continuous-time signals

Discrete-time signals

From continuous to discrete and back again



!utllne
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Continuous-time signals

Basic definitions

Continuous-time signals are functions with domains in (a subset of) R, like
R, Ry:={tcR|t>0}, [abl:={tcRkR|a<t=>hb}

and where the independent variable is understood as the continuous timel.
A subset of the domain in which a signal is nonzero is called its support,

supp(x) == {t € R | x(t) # 0}

!Normally, denoted t, although this is not essential.



Continuous-time signals

Basic definitions

Continuous-time signals are functions with domains in (a subset of) R, like
R, Ry:={tcR|t>0}, [abl:={tcRkR|a<t=>hb}

and where the independent variable is understood as the continuous timel.
A subset of the domain in which a signal is nonzero is called its support,

supp(x) == {t € R | x(t) # 0}

A signal x is said to be
scalar-valued if the codomain is a scalar, like R or C (we use [ if either)
vector-valued if the codomain is a vector, like R” or C™

decaying if lim¢0o x(t) =0

converging if lim¢_,oo x(t) = xss for some constant xss from its codomain

!Normally, denoted t, although this is not essential.



Continuous-time signals
Elementary signals

1 ift>0 T—
0 ift<0 — ¢

t ift>0
ramp: ramp(t) = ﬂ](t) - 0 ift<O N
0 t

{1 if |t| <a/2 EN o0

0 if|t‘>a/2_ =20 a2t

1- e < tl
a !]t]_a: a>0
O If’t|>a —a 0 a t

step: 1(t) =

rectangular pulse: rect,(t)

triangular pulse: tent,(t)

We use shortcuts

rect := rect; and tent:= tentj.



Continuous-time signals

Elementary signals (contd)

1

sinusoidal: sin(wt + ¢) = frequency w > 0, phase ¢

0 t

in(t .
sine cardinal: sinc(t) = smt( ) =
0

r\
ifA <0

exponential: exp; (t) = exp(At) = et = 0 t

/

\

ifA>0




Continuous-time signals

Operations on signals: (amplitude) scaling

Given x : R — [ and a € F, the signal ax : R — [F (or a- x) satisfies

(ax)(t) = ax(t), VteR



Continuous-time signals

Operations on signals: (amplitude) scaling

Given x : R — [ and a € F, the signal ax : R — [F (or a- x) satisfies

(ax)(t) = ax(t), VteR

Examples

1B e—

1= = 21 =

t

0 t

1
ramp = = Sramp= i
t t

0 0




Continuous-time signals

Operations on signals: addition

Given x : R — F and y : R — [, the signal x + y : R — [ satisfies
(x+y)(t)=x(t)+y(t), VteR

with x —y = x4+ (—=1-y).



Continuous-time signals

Operations on signals: addition

Given x : R — F and y : R — [, the signal x + y : R — [ satisfies
(x+y)(t)=x(t) +y(t), VteR

with x —y = x4+ (—=1-y).

Examples
\ 2
exp; + 1= P = 1
+
0 t

XtTy= + tz/r\v\//\ K\\,\//\ {\
A Vv




Continuous-time signals

Operations on signals: multiplication

Given x : R — F and y : R — F, the signal xy : R — [ (or x - y) satisfies

(o )(t) = x(t)y(t), VieR



Continuous-time signals

Operations on signals: multiplication

Given x : R — F and y : R — F, the signal xy : R — [ (or x - y) satisfies
(o )(t) = x(t)y(t), VieR

Examples




Continuous-time signals

Operations on signals: time scale (pace change)

Given x : R — [ and ¢ € R\ {0}, the signal Pcx : R — [ satisfies
(Pex)(t) = x(ct), VteR

Commutativity property: Pc, (Pe,x) = Pe,c,x = Pe,(Pe, x)



Continuous-time signals

Operations on signals: time scale (pace change)

Given x : R — [ and ¢ € R\ {0}, the signal Pcx : R — [ satisfies
(Pex)(t) = x(ct), VteR

Commutativity property: Pc, (Pe,x) = Pe,c,x = Pe,(Pe, x)

Examples
1/s if ¢ > 1 (compresses
—E%ﬁ s > 1 (compresses)
P . .
-1 -1/ f 1 (dilat
>1 L s >1/§t if 0 < ¢ <1 (dilates)
1 if¢ =—1 ti
741 _ ifg (reverses time)

— [P,rect, = rect := rect; and P,tent, = tent := tent;



Continuous-time signals

Operations on signals: time shift

Given x : R — F and 7 € R, the signal $;x : R — [F satisfies
(Sex)(t) =x(t+71), VteR

Commutativity property: Sz, (S5,%x) = Sg 40X = $5,(5,X)



Continuous-time signals

Operations on signals: time shift

Given x : R — F and 7 € R, the signal $;x : R — [F satisfies
(Sex)(t) =x(t+71), VteR
Commutativity property: Sz, (S5,%x) = Sg 40X = $5,(5,X)

Examples

i if T > 0 (predicts)

l 1-1¢ t
|\ St
_ -1 -
1 t

—1-7 ]\ if T <0 (delays)

| -7t

— Sa/gﬂ — S—a/Z]] = rect,



Continuous-time signals

Operations on signals: time shift

Given x : R — F and 7 € R, the signal $;x : R — [F satisfies

(Sex)(t) =x(t+7), VteR
Commutativity property: Sz, (S5,%x) = Sg 40X = $5,(5,X)
Examples

i if T > 0 (predicts)

l 1-1¢ t
|\ St
_ -1 -
1 t

—1-7 ]\ if T <0 (delays)

| -7t

— Sa/gﬂ — S—a/Z]] = rect,

Commuting $; and Pe: Pe($ex) = $/c(Pex)



Continuous-time signals

Operations on signals: convolution

Given x : R — F and y : R — [, the signal x x y : R — [ satisfies

(x# y)() /[Rx(s)y(t—s)ds:/x(t—s)y(s)ds, vt € R

R

like

S \ WA W WA
AVAREERAVA




Continuous-time signals

Operations on signals: convolution

Given x : R — F and y : R — [, the signal x x y : R — [ satisfies

(x# y)() /[Rx(s)y(t—s)ds:/[Rx(t—s)y(s)ds, vt € R

NA_ NN

VA BV
(P_1(Sty))(s)

y(t—s)=

X X
(5-e(P-1y))(s) T
|

like
x(s)

t S 0 t S

x(s)y(t —s) = A

0 t S

t
Properties:

— X*y=y*Xx

— (ax)xy =a(xxy)

— xx(yxz)=(x*xy)xz
— (x+y)xz=x*xz+yxz



Continuous-time signals

Convolution: examples

Convolution with step:

(H*x)(t):/[Rﬂ(t—s)x(s)ds:/t x(s)ds

—00



Continuous-time signals

Convolution: examples

Convolution with step:

(H*x)(t):/[Rﬂ(t—s)x(s)ds:/t x(s)ds

—00

Convolution with rectangular pulse:

t4a/2

recty(t — s)x(s)ds = / x(s)ds

t—a/2

(rect, x x)(t) = /

R



Continuous-time signals

Convolution: examples

Convolution with step:

(H*x)(t)=/R1](t—s)x(s)ds:/t x(s)ds

—00

Convolution with rectangular pulse:

t4a/2

(rect, x x)(t) = / rect,(t — s)x(s)ds = / x(s)ds
R t—a/2
Convolution of rectangular pulses: 0 if [t| > a

t+a/2 o ds if—a<t<0
(recta * recta)(t) = / recta(s)ds = J—a2 =
t—a/2

~a/2
= atent, / /ds if0<t<a
Jt—a/2



Continuous-time signals

Dirac delta: naive definition
Consider the family of signals d¢ such that
1/e
1
de(t) = —recte(t) = , €e>0
€
—€/2 €/2 t
satisfying

/de(t)dtzl, Ve
R

Define now Dirac delta as

8::Ii$d€: |
€

0 t

(although this limit is mathematically problematic).



Continuous-time signals

Dirac delta: integral and more formal definition
We already know that
1 €/2
/f(t)de(t)dt: / F(t)dt,
R €J_¢/2

i.e. it equals the average value of f in the interval t € [—€/2,€/2]. We may
then expect that

/ f(t)é(t)dt = £(0)
R

whenever f is continuous at t = 0.



Continuous-time signals

Dirac delta: integral and more formal definition
We already know that
1 €/2
/f(t)de(t)dt: / F(t)dt,
R €J_¢/2

i.e. it equals the average value of f in the interval t € [—€/2,€/2]. We may
then expect that

/ f(t)é(t)dt = £(0)
R

whenever f is continuous at t = 0. This is actually a
— defining property for the Dirac delta distribution

(with some abuse of notation, a proper definition needs a measure notion).



Continuous-time signals

Dirac delta: sifting property

Immediately from the definition,

/[Rf(t)é’(t—to)dt:/[kf(s—i-to)S(s)ds:A(Stof)(s)S(s)ds:(Stof)(O)
= f(to)

whenever f is continuous at t = tg.



Continuous-time signals

Dirac delta: sifting property

Immediately from the definition,
/f(t)S(t—to)dt:/f(s+t0)5(s)ds:/(Stof)(s)S(s)ds:(Stof)(O)
JR R R

= f(to)

whenever f is continuous at t = tg.

If x is continuous for all its domain, then

(X*S)(t):/[Rx(t—s)S(s)ds:x(t), vt

In other words,
X% = X.



Continuous-time signals

Dirac delta: more properties

— 68(t) = 0 whenever t # 0

b .
0 if Ovb<0
- givena<b,/ §(t)dt = I 2= =
a 1 ifa<0Ab>0

t
— 1(¢) :/ §(s)ds, for all ¢
— 8=1 think of 1= lim¢ g
as: / f(t)(ad)(t)dt = af (0) whenever f is continuous at t =0
R

— 8 = f(0)§ whenever f is continuous at t = 0



Continuous-time signals

Size matters
We frequently need to decide on whether a signal is ‘large’ or ‘small’, think
of
— measurements how accurate a measurement is?
— precipitation level was it a wet winter?

— blood sugar level is it normal?



Continuous-time signals

Size matters

We frequently need to decide on whether a signal is ‘large’ or ‘small’, think
of

— measurements how accurate a measurement is?
— precipitation level was it a wet winter?
— blood sugar level is it normal?

Signal sizes are measured by norms, which are functions satisfying

1. [[x][>0and x| =0 <= x=0 positive definiteness
2. |lax|| = |al||x||, Ya € F homogeneity
3. Ix +yll < IIxIH+ vl triangle inequality

If the second condition of 1. does not hold, i.e. if ||x|| = 0 for certain x # 0,
then the function is called semi-norm.



Continuous-time signals

Commonly used norms

Ixls = /R|x(r>|dt

If ||x||1 < oo, then we say that x € Ly and call it absolutely integrable.

L1 norm

L> norm

M ECRE

If [|[x]]2 < oo, then we say that x € Ly and call it square integrable.

Lo norm

[Ixloo = sup|x(t)]
teR

€

If || x]|oo < 00, then we say that x € Lo, and call it bounded.



Continuous-time signals

Norms: (lack of) equivalence

— if x =exp, for A <0



Continuous-time signals

Norms: (lack of) equivalence
— if x =exp, for A <0, then
x&Lli, x¢&Lly, x¢&Ll.

— if x=expy I ford <0



Continuous-time signals

Norms: (lack of) equivalence
— if x =exp, for A <0, then
x&€Lli, x&€Lly x¢&Ls.
— if x =exp, 1 for A <0, then
x€ b (i =), x€la(Ixll2=5). x€Lw ([xle=1)

— if x = sinc



Continuous-time signals

Norms: (lack of) equivalence
— if x =exp, for A <0, then
x&€Lli, x&€Lly x¢&Ls.
— if x =exp, 1 for A <0, then
x€li(Ixlh=)., xela(lxla= 55). x€ L (Ixlw=1)
— if x = sinc, then
x¢g Ly, but xelp(|x]o=+n) and x€ Ly (|x]|.c = 1)

— ifx=1



Continuous-time signals
Norms: (lack of) equivalence
— if x =exp, for A <0, then
x&€Lli, x&€Lly x¢&Ls.
— if x =exp, 1 for A <0, then
xely(Ixli= ), xele(xl2=55)., x€ Lo (Ixllc =1)
— if x = sinc, then
x¢g Ly, but xelp(|x]o=+n) and x€ Ly (|x]|.c = 1)
— if x =1, then
x¢€ Ll and x¢Llp, but x€ly (|[xc=1)

— if x = de



Continuous-time signals

Norms: (lack of) equivalence
— if x =exp, for A <0, then

xe&li, x&€Ll, x¢&L.

— if x =exp, 1 for A <0, then

xely(Ixli= ), xele(xl2=55)., x€ Lo (Ixllc =1)
— if x = sinc, then
x¢g Ly, but xelp(|x]o=+n) and x€ Ly (|x]|.c = 1)
— if x =1, then
x¢€ Ll and x¢Llp, but x€ly (|[xc=1)

— if x = d, then

xely(Ixi=1), xela(xl2= 7). x€Leo (lIxx=

m =
N



Continuous-time signals

Other measures of sizes

E = / Ix(8)2dt = [Ix]3

Power (energy per unit time)

M/2
P, := lim / 24t
M—oo M M/2

Energy

Properties:
— Ey < oo (finite-energy signals) — P, =0 /Py is a semi-norm
— x is bounded and have finite support — E, is finite and P, =0
— E. = a%E, and P,y = a?P, for every a € R



Continuous-time signals

Periodic signals

We say that x is T-periodic if
— 3T > 0 such that x(t) = x(t + T) for all t

(otherwise, aperiodic). If x is T-periodic, then it's also kT-periodic Yk € N.
We normally refer to the smallest such T as the period.

Examples:

— if x(t) = sin(wt + ¢), then x is <Z-periodic

— if x(t) = a1sin(2wot + ¢1) + a2 sin(3wot + ¢2), then x is t-periodic

)(\H/\/*
\/\/\/Tf




Continuous-time signals

Periodic signals: integral over a period

If x is T-periodic, then

/:”x(t)dt:/aox(t)dH/OTx(t)dH/:”x(t)dt
= —/oax(t)dt—l—/OTX(t)dt—i—/Oax(s—l— T)ds
:—/oax(t)dt+/OTX(t)dt—i—/Oax(s)ds

= /OTx(t)dt

t=s+T

for every a € R.



Continuous-time signals

Power of periodic signals

If x is T-periodic, then

Py = lim — t)“dt = lim —
kl—>moo kT _kT/2|X( )| kl—>moo kT

kT/2 1 k=1 iT—kT/2+T
/ x(t) 2de

iT—kT/2

:k—>ookT /|x |dt—||m k/ Ix(t)[>dt

_ 4 244 < 2
L ora < ma o)



Continuous-time signals

Power of periodic signals

If x is T-periodic, then

Py = lim — t)“dt = lim —
kl—>moo kT _kT/2|X( )| kl—>moo kT

kT/2 1 k=1 iT—kT/2+T
/ x(t) 2de

iT—kT/2

_k—>ookT /|x |dt—||m k/ Ix(t)[>dt

_ 4 244 < 2
L ora < ma o)

If x(t) =sin(wt+ ¢), then T =27 /w and

2/ w 21/ w
® w 1 — cos(2wt + 2¢)
Py=— t dt
o A (ot +@)di = 2
2/ w
4 2

since sin? 6 = (1 — cos(26)

~—

/2 and the integral of cos over a period is zero.
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Discrete-time signals



Discrete-time signals

Basic definitions

Discrete-time signals are functions with domains in (a subset of) Z, like
eZ|t>1},

and where the independent variable is understood as the discrete time. A
subset of the domain in which a signal is nonzero is called its support, e.g.

supp(x) = {t € Z | x[t] # 0}



Discrete-time signals

Basic definitions

Discrete-time signals are functions with domains in (a subset of) Z, like

Z, Zy = {tcZ]|t ;O} N:={tezZ|t>1},

and where the independent variable is understood as the discrete time. A
subset of the domain in which a signal is nonzero is called its support, e.g.

supp(x) = {t € Z | x[t] # 0}

A signal x is said to be
scalar-valued if the codomain is a scalar, like R or C (we use [ if either)
vector-valued if the codomain is a vector, like R” or C™
decaying if lim¢oo x[t] =0
converging if lim¢_o X[t] = xss for some constant xss from its codomain
periodic if 3T € N such that x[t] = x[t + T] for all t



Discrete-time signals

Elementary signals

1 ift=0 1
pulse: 8[t] = {0 fr40 = .
1 ift>0 1
s = {5 o2 0 I
t ift>0
ramp: ramplt] = t1[t] = {o ift<0 O,THHHHt
sinusoidal?: sin[0t + ¢] = Im*l mh f@ frequency 6 > 0, phase ¢

Il

2Periodic only if 277/6 € Q (rational), the period equals 277/|6] only if 277/|6| € N.



Elementary signals (contd)

exponential: exp; [t] = At =

il

ifA>1

M FO <A<t

HHH if —1<A<0

RERAL




Discrete-time signals

Operations on discrete-time signals

Exactly as those on continuous-time signals®, mutatis mutandis.

3The only exception is the time scaling, which is not well defined in the discrete time.



Discrete-time signals

Operations on discrete-time signals

Exactly as those on continuous-time signals®, mutatis mutandis.
Convolution: given x : Z — F and y : Z — [, signal xxy : Z — [ satisfies

(el =S xlslyle —s] = > xlt —slylsl, Veez
Properties: < <

— X*y=y*X
— (ax)xy = a(x x y)

— xx(yxz)=(x*xy)xz

— (x+y)xz=x*xz+yxz

— §*xx=x similar to the Dirac delta

3The only exception is the time scaling, which is not well defined in the discrete time.



Discrete-time signals

Operations on discrete-time signals

Exactly as those on continuous-time signals®, mutatis mutandis.
Convolution: given x : Z — F and y : Z — [, signal xxy : Z — [ satisfies

(el =S xlslyle —s] = > xlt —slylsl, Veez
Properties: < <

— X*y=y*X

— (ax)xy = a(x x y)

— xx(yxz)=(x*xy)xz

— (x+y)xz=x*xz+yxz

— §*xx=x similar to the Dirac delta

Convolution with step:
t

(Txx)[t] =Y 1t = s]x[s] = > x]s]

seZ s=—00

3The only exception is the time scaling, which is not well defined in the discrete time.



Discrete-time signals

Commonly used norms for discrete signals

Ixlle = > IxIel]

teZ

{1 norm

If [|x]|1 < oo, then we say that x € £; and call it absolutely summable.

{5 norm

Il o= (tel2)

teZ

If [|x|l2 < oo, then we say that x € > and call it square summable.

{s norm

[IXllo := supl|x[¢]|
tez

If || x]|oo < 00, then we say that x € £ and call it bounded.



Discrete-time signals
Norms: (lack of) equivalence

— if x =exp, for |A] <1



Discrete-time signals
Norms: (lack of) equivalence
— if x = exp, for |A| <1, then
x&ly, x&dly x&ls.

— if x=exp; 1for |A] <1



Discrete-time signals
Norms: (lack of) equivalence
if x = exp, for |A| < 1, then
x&ly, x&dly x&ls.

if x =expy 1for |A| <1, then

xely (|xli=95), x€le (Ix|e= 5) x€loo (x| = 1)

if x[t] =1/(1+ |t])



Discrete-time signals
Norms: (lack of) equivalence
if x = exp, for |A| < 1, then
x&ly, x&dly x&ls.
if x =expy 1for |A| <1, then
1 1

xeby ([xl=q2y), xeblallxlo= 4755) x€loo (X[ = 1)

if x[t] =1/(1+ |t]), then

x @l but xely (|x]o— /% 1) and x€ Lo (|x] = 1)

ifx=1



Discrete-time signals
Norms: (lack of) equivalence
if x = exp, for |A| < 1, then
x&ly, x&dly x&ls.
if x =expy 1for |A| <1, then
1 1

xeby ([xl=q2y), xeblallxlo= 4755) x€loo (X[ = 1)

if x[t] =1/(1+ |t]), then
x ¢4y, but xedly (x> = % —1) and x €l (x| =1)
if x =1, then

x&4ly and x¢gdlp but x€ly ([x]=1)



Discrete-time signals
Norms: (lack of) equivalence
— if x = exp, for |A| <1, then
x&ly, x&dly x&ls.

— if x =exp; 1 for |A| <1, then

1
1—[A]

) xela (xll= ) x € oo (x] = 1)

x €y ([x] —
— if x[t] =1/(1 + |t]), then
x @y, but xedly([xlo=1/% 1) and x €y (x| —1)
— if x =1, then
x€l; and x&ln but x€ o ([x)=1)

In the discrete case x € {1 — x € ¥y — x € l.



Discrete-time signals

Other measures of sizes

Energy

Eci= ) Ix[t]* = |IxI3

teZ

Power (energy per step)

1 M
— | 2
= i am tZ_M|X[t]|

Properties:
— Ex < oo (finite-energy signals) — P, =0 /Py is a semi-norm
— x is bounded and have finite support = E is finite and P, =0
E.. = a°E, and P,, = a°P, for every a € R



From continuous to discrete and back again

Outline

From continuous to discrete and back again



From continuous to discrete and back again

A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time
(digital) signal, say X, is known as sampling.



From continuous to discrete and back again

A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time
(digital) signal, say X, is known as sampling. If for all i € Z

)_<[I] = X(S,‘), Si < Sj11
then the term ideal sampling is used.

Terminology:
— time instances s; are called sampling instances

— if s; = ih for some h > 0, we say that the sampling is periodic and call
h the sampling period



From continuous to discrete and back again

A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time
(digital) signal, say X, is known as sampling. If for all i € Z

)_<[I] = X(S,‘), Si < Sj11
then the term ideal sampling is used.

Terminology:
— time instances s; are called sampling instances

— if s; = ih for some h > 0, we say that the sampling is periodic and call
h the sampling period

This ideal sampling operation is

— well defined only if x is continuous at each sampling instance s;.



From continuous to discrete and back again
Some other sampling algorithms
— averaging sampling

>‘<[i]:1/:i x(t)dt or X[i]:l/:i x(t)dt

Si = Si-1Js_ € Jsi—e



From continuous to discrete and back again

Some other sampling algorithms

— averaging sampling

x[i]:l/j x(t)dt or >‘<[i]:1/:i x(t)dt

si—si-1Js_, € Js—e

— Bol sampling

el ——

1 9 1113 15171021232527 2931333537 3941 43 45 47 49 51 53 55 57 59 o
Feb

Fbl 15

each representative rate is calculated as

average of randomly taken samples of banks rates in the last 2 hours
prior publishing (either 3:15pm or 12:15pm), excluding those deviating
from the sample average by more than two standard deviations

the same as in the previous day on Saturdays, Sundays, and holidays
exercising discretion in exceptional cases



From continuous to discrete and back again

A/D conversion: information loses

Sampling is frequently (but not always) a
— lossy process

in which some information about the analog signal x is lost. For example,

AAAAAAARARAANN
A AALAAIL — b

/NS e

and there is no way to recover the source (unless additional information is
available).




From continuous to discrete and back again

D/A conversion

A conversion of a discrete-time (digital) signal, say X, to a continuous-time
(analog) signal, say x, is known as hold (interpolation).



From continuous to discrete and back again

D/A conversion

A conversion of a discrete-time (digital) signal, say X, to a continuous-time
(analog) signal, say x, is known as hold (interpolation). Common choices:
zero-order hold (ZOH) acts as

X(t) :)_<[I'], YVt e (S,‘,S,'_H)



From continuous to discrete and back again

D/A conversion

A conversion of a discrete-time (digital) signal, say X, to a continuous-time
(analog) signal, say x, is known as hold (interpolation). Common choices:

zero-order hold (ZOH) acts as
X(t) :)?[I'], YVt e (S,‘,S,'_H)
first-order hold (FOH or linear interpolator) acts as
Si
—Si

x(t) = &[i] + ——(=[i+ 1] — #[i]), ¥t € (50, 5111)
Si+1 — S

for given sampling instances s;.



From continuous to discrete and back again

D/A conversion

A conversion of a discrete-time (digital) signal, say X, to a continuous-time
(analog) signal, say x, is known as hold (interpolation). Common choices:
zero-order hold (ZOH) acts as

X(t) :)?[I'], YVt e (S,‘,S,'_H)
first-order hold (FOH or linear interpolator) acts as
. t—s ,_.. .
x(t) = &[i] + —— (=i + 1] — %[i]), VYt € (s 511)
Si+1 = Si

for given sampling instances s;. For example,
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