Linear Systems (034032) lecture no. 2

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Continuous-time signals

Discrete-time signals

From continuous to discrete and back again

Continuous-time signals

Discrete-time signals

From continuous to discrete and back again

Continuous-time signals

Discrete-time signals

From continuous to discrete and back again

Outline

Continuous-time signals

Discrete-time signals

From continuous to discrete and back again

Basic definitions

Continuous-time signals are functions with domains in (a subset of) \mathbb{R} , like

 $\mathbb{R}, \quad \mathbb{R}_+ := \{t \in \mathbb{R} \mid t \ge 0\}, \quad [a, b] := \{t \in \mathbb{R} \mid a \le t \ge b\},$

and where the independent variable is understood as the continuous time¹. A subset of the domain in which a signal is nonzero is called its support,

$$\operatorname{supp}(x) := \{t \in \mathbb{R} \mid x(t) \neq 0\}$$

A signal x is said to be

scalar-valued if the codomain is a scalar, like \mathbb{R} or \mathbb{C} (we use \mathbb{F} if either) vector-valued if the codomain is a vector, like \mathbb{R}^n or \mathbb{C}^m decaying if $\lim_{t\to\infty} x(t) = 0$ converging if $\lim_{t\to\infty} x(t) = x_m$ for some constant x_m from its codoma

¹Normally, denoted t, although this is not essential.

Basic definitions

Continuous-time signals are functions with domains in (a subset of) \mathbb{R} , like

 $\mathbb{R}, \quad \mathbb{R}_+ := \{t \in \mathbb{R} \mid t \ge 0\}, \quad [a, b] := \{t \in \mathbb{R} \mid a \le t \ge b\},$

and where the independent variable is understood as the continuous time¹. A subset of the domain in which a signal is nonzero is called its support,

$$\operatorname{supp}(x) := \{t \in \mathbb{R} \mid x(t) \neq 0\}$$

A signal x is said to be

scalar-valued if the codomain is a scalar, like \mathbb{R} or \mathbb{C} (we use \mathbb{F} if either) vector-valued if the codomain is a vector, like \mathbb{R}^n or \mathbb{C}^m

decaying if $\lim_{t\to\infty} x(t) = 0$

converging if $\lim_{t\to\infty} x(t) = x_{ss}$ for some constant x_{ss} from its codomain

¹Normally, denoted t, although this is not essential.

Elementary signals

step:
$$1(t) = \begin{cases} 1 & \text{if } t > 0 \\ 0 & \text{if } t < 0 \end{cases} = \underbrace{1}_{0}^{1} \underbrace{1}_{0}^{1}$$

ramp: ramp(t) = t1(t) =
$$\begin{cases} t & \text{if } t \ge 0 \\ 0 & \text{if } t < 0 \end{cases} = \underbrace{\begin{array}{c} t \\ 0 \\ t \end{cases}}_{0 \quad t}$$

rectangular pulse:
$$\operatorname{rect}_{a}(t) = \begin{cases} 1 & \text{if } |t| < a/2 \\ 0 & \text{if } |t| > a/2 \end{cases} = \underbrace{1}_{-a/2 \ 0 \ a/2 \ t} \quad a > 0$$

triangular pulse: tent_a(t) =
$$\begin{cases} 1 - \frac{|t|}{a} & \text{if } |t| \le a \\ 0 & \text{if } |t| > a \end{cases} = \underbrace{1}_{a} \underbrace{1}_{a} a > 0$$

We use shortcuts

 $\mathsf{rect} := \mathsf{rect}_1$ and $\mathsf{tent} := \mathsf{tent}_1$.

Elementary signals (contd)

sinusoidal:
$$\sin(\omega t + \phi) = \frac{1}{\sqrt{0}}$$

frequency
$$\omega \geq$$
 0, phase ϕ

sine cardinal: sinc(t) =
$$\frac{\sin(t)}{t} = \int_{0}^{1} \int_{\pi/2\pi/t}^{1} dt$$

Operations on signals: (amplitude) scaling

Given $x : \mathbb{R} \to \mathbb{F}$ and $a \in \mathbb{F}$, the signal $ax : \mathbb{R} \to \mathbb{F}$ (or $a \cdot x$) satisfies

$$(ax)(t) = ax(t), \quad \forall t \in \mathbb{R}$$

Operations on signals: (amplitude) scaling

Given $x : \mathbb{R} \to \mathbb{F}$ and $a \in \mathbb{F}$, the signal $ax : \mathbb{R} \to \mathbb{F}$ (or $a \cdot x$) satisfies

$$(ax)(t) = ax(t), \quad \forall t \in \mathbb{R}$$

Examples

Operations on signals: addition

Given $x : \mathbb{R} \to \mathbb{F}$ and $y : \mathbb{R} \to \mathbb{F}$, the signal $x + y : \mathbb{R} \to \mathbb{F}$ satisfies

$$(x+y)(t) = x(t) + y(t), \quad \forall t \in \mathbb{R}$$

with $x - y = x + (-1 \cdot y)$.

Operations on signals: addition

Given $x: \mathbb{R} \to \mathbb{F}$ and $y: \mathbb{R} \to \mathbb{F}$, the signal $x + y: \mathbb{R} \to \mathbb{F}$ satisfies

$$(x+y)(t) = x(t) + y(t), \quad \forall t \in \mathbb{R}$$

with $x - y = x + (-1 \cdot y)$. Examples

Operations on signals: multiplication

Given $x : \mathbb{R} \to \mathbb{F}$ and $y : \mathbb{R} \to \mathbb{F}$, the signal $xy : \mathbb{R} \to \mathbb{F}$ (or $x \cdot y$) satisfies

$$(xy)(t) = x(t)y(t), \quad \forall t \in \mathbb{R}$$

Operations on signals: multiplication

Given $x: \mathbb{R} \to \mathbb{F}$ and $y: \mathbb{R} \to \mathbb{F}$, the signal $xy: \mathbb{R} \to \mathbb{F}$ (or $x \cdot y$) satisfies

$$(xy)(t) = x(t)y(t), \quad \forall t \in \mathbb{R}$$

Operations on signals: time scale (pace change)

Given $x : \mathbb{R} \to \mathbb{F}$ and $\varsigma \in \mathbb{R} \setminus \{0\}$, the signal $\mathbb{P}_{\varsigma} x : \mathbb{R} \to \mathbb{F}$ satisfies

$$(\mathbb{P}_{\varsigma}x)(t)=x(\varsigma t), \quad \forall t\in \mathbb{R}$$

Commutativity property: $\mathbb{P}_{\varsigma_1}(\mathbb{P}_{\varsigma_2}x) = \mathbb{P}_{\varsigma_1\varsigma_2}x = \mathbb{P}_{\varsigma_2}(\mathbb{P}_{\varsigma_1}x)$

Operations on signals: time scale (pace change)

Given $x : \mathbb{R} \to \mathbb{F}$ and $\varsigma \in \mathbb{R} \setminus \{0\}$, the signal $\mathbb{P}_{\varsigma} x : \mathbb{R} \to \mathbb{F}$ satisfies

$$(\mathbb{P}_{\varsigma}x)(t) = x(\varsigma t), \quad \forall t \in \mathbb{R}$$

Commutativity property: $\mathbb{P}_{c_1}(\mathbb{P}_{c_2}x) = \mathbb{P}_{c_1c_2}x = \mathbb{P}_{c_2}(\mathbb{P}_{c_1}x)$

Examples

 $\mathbb{P}_a \operatorname{rect}_a = \operatorname{rect}_1 = \operatorname{rect}_1$ and $\mathbb{P}_a \operatorname{tent}_a = \operatorname{tent}_1 = \operatorname{tent}_1$

Operations on signals: time shift

Given $x : \mathbb{R} \to \mathbb{F}$ and $\tau \in \mathbb{R}$, the signal $\mathbb{S}_{\tau} x : \mathbb{R} \to \mathbb{F}$ satisfies

$$(\mathbb{S}_{\tau}x)(t) = x(t+\tau), \quad \forall t \in \mathbb{R}$$

Commutativity property: $\mathfrak{S}_{\tau_1}(\mathfrak{S}_{\tau_2}x) = \mathfrak{S}_{\tau_1+\tau_2}x = \mathfrak{S}_{\tau_2}(\mathfrak{S}_{\tau_1}x)$

Commuting S_{τ} and \mathbb{P}_{S} : $\mathbb{P}_{S}(S_{\tau}x) = S_{\tau/S}(\mathbb{P}_{S}x)$

Operations on signals: time shift

Given $x : \mathbb{R} \to \mathbb{F}$ and $\tau \in \mathbb{R}$, the signal $\mathbb{S}_{\tau} x : \mathbb{R} \to \mathbb{F}$ satisfies

$$(\mathbb{S}_{\tau}x)(t) = x(t+\tau), \quad \forall t \in \mathbb{R}$$

Commutativity property: $\$_{\tau_1}(\$_{\tau_2}x) = \$_{\tau_1+\tau_2}x = \$_{\tau_2}(\$_{\tau_1}x)$

Operations on signals: time shift

Given $x : \mathbb{R} \to \mathbb{F}$ and $\tau \in \mathbb{R}$, the signal $\mathbb{S}_{\tau}x : \mathbb{R} \to \mathbb{F}$ satisfies

$$(\mathbb{S}_{ au}x)(t) = x(t+ au), \quad \forall t \in \mathbb{R}$$

Commutativity property: $\mathfrak{S}_{\tau_1}(\mathfrak{S}_{\tau_2}x) = \mathfrak{S}_{\tau_1+\tau_2}x = \mathfrak{S}_{\tau_2}(\mathfrak{S}_{\tau_1}x)$

Examples

Commuting \mathbb{S}_{τ} and \mathbb{P}_{ς} : $\mathbb{P}_{\varsigma}(\mathbb{S}_{\tau}x) = \mathbb{S}_{\tau/\varsigma}(\mathbb{P}_{\varsigma}x)$

Operations on signals: convolution

Given $x : \mathbb{R} \to \mathbb{F}$ and $y : \mathbb{R} \to \mathbb{F}$, the signal $x * y : \mathbb{R} \to \mathbb{F}$ satisfies

$$(x*y)(t) = \int_{\mathbb{R}} x(s)y(t-s)ds = \int_{\mathbb{R}} x(t-s)y(s)ds, \quad \forall t \in \mathbb{R}$$

like

Properties:

-x * y = y * x

- -(ax) * y = a(x * y)
- -x * (v * z) = (x * v) * z
- $(x \mid y) \neq z = x \neq z \mid y \neq z$

Operations on signals: convolution

Given $x : \mathbb{R} \to \mathbb{F}$ and $y : \mathbb{R} \to \mathbb{F}$, the signal $x * y : \mathbb{R} \to \mathbb{F}$ satisfies

$$(x*y)(t) = \int_{\mathbb{R}} x(s)y(t-s)ds = \int_{\mathbb{R}} x(t-s)y(s)ds, \quad \forall t \in \mathbb{R}$$

like

Properties:

$$- x * y = y * x$$

- (ax) * y = a(x * y)
- x * (y * z) = (x * y) * z
- (x + y) * z = x * z + y * z

Convolution: examples

Convolution with step:

$$(1 * x)(t) = \int_{\mathbb{R}} 1(t-s)x(s)ds = \int_{-\infty}^{t} x(s)ds$$

Convolution with rectangular pulse:

$$(\operatorname{rect}_a * x)(t) = \int_{\mathbb{R}} \operatorname{rect}_a(t-s) x(s) ds = \int_{t-a/2}^{t+a/2} x(s) ds$$

Convolution of rectangular pulses:

$$(\operatorname{rect}_{a} * \operatorname{rect}_{a})(t) = \int_{t-a/2}^{t+a/2} \operatorname{rect}_{a}(s) ds = \begin{cases} 0 & \text{if } |t| \ge a \\ \int_{-a/2}^{t+a/2} ds & \text{if } -a < t \le 0 \\ \int_{-a/2}^{a/2} ds & \text{if } 0 \le t < a \end{cases}$$

Convolution: examples

Convolution with step:

$$(1*x)(t) = \int_{\mathbb{R}} \mathbb{1}(t-s)x(s)ds = \int_{-\infty}^{t} x(s)ds$$

Convolution with rectangular pulse:

$$(\operatorname{rect}_a * x)(t) = \int_{\mathbb{R}} \operatorname{rect}_a(t-s)x(s) \mathrm{d}s = \int_{t-a/2}^{t+a/2} x(s) \mathrm{d}s$$

 $(\operatorname{rect}_{a} * \operatorname{rect}_{a})(t) = \int_{t-a/2}^{t+a/2} \operatorname{rect}_{a}(s) ds = \begin{cases} 0 & \text{if } |t| \ge a \\ \int_{t-a/2}^{t+a/2} ds & \text{if } -a < t \le 0 \\ a \operatorname{text}_{a}(s) ds = \left\{ \int_{t-a/2}^{t+a/2} ds & \text{if } 0 < t < a \\ \int_{t-a/2}^{t+a/2} ds & \text{if } 0 < t < a \end{cases} \right\}$

Convolution: examples

Convolution with step:

$$(1*x)(t) = \int_{\mathbb{R}} 1(t-s)x(s)ds = \int_{-\infty}^{t} x(s)ds$$

Convolution with rectangular pulse:

$$(\operatorname{rect}_a * x)(t) = \int_{\mathbb{R}} \operatorname{rect}_a(t-s)x(s)ds = \int_{t-a/2}^{t+a/2} x(s)ds$$

Convolution of rectangular pulses: $(\operatorname{rect}_{a} * \operatorname{rect}_{a})(t) = \int_{t-a/2}^{t+a/2} \operatorname{rect}_{a}(s) ds = \begin{cases} 0 & \text{if } |t| \ge a \\ \int_{-a/2}^{t+a/2} ds & \text{if } -a < t \le 0 \\ \int_{-a/2}^{a/2} ds & \text{if } 0 \le t < a \end{cases}$

Dirac delta: naïve definition

Consider the family of signals d_{ϵ} such that

$$d_{\epsilon}(t) = rac{1}{\epsilon} \operatorname{rect}_{\epsilon}(t) = rac{1/\epsilon}{-\epsilon/2} , \qquad \epsilon > 0$$

satisfying

$$\int_{\mathbb{R}} d_{\epsilon}(t) \mathsf{d}t = 1, \quad orall \epsilon$$

Define now Dirac delta as

$$\delta := \lim_{\epsilon \downarrow 0} d_{\epsilon} = __{0 t}$$

(although this limit is mathematically problematic).

Dirac delta: integral and more formal definition

We already know that

$$\int_{\mathbb{R}} f(t) d_{\epsilon}(t) dt = rac{1}{\epsilon} \int_{-\epsilon/2}^{\epsilon/2} f(t) dt,$$

i.e. it equals the average value of f in the interval $t\in [-\epsilon/2,\epsilon/2].$ We may then expect that

$$\int_{\mathbb{R}} f(t)\delta(t) dt = f(0)$$

whenever f is continuous at t = 0.

defining property for the Dirac delta distribution

(with some abuse of notation, a proper definition needs a measure notion).

Dirac delta: integral and more formal definition

We already know that

$$\int_{\mathbb{R}} f(t) d_{\epsilon}(t) dt = rac{1}{\epsilon} \int_{-\epsilon/2}^{\epsilon/2} f(t) dt,$$

i.e. it equals the average value of f in the interval $t\in [-\epsilon/2,\epsilon/2].$ We may then expect that

$$\int_{\mathbb{R}} f(t)\delta(t)\mathsf{d}t = f(0)$$

whenever f is continuous at t = 0. This is actually a

- defining property for the Dirac delta distribution

(with some abuse of notation, a proper definition needs a measure notion).

Dirac delta: sifting property

Immediately from the definition,

$$\int_{\mathbb{R}} f(t)\delta(t-t_0)dt = \int_{\mathbb{R}} f(s+t_0)\delta(s)ds = \int_{\mathbb{R}} (\mathbb{S}_{t_0}f)(s)\delta(s)ds = (\mathbb{S}_{t_0}f)(0)$$
$$= f(t_0)$$

whenever f is continuous at $t = t_0$.

x is continuous for all its domain, then

$$(x * \delta)(t) = \int_{\mathbb{R}} x(t-s)\delta(s) ds = x(t), \quad \forall t$$

In other words,

 $x * \delta = x$.

Dirac delta: sifting property

Immediately from the definition,

$$\int_{\mathbb{R}} f(t)\delta(t-t_0)dt = \int_{\mathbb{R}} f(s+t_0)\delta(s)ds = \int_{\mathbb{R}} (\mathbb{S}_{t_0}f)(s)\delta(s)ds = (\mathbb{S}_{t_0}f)(0)$$
$$= f(t_0)$$

whenever f is continuous at $t = t_0$.

If x is continuous for all its domain, then

$$(x * \delta)(t) = \int_{\mathbb{R}} x(t-s)\delta(s) ds = x(t), \quad \forall t$$

In other words,

 $x * \delta = x.$

Dirac delta: more properties

$$- \delta(t) = 0 \text{ whenever } t \neq 0$$

$$- \text{ given } a < b, \int_{a}^{b} \delta(t) dt = \begin{cases} 0 & \text{if } a > 0 \lor b < 0 \\ 1 & \text{if } a < 0 \land b > 0 \end{cases}$$

$$- 1(t) = \int_{-\infty}^{t} \delta(s) ds, \text{ for all } t$$

$$- \delta = \dot{1} \qquad \qquad \text{think of } 1 = \lim_{\epsilon \downarrow 0} \int_{-\epsilon/2}^{1/2} \dot{\epsilon}/2 - t$$

$$- a\delta: \int_{\mathbb{R}} f(t)(a\delta)(t) dt = af(0) \text{ whenever } f \text{ is continuous at } t = 0$$

 $- f\delta = f(0)\delta$ whenever f is continuous at t = 0

Size matters

We frequently need to decide on whether a signal is 'large' or 'small', think of

- measurements
- precipitation level
- blood sugar level

how accurate a measurement is? was it a wet winter? is it normal?

Signal sizes are measured by norms, which are functions satisfying 1. $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$ positive definiteness 2. ||ax|| = |a|||x||, $\forall a \in \mathbb{F}$ homogeneity 3. $||x + y|| \le ||x|| + ||y||$ triangle inequality If the second condition of 1, does not hold, i.e. if ||x|| = 0 for certain $x \ne 0$, then the function is called semi-norm.

Size matters

We frequently need to decide on whether a signal is 'large' or 'small', think of

- measurements
- precipitation level
- blood sugar level

how accurate a measurement is? was it a wet winter? is it normal?

Signal sizes are measured by norms, which are functions satisfying

1. $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$ positive definiteness2. $||ax|| = |a|||x||, \forall a \in \mathbb{F}$ homogeneity3. $||x + y|| \le ||x|| + ||y||$ triangle inequality

If the second condition of 1. does not hold, i.e. if ||x|| = 0 for certain $x \neq 0$, then the function is called semi-norm.

Discrete-time signals

From continuous to discrete and back again

Commonly used norms

L_1 norm

 $\|x\|_1 := \int_{\mathbb{R}} |x(t)| \mathrm{d}t$

If $||x||_1 < \infty$, then we say that $x \in L_1$ and call it *absolutely integrable*.

L₂ norm

$$\|x\|_2 := \left(\int_{\mathbb{R}} |x(t)|^2 \mathrm{d}t\right)^{1/2}$$

If $||x||_2 < \infty$, then we say that $x \in L_2$ and call it *square integrable*.

 L_{∞} norm

$$\|x\|_{\infty} := \sup_{t \in \mathbb{R}} |x(t)|$$

If $||x||_{\infty} < \infty$, then we say that $x \in L_{\infty}$ and call it *bounded*.

- if $x = \exp_{\lambda}$ for $\lambda < 0$
 - $x \notin L_1, \quad x \notin L_2, \quad x \notin L_{\infty}.$
- if $x = \exp_{\lambda} 1$ for $\lambda < 0$, then
 - $\mathbf{x} \in L_1 (\|\mathbf{x}\|_1 = \frac{1}{\lambda}), \quad \mathbf{x} \in L_2 (\|\mathbf{x}\|_2 = \frac{1}{\sqrt{-2\lambda}}), \quad \mathbf{x} \in L_\infty (\|\mathbf{x}\|_\infty = 1))$
- if x = sinc, then

 $x \not\in L_1$, but $x \in L_2$ $(||x||_2 = \sqrt{\pi})$ and $x \in L_\infty$ $(||x||_\infty = 1)$. - if x = 1, then

 $x \not\in L_1$ and $x \not\in L_2$, but $x \in L_\infty$ ($||x||_\infty = 1$).

 $x \in L_1$ ($||x||_1 = 1$), $x \in L_2$ ($||x||_2 = \frac{1}{\sqrt{c}}$), $x \in L_\infty$ ($||x||_\infty = \frac{1}{c}$)

 $- \quad \text{if } x = \exp_\lambda \text{ for } \lambda < 0 \text{, then}$

 $x\not\in L_1,\quad x\not\in L_2,\quad x\not\in L_\infty.$

- if $x = \exp_{\lambda} 1$ for $\lambda < 0$

 $x \in L_1(||x||_1 = \frac{1}{2\lambda}), \ x \in L_2(||x||_2 = \frac{1}{\sqrt{-2\lambda}}), \ x \in L_\infty(||x||_\infty = 1)$

- if x = sinc, then

 $x
ot \in L_1$, but $x \in L_2$ $(||x||_2 = \sqrt{\pi})$ and $x \in L_\infty$ $(||x||_\infty = 1)$. If x = 1, then

 $x \notin L_1$ and $x \notin L_2$, but $x \in L_\infty$ $(||x||_\infty = 1)$

 $x \in L_1(||x||_1 = 1), x \in L_2(||x||_2 = \frac{1}{\sqrt{c}}), x \in L_\infty(||x||_\infty = \frac{1}{c})$

 $- \quad \text{if } x = \exp_{\lambda} \text{ for } \lambda < 0 \text{, then}$

 $x \notin L_1, \quad x \notin L_2, \quad x \notin L_{\infty}.$

 $- \text{ if } x = \exp_{\lambda} \mathbb{1} \text{ for } \lambda < 0, \text{ then}$

 $x \in L_1$ $(||x||_1 = \frac{1}{-\lambda}), x \in L_2$ $(||x||_2 = \frac{1}{\sqrt{-2\lambda}}), x \in L_\infty$ $(||x||_\infty = 1)$

- if $x = \operatorname{sinc}$ then

 $x \notin L_1$, but $x \in L_2(||x||_2 = \sqrt{\pi})$ and $x \in L_\infty(||x||_\infty = 1)$. - if x = 1, then

 $x \notin L_1$ and $x \notin L_2$, but $x \in L_\infty$ ($||x||_{\infty} = 1$) = d_{ϵ_1} then

 $x \in L_1$ ($||x||_1 = 1$), $x \in L_2$ ($||x||_2 = \frac{1}{\sqrt{c}}$), $x \in L_\infty$ ($||x||_\infty = \frac{1}{c}$)

 $- \quad \text{if } x = \exp_{\lambda} \text{ for } \lambda < 0 \text{, then}$

 $x \notin L_1, \quad x \notin L_2, \quad x \notin L_{\infty}.$

 $- \text{ if } x = \exp_{\lambda} \mathbb{1} \text{ for } \lambda < 0, \text{ then}$

 $x \in L_1$ $(||x||_1 = \frac{1}{-\lambda}), x \in L_2$ $(||x||_2 = \frac{1}{\sqrt{-2\lambda}}), x \in L_\infty$ $(||x||_\infty = 1)$

- if x = sinc, then

 $x \notin L_1$, but $x \in L_2$ $(||x||_2 = \sqrt{\pi})$ and $x \in L_\infty$ $(||x||_\infty = 1)$ - if x = 1 then

 $x \notin L_1$ and $x \notin L_2$, but $x \in L_\infty$ $(\|x\|_\infty = 1)$

— if $x = d_{\epsilon}$, then

 $x \in L_1$ $(||x||_1 = 1), x \in L_2$ $(||x||_2 = \frac{1}{\sqrt{c}}), x \in L_\infty$ $(||x||_\infty = \frac{1}{c})$

- if $x = \exp_{\lambda}$ for $\lambda < 0$, then

 $x \notin L_1, \quad x \notin L_2, \quad x \notin L_{\infty}.$

- if $x = \exp_{\lambda} 1$ for $\lambda < 0$, then

 $x \in L_1$ $(||x||_1 = \frac{1}{-\lambda}), x \in L_2$ $(||x||_2 = \frac{1}{\sqrt{-2\lambda}}), x \in L_\infty$ $(||x||_\infty = 1)$

- if x = sinc, then

 $x \notin L_1$, but $x \in L_2$ $(||x||_2 = \sqrt{\pi})$ and $x \in L_\infty$ $(||x||_\infty = 1)$ - if x = 1, then

 $x \notin L_1$ and $x \notin L_2$, but $x \in L_\infty$ $(||x||_\infty = 1)$ - if $x = d_\epsilon$ above

 $x \in L_1(||x||_1 = 1), \quad x \in L_2(||x||_2 = \frac{1}{\sqrt{e}}), \quad x \in L_\infty(||x||_\infty = \frac{1}{e})$

 $- \quad \text{if } x = \exp_{\lambda} \text{ for } \lambda < 0 \text{, then}$

 $x \notin L_1, \quad x \notin L_2, \quad x \notin L_{\infty}.$

- if $x = \exp_{\lambda} 1$ for $\lambda < 0$, then

 $x \in L_1$ $(||x||_1 = \frac{1}{-\lambda}), x \in L_2$ $(||x||_2 = \frac{1}{\sqrt{-2\lambda}}), x \in L_\infty$ $(||x||_\infty = 1)$

- if x = sinc, then

 $x \notin L_1$, but $x \in L_2$ $(||x||_2 = \sqrt{\pi})$ and $x \in L_\infty$ $(||x||_\infty = 1)$ - if x = 1, then

 $x \notin L_1$ and $x \notin L_2$, but $x \in L_{\infty}$ $(||x||_{\infty} = 1)$

- if $x = d_{\epsilon}$, then

 $x \in L_1$ ($||x||_1 = 1$), $x \in L_2$ ($||x||_2 = \frac{1}{\sqrt{\epsilon}}$), $x \in L_\infty$ ($||x||_\infty = \frac{1}{\epsilon}$)

Other measures of sizes

Energy

$$E_x := \int_{\mathbb{R}} |x(t)|^2 \mathrm{d}t = ||x||_2^2$$

Power (energy per unit time)

$$P_{x} := \lim_{M \to \infty} \frac{1}{M} \int_{-M/2}^{M/2} |x(t)|^{2} \mathrm{d}t$$

Properties:

- $-E_x < \infty$ (finite-energy signals) $\implies P_x = 0 \qquad \sqrt{P_x}$ is a semi-norm
- -x is bounded and have finite support $\implies E_x$ is finite and $P_x = 0$
- $E_{ax} = a^2 E_x$ and $P_{ax} = a^2 P_x$ for every $a \in \mathbb{R}$

Periodic signals

We say that x is T-periodic if

 $- \exists T > 0$ such that x(t) = x(t + T) for all t

(otherwise, aperiodic). If x is T-periodic, then it's also kT-periodic $\forall k \in \mathbb{N}$. We normally refer to the smallest such T as the period.

Examples:

- if $x(t) = \sin(\omega t + \phi)$, then x is $\frac{2\pi}{\omega}$ -periodic

$$x = \underbrace{1}_{0} \underbrace{1}_{t}$$

- if $x(t) = a_1 \sin(2\omega_0 t + \phi_1) + a_2 \sin(3\omega_0 t + \phi_2)$, then x is $\frac{2\pi}{\omega_0}$ -periodic

Periodic signals: integral over a period

If x is T-periodic, then

$$\int_{a}^{a+T} x(t) dt = \int_{a}^{0} x(t) dt + \int_{0}^{T} x(t) dt + \int_{T}^{a+T} x(t) dt \Big|_{t=s+T}$$
$$= -\int_{0}^{a} x(t) dt + \int_{0}^{T} x(t) dt + \int_{0}^{a} x(s+T) ds$$
$$= -\int_{0}^{a} x(t) dt + \int_{0}^{T} x(t) dt + \int_{0}^{a} x(s) ds$$
$$= \int_{0}^{T} x(t) dt$$

for every $a \in \mathbb{R}$.

Power of periodic signals

If x is T-periodic, then

$$P_{\mathsf{x}} = \lim_{k \to \infty} \frac{1}{kT} \int_{-kT/2}^{kT/2} |x(t)|^2 dt = \lim_{k \to \infty} \frac{1}{kT} \sum_{i=0}^{k-1} \int_{iT-kT/2}^{iT-kT/2+T} |x(t)|^2 dt$$
$$= \lim_{k \to \infty} \frac{1}{kT} \sum_{i=0}^{k-1} \int_0^T |x(t)|^2 dt = \lim_{k \to \infty} \frac{1}{kT} k \int_0^T |x(t)|^2 dt$$
$$= \frac{1}{T} \int_0^T |x(t)|^2 dt \le \max_{0 \le t \le T} |x(t)|^2$$

If $x(t) = \sin(\omega t + \phi)$, then $T = 2\pi/\omega$ and

$$P_x = \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \sin^2(\omega t + \phi) dt = \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \frac{1 - \cos(2\omega t + 2\phi)}{2} dt$$
$$= \frac{\omega}{4\pi} \int_0^{2\pi/\omega} dt = \frac{1}{2}$$

since $\sin^2 heta = (1 - \cos(2 heta))/2$ and the integral of \cos over a period is zero.

lf

Power of periodic signals

If x is T-periodic, then

$$P_{x} = \lim_{k \to \infty} \frac{1}{kT} \int_{-kT/2}^{kT/2} |x(t)|^{2} dt = \lim_{k \to \infty} \frac{1}{kT} \sum_{i=0}^{k-1} \int_{iT-kT/2}^{iT-kT/2+T} |x(t)|^{2} dt$$
$$= \lim_{k \to \infty} \frac{1}{kT} \sum_{i=0}^{k-1} \int_{0}^{T} |x(t)|^{2} dt = \lim_{k \to \infty} \frac{1}{kT} k \int_{0}^{T} |x(t)|^{2} dt$$
$$= \frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt \leq \max_{0 \le t \le T} |x(t)|^{2}$$
$$x(t) = \sin(\omega t + \phi), \text{ then } T = 2\pi/\omega \text{ and}$$
$$P_{x} = \frac{\omega}{2\pi} \int_{0}^{2\pi/\omega} \sin^{2}(\omega t + \phi) dt = \frac{\omega}{2\pi} \int_{0}^{2\pi/\omega} \frac{1 - \cos(2\omega t + 2\phi)}{2} dt$$
$$= \frac{\omega}{4\pi} \int_{0}^{2\pi/\omega} dt = \frac{1}{2}$$

since $\sin^2 \theta = (1 - \cos(2\theta))/2$ and the integral of cos over a period is zero.

Continuous-time signals

Discrete-time signals

From continuous to discrete and back again

Outline

Continuous-time signals

Discrete-time signals

From continuous to discrete and back again

Basic definitions

Discrete-time signals are functions with domains in (a subset of) \mathbb{Z} , like

$$\mathbb{Z}, \quad \mathbb{Z}_+ := \{ t \in \mathbb{Z} \mid t \ge 0 \}, \quad \mathbb{N} := \{ t \in \mathbb{Z} \mid t \ge 1 \},$$
$$\mathbb{Z}_{a..b} := \{ t \in \mathbb{Z} \mid a \le t \ge b \},$$

and where the independent variable is understood as the discrete time. A subset of the domain in which a signal is nonzero is called its support, e.g.

$$\operatorname{supp}(x) := \{t \in \mathbb{Z} \mid x[t] \neq 0\}$$

A signal x is said to be

scalar-valued if the codomain is a scalar, like $\mathbb R$ or $\mathbb C$ (we use $\mathbb F$ if either) vector-valued if the codomain is a vector, like $\mathbb R^n$ or $\mathbb C^m$

decaying if $\lim_{t\to\infty} x[t] = 0$

converging if $\lim_{t\to\infty} x[t] = x_{ss}$ for some constant x_{ss} from its codomain periodic if $\exists T \in \mathbb{N}$ such that x[t] = x[t + T] for all t

Basic definitions

Discrete-time signals are functions with domains in (a subset of) \mathbb{Z} , like

$$\mathbb{Z}, \quad \mathbb{Z}_+ := \{ t \in \mathbb{Z} \mid t \ge 0 \}, \quad \mathbb{N} := \{ t \in \mathbb{Z} \mid t \ge 1 \},$$
$$\mathbb{Z}_{a..b} := \{ t \in \mathbb{Z} \mid a \le t \ge b \},$$

and where the independent variable is understood as the discrete time. A subset of the domain in which a signal is nonzero is called its support, e.g.

$$\operatorname{supp}(x) := \{t \in \mathbb{Z} \mid x[t] \neq 0\}$$

A signal x is said to be

scalar-valued if the codomain is a scalar, like \mathbb{R} or \mathbb{C} (we use \mathbb{F} if either) vector-valued if the codomain is a vector, like \mathbb{R}^n or \mathbb{C}^m

decaying if $\lim_{t\to\infty} x[t] = 0$

converging if $\lim_{t\to\infty} x[t] = x_{ss}$ for some constant x_{ss} from its codomain periodic if $\exists T \in \mathbb{N}$ such that x[t] = x[t + T] for all t

Elementary signals

pulse:
$$\delta[t] = \begin{cases} 1 & \text{if } t = 0 \\ 0 & \text{if } t \neq 0 \end{cases} = \underbrace{1}_{0}^{1} \underbrace{1}_{0}^{t} \underbrace{1}_{t} \\ \text{step: } \mathbb{1}[t] = \begin{cases} 1 & \text{if } t \ge 0 \\ 0 & \text{if } t < 0 \end{cases} = \underbrace{1}_{0}^{1} \underbrace{1}_{0}^{t} \underbrace{1}_{0}^{t} \underbrace{1}_{t} \\ \text{ramp: } \text{ramp}[t] = t\mathbb{1}[t] = \begin{cases} t & \text{if } t \ge 0 \\ 0 & \text{if } t < 0 \end{cases} = \underbrace{1}_{0}^{1} \underbrace{1}_{0}^{t} \underbrace{1}_{0}^{t} \underbrace{1}_{t} \\ 0 & \text{if } t < 0 \end{cases}$$

sinusoidal²: $\sin[\theta t + \phi] = \underbrace{1}_{0}^{1} \underbrace{1}_{0}^{1} \underbrace{1}_{0}^{1} \underbrace{1}_{0}^{1} \underbrace{1}_{t} \underbrace{1}_{t} \\ 1 & \text{frequency } \theta \ge 0, \text{ phase } \phi$

²Periodic only if $2\pi/\theta \in \mathbb{Q}$ (rational), the period equals $2\pi/|\theta|$ only if $2\pi/|\theta| \in \mathbb{N}$.

Discrete-time signals

From continuous to discrete and back again

Elementary signals (contd)

exponential:
$$\exp_{\lambda}[t] = \lambda^t =$$

Operations on discrete-time signals

Exactly as those on continuous-time signals³, mutatis mutandis.

$(x * y)[t] = \sum_{s \in \mathbb{Z}} x[s]y[t-s] = \sum_{s \in \mathbb{Z}} x[t-s]y[s], \quad \forall t \in \mathbb{Z}$

Properties:

- -x * y = y * x
- -(ax) * y = a(x * y)
- -x * (y * z) = (x * y) * z
- -(x+y)*z = x*z + y*z
- $-\delta * x = x$

similar to the Dirac delta

Convolution with step:

$(1 * x)[t] = \sum 1[t - s]x[s] = \sum^{t} x[s]$

 $^{^{3}\}mbox{The only exception}$ is the time scaling, which is not well defined in the discrete time.

Operations on discrete-time signals

Exactly as those on continuous-time signals³, mutatis mutandis. Convolution: given $x : \mathbb{Z} \to \mathbb{F}$ and $y : \mathbb{Z} \to \mathbb{F}$, signal $x * y : \mathbb{Z} \to \mathbb{F}$ satisfies

$$(x*y)[t] = \sum_{s \in \mathbb{Z}} x[s]y[t-s] = \sum_{s \in \mathbb{Z}} x[t-s]y[s], \quad \forall t \in \mathbb{Z}$$

Properties:

$$- x * y = y * x$$

$$- (ax) * y = a(x * y)$$

$$- x * (y * z) = (x * y) * z$$

$$- (x + y) * z = x * z + y * z$$

$$- \delta * x = x$$

similar to the Dirac delta

Convolution with step:

$1 * x)[t] = \sum \mathbb{I}[t-s]x[s] = \sum x[s]$

 $^{^{3}\}mbox{The only exception}$ is the time scaling, which is not well defined in the discrete time.

Operations on discrete-time signals

Exactly as those on continuous-time signals³, mutatis mutandis. Convolution: given $x : \mathbb{Z} \to \mathbb{F}$ and $y : \mathbb{Z} \to \mathbb{F}$, signal $x * y : \mathbb{Z} \to \mathbb{F}$ satisfies

$$(x*y)[t] = \sum_{s \in \mathbb{Z}} x[s]y[t-s] = \sum_{s \in \mathbb{Z}} x[t-s]y[s], \quad \forall t \in \mathbb{Z}$$

Properties:

- x * y = y * x - (ax) * y = a(x * y) - x * (y * z) = (x * y) * z - (x + y) * z = x * z + y * z $- \delta * x = x$ si

similar to the Dirac delta

Convolution with step:

$$(\mathbb{1} * x)[t] = \sum_{s \in \mathbb{Z}} \mathbb{1}[t-s]x[s] = \sum_{s=-\infty}^{t} x[s]$$

 $^{^{3}}$ The only exception is the time scaling, which is not well defined in the discrete time.

Commonly used norms for discrete signals

$\ell_1 \text{ norm}$

$$\|x\|_1 := \sum_{t \in \mathbb{Z}} |x[t]|$$

If $||x||_1 < \infty$, then we say that $x \in \ell_1$ and call it *absolutely summable*.

$\ell_2 \,\, norm$

$$\|x\|_2 := \left(\sum_{t \in \mathbb{Z}} |x[t]|^2\right)^{1/2}$$

If $||x||_2 < \infty$, then we say that $x \in \ell_2$ and call it *square summable*.

 ℓ_∞ norm

$$\|x\|_{\infty} := \sup_{t \in \mathbb{Z}} |x[t]|$$

If $||x||_{\infty} < \infty$, then we say that $x \in \ell_{\infty}$ and call it *bounded*.

 $- \quad \text{if } x = \exp_\lambda \text{ for } |\lambda| < 1$

$x \notin l_1, \quad x \notin l_2, \quad x \notin l_{\infty}.$

- if $x = \exp_{\lambda} 1$ for $|\lambda| < 1$, then
 - $X \in l_1(||x||_1 = \frac{1}{1-|x|}), \ X \in l_2(||x||_2 = \frac{1}{\sqrt{1-\lambda^2}}), \ X \in l_\infty(||x||_\infty = 1)$
- if x[t] = 1/(1+|t|), then
- $x
 ot \in \ell_1$, but $x \in \ell_2$ $(\|x\|_2 \sqrt{\frac{x^2}{2} 1})$ and $x \in \ell_\infty$ $(\|x\|_\infty 1)$.
- if x = 1, then

 $x
ot \in l_1$ and $x
ot \in l_2$, but $x \in l_\infty$ $(||x||_\infty = 1)$. In the discrete case $x \in l_1 \implies x \in l_2 \implies x \in l_\infty$.

 $- \ \, \text{if} \; x=\exp_\lambda \; \text{for} \; |\lambda|<1 \text{, then}$

 $x \notin \ell_1, \quad x \notin \ell_2, \quad x \notin \ell_{\infty}.$

 $- \quad \text{if } x = \exp_{\lambda} \mathbb{1} \text{ for } |\lambda| < 1$

 $X \in \ell_1 \ (||x||_1 = rac{1}{1-|x|}), \ \ X \in \ell_2 \ (||x||_2 = rac{1}{\sqrt{1-x^2}}), \ \ X \in \ell_\infty \ (||x||_\infty = 1)$ - if x[t] = 1/(1+|t|), then

 $\mathbf{x}
ot\in \ell_1$, but $\mathbf{x} \in \ell_2$ $(||\mathbf{x}||_2 = \sqrt{\frac{\pi^2}{3}} - 1)$ and $\mathbf{x} \in \ell_\infty$ $(||\mathbf{x}||_\infty = 1)$

- if x = 1, then

 $x
ot \in l_1$ and $x
ot \in l_2$, but $x \in \ell_\infty \left(\|x\|_\infty = 1
ight)$

In the discrete case $x \in l_1 \implies x \in l_2 \implies x \in l_{\infty}$

 $- \ \, \text{if} \ x=\exp_\lambda \ \text{for} \ |\lambda|<1, \ \text{then}$

$$x \notin \ell_1, \quad x \notin \ell_2, \quad x \notin \ell_\infty.$$

- if $x = \exp_{\lambda} \mathbb{1}$ for $|\lambda| < 1$, then

 $x \in \ell_1 (||x||_1 = \frac{1}{1-|\lambda|}), x \in \ell_2 (||x||_2 = \frac{1}{\sqrt{1-\lambda^2}}), x \in \ell_\infty (||x||_\infty = 1)$

- if x[t] = 1/(1+|t|) the

 $x
ot \in \ell_1$, but $x \in \ell_2$ $(||x||_2 = \sqrt{\frac{\pi^2}{3}} - 1)$ and $x \in \ell_\infty$ $(||x||_\infty = 1)$. - if x = 1, then

 $x \notin \ell_1$ and $x \notin \ell_2$, but $x \in \ell_\infty$ $(\|x\|_\infty = 1)$

In the discrete case $x \in l_1 \implies x \in l_2 \implies x \in l_\infty$

 $- \ \, \text{if} \ \, x=\exp_{\lambda} \ \, \text{for} \ \, |\lambda|<1 \text{, then}$

$$x \notin \ell_1, \quad x \notin \ell_2, \quad x \notin \ell_\infty.$$

- if $x = \exp_{\lambda} \mathbb{1}$ for $|\lambda| < 1$, then

 $x \in \ell_1 (||x||_1 = \frac{1}{1-|\lambda|}), x \in \ell_2 (||x||_2 = \frac{1}{\sqrt{1-\lambda^2}}), x \in \ell_\infty (||x||_\infty = 1)$

- if x[t] = 1/(1 + |t|), then

 $x \notin \ell_1$, but $x \in \ell_2 (||x||_2 = \sqrt{\frac{\pi^2}{3} - 1})$ and $x \in \ell_\infty (||x||_\infty = 1)$ - if x = 1 then

 $x \notin \ell_1$ and $x \notin \ell_2$, but $x \in \ell_\infty (\|x\|_\infty = 1)$

In the discrete case $x \in \ell_1 \implies x \in \ell_2 \implies x \in \ell_\infty$

 $- \ \, \text{if} \ \, x=\exp_{\lambda} \ \, \text{for} \ \, |\lambda|<1 \text{, then}$

$$x \notin \ell_1, \quad x \notin \ell_2, \quad x \notin \ell_\infty.$$

- if $x = \exp_{\lambda} \mathbb{1}$ for $|\lambda| < 1$, then

 $x \in \ell_1 (||x||_1 = \frac{1}{1-|\lambda|}), x \in \ell_2 (||x||_2 = \frac{1}{\sqrt{1-\lambda^2}}), x \in \ell_\infty (||x||_\infty = 1)$

- if x[t] = 1/(1+|t|), then

 $x \notin \ell_1$, but $x \in \ell_2 (||x||_2 = \sqrt{\frac{\pi^2}{3}} - 1)$ and $x \in \ell_\infty (||x||_\infty = 1)$

- if x = 1, then

 $x \notin \ell_1$ and $x \notin \ell_2$, but $x \in \ell_{\infty} (||x||_{\infty} = 1)$

In the discrete case $x \in \ell_1 \implies x \in \ell_2 \implies x \in \ell_\infty.$

 $- \ \, \text{if} \ \, x=\exp_{\lambda} \ \, \text{for} \ \, |\lambda|<1 \text{, then}$

$$x \notin \ell_1, \quad x \notin \ell_2, \quad x \notin \ell_\infty.$$

- if $x = \exp_{\lambda} \mathbb{1}$ for $|\lambda| < 1$, then

$$x \in \ell_1 (||x||_1 = \frac{1}{1-|\lambda|}), x \in \ell_2 (||x||_2 = \frac{1}{\sqrt{1-\lambda^2}}), x \in \ell_\infty (||x||_\infty = 1)$$

- if x[t] = 1/(1 + |t|), then

 $x \notin \ell_1$, but $x \in \ell_2 (||x||_2 = \sqrt{\frac{\pi^2}{3}} - 1)$ and $x \in \ell_\infty (||x||_\infty = 1)$

- if x = 1, then

 $x \notin \ell_1$ and $x \notin \ell_2$, but $x \in \ell_{\infty} (||x||_{\infty} = 1)$

In the discrete case $x \in \ell_1 \implies x \in \ell_2 \implies x \in \ell_\infty$.

Other measures of sizes

Energy

$$E_x := \sum_{t \in \mathbb{Z}} |x[t]|^2 = ||x||_2^2$$

Power (energy per step)

$$P_x := \lim_{M \to \infty} \frac{1}{2M} \sum_{t=-M}^{M} |x[t]|^2$$

Properties:

- $-E_x < \infty$ (finite-energy signals) $\implies P_x = 0 \qquad \sqrt{P_x}$ is a semi-norm
- -x is bounded and have finite support $\implies E_x$ is finite and $P_x = 0$
- $E_{ax} = a^2 E_x$ and $P_{ax} = a^2 P_x$ for every $a \in \mathbb{R}$

Continuous-time signals

Discrete-time signals

From continuous to discrete and back again

Continuous-time signals

Discrete-time signals

From continuous to discrete and back again

A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time (digital) signal, say \bar{x} , is known as sampling.

then the term ideal sampling is used.

Terminology:

- time instances s_i are called sampling instances
- if s_i = ih for some h > 0, we say that the sampling is periodic and call h the sampling period

This ideal sampling operation is

well defined only if x is continuous at each sampling instance s_i.

A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time (digital) signal, say \bar{x} , is known as sampling. If for all $i \in \mathbb{Z}$

 $\bar{x}[i] = x(s_i), \quad s_i < s_{i+1}$

then the term ideal sampling is used.

Terminology:

- time instances s_i are called sampling instances
- if s_i = ih for some h > 0, we say that the sampling is periodic and call
 h the sampling period

This ideal sampling operation is

well defined only if x is continuous at each sampling instance s_i.

A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time (digital) signal, say \bar{x} , is known as sampling. If for all $i \in \mathbb{Z}$

 $\bar{x}[i] = x(s_i), \quad s_i < s_{i+1}$

then the term ideal sampling is used.

Terminology:

- time instances s_i are called sampling instances
- if s_i = ih for some h > 0, we say that the sampling is periodic and call
 h the sampling period

This ideal sampling operation is

- well defined only if x is continuous at each sampling instance s_i .

Some other sampling algorithms

averaging sampling

$$ar{x}[i] = rac{1}{s_i - s_{i-1}} \int_{s_{i-1}}^{s_i} x(t) \mathrm{d}t$$
 or $ar{x}[i] = rac{1}{\epsilon} \int_{s_i - \epsilon}^{s_i} x(t) \mathrm{d}t$

Bol sampling

each representative rate is calculated as

- average of randomly taken samples of banks rates in the last 2 hours prior publishing (either 3:15pm or 12:15pm), excluding those deviating from the sample average by more than two standard deviations
- the same as in the previous day on Saturdays, Sundays, and holidays
- exercising discretion in exceptional cases

Some other sampling algorithms

averaging sampling

$$ar{x}[i] = rac{1}{s_i - s_{i-1}} \int_{s_{i-1}}^{s_i} x(t) \mathrm{d}t \quad \mathrm{or} \quad ar{x}[i] = rac{1}{\epsilon} \int_{s_i - \epsilon}^{s_i} x(t) \mathrm{d}t$$

Bol sampling

each representative rate is calculated as

- average of randomly taken samples of banks rates in the last 2 hours prior publishing (either 3:15pm or 12:15pm), excluding those deviating from the sample average by more than two standard deviations
- $-\,$ the same as in the previous day on Saturdays, Sundays, and holidays
- exercising discretion in exceptional cases

A/D conversion: information loses

Sampling is frequently (but not always) a

lossy process

in which some information about the analog signal x is lost. For example,

and there is no way to recover the source (unless additional information is available).

A conversion of a discrete-time (digital) signal, say \bar{x} , to a continuous-time (analog) signal, say x, is known as hold (interpolation).

$\forall t \in (s_i, s_{i+1})$

first-order hold (FOH or linear interpolator) acts as

$\mathbf{x}(t) = \bar{\mathbf{x}}[i] + \frac{t - s_i}{s_{i+1} - s_i} (\bar{\mathbf{x}}[i+1] - \bar{\mathbf{x}}[i]), \quad \forall t \in (s_i, s_{i+1})$

for given sampling instances *s*_i. For example,

A conversion of a discrete-time (digital) signal, say \bar{x} , to a continuous-time (analog) signal, say x, is known as hold (interpolation). Common choices: zero-order hold (ZOH) acts as

$$\mathbf{x}(t) = \bar{\mathbf{x}}[i], \quad \forall t \in (s_i, s_{i+1})$$

first-order hold (FOH or linear interpolator) acts as

$$\mathbf{x}(t) = ar{\mathbf{x}}[i] + rac{t-s_i}{s_{i+1}-s_i} (ar{\mathbf{x}}[i+1] - ar{\mathbf{x}}[i]), \quad orall t \in (s_i, s_{i+1})$$

for given sampling instances *s*_i. For example,

A conversion of a discrete-time (digital) signal, say \bar{x} , to a continuous-time (analog) signal, say x, is known as hold (interpolation). Common choices: zero-order hold (ZOH) acts as

$$\mathbf{x}(t) = \bar{\mathbf{x}}[i], \quad \forall t \in (s_i, s_{i+1})$$

first-order hold (FOH or linear interpolator) acts as

$$x(t) = \bar{x}[i] + rac{t-s_i}{s_{i+1}-s_i}(\bar{x}[i+1]-\bar{x}[i]), \quad \forall t \in (s_i, s_{i+1})$$

for given sampling instances s_i .

A conversion of a discrete-time (digital) signal, say \bar{x} , to a continuous-time (analog) signal, say x, is known as hold (interpolation). Common choices: zero-order hold (ZOH) acts as

$$\mathbf{x}(t) = \bar{\mathbf{x}}[i], \quad \forall t \in (s_i, s_{i+1})$$

first-order hold (FOH or linear interpolator) acts as

$$x(t) = \bar{x}[i] + rac{t-s_i}{s_{i+1}-s_i}(\bar{x}[i+1]-\bar{x}[i]), \quad \forall t \in (s_i, s_{i+1})$$

for given sampling instances s_i . For example,

