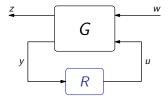
Linear Control Systems (036012) chapter 7

Leonid Mirkin

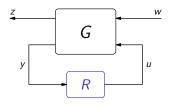
Faculty of Mechanical Engineering Technion—IIT



Given G (plant, weights, fixed parts of controller, etc), design R that

- internally stabilizes the system
- minimizes a size of the mapping $T_{zw} := \mathcal{F}_1(G,R) : w \mapsto z$

The standard problem



Given G (plant, weights, fixed parts of controller, etc), design R that

- internally stabilizes the system
- minimizes a size of the mapping $T_{zw} := \mathcal{F}_{I}(G,R) : w \mapsto z$

Depending on the measure of this "size"

- H_2 standard problem, if $||T_{zw}||_2$ is minimized LQG, Kalman filtering
- H_{∞} standard problem, if $||T_{zw}||_{\infty}$ is minimized mixed sensitivity
- or mixed H_2/H_{∞} , L_1 , et cetera

Preliminary: GoF as the standard problem

We already know (Lect. 9, but for negative feedback) that

$$\begin{bmatrix} T_{\mathsf{c}} & T_{\mathsf{i}} \\ S_{\mathsf{o}} & T_{\mathsf{d}} \end{bmatrix} := \begin{bmatrix} R \\ I \end{bmatrix} (I + PR)^{-1} \begin{bmatrix} I & P \end{bmatrix} = \mathcal{F}_{\mathsf{I}} \left(\begin{bmatrix} 0 & 0 & I \\ I & P & -P \\ I & P & -P \end{bmatrix}, R \right).$$

It is internally stabilizable, because

$$\begin{bmatrix} 0 & 0 & I \\ I & P & -P \\ I & P & -P \end{bmatrix} = \begin{bmatrix} 0 & I & M \\ I & 0 & -N \\ I & 0 & -N \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & I & M \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 & 0 \\ 0 & I & -I \\ 0 & 0 & \tilde{M} \end{bmatrix}^{-1} \begin{bmatrix} 0 & 0 & I \\ 0 & 0 & 0 \\ \tilde{M} & \tilde{N} & -\tilde{N} \end{bmatrix}$$

are its coprime factorizations over RH_{∞} . All stabilizing controllers

$$R = (\tilde{Y} + MQ)(\tilde{X} - NQ)^{-1} = (X - Q\tilde{N})^{-1}(Y + Q\tilde{M})$$

(with $\det(\tilde{X}(\infty)-N(\infty)Q(\infty)) \neq 0$ or $\det(X(\infty)-Q(\infty)\tilde{N}(\infty)) \neq 0$), so

$$\mathcal{T}_{zw} = \left(\left[egin{array}{c} ilde{Y} \ ilde{X} \end{array}
ight] + \left[egin{array}{c} M \ -N \end{array}
ight] Q
ight) \left[egin{array}{c} ilde{M} & ilde{N} \end{array}
ight].$$

Outline

Increasing modulus margin

Weighted sensitivity

Mixed sensitivity

Optimization-based design

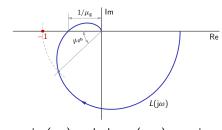
Increasing modulus margin

Weighted sensitivity

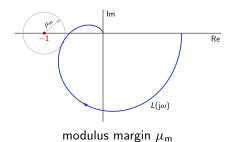
Mixed sensitivity

Optimization-based design

Stability margins



gain $(\mu_{
m g})$ and phase $(\mu_{
m ph})$ margins



If $\mu_{\rm m} \leq 1$, then

$$\mu_{\mathsf{g}} \geq rac{1}{1-\mu_{\mathsf{m}}} \quad \mathsf{and} \quad \mu_{\mathsf{ph}} \geq 2 \arcsin rac{\mu_{\mathsf{m}}}{2}.$$

Modulus margin and H_{∞}

If the closed-loop system is stable,

$$\mu_{\mathsf{m}} = \inf_{\omega \in \mathbb{R}} |1 + L(\mathsf{j}\omega)| \implies \frac{1}{\mu_{\mathsf{m}}} = \sup_{\omega \in \mathbb{R}} |S(\mathsf{j}\omega)| = \|S\|_{\infty}.$$

Hence,

Increasing modulus margin

minimizing
$$\|S\|_{\infty} \iff \max \min \lim \mu_{\mathsf{m}}$$

Modulus margin and H_{∞}

If the closed-loop system is stable,

$$\mu_{\mathsf{m}} = \inf_{\omega \in \mathbb{R}} \lvert 1 + \mathit{L}(\mathsf{j}\omega) \rvert \implies \frac{1}{\mu_{\mathsf{m}}} = \sup_{\omega \in \mathbb{R}} \lvert \mathit{S}(\mathsf{j}\omega) \rvert = \lVert \mathit{S} \rVert_{\infty}.$$

Hence,

minimizing
$$\|S\|_{\infty} \iff$$
 maximizing μ_{m}

Reminder:

$$\|S\|_{\infty} := \sup_{s \in \mathbb{R}_0} |S(s)| = \sup_{\omega \in \mathbb{R}} |S(j\omega)|$$

The standard problem for modulus margin maximization

Generalized plant:

$$\begin{bmatrix} T_c & T_i \\ S_o & T_d \end{bmatrix} = \mathcal{F}_I \left(\begin{bmatrix} 0 & 0 & I \\ I & P & -P \\ I & P & -P \end{bmatrix}, R \right),$$

so that

$$G(s) = \begin{bmatrix} I & -P(s) \\ I & -P(s) \end{bmatrix}.$$

All stable sensitivity functions:

$$\mathcal{T}_{zw} = \left(\left[egin{array}{c} \widetilde{Y} \\ \widetilde{X} \end{array}
ight] + \left[egin{array}{c} M \\ -N \end{array}
ight] Q
ight) \left[egin{array}{c} \widetilde{M} & \widetilde{N} \end{array}
ight],$$

so that

$$T_{zw} = S = (\tilde{X} - NQ)\tilde{M}.$$

Example 1

Let

$$P(s) = \frac{s-z_1}{s+1}, \quad z_1 \in \mathbb{R}.$$

Coprime factors, Bézout coefficients: $M=X=\tilde{M}=\tilde{X}=1,\ N=\tilde{N}=P.$ All stable sensitivity functions:

$$S(s)=1-\frac{s-z_1}{s+1}Q(s).$$

Minimum-phase plant: If $z_1<0$, then the optimal $Q(s)=(s+1)/(s-z_1)$ is not admissible, since $\tilde{X}(\infty)-N(\infty)Q(\infty)=0$. But

$$Q(s) = \frac{(1-\epsilon)s+1}{s-z_1} \implies S(s) = \frac{\epsilon s}{s+1}$$

and $\|S\|_{\infty}$ can be made arbitrarily small

Example 1

Let

$$P(s) = \frac{s-z_1}{s+1}, \quad z_1 \in \mathbb{R}.$$

Coprime factors, Bézout coefficients: $M=X=\tilde{M}=\tilde{X}=1$, $N=\tilde{N}=P$. All stable sensitivity functions:

$$S(s) = 1 - \frac{s - z_1}{s + 1}Q(s).$$

Minimum-phase plant: If $z_1 < 0$, then the optimal $Q(s) = (s+1)/(s-z_1)$ is not admissible, since $\tilde{X}(\infty) - N(\infty)Q(\infty) = 0$. But

$$Q(s) = \frac{(1-\epsilon)s+1}{s-z_1} \implies S(s) = \frac{\epsilon s}{s+1}$$

and $||S||_{\infty}$ can be made arbitrarily small.

Nonminimum-phase plant: If $z_1 \ge 0$, then

$$S(s) = 1 - \frac{s - z_1}{s + 1}Q(s) \implies S(z_1) = 1$$

independently of Q. Hence,

$$- \|S\|_{\infty} \ge 1.$$

In fact, the trivial choice

$$Q(s) = 0 \implies R(s) = 0$$

attains the bound, rendering S(s)=1 (not quite meaningful though)

Nonminimum-phase plant: If $z_1 \ge 0$, then

$$S(s) = 1 - \frac{s - z_1}{s + 1}Q(s) \implies S(z_1) = 1$$

independently of Q. Hence,

$$- \|S\|_{\infty} \ge 1.$$

Increasing modulus margin

In fact, the trivial choice

$$Q(s) = 0 \implies R(s) = 0$$

attains the bound, rendering S(s) = 1 (not quite meaningful though).

Example 2

Let

$$P(s) = \frac{s - z_1}{s^2 - 1} = \frac{s - z_1}{(s - 1)(s + 1)}, \quad z_1 \in \mathbb{R}.$$

Choose

$$M(s) = ilde{M}(s) = rac{s-1}{s+a}$$
 and $N(s) = ilde{N}(s) = rac{s-z_1}{(s+a)(s+1)}$

for any a > 0. The corresponding Bézout coefficients are

$$X(s) = \tilde{X}(s) = \frac{s + (az_1 + 2z_1 + a)/(z_1 - 1)}{s + 1}$$

and

$$Y(s) = \tilde{Y}(s) = -\frac{2(a+1)}{z_1 - 1}.$$

Hence,

$$R(s) = \frac{-2(a+1)(s+a) + (z_1-1)(s-1)Q(s)}{(s+a)((z_1-1)s + az_1 + 2z_1 + a) - (z_1-1)(s-z_1)Q(s)}.$$

We end up with

$$S(s) = \left(\frac{s + (az_1 + 2z_1 + a)/(z_1 - 1)}{s + 1} - \frac{s - z_1}{(s + 1)(s + a)}Q(s)\right)\frac{s - 1}{s + a}.$$

The choice a=1 renders M(s) co-inner (and inner), as then

$$M(s)M^{\sim}(s) = \frac{1}{s+1-s+1} = 1.$$

Hence, $\|S\|_{\infty} = \|S_{
m eq}\|_{\infty}$, where

$$S_{\text{eq}}(s) := \frac{s + (3z_1 + 1)/(z_1 - 1)}{s + 1} - \frac{s - z_1}{(s + 1)^2} Q(s)$$

If $z_1 < 0$, then $S_{
m eq}(\infty) = 1$ for all $Q \in RH_\infty$ and $\|S\|_\infty \geq 1$. Attainable b

$$Q(s) = \frac{X(s) - X(\infty)}{N(s)} = \frac{2(z_1 + 1)}{z_1 - 1} \frac{s + 1}{s - z_1}$$

We end up with

$$S(s) = \left(\frac{s + (az_1 + 2z_1 + a)/(z_1 - 1)}{s + 1} - \frac{s - z_1}{(s + 1)(s + a)}Q(s)\right)\frac{s - 1}{s + a}.$$

The choice a=1 renders $\tilde{M}(s)$ co-inner (and inner), as then

$$\tilde{M}(s)\tilde{M}^{\sim}(s) = \frac{s-1}{s+1} \frac{-s-1}{-s+1} = 1.$$

Hence, $\|S\|_{\infty} = \|S_{\mathsf{eq}}\|_{\infty}$, where

$$S_{eq}(s) := \frac{s + (3z_1 + 1)/(z_1 - 1)}{s + 1} - \frac{s - z_1}{(s + 1)^2} Q(s).$$

We end up with

$$S(s) = \left(\frac{s + (az_1 + 2z_1 + a)/(z_1 - 1)}{s + 1} - \frac{s - z_1}{(s + 1)(s + a)}Q(s)\right)\frac{s - 1}{s + a}.$$

The choice a=1 renders $\tilde{M}(s)$ co-inner (and inner), as then

$$\tilde{M}(s)\tilde{M}^{\sim}(s) = \frac{s-1}{s+1} \frac{-s-1}{-s+1} = 1.$$

Hence, $||S||_{\infty} = ||S_{eq}||_{\infty}$, where

$$S_{\mathsf{eq}}(s) := rac{s + (3z_1 + 1)/(z_1 - 1)}{s + 1} - rac{s - z_1}{(s + 1)^2} \, Q(s).$$

If $z_1<0$, then $S_{\rm ea}(\infty)=1$ for all $Q\in RH_{\infty}$ and $\|S\|_{\infty}\geq 1$. Attainable by

$$Q(s)=rac{ ilde{X}(s)- ilde{X}(\infty)}{ extstyle N(s)}=rac{2(z_1+1)}{z_1-1}\,rac{s+1}{s-z_1}$$

or, for $z_1 \in [-1, 0)$, by Q = 0.

If
$$z_1 \geq 0$$
, then $S_{\mathsf{eq}}(z_1) = (z_1+1)/(z_1-1)$ and

$$\|S\|_{\infty} = \|S_{\mathsf{eq}}\|_{\infty} \geq \frac{z_1 + 1}{|z_1 - 1|}.$$

$$Q(s) = \frac{\ddot{X}(s) - \ddot{X}(z_1)}{N(s)} = -\frac{2}{z_1 - 1}(s + 1)$$

$$Q(s) = -\frac{2}{z_1 - 1} \frac{s + 1}{\epsilon s + 1}.$$

$$R(s) = -\frac{2(s+1)((1+2\epsilon)s+1)}{\epsilon(z_1-1)s^2 + (z_1+1+(3z_1+1)\epsilon)s + z_1+1} \xrightarrow{\epsilon \to 0} -\frac{2(s+1)}{z_1+1}$$

If $z_1 \ge 0$, then $S_{eq}(z_1) = (z_1 + 1)/(z_1 - 1)$ and

$$\|S\|_{\infty} = \|S_{\mathsf{eq}}\|_{\infty} \ge \frac{z_1 + 1}{|z_1 - 1|}.$$

Attainable by non-proper

$$Q(s) = \frac{X(s) - X(z_1)}{N(s)} = -\frac{2}{z_1 - 1}(s + 1).$$

or, almost, by

$$Q(s) = -\frac{2}{z_1 - 1} \frac{s + 1}{\epsilon s + 1}.$$

Controller:

 $R(s) = -\frac{2(s+1)((1+2\epsilon)s+1)}{\epsilon(z_1-1)s^2 + (z_1+1+(3z_1+1)\epsilon)s + z_1+1} \xrightarrow{\epsilon \to 0} -\frac{2(s+1)((1+2\epsilon)s+1)}{z_1+1}$

 $R(0) = -2/(z_1 + 1), R(\infty) = -2(\epsilon^{-1} + 2)/(z_1 - 1),$ unstable for $z_1 < 1$.

If $z_1 \geq 0$, then $S_{\text{eq}}(z_1) = (z_1 + 1)/(z_1 - 1)$ and

$$||S||_{\infty} = ||S_{eq}||_{\infty} \ge \frac{z_1 + 1}{|z_1 - 1|}.$$

Attainable by non-proper

$$Q(s) = \frac{\tilde{X}(s) - \tilde{X}(z_1)}{N(s)} = -\frac{2}{z_1 - 1}(s + 1).$$

or, almost, by

$$Q(s) = -\frac{2}{71 - 1} \frac{s + 1}{(s + 1)}$$

Controller:

Controller:

$$R(s) = -\frac{2(s+1)((1+2\epsilon)s+1)}{\epsilon(z_1-1)s^2 + (z_1+1+(3z_1+1)\epsilon)s + z_1+1} \xrightarrow{\epsilon \to 0} -\frac{2(s+1)}{z_1+1}$$

 $R(0) = -2/(z_1 + 1), \ R(\infty) = -2(\epsilon^{-1} + 2)/(z_1 - 1), \ \text{unstable for } z_1 < 1.$

Example 2: supremal modulus margin

We end up with

$$\sup_{\text{stabilizing } R} \mu_{\text{m}} = \begin{cases} 1 & \text{if } z_1 < 0 \\ \frac{|z_1 - 1|}{z_1 + 1} & \text{if } z_1 \geq 0 \end{cases} = \underbrace{\frac{\mu_{\text{m}}}{1}}_{01/3}$$

Example 3

Let

$$P(s) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \frac{1}{s-1} + \begin{bmatrix} \alpha & -2z_1/(z_1-1) \\ -\alpha\beta & \beta \end{bmatrix} \frac{1}{s+1}$$

has an unstable pole at s = 1 with

$$\mathsf{pdir}_\mathsf{i}(P,1) = \mathsf{span}igg(egin{bmatrix} 0 \\ 1 \end{bmatrix}igg) \quad \mathsf{and} \quad \mathsf{pdir}_\mathsf{o}(P,1) = \mathsf{span}igg(egin{bmatrix} 1 \\ 0 \end{bmatrix}igg)$$

and a (nonminimum-phase) zero at $s=z_1$ with

$$\mathsf{zdir}_\mathsf{i}(P, z_1) = \mathsf{span}\left(\left[egin{array}{c} 1 \\ \alpha \end{array} \right]\right) \quad \mathsf{and} \quad \mathsf{zdir}_\mathsf{o}(P, z_1) = \mathsf{span}\left(\left[egin{array}{c} \beta \\ 1 \end{array} \right]\right).$$

Choose

$$\begin{bmatrix} \tilde{M} & -\tilde{N} \\ Y & X \end{bmatrix} = \begin{bmatrix} \frac{s-1}{s+1} & 0 & -\frac{\alpha(s-1)}{(s+1)^2} & \frac{(z_1+1)s-3z_1+1}{(z_1-1)(s+1)^2} \\ 0 & 1 & \frac{\alpha\beta}{s+1} & -\frac{\beta}{s+1} \\ 0 & 0 & 1 & 0 \\ 2 & \frac{2}{\beta} & 0 & 1 + \frac{z_1+1}{z_1-1} \frac{2}{s+1} \end{bmatrix}$$

and

$$\begin{bmatrix} \tilde{X} & N \\ -\tilde{Y} & M \end{bmatrix} = \begin{bmatrix} 1 + \frac{z_1}{z_1 - 1} \frac{4}{s + 1} & 2\frac{(z_1 + 1)s - 3z_1 + 1}{\beta(z_1 - 1)(s + 1)^2} & \frac{\alpha}{s + 1} & -\frac{(z_1 + 1)s - 3z_1 + 1}{(z_1 - 1)(s + 1)^2} \\ -\frac{2\beta}{s + 1} & \frac{s^2 + 3}{(s + 1)^2} & -\frac{\alpha\beta}{s + 1} & -\frac{\beta(s - 1)}{(s + 1)^2} \\ 0 & 0 & 1 & 0 \\ -2 & -\frac{2}{\beta} \frac{s - 1}{s + 1} & 0 & \frac{s - 1}{s + 1} \end{bmatrix}$$

with co-inner $\tilde{M}(s)$.

As $||S||_{\infty} = ||S_{eq}||_{\infty}$ for

$$S_{eq}(s) := \tilde{X}(s) - N(s)Q(s)$$

we have two constraints:

$$S_{\sf eq}(\infty) = \tilde{X}(\infty) = I$$

and

$$\eta' \mathcal{S}_{\mathsf{eq}}(z_1) = \eta' \tilde{\mathcal{X}}(z_1) = \eta' \tilde{\mathcal{M}}^{-1}(z_1), \quad \mathsf{for any } \eta \in \mathsf{zdir}_{\mathsf{o}}(P, z_1)$$

(the latter follows by $\tilde{X} = \tilde{M}^{-1} - P\tilde{Y}$).

Example 3: supremal modulus margin

Thus,

Increasing modulus margin

$$\mu_{\mathsf{m}} \leq \sqrt{\left(\frac{\mathit{z}_1+1}{\mathit{z}_1-1}\right)^2 \cos^2\theta_{\mathsf{o}} + \sin^2\theta_{\mathsf{o}}} \in \bigg(1, \frac{\mathit{z}_1+1}{|\mathit{z}_1-1|}\bigg).$$

where

$$heta_{\mathsf{o}} = \arccos rac{eta}{\sqrt{1+eta^2}} \in (0,\pi)$$

is the angle between $pdir_0(P, 1)$ and $zdir_0(P, z_1)$.

Example 3: supremal modulus margin

Thus,

$$\mu_{\mathsf{m}} \leq \sqrt{\left(\frac{\mathit{z}_1+1}{\mathit{z}_1-1}\right)^2 \cos^2\theta_{\mathsf{o}} + \sin^2\theta_{\mathsf{o}}} \in \bigg(1, \frac{\mathit{z}_1+1}{|\mathit{z}_1-1|}\bigg).$$

where

$$heta_{\mathsf{o}} = \arccos rac{eta}{\sqrt{1+eta^2}} \in (0,\pi)$$

is the angle between $pdir_o(P, 1)$ and $zdir_o(P, z_1)$. Thus,

- if $pdir_o(P, 1) = zdir_o(P, z_1)$, recovers SISO for $z_1 > 0$
- if $pdir_o(P, 1)$ ⊥ $zdir_o(P, z_1)$, recovers SISO for $z_1 < 0$
- in between \Longrightarrow blending

NMP

MP

Increasing modulus margin

Weighted sensitivity

Mixed sensitivity

Optimization-based design

Beyong modulus margin

More comprehensive requirements:

$$|S(j\omega)| \leq egin{cases} \epsilon_\sigma & ext{if } \omega \leq \omega_0 \\ 1/\mu_{\mathsf{m}} & ext{otherwise} \end{cases}$$

for some $\epsilon_{\sigma} < 1$, $\omega_0 > 0$ (bandwidth), and $\mu_{\rm m} < 1$.

Weighted sensitivity

$$||W_{\sigma}S||_{\infty} \leq$$

$$|W_{\sigma}(\mathrm{j}\omega)| = egin{cases} 1/\epsilon_{\sigma} & ext{if } \omega \leq \omega_{0} \ \mu_{\mathrm{m}} & ext{otherwise} \end{cases}$$

Beyong modulus margin

More comprehensive requirements:

$$|S(j\omega)| \leq egin{cases} \epsilon_\sigma & ext{if } \omega \leq \omega_0 \ 1/\mu_{\mathsf{m}} & ext{otherwise} \end{cases}$$

for some $\epsilon_{\sigma} < 1$, $\omega_{0} > 0$ (bandwidth), and $\mu_{m} < 1$.

Can be cast as the H_{∞} problem:

$$\|W_{\sigma}S\|_{\infty} \leq 1$$

for a stable weighting function W_{σ} such that

$$|W_{\sigma}(\mathrm{j}\omega)| = egin{cases} 1/\epsilon_{\sigma} & ext{if } \omega \leq \omega_{0} \ \mu_{\mathrm{m}} & ext{otherwise} = \mu_{\mathrm{m}}^{1} & 0 & 0 & 0 \end{cases}$$

(norms are dumb, weighted norms may be intelligent).

Beyong modulus margin

More comprehensive requirements:

$$|S(j\omega)| \le egin{cases} \epsilon_\sigma & ext{if } \omega \le \omega_0 \\ 1/\mu_m & ext{otherwise} \end{cases}$$

for some $\epsilon_{\sigma} <$ 1, $\omega_{0} >$ 0 (bandwidth), and $\mu_{m} <$ 1.

Weighted sensitivity

Can be cast as the H_{∞} problem:

$$\|W_{\sigma}S\|_{\infty} \leq 1$$

for a stable weighting function W_{σ} such that

$$|W_{\sigma}(\mathrm{j}\omega)| = egin{cases} 1/\epsilon_{\sigma} & ext{if } \omega \leq \omega_{0} \ \mu_{\mathrm{m}} & ext{otherwise} \end{cases} = egin{cases} \frac{1/\epsilon_{\sigma}}{\mu_{\mathrm{m}}} & \frac{1}{\mu_{\mathrm{m}}} & \frac{1}{\mu_{\mathrm{m$$

(norms are dumb, weighted norms may be intelligent).

Weighted sensitivity problem

Problems like

$$\|\mathit{W}_{\sigma}\mathit{S}\|_{\infty} \leq 1 \quad ext{or} \quad \gamma_{\mathsf{opt}} = \min_{\mathsf{stabilizing}} {}_{R} \|\mathit{W}_{\sigma}\mathit{S}\|_{\infty}$$

for a given W_{σ} are known as the weighted sensitivity problem.

Weighted sensitivity

$$G = \left[\begin{array}{cc} W_{\sigma} & -W_{\sigma}P \\ I & -P \end{array} \right]$$

$$T_{zw} = W_{\sigma}S = W_{\sigma}(X - NQ)M.$$

Weighted sensitivity problem

Problems like

$$\|\mathit{W}_{\sigma}\mathit{S}\|_{\infty} \leq 1 \quad ext{or} \quad \gamma_{\mathsf{opt}} = \min_{\mathsf{stabilizing}} {}_{R} \|\mathit{W}_{\sigma}\mathit{S}\|_{\infty}$$

for a given W_{σ} are known as the weighted sensitivity problem.

Also a special case of the standard problem, with

$$G = \left[\begin{array}{cc} W_{\sigma} & -W_{\sigma}P \\ I & -P \end{array} \right].$$

It is stabilizable whenever $W_{\sigma} \in H_{\infty}$ and all closed-loop stable systems

$$T_{zw} = W_{\sigma}S = W_{\sigma}(\tilde{X} - NQ)\tilde{M}.$$

It again makes sense to choose a co-inner $\tilde{M}(s) = \prod_{j=1}^{n_{\text{rhpp}}} \frac{s-p_j}{s+p_j}$ for $\text{Re}\,p_j > 0$, in which case $\|T_{zw}\|_{\infty} = \|S_{\text{eq}}\|_{\infty}$, where $S_{\text{eq}} := W_{\sigma}(\tilde{X} - NQ)$.

Weighted sensitivity performance: outline

At each zero of P(s) in $\bar{\mathbb{C}}_0$,

$$S_{\text{eq}}(z_i) = W_{\sigma}(z_i) \tilde{X}(z_i) = W_{\sigma}(z_i) / \tilde{M}(z_i).$$

Hence,

$$\|W_{\sigma}S\|_{\infty} \leq 1 \implies |W_{\sigma}(z_i)/\tilde{M}(z_i)| \leq 1$$

or, equivalently,

$$|W_{\sigma}(z_i)| \leq | ilde{M}(z_i)| = \prod_{i=1}^{n_{ ext{rhpp}}} \left| rac{z_i - p_j}{z_i + p_j}
ight| \leq 1$$

But

Weighted sensitivity performance: outline

Weighted sensitivity

At each zero of P(s) in $\bar{\mathbb{C}}_0$,

$$S_{\text{eq}}(z_i) = W_{\sigma}(z_i)\tilde{X}(z_i) = W_{\sigma}(z_i)/\tilde{M}(z_i).$$

Hence,

$$\|W_{\sigma}S\|_{\infty} \leq 1 \implies |W_{\sigma}(z_i)/\tilde{M}(z_i)| \leq 1$$

or, equivalently,

$$|W_{\sigma}(z_i)| \leq |\tilde{M}(z_i)| = \prod_{j=1}^{n_{\mathsf{rhpp}}} \left| \frac{z_i - p_j}{z_i + p_j} \right| \leq 1$$

But

- how to calculate $|W_{\sigma}(z_i)|$ from $|W_{\sigma}(\mathrm{j}\omega)|=rac{1}{\mu_{m}^{1}}$

We know that given $G \in H_{\infty}$, there is an $L_{\infty}(j\mathbb{R})$ boundary function

$$\tilde{G}(\mathrm{j}\omega)=\lim_{\sigma\downarrow0}G(\sigma+\mathrm{j}\omega)$$

for almost all ω .

Weighted sensitivity

$$G(s) = \frac{1}{\pi} \int_{\mathbb{R}} \tilde{G}(j\omega) \frac{\operatorname{Re} s}{(\operatorname{Re} s)^{2} + (\operatorname{Im} s - \omega)^{2}} d\omega$$

Poisson integral

We know that given $G \in H_{\infty}$, there is an $L_{\infty}(j\mathbb{R})$ boundary function

$$\tilde{G}(j\omega) = \lim_{\sigma \downarrow 0} G(\sigma + j\omega)$$

for almost all ω . Interestingly, \tilde{G} completely determines G:

$$G(s) = \frac{1}{\pi} \int_{\mathbb{R}} \tilde{G}(j\omega) \frac{\operatorname{Re} s}{(\operatorname{Re} s)^{2} + (\operatorname{Im} s - \omega)^{2}} d\omega$$

for $s \in \mathbb{C}_0$, which is known as the Poisson integral.

But

— we need the magnitude $|W_{\sigma}(z_i)|$ from the magnitude $|W_{\sigma}(\mathrm{j}\omega)|$

Is it possible? "No" in general (e.g. 1 and e^{-s} have the same magnitude on iR). But for a special class, "ves".

Poisson integral

We know that given $G \in H_{\infty}$, there is an $L_{\infty}(j\mathbb{R})$ boundary function

$$\tilde{G}(j\omega) = \lim_{\sigma \downarrow 0} G(\sigma + j\omega)$$

for almost all ω . Interestingly, \tilde{G} completely determines G:

$$G(s) = \frac{1}{\pi} \int_{\mathbb{R}} \tilde{G}(j\omega) \frac{\operatorname{Re} s}{(\operatorname{Re} s)^2 + (\operatorname{Im} s - \omega)^2} d\omega$$

for $s \in \mathbb{C}_0$, which is known as the Poisson integral.

But

— we need the magnitude $|W_{\sigma}(z_i)|$ from the magnitude $|W_{\sigma}(j\omega)|$. Is it possible? "No" in general (e.g. 1 and e^{-s} have the same magnitude on $i\mathbb{R}$). But for a special class, "yes".

Outer (minimum-phase) functions

Lemma

If $\phi(\omega): \mathbb{R} \to \mathbb{R}$ is such that

$$\int_{\mathbb{R}} \frac{|\phi(\omega)|}{1+\omega^2} \, \mathrm{d}\omega < \infty,$$

then the (outer) function

$$f(s) = \exp\left(\frac{1}{\pi} \int_{\mathbb{R}} \phi(\omega) \left(\frac{\operatorname{Re} s}{(\operatorname{Re} s)^{2} + (\operatorname{Im} s - \omega)^{2}}\right) - \mathrm{i}\left(\frac{\operatorname{Im} s - \omega}{(\operatorname{Re} s)^{2} + (\operatorname{Im} s - \omega)^{2}} + \frac{\omega}{1 + \omega^{2}}\right)\right) d\omega\right)$$

belongs to H_{∞} and $\lim_{\sigma\downarrow 0}\ln|f(\sigma+\mathrm{j}\omega)|=\phi(\omega)$ for almost every ω .

Implication

Given $|W_{\sigma}(j\omega)|$, there is a unique minimum-phase (outer) $W_{\sigma} \in H_{\infty}$ such that

$$|W_{\sigma}(s)| = \exp\left(\frac{1}{\pi} \int_{\mathbb{R}} \ln|W_{\sigma}(j\omega)| \frac{\operatorname{Re} s}{(\operatorname{Re} s)^2 + (\operatorname{Im} s - \omega)^2} d\omega\right)$$

= $\exp\left(\frac{1}{\pi} \int_{\mathbb{R}} \ln|W_{\sigma}(j\omega)| d \arctan\frac{\omega + \operatorname{Im} s}{\operatorname{Re} s}\right).$

For
$$|W_{\sigma}(\mathrm{j}\omega)|=rac{1/\epsilon_{\sigma}}{\mu_{\mathrm{log}}^{1}}$$
 ,

$$|W_{\sigma}(z_1)| = \exp\left(-\frac{2\ln\epsilon_{\sigma}}{\pi} \int_0^{\omega_0} d\arctan\frac{\omega}{z_1} + \frac{2\ln\mu_m}{\pi} \int_{\omega_0}^{\infty} d\arctan\frac{\omega}{z_1}\right)$$

Implication

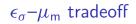
Weighted sensitivity

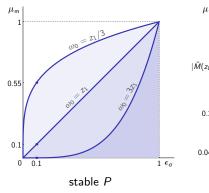
Given $|W_{\sigma}(j\omega)|$, there is a unique minimum-phase (outer) $W_{\sigma} \in H_{\infty}$ such that

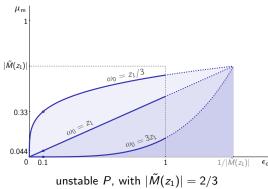
$$|W_{\sigma}(s)| = \exp\left(\frac{1}{\pi} \int_{\mathbb{R}} \ln|W_{\sigma}(j\omega)| \frac{\operatorname{Re} s}{(\operatorname{Re} s)^{2} + (\operatorname{Im} s - \omega)^{2}} d\omega\right)$$
$$= \exp\left(\frac{1}{\pi} \int_{\mathbb{R}} \ln|W_{\sigma}(j\omega)| d \arctan\frac{\omega + \operatorname{Im} s}{\operatorname{Re} s}\right).$$

For
$$|W_{\sigma}(\mathrm{j}\omega)|=rac{1/\epsilon_{\sigma}}{\mu_{\mathrm{n}}^{1}}$$
 ,

$$\begin{split} |W_{\sigma}(z_1)| &= \exp \left(-\frac{2 \ln \epsilon_{\sigma}}{\pi} \int_0^{\omega_0} \mathrm{d} \arctan \frac{\omega}{z_1} + \frac{2 \ln \mu_{\mathrm{m}}}{\pi} \int_{\omega_0}^{\infty} \mathrm{d} \arctan \frac{\omega}{z_1} \right) \\ &= \frac{(\mu_{\mathrm{m}})^{1-\beta_{\mathrm{z}}}}{(\epsilon_{\sigma})^{\beta_{\mathrm{z}}}}, \quad \text{where } \beta_{\mathrm{z}} := \frac{2}{\pi} \arctan \frac{\omega_0}{z_1} \in (0,1) \end{split}$$

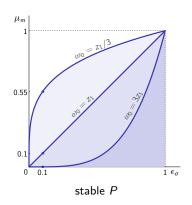


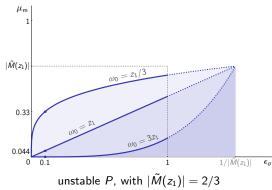




Supports conventional wisdom that

bandwidth cannot go beyond the location of RHP zeros.





Supports conventional wisdom that

bandwidth cannot go beyond the location of RHP zeros.

Rational controllers

Require rational $W_{\sigma}(s)$. Hence, approximations (more conservatism). For example, we may use normalized Butterworth polynomials:

$$|B_n(j\omega)| = \sqrt{1+\omega^{2n}}$$

For example, $B_1(s) = s + 1$ and $B_2(s) = s^2 + \sqrt{2}s + 1$.

Rational controllers

Require rational $W_{\sigma}(s)$. Hence, approximations (more conservatism). For example, we may use normalized Butterworth polynomials:

$$|B_n(j\omega)| = \sqrt{1 + \omega^{2n}}$$

For example, $B_1(s) = s + 1$ and $B_2(s) = s^2 + \sqrt{2}s + 1$. Then,

$$W_{\sigma,n}(s) = k \frac{B_n(s/\omega_2)}{B_n(s/\omega_1)},$$

with $W_{\sigma,n}(0) = 1/\epsilon_{\sigma}$, $W_{\sigma,n}(\infty) = \mu_{m}$, and $|W_{\sigma,n}(\omega_{0})| = \alpha/\epsilon_{\sigma}$.

Rational controllers

Require rational $W_{\sigma}(s)$. Hence, approximations (more conservatism). For example, we may use normalized Butterworth polynomials:

$$|B_n(j\omega)| = \sqrt{1 + \omega^{2n}}$$

For example, $B_1(s) = s + 1$ and $B_2(s) = s^2 + \sqrt{2}s + 1$. Then,

Weighted sensitivity

$$W_{\sigma,n}(s) = k \frac{B_n(s/\omega_2)}{B_n(s/\omega_1)},$$

with $W_{\sigma,n}(0) = 1/\epsilon_{\sigma}$, $W_{\sigma,n}(\infty) = \mu_{m}$, and $|W_{\sigma,n}(\omega_{0})| = \alpha/\epsilon_{\sigma}$. This yields

$$k = \frac{1}{\epsilon_{\sigma}}, \quad \omega_1 = \left(\frac{\alpha^2 - (\mu_{\mathsf{m}}\epsilon_{\sigma})^2}{1 - \alpha^2}\right)^{1/2n} \omega_0, \quad \omega_2 = \left(\frac{\alpha^2 / (\mu_{\mathsf{m}}\epsilon_{\sigma})^2 - 1}{1 - \alpha^2}\right)^{1/2n} \omega_0$$

For example, if $n \in \{1, 2, 5\}$ and $\alpha = \sqrt{0.9}$,

$$|W_{\sigma,n}(\mathrm{j}\omega)|=rac{1/\epsilon_{\sigma}}{\mu_{\mathrm{m}}^{1}} rac{0.9486833/\epsilon_{\sigma}}{\omega_{\mathrm{0}}}$$

Let

$$P(s) = \frac{s - z_1}{s + 1}, \quad z_1 > 1$$

with $\epsilon_{\sigma}=0.1$ and $\mu_{\rm m}=0.5$. Then Butterworth with $\alpha=\sqrt{0.9}$ yields

$$T_{zw}(s) = \frac{0.5s^2 + 5.47\omega_0 s + 30\omega_0^2}{s^2 + 2.45\omega_0 s + 3\omega_0^2} \left(1 - \frac{s - z_1}{s + 1} Q(s)\right).$$

Condition $|W_{\sigma}(z_i)| \leq |\tilde{M}(z_i)|$ yields $\omega_0 \leq 0.0912z_1$.

¹Would be $\omega_0 \leq 0.38z_1$ with the original $W_{\sigma}(j\omega)$.

Weighted sensitivity

Let

$$P(s) = \frac{s - z_1}{s + 1}, \quad z_1 > 1$$

with $\epsilon_{\sigma}=0.1$ and $\mu_{\rm m}=0.5$. Then Butterworth with $\alpha=\sqrt{0.9}$ yields

$$T_{zw}(s) = rac{0.5s^2 + 5.47\omega_0 s + 30\omega_0^2}{s^2 + 2.45\omega_0 s + 3\omega_0^2} igg(1 - rac{s - z_1}{s + 1} Q(s)igg).$$

Condition $|W_{\sigma}(z_i)| \leq |\tilde{M}(z_i)|$ yields $\omega_0 \leq 0.0912z_1$. In this case,

$$T_{zw}(s) = \frac{0.5s^2 + 0.499z_1s + 0.249z_1^2}{s^2 + 0.223z_1s + 0.0249z_1^2} \left(1 - \frac{s - z_1}{s + 1} Q(s)\right)$$

and optimal

$$Q(s) = \frac{W_{\sigma,2}(s) - W_{\sigma,2}(z_1)}{W_{\sigma,2}(s)P(s)} = -\frac{(s+1)(s+0.448z_1)}{s^2 + 0.998z_1s + 0.498z_1^2}.$$

¹Would be $ω_0 ≤ 0.38z_1$ with the original $W_σ(jω)$.

Optimal controller:

$$R(s) = \frac{0.5(s+1)(s+0.448z_1)}{s^2 + 0.223z_1s + 0.0249z_1^2}$$

always cancels stable poles of the plant.

and its $|T_{a}(0)| = 0.9/\pi$ and

grow as z_1 decreases \implies higher price for keeping $|S(j\omega)| < 0.1$ if the $\mathbb{C}_{\mathbb{R}}$

Optimal controller:

$$R(s) = \frac{0.5(s+1)(s+0.448z_1)}{s^2 + 0.223z_1s + 0.0249z_1^2}$$

always cancels stable poles of the plant. Control sensitivity

$$T_{c}(s) = S(s)R(s) = \frac{(s+1)(s+0.448z_1)}{s^2+0.998z_1s+0.498z_1^2}$$

and its $|T_c(0)| = 0.9/z_1$ and

$$\|T_{c}\|_{\infty} = \sqrt{0.5 + 0.405/z_{1}^{2} + \sqrt{0.2907 + 1.1717/z_{1}^{4}}} > 1.0194$$

grow as z_1 decreases \implies higher price for keeping $|S(j\omega)| < 0.1$ if the \mathbb{C}_0 zero approaches the origin.

Outline

Increasing modulus margin

Weighted sensitivity

Mixed sensitivity

Optimization-based design

Motivation

Weighted sensitivity

$$\|W_{\sigma}S\|_{\infty} \leq 1$$

might lead to very large $T_{\rm c}$ and

has no mechanism for explicitly affecting control effort.

Remedy:

- penalize $T_{
m c}$ explicitly, like $\|W_{arkappa}T_{
m c}\|_{\infty}\leq 1$ for some $W_{arkappa}$

 W_{\varkappa} is expected to penalize

high control gain at high frequencies

encourage required high-frequency roll-off

Possible choice

 $\max\{1,(\omega/\omega_1)^{\nu}\}$

31

for some ω_1 and roll-off $v \in \mathbb{N}$.

Motivation

Weighted sensitivity

$$\|W_{\sigma}S\|_{\infty} \leq 1$$

might lead to very large T_c and

has no mechanism for explicitly affecting control effort.

Remedy:

- penalize T_c explicitly, like $\|W_{\varkappa}T_c\|_{\infty} \leq 1$ for some W_{\varkappa} .

 W_{\varkappa} is expected to penalize

- high control gain at high frequencies
- encourage required high-frequency roll-off

Possible choice

$$|W_{arkappa}(\mathrm{j}\omega)|=rac{\mathsf{max}\{1,(\omega/\omega_1)^
u\}}{arkappa}=rac{1}{1/\kappa}$$

for some ω_1 and roll-off $\nu \in \mathbb{N}$.

Incorporating both S and $T_{\rm c}$

Multidisk formulation:

$$(\|W_{\sigma}S\|_{\infty}\leq 1)\wedge (\|W_{\varkappa}T_{\mathsf{c}}\|_{\infty}\leq 1).$$

In the SISO case is equivalent to
$$\left[\begin{array}{c} W_\sigma(\mathrm{j}\omega)S(\mathrm{j}\omega) \\ W_\varkappa(\mathrm{j}\omega)T_\mathrm{c}(\mathrm{j}\omega) \end{array}\right] \in \mathcal{B}_\infty \text{ for all } \omega \text{ (hard)}.$$

$$\left\| \begin{bmatrix} W_0 S \\ W_{\varkappa} T_c \end{bmatrix} \right\|_{\infty} \le 1.$$

In the SISO case is equivalent to $\begin{bmatrix} W_{\sigma}(j\omega)S(j\omega) \\ W_{\varkappa}(j\omega)T_{c}(j\omega) \end{bmatrix} \in \mathcal{B}_{2}$ for all ω (doable) Justified by $\mathcal{B}_{2} \subset \mathcal{B}_{\infty}$, but

adds conservatism.

Incorporating both S and T_c

Multidisk formulation:

$$(\|W_{\sigma}S\|_{\infty} \leq 1) \wedge (\|W_{\varkappa}T_{\mathsf{c}}\|_{\infty} \leq 1).$$

In the SISO case is equivalent to $\left|\begin{array}{c} W_{\sigma}(\mathrm{j}\omega)S(\mathrm{j}\omega) \\ W_{\varkappa}(\mathrm{j}\omega)T_{\mathrm{c}}(\mathrm{j}\omega) \end{array}\right| \in \mathcal{B}_{\infty}$ for all ω (hard).

Mixed sensitivity formulation:

$$\left\| \left[\begin{array}{c} W_{\sigma}S \\ W_{\varkappa}T_{c} \end{array} \right] \right\|_{\infty} \leq 1.$$

In the SISO case is equivalent to $\begin{vmatrix} W_{\sigma}(j\omega)S(j\omega) \\ W_{\varkappa}(j\omega)T_{c}(j\omega) \end{vmatrix} \in \mathcal{B}_{2}$ for all ω (doable). Justified by $\mathcal{B}_2 \subset \mathcal{B}_{\infty}$, but

adds conservatism.

Mixed sensitivity problem

Find if

$$\min_{\text{stabilizing } R} \left\| \left[\begin{array}{c} W_{\sigma} S \\ W_{\varkappa} T_{c} \end{array} \right] \right\|_{\infty} \leq 1.$$

Also a special case of the standard problem, with

$$G = \left[\begin{array}{cc} W_{\sigma} & -W_{\sigma}P \\ 0 & W_{\varkappa} \\ I & -P \end{array} \right].$$

It is stabilizable whenever $W_{\sigma}, W_{\varkappa} \in H_{\infty}$ and all closed-loop stable systems

$$T_{zw} = \begin{bmatrix} W_{\sigma} & 0 \\ 0 & W_{\varkappa} \end{bmatrix} \left(\begin{bmatrix} \tilde{X} \\ \tilde{Y} \end{bmatrix} + \begin{bmatrix} -N \\ M \end{bmatrix} Q \right) \tilde{M}.$$

Mixed sensitivity problem

Find if

$$\min_{\text{stabilizing } R} \left\| \left[\begin{array}{c} W_{\sigma}S \\ W_{\varkappa}T_{c} \end{array} \right] \right\|_{\infty} \leq 1.$$

Also a special case of the standard problem, with

$$G = \begin{bmatrix} W_{\sigma} & -W_{\sigma}P \\ 0 & W_{\varkappa} \\ I & -P \end{bmatrix}.$$

It is stabilizable whenever $W_{\sigma}, W_{\varkappa} \in H_{\infty}$ and all closed-loop stable systems

$$T_{zw} = \begin{bmatrix} W_{\sigma} & 0 \\ 0 & W_{\varkappa} \end{bmatrix} \left(\begin{bmatrix} \tilde{X} \\ \tilde{Y} \end{bmatrix} + \begin{bmatrix} -N \\ M \end{bmatrix} Q \right) \tilde{M}.$$

Unstable W_{\varkappa} G above is internally stabilizable also if $W_{\varkappa}(s)$ contains unstable poles of P(s), like $W_{\varkappa}=W_{\tau}P$ for some $W_{\tau}\in H_{\infty}$. This would correspond to

$$\min_{ ext{stabilizing } R} \left\| \left[egin{array}{c} W_{\sigma}S \ W_{ au}T \end{array}
ight]
ight| \leq 1$$

(another version of mixed sensitivity).

Example 1: problem

Mixed sensitivity

Plant:

$$P(s) = \frac{1}{s^2 + 0.1s + 1}$$

Specs:

- $\epsilon_{\sigma}=0.1$ with ω_{0} as large as possible,
- $\mu_{\rm m} \ge 0.5$,
- $\varkappa=10$ and roll-off 1 for $\omega>\omega_1=2.4$ [rad/sec].

Example 1: weighting functions

Sensitivity (with $\alpha = \sqrt{0.9}$):

$$W_{\sigma,2}(s) = \frac{0.5s^2 + 5.47\omega_0 s + 30\omega_0^2}{s^2 + 2.45\omega_0 s + 3\omega_0^2}$$

Control sensitivity (with $\omega_2 = 1000\omega_1$):

$$W_{\varkappa,1}(s) = \frac{100(s+2.4)}{s+2400}$$

where

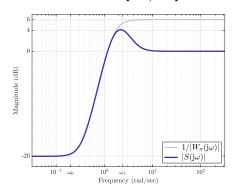
$$|W_{arkappa}(\mathrm{j}\omega)|=rac{1}{1/\kappa} \left[rac{1}{\omega_0-\omega_1-\omega_1-\omega_1}
ight]$$

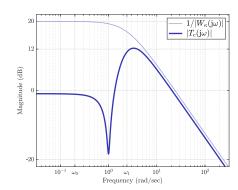
is replaced with

for $\omega_2\gg\omega_1$ to have $W_{\varkappa}\in H_{\infty}$ and Butterworth approximations are used.

Example 1: results

Maximal $\omega_0 = 0.2 \, [\text{rad/sec}]$, with





Example 1: controller

Off the shelf:

$$R(s) = \frac{15367(s + 2400)(s + 0.9364)(s^2 + 0.1s + 1)}{(s + 1.774 \cdot 10^6)(s^2 + 0.4896s + 0.1198)(s^2 + 6.372s + 17.97)}$$

First:

- far left pole—numerical artifact
- far left zero—pole of $W_{\kappa,1}(s)$

general property

can be removed.

Example 1: controller

Off the shelf:

$$R(s) = \frac{15367(s + 2400)(s + 0.9364)(s^2 + 0.1s + 1)}{(s + 1.774 \cdot 10^6)(s^2 + 0.4896s + 0.1198)(s^2 + 6.372s + 17.97)}$$

First:

- far left pole—numerical artifact
- far left zero—pole of $W_{\kappa,1}(s)$

general property

can be removed. Thus, after some massage

$$R(s) = \frac{20.787(s+0.9364)(s^2+0.1s+1)}{(s^2+0.4896s+0.1198)(s^2+6.372s+17.97)}.$$

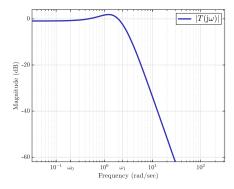
Important:

cancels all stable plant poles

general property too

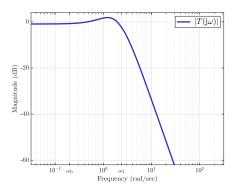
Mixed sensitivity

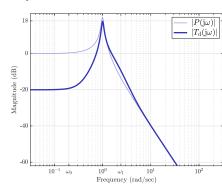
Closed-loop transfer functions, not explicitly involved in the cost:



Example 1: results (contd)

Closed-loop transfer functions, not explicitly involved in the cost:





Outline

Increasing modulus margin

Weighted sensitivity

Mixed sensitivity

Optimization-based design

General remarks

- "Dumb" (non-selective) norms become "intelligent" (selective) via the use of weights

"Dumb" (non-selective) norms become "intelligent" (selective) via the use of weights

Optimal performance level is success indicator, not of interest per se

All requirements can never be squeezed into one cost function

General remarks

 "Dumb" (non-selective) norms become "intelligent" (selective) via the use of weights

- Optimal performance level is success indicator, not of interest per se
- All requirements can never be squeezed into one cost function

General remarks (contd)

Pros

- Separates
 - hardly formalizable, but technically simple, specs (weights) selection from
 - technically nontrivial design for given specifications

General remarks (contd)

Pros

- Separates
 - hardly formalizable, but technically simple, specs (weights) selection from
 - technically nontrivial design for given specifications
- Conclusive (e.g. optimal norm $> 1 \iff$ specs cannot be met)

General remarks (contd)

Pros

- Separates
 - hardly formalizable, but technically simple, specs (weights) selection from
 - technically nontrivial design for given specifications
- Conclusive (e.g. optimal norm $> 1 \iff$ specs cannot be met)
- Extends to MIMO mutatis mutandis e.g. MIMO $\mu_{\rm m}$ is still $1/\|S_{\rm o}\|_{\infty}$, even though no graphical interpretation is available

Cons

- Optimization shows no mercy, very good on finding loopholes
 - unaccounted dynamics might be poor
 - controller order might be large
 - controller properties could be problematic (e.g. unstable R)