Linear Systems (034032) lecture no. 2

Leonid Mirkin
Faculty of Mechanical Engineering
Technion-IIT

Outline

Continuous-time signals

Discrete-time signals

From continuous to discrete and back again

Outline

Continuous-time signals

Basic definitions

Continuous-time signals are functions with domains in (a subset of) \mathbb{R}, like

$$
\mathbb{R}, \quad \mathbb{R}_{+}:=\{t \in \mathbb{R} \mid t \geq 0\}, \quad[a, b]:=\{t \in \mathbb{R} \mid a \leq t \geq b\},
$$

and where the independent variable is understood as the continuous time ${ }^{1}$. A subset of the domain in which a signal is nonzero is called its support,

$$
\operatorname{supp}(x):=\{t \in \mathbb{R} \mid x(t) \neq 0\}
$$

${ }^{1}$ Normally, denoted t, although this is not essential.

Basic definitions

Continuous-time signals are functions with domains in (a subset of) \mathbb{R}, like

$$
\mathbb{R}, \quad \mathbb{R}_{+}:=\{t \in \mathbb{R} \mid t \geq 0\}, \quad[a, b]:=\{t \in \mathbb{R} \mid a \leq t \geq b\},
$$

and where the independent variable is understood as the continuous time ${ }^{1}$. A subset of the domain in which a signal is nonzero is called its support,

$$
\operatorname{supp}(x):=\{t \in \mathbb{R} \mid x(t) \neq 0\}
$$

A signal x is said to be
scalar-valued if the codomain is a scalar, like \mathbb{R} or \mathbb{C} (we use \mathbb{F} if either) vector-valued if the codomain is a vector, like \mathbb{R}^{n} or \mathbb{C}^{m}
decaying if $\lim _{t \rightarrow \infty} x(t)=0$
converging if $\lim _{t \rightarrow \infty} x(t)=x_{\mathrm{ss}}$ for some constant x_{ss} from its codomain

[^0]
Elementary signals

$$
\text { step: } \mathbb{1}(t)=\left\{\begin{array}{ll}
1 & \text { if } t>0 \\
0 & \text { if } t<0
\end{array}=\underset{0}{t}\right.
$$

$$
\operatorname{ramp}: \operatorname{ramp}(t)=t \mathbb{1}(t)=\{\begin{array}{ll}
t & \text { if } t \geq 0 \\
0 & \text { if } t<0
\end{array}=\underbrace{}_{0}
$$

rectangular pulse: $\operatorname{rect}_{a}(t)=\left\{\begin{array}{ll}1 & \text { if }|t|<a / 2 \\ 0 & \text { if }|t|>a / 2\end{array}=\frac{{ }_{-a / 20}{ }^{1} a_{a / 2} \quad t}{} \quad a>0\right.$
triangular pulse: $\operatorname{tent}_{a}(t)=\{\begin{array}{ll}1-\frac{|t|}{a} & \text { if }|t| \leq a \\ 0 & \text { if }|t|>a\end{array}=\underbrace{1}_{-a} a>0$
We use shortcuts

$$
\text { rect }:=\text { rect }_{1} \quad \text { and } \text { tent }:=\text { tent }_{1} .
$$

Elementary signals (contd)

sinusoidal: $\sin (\omega t+\phi)=\bigcap \int_{t}^{1}$
frequency $\omega \geq 0$, phase ϕ
sine cardinal: $\sin c(t)=\frac{\sin (t)}{t}=\overbrace{0}^{1}$

Operations on signals: (amplitude) scaling

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $a \in \mathbb{F}$, the signal $a x: \mathbb{R} \rightarrow \mathbb{F}($ or $a \cdot x)$ satisfies

$$
(a x)(t)=a x(t), \quad \forall t \in \mathbb{R}
$$

Operations on signals: (amplitude) scaling

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $a \in \mathbb{F}$, the signal $a x: \mathbb{R} \rightarrow \mathbb{F}$ (or $a \cdot x)$ satisfies

$$
(a x)(t)=a x(t), \quad \forall t \in \mathbb{R}
$$

Examples

Operations on signals: addition

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $y: \mathbb{R} \rightarrow \mathbb{F}$, the signal $x+y: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
(x+y)(t)=x(t)+y(t), \quad \forall t \in \mathbb{R}
$$

with $x-y=x+(-1 \cdot y)$.

Operations on signals: addition

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $y: \mathbb{R} \rightarrow \mathbb{F}$, the signal $x+y: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
(x+y)(t)=x(t)+y(t), \quad \forall t \in \mathbb{R}
$$

with $x-y=x+(-1 \cdot y)$.

Examples

Operations on signals: multiplication

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $y: \mathbb{R} \rightarrow \mathbb{F}$, the signal $x y: \mathbb{R} \rightarrow \mathbb{F}($ or $x \cdot y)$ satisfies

$$
(x y)(t)=x(t) y(t), \quad \forall t \in \mathbb{R}
$$

Operations on signals: multiplication

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $y: \mathbb{R} \rightarrow \mathbb{F}$, the signal $x y: \mathbb{R} \rightarrow \mathbb{F}($ or $x \cdot y)$ satisfies

$$
(x y)(t)=x(t) y(t), \quad \forall t \in \mathbb{R}
$$

Examples

Operations on signals: time scale (pace change)

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $\varsigma \in \mathbb{R} \backslash\{0\}$, the signal $\mathbb{P}_{\varsigma} x: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
\left(\mathbb{P}_{\varsigma} x\right)(t)=x(\varsigma t), \quad \forall t \in \mathbb{R}
$$

Commutativity property: $\mathbb{P}_{\varsigma_{1}}\left(\mathbb{P}_{S_{2}} x\right)=\mathbb{P}_{\varsigma_{1} \varsigma_{2}} x=\mathbb{P}_{S_{2}}\left(\mathbb{P}_{\varsigma_{1}} x\right)$

Operations on signals: time scale (pace change)

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $\varsigma \in \mathbb{R} \backslash\{0\}$, the signal $\mathbb{P}_{\varsigma} x: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
\left(\mathbb{P}_{\varsigma} x\right)(t)=x(\varsigma t), \quad \forall t \in \mathbb{R}
$$

Commutativity property: $\mathbb{P}_{\varsigma_{1}}\left(\mathbb{P}_{S_{2}} x\right)=\mathbb{P}_{\varsigma_{1} \varsigma_{2}} x=\mathbb{P}_{S_{2}}\left(\mathbb{P}_{\varsigma_{1}} x\right)$
Examples

$-\mathbb{P}_{a}$ rect $_{a}=$ rect $:=$ rect $_{1}$ and \mathbb{P}_{a} tent $_{a}=$ tent $:=$ tent $_{1}$

Operations on signals: time shift

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $\tau \in \mathbb{R}$, the signal $\mathbb{S}_{\tau} x: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
\left(\mathbb{S}_{\tau} x\right)(t)=x(t+\tau), \quad \forall t \in \mathbb{R}
$$

Commutativity property: $\mathbb{S}_{\tau_{1}}\left(\mathbb{S}_{\tau_{2}} x\right)=\mathbb{S}_{\tau_{1}+\tau_{2}} x=\mathbb{S}_{\tau_{2}}\left(\mathbb{S}_{\tau_{1}} x\right)$

Operations on signals: time shift

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $\tau \in \mathbb{R}$, the signal $\mathbb{\$}_{\tau} x: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
\left(\mathbb{S}_{\tau} x\right)(t)=x(t+\tau), \quad \forall t \in \mathbb{R}
$$

Commutativity property: $\mathbb{S}_{\tau_{1}}\left(\$_{\tau_{2}} x\right)=\mathbb{S}_{\tau_{1}+\tau_{2}} x=\mathbb{S}_{\tau_{2}}\left(\$_{\tau_{1}} x\right)$
Examples

$-\mathbb{S}_{a / 2} \mathbb{1}-\mathbb{S}_{-a / 2} \mathbb{1}=\operatorname{rect}_{a}$

Operations on signals: time shift

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $\tau \in \mathbb{R}$, the signal $\mathbb{\$}_{\tau} x: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
\left(\mathbb{S}_{\tau} x\right)(t)=x(t+\tau), \quad \forall t \in \mathbb{R}
$$

Commutativity property: $\mathbb{S}_{\tau_{1}}\left(\mathbb{S}_{\tau_{2}} x\right)=\mathbb{S}_{\tau_{1}+\tau_{2}} x=\mathbb{S}_{\tau_{2}}\left(\mathbb{S}_{\tau_{1}} x\right)$
Examples

$-\mathbb{S}_{a / 2} \mathbb{1}-\mathbb{S}_{-a / 2} \mathbb{1}=\operatorname{rect}_{a}$

Commuting \mathbb{S}_{τ} and $\mathbb{P}_{\varsigma}: \mathbb{P}_{\varsigma}\left(\mathbb{S}_{\tau} x\right)=\mathbb{S}_{\tau / \varsigma}\left(\mathbb{P}_{\varsigma} x\right)$

Operations on signals: convolution

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $y: \mathbb{R} \rightarrow \mathbb{F}$, the signal $x * y: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
(x * y)(t)=\int_{\mathbb{R}} x(s) y(t-s) \mathrm{d} s=\int_{\mathbb{R}} x(t-s) y(s) \mathrm{d} s, \quad \forall t \in \mathbb{R}
$$

like

$$
y(t-s)=\left(\mathbb{P}-1\left(S_{t} y\right)\right)(s)=
$$

Operations on signals: convolution

Given $x: \mathbb{R} \rightarrow \mathbb{F}$ and $y: \mathbb{R} \rightarrow \mathbb{F}$, the signal $x * y: \mathbb{R} \rightarrow \mathbb{F}$ satisfies

$$
(x * y)(t)=\int_{\mathbb{R}} x(s) y(t-s) \mathrm{d} s=\int_{\mathbb{R}} x(t-s) y(s) \mathrm{d} s, \quad \forall t \in \mathbb{R}
$$

like

$$
y(t-s)=\begin{gathered}
\left(\mathbb{P}_{-1}\left(\mathbb{S}_{t} y\right)\right)(s) \\
\left(\mathbb{S}_{-t}\left(\mathbb{P}_{-1} y\right)\right)(s) \\
x(s) y(t-s)
\end{gathered}=\underbrace{x}_{t 0}
$$

Properties:

$$
\begin{aligned}
& -x * y=y * x \\
& -(a x) * y=a(x * y) \\
& -x *(y * z)=(x * y) * z \\
& -(x+y) * z=x * z+y * z
\end{aligned}
$$

Convolution: examples

Convolution with step:

$$
(\mathbb{1} * x)(t)=\int_{\mathbb{R}} \mathbb{D}(t-s) x(s) \mathrm{d} s=\int_{-\infty}^{t} x(s) \mathrm{d} s
$$

Convolution: examples

Convolution with step:

$$
(\mathbb{1} * x)(t)=\int_{\mathbb{R}} \mathbb{1}(t-s) x(s) \mathrm{d} s=\int_{-\infty}^{t} x(s) \mathrm{d} s
$$

Convolution with rectangular pulse:

$$
\left(\operatorname{rect}_{a} * x\right)(t)=\int_{\mathbb{R}} \operatorname{rect}_{a}(t-s) x(s) \mathrm{d} s=\int_{t-a / 2}^{t+a / 2} x(s) \mathrm{d} s
$$

Convolution: examples

Convolution with step:

$$
(\mathbb{1} * x)(t)=\int_{\mathbb{R}} \mathbb{1}(t-s) x(s) \mathrm{d} s=\int_{-\infty}^{t} x(s) \mathrm{d} s
$$

Convolution with rectangular pulse:

$$
\left(\operatorname{rect}_{a} * x\right)(t)=\int_{\mathbb{R}} \operatorname{rect}_{a}(t-s) x(s) \mathrm{d} s=\int_{t-a / 2}^{t+a / 2} x(s) \mathrm{d} s
$$

Convolution of rectangular pulses:

$$
\begin{aligned}
&\left(\operatorname{rect}_{a} * \operatorname{rect}_{a}\right)(t)=\int_{t-a / 2}^{t+a / 2} \operatorname{rect}_{a}(s) \mathrm{d} s=\left\{\begin{array}{ll}
\int_{-a / 2}^{t+a / 2} \mathrm{~d} s & \text { if }-a<t \leq 0 \\
& =a \operatorname{tent}_{a}
\end{array} \quad \int_{t-a / 2}^{a / 2} \mathrm{~d} s\right. \\
& \text { if } 0 \leq t<a
\end{aligned}
$$

Dirac delta: naïve definition

Consider the family of signals d_{ϵ} such that

$$
d_{\epsilon}(t)=\frac{1}{\epsilon} \operatorname{rect}_{\epsilon}(t)=\prod_{-\epsilon / 2}^{1 / \epsilon} \|_{\epsilon / 2}, \quad \epsilon>0
$$

satisfying

$$
\int_{\mathbb{R}} d_{\epsilon}(t) \mathrm{d} t=1, \quad \forall \epsilon
$$

Define now Dirac delta as

$$
\delta:=\lim _{\epsilon \downarrow 0} d_{\epsilon}=\frac{\uparrow_{0}}{t}
$$

(although this limit is mathematically problematic).

Dirac delta: integral and more formal definition

We already know that

$$
\int_{\mathbb{R}} f(t) d_{\epsilon}(t) \mathrm{d} t=\frac{1}{\epsilon} \int_{-\epsilon / 2}^{\epsilon / 2} f(t) \mathrm{d} t
$$

i.e. it equals the average value of f in the interval $t \in[-\epsilon / 2, \epsilon / 2]$. We may then expect that

$$
\int_{\mathbb{R}} f(t) \delta(t) \mathrm{d} t=f(0)
$$

whenever f is continuous at $t=0$.

Dirac delta: integral and more formal definition

We already know that

$$
\int_{\mathbb{R}} f(t) d_{\epsilon}(t) \mathrm{d} t=\frac{1}{\epsilon} \int_{-\epsilon / 2}^{\epsilon / 2} f(t) \mathrm{d} t
$$

i.e. it equals the average value of f in the interval $t \in[-\epsilon / 2, \epsilon / 2]$. We may then expect that

$$
\int_{\mathbb{R}} f(t) \delta(t) \mathrm{d} t=f(0)
$$

whenever f is continuous at $t=0$. This is actually a

- defining property for the Dirac delta distribution
(with some abuse of notation, a proper definition needs a measure notion).

Dirac delta: sifting property

Immediately from the definition,

$$
\begin{aligned}
\int_{\mathbb{R}} f(t) \delta\left(t-t_{0}\right) \mathrm{d} t & =\int_{\mathbb{R}} f\left(s+t_{0}\right) \delta(s) \mathrm{d} s=\int_{\mathbb{R}}\left(\mathbb{S}_{t_{0}} f\right)(s) \delta(s) \mathrm{d} s=\left(\mathbb{S}_{t_{0}} f\right)(0) \\
& =f\left(t_{0}\right)
\end{aligned}
$$

whenever f is continuous at $t=t_{0}$.

Dirac delta: sifting property

Immediately from the definition,

$$
\begin{aligned}
\int_{\mathbb{R}} f(t) \delta\left(t-t_{0}\right) \mathrm{d} t & =\int_{\mathbb{R}} f\left(s+t_{0}\right) \delta(s) \mathrm{d} s=\int_{\mathbb{R}}\left(\mathbb{S}_{t_{0}} f\right)(s) \delta(s) \mathrm{d} s=\left(\mathbb{S}_{t_{0}} f\right)(0) \\
& =f\left(t_{0}\right)
\end{aligned}
$$

whenever f is continuous at $t=t_{0}$.

If x is continuous for all its domain, then

$$
(x * \delta)(t)=\int_{\mathbb{R}} x(t-s) \delta(s) \mathrm{d} s=x(t), \quad \forall t
$$

In other words,

$$
x * \delta=x .
$$

Dirac delta: more properties

$-\delta(t)=0$ whenever $t \neq 0$

- given $a<b, \int_{a}^{b} \delta(t) \mathrm{d} t= \begin{cases}0 & \text { if } a>0 \vee b<0 \\ 1 & \text { if } a<0 \wedge b>0\end{cases}$
$-\mathbb{1}(t)=\int_{-\infty}^{t} \delta(s) \mathrm{d} s$, for all t
$-\delta=\dot{1}$
think of $\mathbb{1}=\lim _{\epsilon \downarrow 0} \sqrt[11]{-\epsilon / 2}_{\epsilon / 2 \quad t}$
- $a \delta: \int_{\mathbb{R}} f(t)(a \delta)(t) \mathrm{d} t=a f(0)$ whenever f is continuous at $t=0$
- $f \delta=f(0) \delta$ whenever f is continuous at $t=0$

Size matters

We frequently need to decide on whether a signal is 'large' or 'small', think of

- measurements
- precipitation level
- blood sugar level
how accurate a measurement is? was it a wet winter? is it normal?

Size matters

We frequently need to decide on whether a signal is 'large' or 'small', think of

- measurements
- precipitation level
- blood sugar level
how accurate a measurement is?
was it a wet winter?
is it normal?

Signal sizes are measured by norms, which are functions satisfying

1. $\|x\| \geq 0$ and $\|x\|=0 \Longleftrightarrow x=0$
2. $\|a x\|=|a|\|x\|, \forall a \in \mathbb{F}$
3. $\|x+y\| \leq\|x\|+\|y\|$
positive definiteness
homogeneity
triangle inequality

If the second condition of 1 . does not hold, i.e. if $\|x\|=0$ for certain $x \neq 0$, then the function is called semi-norm.

Commonly used norms

L_{1} norm

$$
\|x\|_{1}:=\int_{\mathbb{R}}|x(t)| \mathrm{d} t
$$

If $\|x\|_{1}<\infty$, then we say that $x \in L_{1}$ and call it absolutely integrable.
L_{2} norm

$$
\|x\|_{2}:=\left(\int_{\mathbb{R}}|x(t)|^{2} \mathrm{~d} t\right)^{1 / 2}
$$

If $\|x\|_{2}<\infty$, then we say that $x \in L_{2}$ and call it square integrable.
L_{∞} norm

$$
\|x\|_{\infty}:=\sup _{t \in \mathbb{R}}|x(t)|
$$

If $\|x\|_{\infty}<\infty$, then we say that $x \in L_{\infty}$ and call it bounded.

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $\lambda<0$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $\lambda<0$, then

$$
x \notin L_{1}, \quad x \notin L_{2}, \quad x \notin L_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $\lambda<0$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $\lambda<0$, then

$$
x \notin L_{1}, \quad x \notin L_{2}, \quad x \notin L_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $\lambda<0$, then $x \in L_{1}\left(\|x\|_{1}=\frac{1}{-\lambda}\right), \quad x \in L_{2}\left(\|x\|_{2}=\frac{1}{\sqrt{-2 \lambda}}\right), \quad x \in L_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\operatorname{sinc}$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $\lambda<0$, then

$$
x \notin L_{1}, \quad x \notin L_{2}, \quad x \notin L_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $\lambda<0$, then $x \in L_{1}\left(\|x\|_{1}=\frac{1}{-\lambda}\right), \quad x \in L_{2}\left(\|x\|_{2}=\frac{1}{\sqrt{-2 \lambda}}\right), \quad x \in L_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\operatorname{sinc}$, then
$x \notin L_{1}$, but $\quad x \in L_{2}\left(\|x\|_{2}=\sqrt{\pi}\right)$ and $\quad x \in L_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\mathbb{1}$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $\lambda<0$, then

$$
x \notin L_{1}, \quad x \notin L_{2}, \quad x \notin L_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $\lambda<0$, then $x \in L_{1}\left(\|x\|_{1}=\frac{1}{-\lambda}\right), \quad x \in L_{2}\left(\|x\|_{2}=\frac{1}{\sqrt{-2 \lambda}}\right), \quad x \in L_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\operatorname{sinc}$, then
$x \notin L_{1}$, but $\quad x \in L_{2}\left(\|x\|_{2}=\sqrt{\pi}\right)$ and $\quad x \in L_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\mathbb{1}$, then

$$
x \notin L_{1} \quad \text { and } \quad x \notin L_{2}, \quad \text { but } \quad x \in L_{\infty}\left(\|x\|_{\infty}=1\right)
$$

$-\quad$ if $x=d_{\epsilon}$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $\lambda<0$, then

$$
x \notin L_{1}, \quad x \notin L_{2}, \quad x \notin L_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $\lambda<0$, then $x \in L_{1}\left(\|x\|_{1}=\frac{1}{-\lambda}\right), \quad x \in L_{2}\left(\|x\|_{2}=\frac{1}{\sqrt{-2 \lambda}}\right), \quad x \in L_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\operatorname{sinc}$, then
$x \notin L_{1}$, but $\quad x \in L_{2}\left(\|x\|_{2}=\sqrt{\pi}\right)$ and $\quad x \in L_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\mathbb{1}$, then

$$
x \notin L_{1} \quad \text { and } \quad x \notin L_{2}, \quad \text { but } \quad x \in L_{\infty}\left(\|x\|_{\infty}=1\right)
$$

- if $x=d_{\epsilon}$, then

$$
x \in L_{1}\left(\|x\|_{1}=1\right), \quad x \in L_{2}\left(\|x\|_{2}=\frac{1}{\sqrt{\epsilon}}\right), \quad x \in L_{\infty}\left(\|x\|_{\infty}=\frac{1}{\epsilon}\right)
$$

Other measures of sizes

Energy

$$
E_{x}:=\int_{\mathbb{R}}|x(t)|^{2} \mathrm{~d} t=\|x\|_{2}^{2}
$$

Power (energy per unit time)

$$
P_{x}:=\lim _{M \rightarrow \infty} \frac{1}{M} \int_{-M / 2}^{M / 2}|x(t)|^{2} \mathrm{~d} t
$$

Properties:
$-E_{x}<\infty$ (finite-energy signals) $\Longrightarrow P_{x}=0 \quad \sqrt{P_{x}}$ is a semi-norm
$-x$ is bounded and have finite support $\Longrightarrow E_{x}$ is finite and $P_{x}=0$

- $E_{a x}=a^{2} E_{x}$ and $P_{a x}=a^{2} P_{x}$ for every $a \in \mathbb{R}$

Periodic signals

We say that x is T-periodic if

- $\exists T>0$ such that $x(t)=x(t+T)$ for all t
(otherwise, aperiodic). If x is T-periodic, then it's also $k T$-periodic $\forall k \in \mathbb{N}$. We normally refer to the smallest such T as the period.

Examples:

- if $x(t)=\sin (\omega t+\phi)$, then x is $\frac{2 \pi}{\omega}$-periodic

- if $x(t)=a_{1} \sin \left(2 \omega_{0} t+\phi_{1}\right)+a_{2} \sin \left(3 \omega_{0} t+\phi_{2}\right)$, then x is $\frac{2 \pi}{\omega_{0}}$-periodic

Periodic signals: integral over a period

If x is T-periodic, then

$$
\begin{aligned}
\int_{a}^{a+T} x(t) \mathrm{d} t & =\int_{a}^{0} x(t) \mathrm{d} t+\int_{0}^{T} x(t) \mathrm{d} t+\left.\int_{T}^{a+T} x(t) \mathrm{d} t\right|_{t=s+T} \\
& =-\int_{0}^{a} x(t) \mathrm{d} t+\int_{0}^{T} x(t) \mathrm{d} t+\int_{0}^{a} x(s+T) \mathrm{d} s \\
& =-\int_{0}^{a} x(t) \mathrm{d} t+\int_{0}^{T} x(t) \mathrm{d} t+\int_{0}^{a} x(s) \mathrm{d} s \\
& =\int_{0}^{T} x(t) \mathrm{d} t
\end{aligned}
$$

for every $a \in \mathbb{R}$.

Power of periodic signals

If x is T-periodic, then

$$
\begin{aligned}
P_{x} & =\lim _{k \rightarrow \infty} \frac{1}{k T} \int_{-k T / 2}^{k T / 2}|x(t)|^{2} \mathrm{~d} t=\lim _{k \rightarrow \infty} \frac{1}{k T} \sum_{i=0}^{k-1} \int_{i T-k T / 2}^{i T-k T / 2+T}|x(t)|^{2} \mathrm{~d} t \\
& =\lim _{k \rightarrow \infty} \frac{1}{k T} \sum_{i=0}^{k-1} \int_{0}^{T}|x(t)|^{2} \mathrm{~d} t=\lim _{k \rightarrow \infty} \frac{1}{k T} k \int_{0}^{T}|x(t)|^{2} \mathrm{~d} t \\
& =\frac{1}{T} \int_{0}^{T}|x(t)|^{2} \mathrm{~d} t \leq \max _{0 \leq t \leq T}|x(t)|^{2}
\end{aligned}
$$

Power of periodic signals

If x is T-periodic, then

$$
\begin{aligned}
P_{x} & =\lim _{k \rightarrow \infty} \frac{1}{k T} \int_{-k T / 2}^{k T / 2}|x(t)|^{2} \mathrm{~d} t=\lim _{k \rightarrow \infty} \frac{1}{k T} \sum_{i=0}^{k-1} \int_{i T-k T / 2}^{i T-k T / 2+T}|x(t)|^{2} \mathrm{~d} t \\
& =\lim _{k \rightarrow \infty} \frac{1}{k T} \sum_{i=0}^{k-1} \int_{0}^{T}|x(t)|^{2} \mathrm{~d} t=\lim _{k \rightarrow \infty} \frac{1}{k T} k \int_{0}^{T}|x(t)|^{2} \mathrm{~d} t \\
& =\frac{1}{T} \int_{0}^{T}|x(t)|^{2} \mathrm{~d} t \leq \max _{0 \leq t \leq T}|x(t)|^{2}
\end{aligned}
$$

If $x(t)=\sin (\omega t+\phi)$, then $T=2 \pi / \omega$ and

$$
\begin{aligned}
P_{x} & =\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} \sin ^{2}(\omega t+\phi) \mathrm{d} t=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} \frac{1-\cos (2 \omega t+2 \phi)}{2} \mathrm{~d} t \\
& =\frac{\omega}{4 \pi} \int_{0}^{2 \pi / \omega} \mathrm{d} t=\frac{1}{2}
\end{aligned}
$$

since $\sin ^{2} \theta=(1-\cos (2 \theta)) / 2$ and the integral of \cos over a period is zero.

Outline

Discrete-time signals

Basic definitions

Discrete-time signals are functions with domains in (a subset of) \mathbb{Z}, like

$$
\begin{aligned}
\mathbb{Z}, \quad \mathbb{Z}_{+}:= & \{t \in \mathbb{Z} \mid t \geq 0\}, \quad \mathbb{N}:=\{t \in \mathbb{Z} \mid t \geq 1\}, \\
& \mathbb{Z}_{\text {a... }}:=\{t \in \mathbb{Z} \mid a \leq t \geq b\},
\end{aligned}
$$

and where the independent variable is understood as the discrete time. A subset of the domain in which a signal is nonzero is called its support, e.g.

$$
\operatorname{supp}(x):=\{t \in \mathbb{Z} \mid x[t] \neq 0\}
$$

Basic definitions

Discrete-time signals are functions with domains in (a subset of) \mathbb{Z}, like

$$
\begin{aligned}
\mathbb{Z}, \quad \mathbb{Z}_{+}:= & \{t \in \mathbb{Z} \mid t \geq 0\}, \quad \mathbb{N}:=\{t \in \mathbb{Z} \mid t \geq 1\}, \\
& \mathbb{Z}_{\text {a... }}:=\{t \in \mathbb{Z} \mid a \leq t \geq b\},
\end{aligned}
$$

and where the independent variable is understood as the discrete time. A subset of the domain in which a signal is nonzero is called its support, e.g.

$$
\operatorname{supp}(x):=\{t \in \mathbb{Z} \mid x[t] \neq 0\}
$$

A signal x is said to be
scalar-valued if the codomain is a scalar, like \mathbb{R} or \mathbb{C} (we use \mathbb{F} if either) vector-valued if the codomain is a vector, like \mathbb{R}^{n} or \mathbb{C}^{m}
decaying if $\lim _{t \rightarrow \infty} x[t]=0$
converging if $\lim _{t \rightarrow \infty} x[t]=x_{\mathrm{ss}}$ for some constant x_{ss} from its codomain periodic if $\exists T \in \mathbb{N}$ such that $x[t]=x[t+T]$ for all t

Elementary signals

$$
\begin{aligned}
& \text { pulse: } \delta[t]=\left\{\begin{array}{ll}
1 & \text { if } t=0 \\
0 & \text { if } t \neq 0
\end{array}=\ldots\right. \\
& \text { step: } \mathbb{0}[t]=\left\{\begin{array}{ll}
1 & \text { if } t \geq 0 \\
0 & \text { if } t<0
\end{array}=\right.
\end{aligned}
$$

$$
\text { ramp: } \operatorname{ramp}[t]=t \mathbb{T}[t]=\left\{\begin{array}{ll}
t & \text { if } t \geq 0 \\
0 & \text { if } t<0
\end{array}=\ldots \ldots \ldots \ldots . \ldots \cdot \nabla_{0}\| \| \|_{t}\right.
$$

frequency $\theta \geq 0$, phase ϕ
${ }^{2}$ Periodic only if $2 \pi / \theta \in \mathbb{Q}$ (rational), the period equals $2 \pi /|\theta|$ only if $2 \pi /|\theta| \in \mathbb{N}$.

Elementary signals (contd)

Operations on discrete-time signals

Exactly as those on continuous-time signals ${ }^{3}$, mutatis mutandis.
${ }^{3}$ The only exception is the time scaling, which is not well defined in the discrete time.

Operations on discrete-time signals

Exactly as those on continuous-time signals ${ }^{3}$, mutatis mutandis.
Convolution: given $x: \mathbb{Z} \rightarrow \mathbb{F}$ and $y: \mathbb{Z} \rightarrow \mathbb{F}$, signal $x * y: \mathbb{Z} \rightarrow \mathbb{F}$ satisfies

$$
(x * y)[t]=\sum_{s \in \mathbb{Z}} x[s] y[t-s]=\sum_{s \in \mathbb{Z}} x[t-s] y[s], \quad \forall t \in \mathbb{Z}
$$

Properties:

$$
\begin{aligned}
& -x * y=y * x \\
& -(a x) * y=a(x * y) \\
& -x *(y * z)=(x * y) * z \\
& -(x+y) * z=x * z+y * z \\
& -\delta * x=x
\end{aligned}
$$

[^1]
Operations on discrete-time signals

Exactly as those on continuous-time signals ${ }^{3}$, mutatis mutandis.
Convolution: given $x: \mathbb{Z} \rightarrow \mathbb{F}$ and $y: \mathbb{Z} \rightarrow \mathbb{F}$, signal $x * y: \mathbb{Z} \rightarrow \mathbb{F}$ satisfies

$$
(x * y)[t]=\sum_{s \in \mathbb{Z}} x[s] y[t-s]=\sum_{s \in \mathbb{Z}} x[t-s] y[s], \quad \forall t \in \mathbb{Z}
$$

Properties:

$$
\begin{aligned}
& -x * y=y * x \\
& -(a x) * y=a(x * y) \\
& -x *(y * z)=(x * y) * z \\
& -(x+y) * z=x * z+y * z \\
& -\delta * x=x
\end{aligned}
$$

Convolution with step:

$$
(\mathbb{1} * x)[t]=\sum_{s \in \mathbb{Z}} \mathbb{\mathbb { L }}[t-s] x[s]=\sum_{s=-\infty}^{t} x[s]
$$

${ }^{3}$ The only exception is the time scaling, which is not well defined in the discrete time.

Commonly used norms for discrete signals

ℓ_{1} norm

$$
\|x\|_{1}:=\sum_{t \in \mathbb{Z}}|x[t]|
$$

If $\|x\|_{1}<\infty$, then we say that $x \in \ell_{1}$ and call it absolutely summable.
ℓ_{2} norm

$$
\|x\|_{2}:=\left(\sum_{t \in \mathbb{Z}}|x[t]|^{2}\right)^{1 / 2}
$$

If $\|x\|_{2}<\infty$, then we say that $x \in \ell_{2}$ and call it square summable.
ℓ_{∞} norm

$$
\|x\|_{\infty}:=\sup _{t \in \mathbb{Z}}|x[t]|
$$

If $\|x\|_{\infty}<\infty$, then we say that $x \in \ell_{\infty}$ and call it bounded.

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $|\lambda|<1$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $|\lambda|<1$, then

$$
x \notin \ell_{1}, \quad x \notin \ell_{2}, \quad x \notin \ell_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $|\lambda|<1$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $|\lambda|<1$, then

$$
x \notin \ell_{1}, \quad x \notin \ell_{2}, \quad x \notin \ell_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $|\lambda|<1$, then
$x \in \ell_{1}\left(\|x\|_{1}=\frac{1}{1-|\lambda|}\right), \quad x \in \ell_{2}\left(\|x\|_{2}=\frac{1}{\sqrt{1-\lambda^{2}}}\right), \quad x \in \ell_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x[t]=1 /(1+|t|)$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $|\lambda|<1$, then

$$
x \notin \ell_{1}, \quad x \notin \ell_{2}, \quad x \notin \ell_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $|\lambda|<1$, then
$x \in \ell_{1}\left(\|x\|_{1}=\frac{1}{1-|\lambda|}\right), \quad x \in \ell_{2}\left(\|x\|_{2}=\frac{1}{\sqrt{1-\lambda^{2}}}\right), \quad x \in \ell_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x[t]=1 /(1+|t|)$, then
$x \notin \ell_{1}, \quad$ but $\quad x \in \ell_{2}\left(\|x\|_{2}=\sqrt{\frac{\pi^{2}}{3}-1}\right) \quad$ and $\quad x \in \ell_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\mathbb{1}$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $|\lambda|<1$, then

$$
x \notin \ell_{1}, \quad x \notin \ell_{2}, \quad x \notin \ell_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $|\lambda|<1$, then
$x \in \ell_{1}\left(\|x\|_{1}=\frac{1}{1-|\lambda|}\right), \quad x \in \ell_{2}\left(\|x\|_{2}=\frac{1}{\sqrt{1-\lambda^{2}}}\right), \quad x \in \ell_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x[t]=1 /(1+|t|)$, then
$x \notin \ell_{1}, \quad$ but $\quad x \in \ell_{2}\left(\|x\|_{2}=\sqrt{\frac{\pi^{2}}{3}-1}\right) \quad$ and $\quad x \in \ell_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\mathbb{1}$, then

$$
x \notin \ell_{1} \quad \text { and } \quad x \notin \ell_{2}, \quad \text { but } \quad x \in \ell_{\infty}\left(\|x\|_{\infty}=1\right)
$$

Norms: (lack of) equivalence

- if $x=\exp _{\lambda}$ for $|\lambda|<1$, then

$$
x \notin \ell_{1}, \quad x \notin \ell_{2}, \quad x \notin \ell_{\infty} .
$$

- if $x=\exp _{\lambda} \mathbb{1}$ for $|\lambda|<1$, then $x \in \ell_{1}\left(\|x\|_{1}=\frac{1}{1-|\lambda|}\right), \quad x \in \ell_{2}\left(\|x\|_{2}=\frac{1}{\sqrt{1-\lambda^{2}}}\right), \quad x \in \ell_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x[t]=1 /(1+|t|)$, then
$x \notin \ell_{1}, \quad$ but $\quad x \in \ell_{2}\left(\|x\|_{2}=\sqrt{\frac{\pi^{2}}{3}-1}\right) \quad$ and $\quad x \in \ell_{\infty}\left(\|x\|_{\infty}=1\right)$
- if $x=\mathbb{1}$, then

$$
x \notin \ell_{1} \quad \text { and } \quad x \notin \ell_{2}, \quad \text { but } \quad x \in \ell_{\infty}\left(\|x\|_{\infty}=1\right)
$$

In the discrete case $x \in \ell_{1} \Longrightarrow x \in \ell_{2} \Longrightarrow x \in \ell_{\infty}$.

Other measures of sizes

Energy

$$
E_{x}:=\sum_{t \in \mathbb{Z}}|x[t]|^{2}=\|x\|_{2}^{2}
$$

Power (energy per step)

$$
P_{x}:=\lim _{M \rightarrow \infty} \frac{1}{2 M} \sum_{t=-M}^{M}|x[t]|^{2}
$$

Properties:
$-E_{x}<\infty$ (finite-energy signals) $\Longrightarrow P_{x}=0$
$-x$ is bounded and have finite support $\Longrightarrow E_{x}$ is finite and $P_{x}=0$

- $E_{a x}=a^{2} E_{x}$ and $P_{a x}=a^{2} P_{x}$ for every $a \in \mathbb{R}$

Outline

From continuous to discrete and back again

A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time (digital) signal, say \bar{x}, is known as sampling.

A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time (digital) signal, say \bar{x}, is known as sampling. If for all $i \in \mathbb{Z}$

$$
\bar{x}[i]=x\left(s_{i}\right), \quad s_{i}<s_{i+1}
$$

then the term ideal sampling is used.
Terminology:

- time instances s_{i} are called sampling instances
- if $s_{i}=i h$ for some $h>0$, we say that the sampling is periodic and call h the sampling period

A/D conversion

A conversion of a continuous-time (analog) signal, say x, to a discrete-time (digital) signal, say \bar{x}, is known as sampling. If for all $i \in \mathbb{Z}$

$$
\bar{x}[i]=x\left(s_{i}\right), \quad s_{i}<s_{i+1}
$$

then the term ideal sampling is used.
Terminology:

- time instances s_{i} are called sampling instances
- if $s_{i}=i h$ for some $h>0$, we say that the sampling is periodic and call h the sampling period

This ideal sampling operation is

- well defined only if x is continuous at each sampling instance s_{i}.

Some other sampling algorithms

- averaging sampling

$$
\bar{x}[i]=\frac{1}{s_{i}-s_{i-1}} \int_{s_{i-1}}^{s_{i}} x(t) \mathrm{d} t \quad \text { or } \quad \bar{x}[i]=\frac{1}{\epsilon} \int_{s_{i}-\epsilon}^{s_{i}} x(t) \mathrm{d} t
$$

Some other sampling algorithms

- averaging sampling

$$
\bar{x}[i]=\frac{1}{s_{i}-s_{i-1}} \int_{s_{i-1}}^{s_{i}} x(t) \mathrm{d} t \quad \text { or } \quad \bar{x}[i]=\frac{1}{\epsilon} \int_{s_{i}-\epsilon}^{s_{i}} x(t) \mathrm{d} t
$$

- Bol sampling

each representative rate is calculated as
- average of randomly taken samples of banks rates in the last 2 hours prior publishing (either 3:15pm or 12:15pm), excluding those deviating from the sample average by more than two standard deviations
- the same as in the previous day on Saturdays, Sundays, and holidays
- exercising discretion in exceptional cases

A/D conversion: information loses

Sampling is frequently (but not always) a

- lossy process
in which some information about the analog signal x is lost. For example,

and there is no way to recover the source (unless additional information is available).

D/A conversion

A conversion of a discrete-time (digital) signal, say \bar{x}, to a continuous-time (analog) signal, say x, is known as hold (interpolation).

D/A conversion

A conversion of a discrete-time (digital) signal, say \bar{x}, to a continuous-time (analog) signal, say x, is known as hold (interpolation). Common choices: zero-order hold (ZOH) acts as

$$
x(t)=\bar{x}[i], \quad \forall t \in\left(s_{i}, s_{i+1}\right)
$$

D/A conversion

A conversion of a discrete-time (digital) signal, say \bar{x}, to a continuous-time (analog) signal, say x, is known as hold (interpolation). Common choices: zero-order hold (ZOH) acts as

$$
x(t)=\bar{x}[i], \quad \forall t \in\left(s_{i}, s_{i+1}\right)
$$

first-order hold (FOH or linear interpolator) acts as

$$
x(t)=\bar{x}[i]+\frac{t-s_{i}}{s_{i+1}-s_{i}}(\bar{x}[i+1]-\bar{x}[i]), \quad \forall t \in\left(s_{i}, s_{i+1}\right)
$$

for given sampling instances s_{i}.

D/A conversion

A conversion of a discrete-time (digital) signal, say \bar{x}, to a continuous-time (analog) signal, say x, is known as hold (interpolation). Common choices: zero-order hold (ZOH) acts as

$$
x(t)=\bar{x}[i], \quad \forall t \in\left(s_{i}, s_{i+1}\right)
$$

first-order hold (FOH or linear interpolator) acts as

$$
x(t)=\bar{x}[i]+\frac{t-s_{i}}{s_{i+1}-s_{i}}(\bar{x}[i+1]-\bar{x}[i]), \quad \forall t \in\left(s_{i}, s_{i+1}\right)
$$

for given sampling instances s_{i}. For example,

[^0]: ${ }^{1}$ Normally, denoted t, although this is not essential.

[^1]: ${ }^{3}$ The only exception is the time scaling, which is not well defined in the discrete time.

