Linear Control Systems (036012) chapter 9

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Loop shaping

MIMO extensions

Case studies

Outline

Modeling uncertainty and robust stability

Loop shaping

MIMO extensions

Case studies

Outline

Modeling uncertainty and robust stability

Loop shaping

MIMO extensions

Case studies

Nobody's perfect

In other words, any

 mathematical model is merely a (more / less accurate) approximation of the real world.

Unstructured uncertainty models

Under an arbitrary stable and norm-bounded Δ :

Additive

$$P = P_{nom} + \Delta$$
:

Input multiplicative

$$P = P_{\text{nom}}(I + \Delta): \quad \underbrace{P_{\text{nom}}}_{P_{\text{nom}}} \underbrace{A}_{P_{\text{nom}}}$$

Output multiplicative

 $P = (I + \Delta)P_{\text{nom}}$:

Unstructured uncertainty models

Under an arbitrary stable and norm-bounded Δ :

Additive $P = P_{\text{nom}} + \Delta$:

 $P = P_{nom}(I + \Delta)$:

Output multiplicative

Inverse additive

 $P = (I + \Delta)P_{\mathsf{nom}}$:

 $P = (I + P_{\text{nom}}\Delta)^{-1}P_{\text{nom}}:$

 P_{nom}

Inverse input multiplicative

Inverse output multiplicative $P = (I + \Delta)^{-1} P_{\text{nom}}$:

General form

Plant:

$$P=\mathcal{F}_{\mathsf{u}}(G,\varDelta).$$

For the particular cases above:

$$G_{a} = \begin{bmatrix} 0 & I \\ I & P_{nom} \end{bmatrix}, \qquad G_{a,inv} = \begin{bmatrix} -P_{nom} & P_{nom} \\ -P_{nom} & P_{nom} \end{bmatrix},$$
$$G_{im} = \begin{bmatrix} 0 & I \\ P_{nom} & P_{nom} \end{bmatrix}, \qquad G_{im,inv} = \begin{bmatrix} -I & I \\ -P_{nom} & P_{nom} \end{bmatrix},$$
$$G_{om} = \begin{bmatrix} 0 & P_{nom} \\ I & P_{nom} \end{bmatrix}, \qquad G_{om,inv} = \begin{bmatrix} -I & P_{nom} \\ -I & P_{nom} \end{bmatrix}.$$

Example: DC motor

Model:

$$P_L(s) := \frac{K_{\rm m}K_{\rm a}}{s((Ls+R)(Js+f)+K_{\rm m}K_{\rm b})}.$$

Nominal (simplified) model with L = 0:

$$P_{\text{nom}}(s) = \frac{K_{\text{m}}K_{\text{a}}}{s(RJs + (Rf + K_{\text{b}}K_{\text{m}}))}.$$

Nominal values:

Our goal is to

- calculate bounds on $\varDelta({\rm j}\omega)$ at each frequency
- for various choices of the uncertainty configuration.

$$-P = P_{\text{nom}} + \Delta \implies |\Delta(j\omega)| \ge |P(j\omega) - P_{\text{nom}}(j\omega)|$$

$$-P = P_{\text{nom}}(1 + \Delta) \implies |\Delta(j\omega)| \ge \left|\frac{P(j\omega)}{P_{\text{nom}}(j\omega)} - 1\right|$$

$$-P = \frac{P_{\text{nom}}}{1 + P_{\text{nom}}\Delta} \implies |\Delta(j\omega)| \ge \left|\frac{1}{P(j\omega)} - \frac{1}{P_{\text{nom}}(j\omega)}\right|$$

$$-P = \frac{P_{\text{nom}}}{1 + \Delta} \implies |\Delta(j\omega)| \ge \left|\frac{P_{\text{nom}}(j\omega)}{P(j\omega)} - 1\right|$$

for every possible P from a given class.

and only the multiplicative Δ is stable.

Modeling uncertainty and robust stability

This $\Delta \in H_{\infty}$, with $\|\Delta\|_{\infty} \leq 1$.

— introduce frequency-dependent weight, say $W(j\omega)$

such that $\Delta = W \Delta_0$ for some stable Δ_0 such that $\|\Delta_0\|_{\infty} \leq 1$ (in our case $|W(j\omega)| < 0.1$ at low frequencies and $|W(j\omega)| \uparrow 1$ at high). The weight -W can always be absorbed into G.

This $\Delta \in H_{\infty}$, with $\|\Delta\|_{\infty} \leq 1$. More accurate is to

- introduce frequency-dependent weight, say $W(j\omega)$

such that $\Delta = W \Delta_0$ for some stable Δ_0 such that $\|\Delta_0\|_{\infty} \leq 1$ (in our case $|W(j\omega)| < 0.1$ at low frequencies and $|W(j\omega)| \uparrow 1$ at high).

W can always be absorbed into G

This $\Delta \in H_{\infty}$, with $\|\Delta\|_{\infty} \leq 1$. More accurate is to

- introduce frequency-dependent weight, say $W(j\omega)$

such that $\Delta = W \Delta_0$ for some stable Δ_0 such that $\|\Delta_0\|_{\infty} \leq 1$ (in our case $|W(j\omega)| < 0.1$ at low frequencies and $|W(j\omega)| \uparrow 1$ at high). The weight -W can always be absorbed into G.

Robust stability problem in H_{∞}

Goal:

- guarantee that the system is stable for all $\Delta \in \mathcal{B}_{H_{\infty}}$ (may be $\mathcal{B}_{L_2 \to L_2}$ in the time-varying nonlinear case).

Robust stability theorem

Theorem

The system is robustly stable iff $\|\mathcal{F}_{l}(G, R)\|_{\infty} < 1$.

Proof (outline): Sufficiency follows by the SGT. Necessity by constructing a destabilizing $\Delta \in \mathcal{B}_{H_{\infty}}$ for ω at which $\|\mathcal{F}_{I}(G(j\omega), R(j\omega))\| = 1$.

Thus,

- robust stability \iff the standard H_∞ problem for $P_{\sf nom}$

Robust stability theorem

Theorem

The system is robustly stable iff $\|\mathcal{F}_{l}(G, R)\|_{\infty} < 1$.

Proof (outline): Sufficiency follows by the SGT. Necessity by constructing a destabilizing $\Delta \in \mathcal{B}_{H_{\infty}}$ for ω at which $\|\mathcal{F}_{I}(G(j\omega), R(j\omega))\| = 1$.

Thus,

- robust stability \iff the standard H_∞ problem for P_{nom}

Robust stability theorem: special cases

Additive uncertainty:

$$G = \begin{bmatrix} 0 & I \\ I & P_{\text{nom}} \end{bmatrix} \implies \mathcal{F}_{\text{I}}(G, R) = R(I - P_{\text{nom}}R)^{-1} = \mathcal{T}_{c}$$

Input multiplicative uncertainty:

$$G = \begin{bmatrix} 0 & I \\ P_{\text{nom}} & P_{\text{nom}} \end{bmatrix} \implies \mathcal{F}_{\text{I}}(G, R) = R(I - P_{\text{nom}}R)^{-1}P_{\text{nom}} = \mathcal{T}_{\text{i}}$$

Inverse additive uncertainty:

$$G = \begin{bmatrix} -P_{\text{nom}} & P_{\text{nom}} \\ -P_{\text{nom}} & P_{\text{nom}} \end{bmatrix} \implies \mathcal{F}_{\text{I}}(G, R) = -(I - P_{\text{nom}}R)^{-1}P_{\text{nom}} = -\mathcal{T}_{\text{d}}$$

Inverse output multiplicative uncertainty:

$$G = \begin{bmatrix} -I & P_{\text{nom}} \\ -I & P_{\text{nom}} \end{bmatrix} \implies \mathcal{F}_{\text{I}}(G, R) = -(I - P_{\text{nom}}R)^{-1} = -S_{\text{o}}$$

Beyond SG

Structured uncertainty:

$$\Delta = \operatorname{diag}\{\Delta_i\}, \quad \text{with } \begin{cases} \text{some } \Delta_i \in \mathcal{B}_{H^{p_i \times m_i}_{\infty}} \\ \text{some } \Delta_i = \delta_i I_{m_i} \text{ for } \delta_i \in \mathcal{B}_{H^{1 \times 1}_{\infty}} \end{cases}$$

Theory is based on structured singular values, aka μ .

Robust performance:

with the goal to — guarantee bounds on $||T_{z_pw_p}||$ for all Δ In some cases also reduces to μ

Beyond SG

Structured uncertainty:

$$\Delta = \mathsf{diag}\{\Delta_i\}, \quad \mathsf{with} \ \begin{cases} \mathsf{some} \ \Delta_i \in \mathcal{B}_{\mathcal{H}_{m_i}^{p_i imes m_i}} \\ \mathsf{some} \ \Delta_i = \delta_i I_{m_i} \ \mathsf{for} \ \delta_i \in \mathcal{B}_{\mathcal{H}_{m^{1 imes 1}}^{1 imes 1}} \end{cases}$$

Theory is based on structured singular values, aka μ .

with the goal to

- $\text{ guarantee bounds on } \|\mathcal{T}_{z_p w_p}\| \text{ for all } \Delta \in \mathcal{B}_{H_{\infty}}.$
- In some cases also reduces to μ .

Outline

Modeling uncertainty and robust stability

Loop shaping

MIMO extensions

Case studies

2DOF control architecture

Nominal closed-loop system, if $NM^{-1} = P$:

$$\begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} N \\ M \end{bmatrix} Fr + \begin{bmatrix} S_{o} & T_{d} \\ T_{c} & T_{i} \end{bmatrix} \begin{bmatrix} d_{o} \\ d_{i} \end{bmatrix} + \begin{bmatrix} T_{o} \\ T_{c} \end{bmatrix} n,$$

where

$$\begin{bmatrix} S_{o} & T_{d} \\ T_{c} & T_{i} \end{bmatrix} := \begin{bmatrix} I \\ R \end{bmatrix} (I - PR)^{-1} \begin{bmatrix} I & P \end{bmatrix}$$

and $T_{o} := (I - PR)^{-1}PR = S_{o} - I$.

2DOF control architecture (contd)

Closed-loop system if $NM^{-1} \neq P$:

$$\begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} N \\ M \end{bmatrix} Fr + \begin{bmatrix} S_{o} & T_{d} \\ T_{c} & T_{i} \end{bmatrix} \left(\begin{bmatrix} -N \\ M \end{bmatrix} Fr + \begin{bmatrix} d_{o} \\ d_{i} \end{bmatrix} \right) + \begin{bmatrix} T_{o} \\ T_{c} \end{bmatrix} n$$
$$= \left(\begin{bmatrix} N \\ M \end{bmatrix} + \begin{bmatrix} S_{o} \\ T_{c} \end{bmatrix} (PM - N) \right) Fr + \begin{bmatrix} S_{o} & T_{d} \\ T_{c} & T_{i} \end{bmatrix} \begin{bmatrix} d_{o} \\ d_{i} \end{bmatrix} + \begin{bmatrix} T_{o} \\ T_{c} \end{bmatrix} n$$

because

$$\begin{bmatrix} S_{o} & T_{d} \\ T_{c} & T_{i} \end{bmatrix} \begin{bmatrix} -N \\ M \end{bmatrix} F = \begin{bmatrix} I \\ R \end{bmatrix} (I - PR)^{-1} (PM - N)F.$$

Typical requirements: SISO

with

$$y = NFr + S((PM - N)Fr + d_o + Pd_i) + Tn,$$

so we need to have

 $|S(j\omega)| \ll 1$ at dominant ω 's of

- the spectrum of r, where modeling uncertainty is non-negligible
- the spectrum of d_o
- the spectrum of d_i , where plant gain is non-negligible
- $|T(j\omega)| \ll 1$ at dominant ω 's of
 - the spectrum of n

Typically,

 $-~|S(\mathsf{j}\omega)|\ll 1$ at low frequencies and $|\mathcal{T}(\mathsf{j}\omega)|\ll 1$ at high frequencies.

SISO loop shaping

The loop transfer function is L(s) := P(s)R(s). Then

 $|S(\mathrm{j}\omega)|\ll 1\iff |L(\mathrm{j}\omega)|\gg 1$

 $|T(\mathrm{j}\omega)|\ll 1\iff |L(\mathrm{j}\omega)|\ll 1$

- closed-loop system is stable iff
 L(j\u03c6) agrees with the Nyquist
 criterion
- closed-loop system is robust if $L(j\omega)$ is "far" from the critical point (measured by stability margins, like μ_{ph} , μ_{g} , μ_{m})

Magnitude shaping is relatively easy, phase shaping is knotty...

SISO loop shaping

The loop transfer function is L(s) := P(s)R(s). Then

 $- |S(j\omega)| \ll 1 \iff |L(j\omega)| \gg 1$

 $- |T(j\omega)| \ll 1 \iff |L(j\omega)| \ll 1$

- closed-loop system is stable iff
 L(j\u03c6) agrees with the Nyquist
 criterion
- closed-loop system is robust if $L(j\omega)$ is "far" from the critical point (measured by stability margins, like μ_{ph} , μ_{g} , μ_{m})

Magnitude shaping is relatively easy, phase shaping is knotty...

Outline

Modeling uncertainty and robust stability

Loop shaping

MIMO extensions

Case studies

Typical requirements: MIMO

with

$$y = NFr + S_o((PM - N)Fr + d_o + Pd_i) + T_on,$$

so we need to have

 $- \|S_{o}(j\omega)\| \ll 1$ at dominant ω 's of

- the spectrum of r, where modeling uncertainty is non-negligible
- the spectrum of d_o
- the spectrum of d_i , where plant gain is non-negligible
- $\|\mathcal{T}_{o}(j\omega)\| \ll 1$ at dominant ω 's of
 - the spectrum of n

Typically,

 $-~\|{\cal S}_{\rm o}(j\omega)\|\ll 1$ at low frequencies and $\|{\cal T}_{\rm o}(j\omega)\|\ll 1$ at high freq-s.

MIMO magnitude shaping

In terms of the output loop transfer function $L_o(s) := P(s)R(s)$,

$$- \|S_{o}(j\omega)\| \ll 1 \iff \underline{\sigma} (L_{o}(j\omega)) \gg 1$$

$$- \|T_{o}(j\omega)\| \ll 1 \iff \overline{\sigma}(L_{o}(j\omega)) \ll 1$$

so we have:

But

MIMO magnitude shaping

In terms of the output loop transfer function $L_o(s) := P(s)R(s)$,

- $\|S_{o}(j\omega)\| \ll 1 \iff \underline{\sigma} \left(L_{o}(j\omega) \right) \gg 1$
- $\| T_{o}(j\omega) \| \ll 1 \iff \overline{\sigma}(L_{o}(j\omega)) \ll 1$

so we have:

But

— how to shape phase?

MIMO phase shaping

Idea of McFarlane & Glover (in essence):

- cast phase shaping as an H_{∞} robust stabilization problem ("far from the critical point" may indeed be interpreted as robustness requirement)

The latter

- can be solved analytically, via H_∞ optimization
- applies to MIMO systems

Design steps

- 1. Shape loop magnitude via weighs as $P_{msh}(s) := W_o(s)P(s)W_i(s)$
 - typically P, PI, or PID, may include LPF
 - can cancel poles or zeros of P(s) if required
 - in MIMO case can decouple
- 2. Design $R_{rob}(s)$ for $P_{msh}(s)$ via robust stabilization
 - $-\,$ robustness level, say $\epsilon_{\sf max} = 1/\gamma_{\sf min},$ serves as the success indicator
- 3. If successfull, pick $R(s) = W_i(s)R_{rob}(s)W_o(s)$
 - $-\,$ in the SISO case, $L(s)=P(s)R(s)=P_{\rm msh}(s)R_{\rm rob}(s)$ is the designed loop
 - in the MIMO case, $L_o(s) = P(s)R(s) = W_o^{-1}(s)P_{msh}(s)R_{rob}(s)W_o(s)$, so that certain care (balance) should be taken in the choice of W_o

Properties

- closed-loop stability is guaranteed
- controller order = plant order + 2 imes (weights order)
- integral actions / internal model can be easily enforced in R(s) (neither W_i(s) nor W_e(s) is constrained to be stable)

Design steps

- 1. Shape loop magnitude via weighs as $P_{msh}(s) := W_o(s)P(s)W_i(s)$
 - typically P, PI, or PID, may include LPF
 - can cancel poles or zeros of P(s) if required
 - in MIMO case can decouple
- 2. Design $R_{rob}(s)$ for $P_{msh}(s)$ via robust stabilization
 - $-\,$ robustness level, say $\epsilon_{\max}=1/\gamma_{\min},$ serves as the success indicator
- 3. If successfull, pick $R(s) = W_i(s)R_{rob}(s)W_o(s)$
 - $-\,$ in the SISO case, $L(s)=P(s)R(s)=P_{\rm msh}(s)R_{\rm rob}(s)$ is the designed loop
 - in the MIMO case, $L_o(s) = P(s)R(s) = W_o^{-1}(s)P_{msh}(s)R_{rob}(s)W_o(s)$, so that certain care (balance) should be taken in the choice of W_o

Properties:

- closed-loop stability is guaranteed
- controller order = plant order + 2 × (weights order)
- integral actions / internal model can be easily enforced in R(s)(neither $W_i(s)$ nor $W_o(s)$ is constrained to be stable)

Choice of robust stability problem

Keep in mind:

- not necessarily reflects physics of the problem
- $-\,$ rather, should possess favorable properties from the design viewpoint
- the H_∞ -norm of every GoF system reflects some robustness
- each one of GoF systems encourages cancellations
- So, let's balance the design, via solving

$$\underset{R_{rob}}{\text{minimize}} \left\| \begin{bmatrix} R_{rob} \\ I \end{bmatrix} (I - P_{msh}R_{rob})^{-1} \begin{bmatrix} I & P_{msh} \end{bmatrix} \right\|_{\infty} = \underset{R_{rob}}{\text{minimize}} \left\| \begin{bmatrix} T_c & T_i \\ S_o & T_d \end{bmatrix} \right\|_{\infty}$$

which may be dubbed balanced sensitivity problem. Quantity

$$\epsilon_{\max} \coloneqq \frac{1}{\gamma_{\min}} \in (0, 1), \quad \text{where } \gamma_{\min} \coloneqq \min_{R_{\min}} \left\| \begin{bmatrix} T_{\mathsf{c}} & T_{\mathsf{i}} \\ S_{\mathsf{o}} & T_{\mathsf{d}} \end{bmatrix} \right\|_{\infty}$$

is the success indicator.

Choice of robust stability problem

- Keep in mind:
 - not necessarily reflects physics of the problem
- rather, should possess favorable properties from the design viewpoint Rationale:
 - $-\,$ the $H_\infty\text{-norm}$ of every GoF system reflects some robustness
 - each one of GoF systems encourages cancellations

So, let's balance the design, via solving

 $\underset{R_{rob}}{\text{minimize}} \left[\begin{bmatrix} R_{rob} \\ I \end{bmatrix} (I - P_{msh} R_{rob})^{-1} \begin{bmatrix} I & P_{msh} \end{bmatrix} \right]_{\infty} = \underset{R_{rob}}{\text{minimize}} \left[\begin{bmatrix} T_c & T_i \\ S_o & T_d \end{bmatrix} \right]_{\infty}$

which may be dubbed balanced sensitivity problem. Quantity

$$\epsilon_{\max} \coloneqq rac{1}{\gamma_{\min}} \in (0,1), \hspace{1em} ext{where} \hspace{1em} \gamma_{\min} \coloneqq \min_{R_{\min}} \left\| egin{bmatrix} T_{\mathsf{c}} & T_{\mathsf{i}} \ S_{\mathsf{o}} & T_{\mathsf{d}} \end{bmatrix}
ight\|_{\infty}$$

is the success indicator.

Choice of robust stability problem

Keep in mind:

- not necessarily reflects physics of the problem
- rather, should possess favorable properties from the design viewpoint Rationale:
 - $-\,$ the ${\it H}_\infty\text{-norm}$ of every GoF system reflects some robustness
 - each one of GoF systems encourages cancellations

So, let's balance the design, via solving

$$\underset{R_{\text{rob}}}{\text{minimize}} \left\| \begin{bmatrix} R_{\text{rob}} \\ I \end{bmatrix} (I - P_{\text{msh}} R_{\text{rob}})^{-1} \begin{bmatrix} I & P_{\text{msh}} \end{bmatrix} \right\|_{\infty} = \underset{R_{\text{rob}}}{\text{minimize}} \left\| \begin{bmatrix} T_{\text{c}} & T_{\text{i}} \\ S_{\text{o}} & T_{\text{d}} \end{bmatrix} \right\|_{\infty}$$

which may be dubbed balanced sensitivity problem. Quantity

$$\epsilon_{\max} := \frac{1}{\gamma_{\min}} \in (0, 1), \quad \text{where } \gamma_{\min} := \min_{R_{\text{rob}}} \left\| \begin{bmatrix} T_{\text{c}} & T_{\text{i}} \\ S_{\text{o}} & T_{\text{d}} \end{bmatrix} \right\|_{\infty}$$

is the success indicator.

Balanced sensitivity problem: associated uncertainty

Consider robust stability problem for

under normalized lcf uncertainty, i.e. $P = (\tilde{M} + \Delta_M)^{-1} (\tilde{N} + \Delta_N)$ with

$$\tilde{N}\tilde{N}^{\sim} + \tilde{M}\tilde{M}^{\sim} = I$$

(i.e. $\begin{bmatrix} \tilde{N} & \tilde{M} \end{bmatrix}$ is co-inner). It can be shown that

- closed-loop system robustly stable for all $\| \begin{bmatrix} \Delta_M & \Delta_N \end{bmatrix} \|_{\infty} < \alpha$ iff

$$\left\| \begin{bmatrix} T_{\mathsf{c}} & T_{\mathsf{i}} \\ S_{\mathsf{o}} & T_{\mathsf{d}} \end{bmatrix} \right\|_{\infty} \leq \frac{1}{\alpha}.$$

Hence,

- solving balanced sensitivity \iff maximizing robustness radius.

Balanced sensitivity problem: solution

Bring in a stabilizable and detectable realization

$$P_{\mathsf{msh}}(s) = \left[\begin{array}{c|c} A & B \\ \hline C & 0 \end{array}
ight]$$

and let $X \ge 0$ and $Y \ge 0$ be the stabilizing solutions to the H_2 AREs

A'X + XA - XBB'X + C'C = 0 and AY + YA' - YC'CY + BB' = 0

such that A - BB'X and A - YC'C are Hurwitz (exist and are unique).

Remark It can be shown that $Y = (I - W_X X)^{-1} W_X$, where $W_X \ge 0$ solves the Lyapunov equation

$$(A - BB'X)W_X + W_X(A - BB'X)' + BB' = 0$$

(i.e. is the controllability Gramian of (A - BB'X, B)).

Balanced sensitivity problem: solution (contd)

Theorem

The minimal attainable performance

$$\gamma_{min} = \sqrt{1 + \rho(YX)} > 1.$$

Given then any $\gamma > \gamma_{min}$, all γ -suboptimal controllers are given by

$$R_{rob}(s) = \mathcal{F}_{I}\left(\begin{bmatrix}\frac{A - BB'X - Z_{\gamma}^{-1}YC'C \mid Z_{\gamma}^{-1}YC' \quad Z_{\gamma}^{-1}B}\\-B'X & 0 & I\\-C & I & 0\end{bmatrix}, Q(s)\right)$$

for any $Q \in RH_\infty$ such that

$$\|Q\|_{\infty} < \sqrt{\gamma^2 - 1},$$

where $Z_{\gamma} := (1 - \gamma^{-2})I - \gamma^{-2}YX$.

MATLAB code 1

```
% H-inf loop-shaping design (assuming negative feedback)
%
Pmsh = minreal(Wo*P*Wi);
 [A,B,C,D] = ssdata(Pmsh);
X = icare(A,B,C'*C);
Y = icare(A', C', B*B');
epsmax2 = 1/(1+max(eig(Y*X)));
%
 suboptf = 1.05^2;
                                           % any number >1
gammam2inv = epsmax2/suboptf;
Z = (1-gammam2inv)*eve(size(A))-gammam2inv*Y*X;
K = -B' * X:
L = -inv(Z) * Y * C':
Rrob = ss(A+B*K+L*C,L,K,zeros(size(D')));
%
Rgam = minreal(Wi*Rrob*Wo);
```

Balanced sensitivity problem: what if $\gamma \downarrow \gamma_{opt}$

If $\gamma^2 \downarrow 1 + \rho(YX) = \rho(I + YX)$, then

$$Z_{\gamma} = I - \gamma^{-2}(I + YX)$$

turns singular. To avoid inverting singular matrices, the central controller

$$R_{\mathsf{rob}}(s) = \left[egin{array}{c|c|c|c|c|c|c|} A - BB'X - Z_{\gamma}^{-1}YC'C & -Z_{\gamma}^{-1}YC' \ \hline B'X & 0 \end{array}
ight]$$

can be implemented in the descriptor (algebraic differential equation) form

$$R_{
m rob}(s) = -B'X(sZ_{\gamma}-Z_{\gamma}A+Z_{\gamma}BB'X+YC'C)^{-1}YC'$$

(is well defined, because nrank($sZ_{\gamma_{opt}} - Z_{\gamma_{opt}}A + Z_{\gamma_{opt}}BB'X + YC'C) = n$). As a result,

 $- \ \ \, {\rm the \ order \ of \ the \ optimal \ controller \ equals \ \ {\rm rank}(Z_{\gamma_{\rm opt}}) < n.$

MATLAB code 2

```
% H-inf loop-shaping design (assuming negative feedback)
%
Pmsh = minreal(Wo*P*Wi);
 [A,B,C,D] = ssdata(Pmsh);
X = icare(A,B,C'*C);
Y = icare(A', C', B*B');
epsmax2 = 1/(1+max(eig(Y*X)));
%
 suboptf = 1.05^2;
                                           % any number >=1
gammam2inv = epsmax2/subopt;
Z = (1-gammam2inv)*eye(size(A))-gammam2inv*Y*X;
K = -B' * X:
L = -Y * C':
Rrob = dss(Z*A+Z*B*K+L*C,L,K,zeros(size(D')),Z);
%
Rgam = minreal(Wi*Rrob*Wo);
```

Outline

Modeling uncertainty and robust stability

Loop shaping

MIMO extensions

Case studies

Example 1

Let

$$P(s) = rac{1}{s^2}$$
 and $W(s) = ilde{\omega}_{\mathsf{c}}^2,$

so that the magnitude-shaped loop,

$$P_{\mathsf{msh}}(s) = rac{ ilde{\omega}_{\mathsf{c}}^2}{s^2} = \left[egin{matrix} 0 & 1 & 0 \ 0 & 0 & ilde{\omega}_{\mathsf{c}} \ \hline ilde{\omega}_{\mathsf{c}} & 0 & 0 \end{array}
ight],$$

has its crossover frequency $\omega_{\rm c} = \tilde{\omega}_{\rm c}$.

Example 1: optimal cost

AREs

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} X + X \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - X \begin{bmatrix} 0 & 0 \\ 0 & \tilde{\omega}_{c}^{2} \end{bmatrix} X + \begin{bmatrix} \tilde{\omega}_{c}^{2} & 0 \\ 0 & 0 \end{bmatrix} = 0$$

and

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} Y + Y \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} - Y \begin{bmatrix} \tilde{\omega}_{\mathsf{c}}^2 & 0 \\ 0 & 0 \end{bmatrix} Y + \begin{bmatrix} 0 & 0 \\ 0 & \tilde{\omega}_{\mathsf{c}}^2 \end{bmatrix} = 0$$

have stabilizing solutions

$$X = \begin{bmatrix} \sqrt{2}\,\tilde{\omega}_{\mathsf{c}} & 1\\ 1 & \sqrt{2}/\tilde{\omega}_{\mathsf{c}} \end{bmatrix} > 0 \quad \text{and} \quad Y = \begin{bmatrix} \sqrt{2}/\tilde{\omega}_{\mathsf{c}} & 1\\ 1 & \sqrt{2}\,\tilde{\omega}_{\mathsf{c}} \end{bmatrix} > 0.$$

Optimal performance:

$$\begin{split} \chi^2_{\min} &= 1 + \rho \left(\begin{bmatrix} \sqrt{2}/\tilde{\omega}_c & 1 \\ 1 & \sqrt{2}\,\tilde{\omega}_c \end{bmatrix} \begin{bmatrix} \sqrt{2}\,\tilde{\omega}_c & 1 \\ 1 & \sqrt{2}/\tilde{\omega}_c \end{bmatrix} \right) \\ &= 1 + \rho \left(\begin{bmatrix} 3 & 2\sqrt{2}/\tilde{\omega}_c \\ 2\sqrt{2}\,\tilde{\omega}_c & 3 \end{bmatrix} \right) = 4 + 2\sqrt{2} \approx 6.8284 \end{split}$$

Idependent of $\tilde{\omega}_c$ (because loop phase is independent of $\tilde{\omega}_c$ either)

Example 1: optimal cost

AREs

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} X + X \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - X \begin{bmatrix} 0 & 0 \\ 0 & \tilde{\omega}_{c}^{2} \end{bmatrix} X + \begin{bmatrix} \tilde{\omega}_{c}^{2} & 0 \\ 0 & 0 \end{bmatrix} = 0$$

and

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} Y + Y \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} - Y \begin{bmatrix} \tilde{\omega}_{\mathsf{c}}^2 & 0 \\ 0 & 0 \end{bmatrix} Y + \begin{bmatrix} 0 & 0 \\ 0 & \tilde{\omega}_{\mathsf{c}}^2 \end{bmatrix} = 0$$

have stabilizing solutions

$$X = \begin{bmatrix} \sqrt{2}\,\widetilde{\omega}_{\mathsf{c}} & 1 \\ 1 & \sqrt{2}/\widetilde{\omega}_{\mathsf{c}} \end{bmatrix} > 0 \quad \text{and} \quad Y = \begin{bmatrix} \sqrt{2}/\widetilde{\omega}_{\mathsf{c}} & 1 \\ 1 & \sqrt{2}\,\widetilde{\omega}_{\mathsf{c}} \end{bmatrix} > 0.$$

Optimal performance:

$$\gamma_{\min}^{2} = 1 + \rho \left(\begin{bmatrix} \sqrt{2}/\tilde{\omega}_{c} & 1\\ 1 & \sqrt{2}\,\tilde{\omega}_{c} \end{bmatrix} \begin{bmatrix} \sqrt{2}\,\tilde{\omega}_{c} & 1\\ 1 & \sqrt{2}/\tilde{\omega}_{c} \end{bmatrix} \right)$$
$$= 1 + \rho \left(\begin{bmatrix} 3 & 2\sqrt{2}/\tilde{\omega}_{c} \\ 2\sqrt{2}\,\tilde{\omega}_{c} & 3 \end{bmatrix} \right) = 4 + 2\sqrt{2} \approx 6.8284$$

is independent of $\tilde{\omega}_{c}$ (because loop phase is independent of $\tilde{\omega}_{c}$ either).

Example 1: optimal controller

With

$$Z_{\gamma_{\mathsf{min}}} = (\sqrt{2} - 1) \begin{bmatrix} 1 & -1/\tilde{\omega}_{\mathsf{c}} \\ -\tilde{\omega}_{\mathsf{c}} & 1 \end{bmatrix} = (\sqrt{2} - 1) \begin{bmatrix} 1 \\ -\tilde{\omega}_{\mathsf{c}} \end{bmatrix} \begin{bmatrix} 1 & -1/\tilde{\omega}_{\mathsf{c}} \end{bmatrix}$$

(indeed singular),

$$R_{
m rob}(s) = -rac{(1+\sqrt{2})s+ ilde{\omega}_{
m c}}{s+ ilde{\omega}_{
m c}(1+\sqrt{2})}$$

which is

 $-\,$ the first-order lead, having the maximal phase lead 45° at $\omega=\tilde{\omega}_{\rm c}.$

$$R(s) = W(s)R_{
m rob}(s) = - ilde{\omega}_c^2 rac{(1+\sqrt{2})s+\omega_c}{s+ ilde{\omega}_c(1+\sqrt{2})}$$

(mind that positive feedback is assumed).

Example 1: optimal controller

With

$$Z_{\gamma_{\min}} = (\sqrt{2} - 1) \begin{bmatrix} 1 & -1/\widetilde{\omega}_{c} \\ -\widetilde{\omega}_{c} & 1 \end{bmatrix} = (\sqrt{2} - 1) \begin{bmatrix} 1 \\ -\widetilde{\omega}_{c} \end{bmatrix} \begin{bmatrix} 1 & -1/\widetilde{\omega}_{c} \end{bmatrix}$$

(indeed singular),

$$R_{
m rob}(s) = -rac{(1+\sqrt{2})s+ ilde{\omega}_{
m c}}{s+ ilde{\omega}_{
m c}(1+\sqrt{2})}$$

which is

 $-\,$ the first-order lead, having the maximal phase lead 45° at $\omega=\tilde{\omega}_{\rm c}.$ Hence,

$$R(s) = W(s)R_{\mathsf{rob}}(s) = - ilde{\omega}_{\mathsf{c}}^2 rac{(1+\sqrt{2})s+ ilde{\omega}_{\mathsf{c}}}{s+ ilde{\omega}_{\mathsf{c}}(1+\sqrt{2})}$$

(mind that positive feedback is assumed).

Example 1: resulted loop

For every $\tilde{\omega}_{c}$,

- $\ \epsilon_{\max} = 1/\sqrt{4+2\sqrt{2}} \approx 0.3827$
- $\ \omega_{\rm c} = \tilde{\omega}_{\rm c}$
- $-~\mu_{
 m ph}=45^\circ$
- $-\mu_{g}=\infty$
- $-~\mu_{
 m m}pprox$ 0.6921

Example 1: resulted GoF

Example 2

Let

$$P(s) = rac{1}{s^3}$$
 and $W(s) = ilde{\omega}_{\mathsf{c}}^3,$

so that the magnitude-shaped loop,

$$P_{\mathsf{msh}}(s) = rac{ ilde{\omega}_{\mathsf{c}}^3}{s^3} = egin{bmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & \sqrt{ ilde{\omega}_{\mathsf{c}}^3} \ rac{\sqrt{ ilde{\omega}_{\mathsf{c}}^3} & 0 & 0 & 0 \end{bmatrix},$$

has its crossover frequency $\omega_{\rm c} = \tilde{\omega}_{\rm c}$.

Optimal cost (about 44% of what we had in the double integrator case):

is independent of $\tilde{\omega}_{c}$ too (because loop phase is independent of $\tilde{\omega}_{c}$ either).

Example 2

Let

$$P(s) = rac{1}{s^3}$$
 and $W(s) = ilde{\omega}_{\mathsf{c}}^3,$

so that the magnitude-shaped loop,

$$egin{aligned} & \mathcal{P}_{\mathsf{msh}}(s) = rac{ ilde{\omega}_{\mathsf{c}}^3}{s^3} = egin{bmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & \sqrt{ ilde{\omega}_{\mathsf{c}}^3} \ \hline \sqrt{ ilde{\omega}_{\mathsf{c}}^3} & 0 & 0 & 0 \end{bmatrix}, \end{aligned}$$

has its crossover frequency $\omega_{\rm c} = \tilde{\omega}_{\rm c}$.

Optimal cost (about 44% of what we had in the double integrator case):

$$\epsilon_{\mathsf{max}} = \sqrt{rac{1}{2} - rac{\sqrt{2}}{3}} pprox 0.1691,$$

is independent of $\tilde{\omega}_{c}$ too (because loop phase is independent of $\tilde{\omega}_{c}$ either).

Example 2: optimal controller

is

$$R_{
m rob}(s) = -rac{(1+\sqrt{2})^2 s^2 + (2+\sqrt{2}) \widetilde{\omega}_{
m c} s + \widetilde{\omega}_{
m c}^2}{s^2 + (2+\sqrt{2}) \widetilde{\omega}_{
m c} s + (1+\sqrt{2})^2 \widetilde{\omega}_{
m c}^2},$$

which is

- the second-order complex lead, having the maximal phase lead $\approx 109^{\circ}$ at $\omega = \tilde{\omega}_{c}$ and the damping $\zeta = 1/\sqrt{2}$.

In fact,

$$R_{
m rob}(s) = -eta rac{B_2(s/(ilde{\omega}_{
m c}eta))}{B_2(seta/ ilde{\omega}_{
m c})}$$

for the Butterworth polynomial $B_2(s)$ and $\beta = 3 - 2\sqrt{2} \approx 0.1716$.

Hence

$$R(s) = -\tilde{\omega}_{c}^{2} \frac{(1+\sqrt{2})^{2}s^{2} + (2+\sqrt{2})\tilde{\omega}_{c}s + \tilde{\omega}_{c}^{2}}{s^{2} + (2+\sqrt{2})\tilde{\omega}_{c}s + (1+\sqrt{2})^{2}\tilde{\omega}_{c}^{2}}$$

(mind that positive feedback is assumed).

Example 2: optimal controller

is

$$R_{
m rob}(s) = -rac{(1+\sqrt{2})^2 s^2 + (2+\sqrt{2}) \widetilde{\omega}_{
m c} s + \widetilde{\omega}_{
m c}^2}{s^2 + (2+\sqrt{2}) \widetilde{\omega}_{
m c} s + (1+\sqrt{2})^2 \widetilde{\omega}_{
m c}^2},$$

which is

- the second-order complex lead, having the maximal phase lead $\approx 109^\circ$ at $\omega = \tilde{\omega}_{\rm c}$ and the damping $\zeta = 1/\sqrt{2}.$

In fact,

$$R_{
m rob}(s) = -eta rac{B_2(s/(ilde{\omega}_{
m c}eta))}{B_2(seta/ ilde{\omega}_{
m c})}$$

for the Butterworth polynomial $B_2(s)$ and $\beta = 3 - 2\sqrt{2} \approx 0.1716$.

Hence,

$$R(s) = -\tilde{\omega}_{c}^{2} \frac{(1+\sqrt{2})^{2}s^{2} + (2+\sqrt{2})\tilde{\omega}_{c}s + \tilde{\omega}_{c}^{2}}{s^{2} + (2+\sqrt{2})\tilde{\omega}_{c}s + (1+\sqrt{2})^{2}\tilde{\omega}_{c}^{2}}$$

(mind that positive feedback is assumed).

Example 2: resulted loop

For every $\tilde{\omega}_{c}$,

- $-\epsilon_{\max} = \sqrt{1/2 \sqrt{2}/3} \approx 0.1691$
- $-\omega_{\rm c}=\tilde{\omega}_{\rm c}$
- $-~\mu_{
 m ph}pprox 19^\circ$
- $-~\mu_{
 m g}pprox$ 2.29
- $-\mu_{
 m m}pprox$ 0.3298

Example 2: resulted GoF

Example 3

Let

$$P(s) = rac{1}{s(s+1)}$$
 and $W(s) = rac{ ilde{\omega}_{\mathsf{c}}^2 \sqrt{1+ ilde{\omega}_{\mathsf{c}}^2}}{s},$

so that

$$P_{\mathsf{msh}}(s) = rac{\widetilde{\omega}_{\mathsf{c}}^2 \sqrt{1+\widetilde{\omega}_{\mathsf{c}}^2}}{s^2(s+1)}.$$

This weight intends to provide

- an integral action in the controller
- high-frequency roll-off of 1
- crossover frequency $\omega_{\rm c} = \tilde{\omega}_{\rm c}$

This loop approaches the

- double integrator if $ilde{\omega}_{\mathsf{c}} \ll 1$
- triple integrator if $ilde{\omega}_{\mathsf{c}} \gg 1$

a phase lag of $pprox -180^\circ$ at $\widetilde{\omega}_{
m c}$ a phase lag of $pprox -270^\circ$ at $\widetilde{\omega}_{
m c}$

Example 3: optimal controllers

Three cases:

 $\tilde{\omega}_{\rm c}=0.1$

$$R(s) = -\frac{0.0259(s+0.0407)(s+1)}{s(s+0.2819)(s+0.9603)} \approx -\frac{0.027(s+0.0407)}{s(s+0.2819)}$$

$$\tilde{\omega}_{\mathsf{c}} = 1$$

$$R(s) = -rac{5.1584(s+0.4733)(s+0.9477)}{s(s^2+3.614s+5.968)}$$

 $\tilde{\omega}_{\rm c} = 10$

$$R(s) = -\frac{5448.9(s^2 + 6.512s + 19.16)}{s(s^2 + 33.62s + 563.1)}$$

Example 3: resulted loop

Example 3: resulted GoF

Example 4

Let

$$P(s) = \frac{1}{s^2 + 0.1s + 1}$$
 and $W(s) = \frac{k}{s}$ for $\frac{k}{0.386}$

so that

$$P_{msh}(s) = rac{k}{s(s^2 + 0.1s + 1)}.$$

This weight intends to provide

- an integral action in the controller
- high-frequency roll-off of 1
- crossover frequency $\omega_{\rm c}=\tilde{\omega}_{\rm c}$
- This loop approaches the
 - single integrator if $\tilde{\omega}_{\sf c} \ll 1$ a phase lag of $\approx -90^\circ$ at $\tilde{\omega}_{\sf c}$
 - triple integrator if $\tilde{\omega}_{\rm c}\gg 1$ a phase lag of $\approx -270^\circ$ at $\tilde{\omega}_{\rm c}$

(the phase drops rapidly around the resonance).

Example 4: optimal controllers

Three cases:

$$\tilde{\omega}_{c} = 0.13$$

 $\tilde{\omega}_{c} = 0.13$
 $R(s) = -\frac{0.1396(s^{2} - 0.03291s + 0.9464)}{s(s^{2} + 0.6051s + 1.129)}$
 $\tilde{\omega}_{c} = 2$
 $R(s) = -\frac{27.083(s^{2} + 0.8226s + 0.8323)}{s(s^{2} + 5.725s + 16.88)}$
 $\tilde{\omega}_{c} = 6$
 $R(s) = -\frac{1184.8(s^{2} + 3.453s + 6.361)}{s(s^{2} + 20.1s + 202.4)}$

Example 4: resulted loop

Robustness deteriorates rapidly after $\tilde{\omega}_c$ passed the resonance.

Example 4: resulted GoF

