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Nobody’s perfect

In other words, any

− mathematical model is merely a (more / less accurate) approximation

of the real world.
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Unstructured uncertainty models

Under an arbitrary stable and norm-bounded �:

Additive P = Pnom +�: u

zw

y
Pnom

�

Input multiplicative P = Pnom(I +�):
u

zw

y
Pnom

�

Output multiplicative P = (I +�)Pnom:
u

zw

y
Pnom

�

Inverse additive P = (I + Pnom�)
−1Pnom:

u

z w

y
Pnom

�

-

Inverse input multiplicative P = Pnom(I +�)
−1:

u

z w

y
Pnom

�
-

Inverse output multiplicative P = (I +�)−1Pnom:

u

z w

y
Pnom

�
-



Modeling uncertainty and robust stability Loop shaping MIMO extensions Case studies

Unstructured uncertainty models

Under an arbitrary stable and norm-bounded �:

Additive P = Pnom +�: u

zw

y
Pnom

�

Input multiplicative P = Pnom(I +�):
u

zw

y
Pnom

�

Output multiplicative P = (I +�)Pnom:
u

zw

y
Pnom

�

Inverse additive P = (I + Pnom�)
−1Pnom:

u

z w

y
Pnom

�

-

Inverse input multiplicative P = Pnom(I +�)
−1: u

z w

y
Pnom

�
-

Inverse output multiplicative P = (I +�)−1Pnom:
u

z w

y
Pnom

�
-



Modeling uncertainty and robust stability Loop shaping MIMO extensions Case studies

General form

�

G

w

u

z

y

Plant:
P = Fu

(
G ; �

)
:

For the particular cases above:

Ga =

[
0 I
I Pnom

]
; Ga,inv =

[
−Pnom Pnom

−Pnom Pnom

]
;

Gim =

[
0 I

Pnom Pnom

]
; Gim,inv =

[
−I I

−Pnom Pnom

]
;

Gom =

[
0 Pnom

I Pnom

]
; Gom,inv =

[
−I Pnom

−I Pnom

]
:



Modeling uncertainty and robust stability Loop shaping MIMO extensions Case studies

Example: DC motor

uvi�

�e
!

vb

y
Ka

1

Ls + R
Km

1

Js + f

1

s

Kb

-

Model:

PL(s) ··=
KmKa

s((Ls + R)(Js + f ) + KmKb)
:

Nominal (simplified) model with L = 0:

Pnom(s) =
KmKa

s(RJs + (Rf + KbKm))
:

Nominal values:

Ka Km [Nm/A] R [Ω] L [H] J [kgm2] f [Nm s/rad]

12 0.126 2.08 0.000264 0.008 0.005

but actual R ∈ [1:87; 2:29], J ∈ [0:0072; 0:0088], and f ∈ [0:0045; 0:0055].
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Example: DC motor (contd)

Our goal is to

− calculate bounds on �(j!) at each frequency

for various choices of the uncertainty configuration.

− P = Pnom +� =⇒ |�(j!)| ≥ |P(j!)− Pnom(j!)|

− P = Pnom(1 +�) =⇒ |�(j!)| ≥
∣∣∣∣

P(j!)

Pnom(j!)
− 1

∣∣∣∣

− P =
Pnom

1 + Pnom�
=⇒ |�(j!)| ≥

∣∣∣∣
1

P(j!)
− 1

Pnom(j!)

∣∣∣∣

− P =
Pnom

1 +�
=⇒ |�(j!)| ≥

∣∣∣∣
Pnom(j!)

P(j!)
− 1

∣∣∣∣

for every possible P from a given class.
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Example: DC motor (contd)
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and only the multiplicative � is stable.
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Example: DC motor (contd)
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This � ∈ H∞, with ∥�∥∞ ≤ 1. More accurate is to

− introduce frequency-dependent weight, say W (j!)

such that � = W�0 for some stable �0 such that ∥�0∥∞ ≤ 1 (in our case
|W (j!)| < 0:1 at low frequencies and |W (j!)| ↑ 1 at high). The weight

− W can always be absorbed into G .
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Robust stability problem in H∞

�

G

R

w

u

z

y

Goal:

− guarantee that the system is stable for all � ∈ BH∞

(may be BL2→L2 in the time-varying nonlinear case).
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Robust stability theorem

�

G

R

w

u

z

y

Theorem
The system is robustly stable iff ∥Fl

(
G ;R

)
∥∞ < 1.

Proof (outline) : Sufficiency follows by the SGT. Necessity by constructing
a destabilizing � ∈ BH∞ for ! at which ∥Fl

(
G (j!);R(j!)

)
∥ = 1.

Thus,

− robust stability ⇐⇒ the standard H∞ problem for Pnom



Modeling uncertainty and robust stability Loop shaping MIMO extensions Case studies

Robust stability theorem

�

G

R

w

u

z

y

Theorem
The system is robustly stable iff ∥Fl

(
G ;R

)
∥∞ < 1.

Proof (outline) : Sufficiency follows by the SGT. Necessity by constructing
a destabilizing � ∈ BH∞ for ! at which ∥Fl

(
G (j!);R(j!)

)
∥ = 1.

Thus,

− robust stability ⇐⇒ the standard H∞ problem for Pnom



Modeling uncertainty and robust stability Loop shaping MIMO extensions Case studies

Robust stability theorem: special cases

Additive uncertainty:

G =

[
0 I
I Pnom

]
=⇒ Fl

(
G ;R

)
= R(I − PnomR)

−1 = Tc

Input multiplicative uncertainty:

G =

[
0 I

Pnom Pnom

]
=⇒ Fl

(
G ;R

)
= R(I − PnomR)

−1Pnom= Ti

Inverse additive uncertainty:

G =

[
−Pnom Pnom

−Pnom Pnom

]
=⇒ Fl

(
G ;R

)
= −(I − PnomR)

−1Pnom = −Td

Inverse output multiplicative uncertainty:

G =

[
−I Pnom

−I Pnom

]
=⇒ Fl

(
G ;R

)
= −(I − PnomR)

−1 = −So
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Beyond SG

Structured uncertainty:

� = diag{�i}; with

{
some �i ∈ BH

pi×mi∞

some �i = ıi Imi for ıi ∈ BH1×1
∞

Theory is based on structured singular values, aka �.

Robust performance:

�

G

R

wr

wp

u

zr

zp

y

with the goal to

− guarantee bounds on ∥Tzpwp∥ for all � ∈ BH∞ .

In some cases also reduces to �.
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2DOF control architecture

r
u

d ido

y

n

P

[
M
N

]

R
F−

Nominal closed-loop system, if NM−1 = P:

[
y
u

]
=

[
N
M

]
Fr +

[
So Td

Tc Ti

][
do
di

]
+

[
To

Tc

]
n;

where [
So Td

Tc Ti

]
··=

[
I
R

]
(I − PR)−1

[
I P

]

and To ··= (I − PR)−1PR = So − I .
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2DOF control architecture (contd)

r
u

d ido

y

n

P

[
M
N

]

R
F−

Closed-loop system if NM−1 ̸= P:

[
y
u

]
=

[
N
M

]
Fr +

[
So Td

Tc Ti

]([
−N
M

]
Fr +

[
do
di

])
+

[
To

Tc

]
n

=

([
N
M

]
+

[
So
Tc

]
(PM − N)

)
Fr +

[
So Td

Tc Ti

][
do
di

]
+

[
To

Tc

]
n

because
[
So Td

Tc Ti

] [
−N
M

]
F =

[
I
R

]
(I − PR)−1(PM − N)F :
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Typical requirements: SISO

r
u

d ido

y

n

P

[
M
N

]

R
F−

with
y = NFr + S((PM − N)Fr + do + Pdi) + Tn;

so we need to have

− |S(j!)| ≪ 1 at dominant !’s of

− the spectrum of r , where modeling uncertainty is non-negligible
− the spectrum of do
− the spectrum of di, where plant gain is non-negligible

− |T (j!)| ≪ 1 at dominant !’s of

− the spectrum of n

Typically,

− |S(j!)| ≪ 1 at low frequencies and |T (j!)| ≪ 1 at high frequencies.
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SISO loop shaping

The loop transfer function is L(s) ··= P(s)R(s). Then

low frequencies

high frequencies

0

M
ag
ni
tu
de

(d
B
)

crosover region

−180

P
ha
se

(d
eg
)

!c

Frequency (rad/sec)

− |S(j!)| ≪ 1 ⇐⇒ |L(j!)| ≫ 1

− |T (j!)| ≪ 1 ⇐⇒ |L(j!)| ≪ 1

− closed-loop system is stable iff
L(j!) agrees with the Nyquist
criterion

− closed-loop system is robust if
L(j!) is “far” from the critical
point (measured by stability
margins, like �ph, �g, �m)

Magnitude shaping is relatively easy, phase shaping is knotty. . .
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Typical requirements: MIMO

r
u

d ido

y

n

P

[
M
N

]

R
F−

with
y = NFr + So((PM − N)Fr + do + Pdi) + Ton;

so we need to have

− ∥So(j!)∥ ≪ 1 at dominant !’s of

− the spectrum of r , where modeling uncertainty is non-negligible
− the spectrum of do
− the spectrum of di, where plant gain is non-negligible

− ∥To(j!)∥ ≪ 1 at dominant !’s of

− the spectrum of n

Typically,

− ∥So(j!)∥ ≪ 1 at low frequencies and ∥To(j!)∥ ≪ 1 at high freq-s.
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MIMO magnitude shaping

In terms of the output loop transfer function Lo(s) ··= P(s)R(s),

− ∥So(j!)∥ ≪ 1 ⇐= � (Lo(j!)) ≫ 1

− ∥To(j!)∥ ≪ 1 ⇐= �(Lo(j!)) ≪ 1

so we have:

low frequencies

high frequencies�(L(j!))

�(L(j!))

0

M
ag
ni
tu
de

(d
B
)

Frequency (rad/sec)

But

− how to shape phase?
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MIMO phase shaping

Idea of McFarlane & Glover (in essence):

− cast phase shaping as an H∞ robust stabilization problem
(“far from the critical point” may indeed be interpreted as robustness requirement)

The latter

− can be solved analytically, via H∞ optimization

− applies to MIMO systems
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Design steps

1. Shape loop magnitude via weighs as Pmsh(s) ··= Wo(s)P(s)Wi(s)
− typically P, PI, or PID, may include LPF
− can cancel poles or zeros of P(s) if required
− in MIMO case can decouple

2. Design Rrob(s) for Pmsh(s) via robust stabilization
− robustness level, say �max = 1=min, serves as the success indicator

3. If successfull, pick R(s) = Wi(s)Rrob(s)Wo(s)

− in the SISO case, L(s) = P(s)R(s) = Pmsh(s)Rrob(s) is the designed loop

− in the MIMO case, Lo(s) = P(s)R(s) = W−1
o (s)Pmsh(s)Rrob(s)Wo(s), so

that certain care (balance) should be taken in the choice of Wo

Properties:

− closed-loop stability is guaranteed

− controller order = plant order + 2 × (weights order)

− integral actions / internal model can be easily enforced in R(s)
(neither Wi(s) nor Wo(s) is constrained to be stable)
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Choice of robust stability problem

Keep in mind:

− not necessarily reflects physics of the problem

− rather, should possess favorable properties from the design viewpoint

Rationale:

− the H∞-norm of every GoF system reflects some robustness

− each one of GoF systems encourages cancellations

So, let’s balance the design, via solving

minimize
Rrob

∥∥∥∥
[
Rrob

I

]
(I − PmshRrob)

−1
[
I Pmsh

]∥∥∥∥
∞
= minimize

Rrob

∥∥∥∥
[
Tc Ti

So Td

]∥∥∥∥
∞

which may be dubbed balanced sensitivity problem. Quantity

�max ··=
1

min
∈ (0; 1); where min ··= min

Rrob

∥∥∥∥
[
Tc Ti

So Td

]∥∥∥∥
∞

is the success indicator.
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Balanced sensitivity problem: associated uncertainty

Consider robust stability problem for

u

z1z2

y

w

ÑM̃−1

�N�M
-

under normalized lcf uncertainty, i.e. P = (M̃ +�M)−1(Ñ +�N) with

ÑÑ∼ + M̃M̃∼ = I

(i.e.
[
Ñ M̃

]
is co-inner). It can be shown that

− closed-loop system robustly stable for all ∥
[
�M �N

]
∥∞ < ˛ iff

∥∥∥∥
[
Tc Ti

So Td

]∥∥∥∥
∞

≤ 1

˛
:

Hence,

− solving balanced sensitivity ⇐⇒ maximizing robustness radius.
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Balanced sensitivity problem: solution

Bring in a stabilizable and detectable realization

Pmsh(s) =

[
A B

C 0

]

and let X ≥ 0 and Y ≥ 0 be the stabilizing solutions to the H2 AREs

A′X + XA− XBB ′X + C ′C = 0 and AY + YA′ − YC ′CY + BB ′ = 0

such that A− BB ′X and A− YC ′C are Hurwitz (exist and are unique).

Remark It can be shown that Y = (I −WXX )−1WX , where WX ≥ 0 solves the Lyapunov
equation

(A− BB ′X )WX +WX (A− BB ′X )′ + BB ′ = 0

(i.e. is the controllability Gramian of (A− BB ′X ;B)).
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Balanced sensitivity problem: solution (contd)

Theorem
The minimal attainable performance

min =
√
1 + �(YX ) > 1:

Given then any  > min, all -suboptimal controllers are given by

Rrob(s) = Fl





A− BB ′X − Z−1

 YC ′C Z−1
 YC ′ Z−1

 B

−B ′X 0 I
−C I 0


 ;Q(s)




for any Q ∈ RH∞ such that

∥Q∥∞ <
√
2 − 1;

where Z ··= (1− −2)I − −2YX .
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MATLAB code 1

% H-inf loop-shaping design (assuming negative feedback)

%

Pmsh = minreal(Wo*P*Wi);

[A,B,C,D] = ssdata(Pmsh);

X = icare(A,B,C’*C);

Y = icare(A’,C’,B*B’);

epsmax2 = 1/(1+max(eig(Y*X)));

%

suboptf = 1.05^2; % any number >1

gammam2inv = epsmax2/suboptf;

Z = (1-gammam2inv)*eye(size(A))-gammam2inv*Y*X;

K = -B’*X;

L = -inv(Z)*Y*C’;

Rrob = ss(A+B*K+L*C,L,K,zeros(size(D’)));

%

Rgam = minreal(Wi*Rrob*Wo);
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Balanced sensitivity problem: what if  ↓ opt
If 2 ↓ 1 + �(YX ) = �(I + YX ), then

Z = I − −2(I + YX )

turns singular. To avoid inverting singular matrices, the central controller

Rrob(s) =

[
A− BB ′X − Z−1

 YC ′C −Z−1
 YC ′

B ′X 0

]

can be implemented in the descriptor (algebraic differential equation) form

Rrob(s) = −B ′X (sZ − ZA+ ZBB
′X + YC ′C )−1YC ′

(is well defined, because nrank(sZopt − ZoptA+ ZoptBB
′X + YC ′C ) = n).

As a result,

− the order of the optimal controller equals rank(Zopt) < n.
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MATLAB code 2

% H-inf loop-shaping design (assuming negative feedback)

%

Pmsh = minreal(Wo*P*Wi);

[A,B,C,D] = ssdata(Pmsh);

X = icare(A,B,C’*C);

Y = icare(A’,C’,B*B’);

epsmax2 = 1/(1+max(eig(Y*X)));

%

suboptf = 1.05^2; % any number >=1

gammam2inv = epsmax2/subopt;

Z = (1-gammam2inv)*eye(size(A))-gammam2inv*Y*X;

K = -B’*X;

L = -Y*C’;

Rrob = dss(Z*A+Z*B*K+L*C,L,K,zeros(size(D’)),Z);

%

Rgam = minreal(Wi*Rrob*Wo);
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Example 1

Let

P(s) =
1

s2
and W (s) = !̃2

c ;

so that the magnitude-shaped loop,

Pmsh(s) =
!̃2
c

s2
=




0 1 0
0 0 !̃c

!̃c 0 0


 ;

has its crossover frequency !c = !̃c.
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Example 1: optimal cost

AREs [
0 0
1 0

]
X + X

[
0 1
0 0

]
− X

[
0 0
0 !̃2

c

]
X +

[
!̃2
c 0
0 0

]
= 0

and [
0 1
0 0

]
Y + Y

[
0 0
1 0

]
− Y

[
!̃2
c 0
0 0

]
Y +

[
0 0
0 !̃2

c

]
= 0

have stabilizing solutions

X =

[√
2 !̃c 1

1
√
2=!̃c

]
> 0 and Y =

[√
2=!̃c 1

1
√
2 !̃c

]
> 0:

Optimal performance:

2min = 1 + �

([√
2=!̃c 1

1
√
2 !̃c

] [√
2 !̃c 1

1
√
2=!̃c

])

= 1 + �

([
3 2

√
2=!̃c

2
√
2 !̃c 3

])
= 4 + 2

√
2 ≈ 6:8284

is independent of !̃c (because loop phase is independent of !̃c either).
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Example 1: optimal cost

AREs [
0 0
1 0

]
X + X

[
0 1
0 0

]
− X

[
0 0
0 !̃2

c

]
X +

[
!̃2
c 0
0 0

]
= 0

and [
0 1
0 0

]
Y + Y

[
0 0
1 0

]
− Y

[
!̃2
c 0
0 0

]
Y +

[
0 0
0 !̃2

c

]
= 0

have stabilizing solutions

X =

[√
2 !̃c 1

1
√
2=!̃c

]
> 0 and Y =

[√
2=!̃c 1

1
√
2 !̃c

]
> 0:

Optimal performance:

2min = 1 + �

([√
2=!̃c 1

1
√
2 !̃c

] [√
2 !̃c 1

1
√
2=!̃c

])

= 1 + �

([
3 2

√
2=!̃c

2
√
2 !̃c 3

])
= 4 + 2

√
2 ≈ 6:8284

is independent of !̃c (because loop phase is independent of !̃c either).
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Example 1: optimal controller

With

Zmin = (
√
2− 1)

[
1 −1=!̃c

−!̃c 1

]
= (

√
2− 1)

[
1

−!̃c

] [
1 −1=!̃c

]

(indeed singular),

Rrob(s) = −(1 +
√
2)s + !̃c

s + !̃c(1 +
√
2)

which is

− the first-order lead, having the maximal phase lead 45◦ at ! = !̃c.

Hence,

R(s) = W (s)Rrob(s) = −!̃2
c

(1 +
√
2)s + !̃c

s + !̃c(1 +
√
2)

(mind that positive feedback is assumed).
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Example 1: optimal controller

With

Zmin = (
√
2− 1)

[
1 −1=!̃c

−!̃c 1

]
= (

√
2− 1)

[
1

−!̃c

] [
1 −1=!̃c

]

(indeed singular),

Rrob(s) = −(1 +
√
2)s + !̃c

s + !̃c(1 +
√
2)

which is

− the first-order lead, having the maximal phase lead 45◦ at ! = !̃c.

Hence,

R(s) = W (s)Rrob(s) = −!̃2
c

(1 +
√
2)s + !̃c

s + !̃c(1 +
√
2)

(mind that positive feedback is assumed).
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Example 1: resulted loop

For every !̃c,

− �max = 1=
√

4 + 2
√
2 ≈ 0:3827

− !c = !̃c

− �ph = 45◦

− �g = ∞
− �m ≈ 0:6921



Modeling uncertainty and robust stability Loop shaping MIMO extensions Case studies

Example 1: resulted GoF

S Td

Tc T
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Example 2

Let

P(s) =
1

s3
and W (s) = !̃3

c ;

so that the magnitude-shaped loop,

Pmsh(s) =
!̃3
c

s3
=




0 1 0 0
0 0 1 0

0 0 0
√
!̃3
c√

!̃3
c 0 0 0


 ;

has its crossover frequency !c = !̃c.

Optimal cost (about 44% of what we had in the double integrator case):

�max =

√
1

2
−

√
2

3
≈ 0:1691;

is independent of !̃c too (because loop phase is independent of !̃c either).
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Example 2

Let

P(s) =
1

s3
and W (s) = !̃3

c ;

so that the magnitude-shaped loop,

Pmsh(s) =
!̃3
c

s3
=




0 1 0 0
0 0 1 0

0 0 0
√
!̃3
c√

!̃3
c 0 0 0


 ;

has its crossover frequency !c = !̃c.

Optimal cost (about 44% of what we had in the double integrator case):

�max =

√
1

2
−

√
2

3
≈ 0:1691;

is independent of !̃c too (because loop phase is independent of !̃c either).
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Example 2: optimal controller

is

Rrob(s) = −(1 +
√
2)2s2 + (2 +

√
2)!̃cs + !̃

2
c

s2 + (2 +
√
2)!̃cs + (1 +

√
2)2!̃2

c

;

which is

− the second-order complex lead, having the maximal phase lead ≈ 109◦

at ! = !̃c and the damping � = 1=
√
2.

In fact,

Rrob(s) = −ˇB2(s=(!̃cˇ))

B2(sˇ=!̃c)

for the Butterworth polynomial B2(s) and ˇ = 3− 2
√
2 ≈ 0:1716.

Hence,

R(s) = −!̃2
c

(1 +
√
2)2s2 + (2 +

√
2)!̃cs + !̃

2
c

s2 + (2 +
√
2)!̃cs + (1 +

√
2)2!̃2

c

(mind that positive feedback is assumed).
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Example 2: optimal controller

is

Rrob(s) = −(1 +
√
2)2s2 + (2 +

√
2)!̃cs + !̃

2
c

s2 + (2 +
√
2)!̃cs + (1 +

√
2)2!̃2

c

;

which is

− the second-order complex lead, having the maximal phase lead ≈ 109◦

at ! = !̃c and the damping � = 1=
√
2.

In fact,

Rrob(s) = −ˇB2(s=(!̃cˇ))

B2(sˇ=!̃c)

for the Butterworth polynomial B2(s) and ˇ = 3− 2
√
2 ≈ 0:1716.

Hence,

R(s) = −!̃2
c

(1 +
√
2)2s2 + (2 +

√
2)!̃cs + !̃

2
c

s2 + (2 +
√
2)!̃cs + (1 +

√
2)2!̃2

c

(mind that positive feedback is assumed).
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Example 2: resulted loop

For every !̃c,

− �max =
√

1=2−
√
2=3 ≈ 0:1691

− !c = !̃c

− �ph ≈ 19◦

− �g ≈ 2:29

− �m ≈ 0:3298
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Example 2: resulted GoF

S Td

Tc T
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Example 3

Let

P(s) =
1

s(s + 1)
and W (s) =

!̃2
c

√
1 + !̃2

c

s
;

so that

Pmsh(s) =
!̃2
c

√
1 + !̃2

c

s2(s + 1)
:

This weight intends to provide

− an integral action in the controller

− high-frequency roll-off of 1

− crossover frequency !c = !̃c

This loop approaches the

− double integrator if !̃c ≪ 1 a phase lag of ≈ −180◦ at !̃c

− triple integrator if !̃c ≫ 1 a phase lag of ≈ −270◦ at !̃c
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Example 3: optimal controllers

Three cases:

!̃c = 0:1

R(s) = −0:0259(s + 0:0407)(s + 1)

s(s + 0:2819)(s + 0:9603)
≈ −0:027(s + 0:0407)

s(s + 0:2819)

!̃c = 1

R(s) = −5:1584(s + 0:4733)(s + 0:9477)

s(s2 + 3:614s + 5:968)

!̃c = 10

R(s) = −5448:9(s2 + 6:512s + 19:16)

s(s2 + 33:62s + 563:1)



Modeling uncertainty and robust stability Loop shaping MIMO extensions Case studies

Example 3: resulted loop
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Example 3: resulted GoF

S Td

Tc T
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Example 4

Let

P(s) =
1

s2 + 0:1s + 1
and W (s) =

k

s
for

!̃c

k

0 0.58 0.995 1.147

0.386

0.099

so that

Pmsh(s) =
k

s(s2 + 0:1s + 1)
:

This weight intends to provide

− an integral action in the controller

− high-frequency roll-off of 1

− crossover frequency !c = !̃c

This loop approaches the

− single integrator if !̃c ≪ 1 a phase lag of ≈ −90◦ at !̃c

− triple integrator if !̃c ≫ 1 a phase lag of ≈ −270◦ at !̃c

(the phase drops rapidly around the resonance).
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Example 4: optimal controllers

Three cases:

!̃c = 0:13

R(s) = −0:1396(

≈ s2+0:1s+1︷ ︸︸ ︷
s2 − 0:03291s + 0:9464)

s(s2 + 0:6051s + 1:129)

!̃c = 2

R(s) = −27:083(s2 + 0:8226s + 0:8323)

s(s2 + 5:725s + 16:88)

!̃c = 6

R(s) = −1184:8(s2 + 3:453s + 6:361)

s(s2 + 20:1s + 202:4)
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Example 4: resulted loop

Robustness deteriorates rapidly after !̃c passed the resonance.
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Example 4: resulted GoF

S Td

Tc T
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