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Internal stability

Definition

is internally stable if all four systems v; — €; are stable (in Hy).



Internal stability

Definition and criterion

is internally stable if all four systems v; +— €; are stable (in Hy). Because
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the system is internally stable iff
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is stable.



Internal stability

Example 1
If i
S
Si(s)== and Sy(s)=—
1(s) g oan 2(s) PR
then

[/ —52]1:{ (s+1)/(s+2)  —s/(s+2) }
-5 | (s+1)/(s(s+2) (s+1)/(s+2)

is unstable.



Internal stability

Example 2

If
then
-1
[ I s L
S S
—S51(s) / 25+1 25+1 '\ 2s+1  s(2s+1)
0 _s_ L0 _s_
s+1 s+1

is unstable.
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Generic stability results



GSR

Two cases

gain phase

If loop is stable, the
— closed-loop system is stable if either of these situations takes place,

no extra details about the loop are required.



GSR

The Small Gain Theorem

Theorem
If Si € Hoo with ||Si||cc = yi > 0 for i = 1,2, then the closed-loop system
is internally stable whenever y1y> < 1.

Proof: If My € CPX™, My € C™ P, then ||(/ — MaM;)7L|| = and

1
a(I—MxMy)

o (I = MaMy) = (= MzMy)ul| = min ([lul} = |[M2Myu])
ull=

in
||UH=1H
=1—[[MoM|| = 1 — || My ||| M

Hence, 1

(1 = MoMy) 7Y < —
1 — [[My|l|| M2

whenever ||My]|||Ma| < 1.
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The Small Gain Theorem (contd)

Proof (contd): Thus, if y1y2 <1, then

1 1
I — Sy(s)S -1 = < )
Sup (= S28)Sus) = S = = S 95:5) = 1=

Thus, (I — Sx(s)S1(s)) "t is
— bounded in Cy,
— holomorphic in Cy, because so are both Si(s) and S»(s).

Therefore, (I — $,51)™! € Hy. This, together with the facts that S; € Hyo
and S, € H., yields the internal stability of the closed-loop system. Ol



GSR

Positive real transfer functions

Given a m x m LTI G, its transfer function is positive real (PR) if
1. G(s) is holomorphic in Cy,
2. G(s)+[G(s)] >0 forall s € Cq



GSR

Positive real transfer functions

Given a m x m LTI G, its transfer function is positive real (PR) if
1. G(s) is holomorphic in Cy,
2. G(s)+[G(s)] >0 forall s € Cq

Some PR functions:

s because s+5=2Res > 0in Cy
1 1 1 Res
— because —+ -=2——5 >0in Gy
s sT3 |s]?
1 _ e—4Res

tanh s because tanh(s) + tanh(s) =
A non-PR function:

11 Res)? — (Ims)?
— because — + = :2( es)” — (Ims) > 0 only if Res > |Ims|
2 32 BE
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Strongly positive real transfer functions

Given a mx m LTI G, its transfer function is strongly positive real (SPR) if
1. G(s) is holomorphic in Cy,
2. Je > 0 such that G(s) 4 [G(s)]’ > el for all s € Cy



GSR

Strongly positive real transfer functions

Given a mx m LTI G, its transfer function is strongly positive real (SPR) if

1. G(s) is holomorphic in Cy,
2. Je > 0 such that G(s) 4 [G(s)]’ > el for all s € Cy

Some PR functions:
s+ 1 because s+1+s+1=2(Res+1)>2inCy

1 1 s+1 Res
st becauseS+ +i*2+2 2>2m([20
s s 5 |s|
A non-SPR function:
1 1 1 Res
— as — + - = 2-—5 can be arbitrarily small.
s s S |s|
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Properties of PR and SPR transfer functions
If G(s) is PR, then

— it may only have simple pure imaginary poles, say jo, whose residues
Gi = lims_jo, (s — jwi)G(s) satisfy G; = G! >0,

— it has no zeros in Cg,

— G(jo)+ [G(jw)] =0, for all w € R\ { jw-axis singularities of G(s) }
MIMO counterpart of arg G(jw) € [—7/2,7/2]

If G(s) is SPR, then
— itis PR
— it may have no pure imaginary singularities
— Je such that G(jw) + [G(jw)] > €, for all w € R
MIMO counterpart of arg G(jw) € (—7/2,7/2)



GSR

The Passivity Theorem

Theorem
If S1(s) is PR, —S»(s) is SPR, and Sy € Hxo, then the closed-loop system
is internally stable.



GSR

The Passivity Theorem

Theorem

If S1(s) is PR, —S»(s) is SPR, and Sy € Hxo, then the closed-loop system
is internally stable.

Remark
Holds also if —S; is SPR and S> is PR.



GSR

The Passivity Theorem

Theorem
If S1(s) is PR, —S»(s) is SPR, and Sy € Hxo, then the closed-loop system
is internally stable.

Remark
Holds also if —S; is SPR and S> is PR.

Remark
Plants with PR transfer functions are stabilizable by static positive definite
controllers, regardless their gain (high-gain feedback affordable).



GSR

The Passivity Theorem (contd)

Proof (outline) : If G(s) is PR, then

— (I+G) teHyand [|(I1+G) e <1

— (I-G)(I+G)teHyand (I - G)I+G) <1
If G(s) is SPR and G € Hu, then

= U =6) I+ 6) e <1

Now
{—{51 _}52 } 71: { ; —//} [ —(I - 51)2/ +51)71 o 52)(I/ o } )
(1 — 52)71 0 - ] .
0 —(1 4 S)71

and stability follows by the Small Gain Theorem.



GSR

Beyond LTI

Small Gain: If, for all T > 0,

1. S; are stable,

2. Jy; >0, B; such that ||S;eil| 7+ < yilleill T + Bi
then closed-loop system is stable if y1y» < 1.



GSR

Beyond LTI

Small Gain: If, for all T > 0,

1. S; are stable,

2. Jy; >0, B; such that ||S;eil| 7+ < yilleill T + Bi
then closed-loop system is stable if y1y» < 1.

Passivity: If, for all T > 0,
1. Je1, B1 such that (Sier, e1) T > €1|Sier]|% + B,
2. Jea, Ba such that (e, —Sren) 7 > el ||% + Ba,
3. Jy2 > 0, B3 such that [|Szex|| 7 < yollea|5 + B3
then closed-loop system is stable if €1 + ¢, > 0.
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All stabilizing controllers: stable plant



All: stable

The problem

Given P (plant), design R (controller) internally stabilizing the system. In
other words, we aim at rendering

I P P )
Tauxzz[O / :|+[I }R(I—PR) [/ P]
[ (-=pPR)"L P(I-RP)1
“|R(I-PR)Y (I1-RP)!
stable (i.e. Taux € RHx). Meanwhile, assume that
— P is itself stable (i.e. P € RHy)



All: stable

All stabilizing controllers

Theorem
If P € RHy, then R stabilizes the system iff there is Q € RH. such that

r=7(]7 Lp] @) =au+roy

and | + P(00)Q(o0) is nonsingular.
Proof: Because P is stable, T,ux € RH iff

I —P | —P / —P
[o /]Ta“x{o I]_[R(I—PR)l || € RH

Hence, R is stabilizing iff it stabilizes T. = R(/ — PR)*I.



All: stable

All stabilizing controllers (contd)

Proof (contd): The control sensitivity

S
ren([§ ] )=l o)) =A(l )

Thus

i m=n ([ 1].0) = T-ocm

0

“only if" T, € RHyy = R=f|<[,

_’P],c)) for @ = Te



All: stable

All stable closed-loop systems
With Q = R(/ — PR)™1,

=[]+ [P ]mupais e

I P] [P [1+PQ P+PQP
:[0/]+[/}Q[’P]_[ Q I+QP

is an affine function of the free parameter Q.



All: stable

All stable closed-loop systems
With Q = R(/ — PR)™1,

[P P 1
Taux—{o ,]+[,}R(1_PR) P
_|!IP P _[1+PQ P+PQP
_{0 /]*[/}Q[’ P]_[ Q I+QP]
is an affine function of the free parameter @. It also means that

[;- E]=[7]<’—PR>1[’ P}:[/JFQPQ P+QII;)QP]

whenever the closed-loop system is stable.



All: stable

Interpretation

(mind negative feedback).
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Interpretation

(mind negative feedback).



All: stable

Interpretation

(mind negative feedback).

If no uncertainty (Pgue = P, d =0, n = 0), then

— ¢, = 0 and we have open-loop control.



All: stable

Interpretation

(mind negative feedback).

If no uncertainty (Pgue = P, d =0, n = 0), then

— ¢, = 0 and we have open-loop control.

If there is uncertainty (Pye # P, or d # 0, or n # 0), then
— ey = (Ptrue — P)u + Piued + n # 0 (uncertainty indicator)
— feedback is based on mismatches
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All stabilizing controllers: possibly unstable plant



All: general

Reminder: doubly coprime factorization

Given an LTI finite-dimensional P, its transfer function can be factorized as
P(s) = N(s)M~(s) = M *(s)N(s)

with coprime N, M, N, M € RH... There are X, Y, X, Y € RHx such that

i o] [Ne '] =10 7]

or, equivalently,

M(s) —N(s) NN(S) N(s) | _[1 0]

Y(s) X(s) —Y(s) M(s) 0 /]

Also, . o . )
(s) N(s) | [M(s) =N(s) | _|[! O

-Y(s) M(s) | [ Y(s) X(s) 0 /|



Useful relations

Ellighis
2: [IP][); _Ay]—/\hl[/o]

CESRE Y
el ]

_{w? /—YN]JF[/]MW[I 0]



requires

7—aux = |:

I P
0/

All: general

Internal stability




All: general

Internal stability

requires

Taux = [(l) ﬂ+[ﬂR(/—PR)—1[/ P ] € RHx.

This is equivalent to

M
Y
(mind that [if/ _I\/IIV] = {



All: general

Structure of T,
By the relations above,

- M —N X -N
Taux— |:Y X :| Taux [\"/ :|

M

_[MX —MN 01/ 1¢ o ny-1p(  Bey-157—1
_[Y;( ,_YN]+H(M ¥+ MLR( = PR [1 0]
and

Taux € RHyo <— Q = F, P M- R | € RH
aux [e'¢) — Ju M_l M_ls} ’ [elep)

P Mt [-VXt M+VXIN]T
M=t Mty |

Now,

X1 —X7IN
is invertible and so are its (2,1) and (1,2) blocks.
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All stabilizing controllers

Theorem (Youla—Kutera parametrization)
R stabilizes the system iff there is Q € RH, such that

_yx-1 v 51
R:]__I<[ YX M4+ YXN

2 AN @) =Y Mo+ ey

_ X1y X1 - . )
_]-"/<[/\"4+I\N/X—1Y _Nx—l}’Q> =X+ QW) Y=Y + QM)



All: general

Coprime factor interpretations
The factors in R = (=Y + MQ)(X + NQ)~! are right coprime, because

M(X + NQ) + (—N)(-Y + MQ) = I.
The factors in R = (X + QN)~1(=Y + QM) are left coprime, because

(X 4+ QN)M + (=Y + QM)(=N) = 1.



All: general

Coprime factor interpretations
The factors in R = (=Y + MQ)(X + NQ)~! are right coprime, because

M(X + NQ) + (—N)(-Y + MQ) = I.
The factors in R = (X + QN)~1(=Y + QM) are left coprime, because
(X 4+ QN)M + (=Y + QM)(=N) = 1.

Thus,

— Bézout coefficients of coprime factors of the plant are coprime factors
of every stabilizing controller

and

— Bézout coefficients of coprime factors of every stabilizing controller are
coprime factors of the plant.

In other words, coprime factorizations are about stabilizing controllers and

— finding coprime factors <= finding a stabilizing controller.



All: general

Uncertainty interpretation

With My = Nuand e = I\7Iy — Nu,

— @ is activated on uncertainty (for Piue, d, n)



All: general

Uncertainty interpretation

With My = Nuand e = I\7Iy — Nu,

— @ is activated on uncertainty (for Piue, d, n)

With y = NM~1u, the measurement add-on is PMn — N7, so

— @ is activated on uncertainty (for Pirye only)



All: general

All stable closed-loop systems

With L
" MX —MN 0
Taux [Y)“( I—YN_+{I}Q[/ 0],
we have that
X Nl= [M N
Taux— __S"/ M:| Taux _—Y X:|
(| — NY NX N .
| —my I\/IX} {M}Q[M V]
_[1=NY +NQM NX + NQN
T L MY + MQM  MX + MQN

is also affine in Q.



All: general

All stable closed-loop systems

With L
" MX —MN 0
Taux [Y)“( I—YN_+{I}Q[/ 0],
we have that
X Nl= [M N
Taux— __S"/ M:| Taux _—Y X:|
(| — NY NX N .
| —my MX} {M}Q[M V]
_[1=NY +NQM NX + NQN
T L MY + MQM  MX + MQN

is also affine in Q. The signal

e = /\/I((—Y+ QI\;I)vl + (X + QN)Vz) € Dp = MLy,

which can be viewed as the ultimate goal of every stabilizing controller.
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YK in state space

o[

be stabilizable and detectable and K and L render A+ BK and A+ LC
Hurwitz. All stabilizing C : y — u are given by

Let

u

4.@7

A+BK+LC+LDK|-L B+LD
J(s) = K 0 /

with

—(C + DK) I -D



Key observation:

€

ul —YX1 M4+ YXIN Y
Tl X! ~XIN n

All: general

YK in state space: derivation

J



Key observation:

€

We know that

or

ul —YX1 M4+ YXIN Y
Tl Xt ~XIN n

All: general

YK in state space: derivation

J

K I 0

A+BK|B —L
C+DK|D I

(t) = (A+ BK)R(t) + Br(t) — Le(t)

% } < u(t) = KX(t) + n(t)

y(t) = (C + DK)X(t) + Dn(t) + €(t)

and all we need is to

— swap y and € back.



All: general

YK in state space: derivation (contd)

The resulting

u(t) = K(t) + n(t)

{?((t) = (A+ BK + LC + LDK)&(t) — Ly(t) + (B + LD)n(t)
J
€(t) = —(C + DK)X(t) + y(t) — Dn(t)

is equivalent to ()



All: general

YK in state space: derivation (contd)

The resulting

u(t) = K(t) + n(t)

{?((t) = (A+ BK + LC + LDK)&(t) — Ly(t) + (B + LD)n(t)
J
€(t) = —(C + DK)X(t) + y(t) — Dn(t)

is equivalent to ()

is an observer-based controller, complemented by n = Qe.
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Extensions

All stabilizing controllers from a given one

Theorem

Let Rg stabilizes P and Ng,, MR,, /\N/Ro, MRO € RHy, be its coprime factors.
R stabilizes the system iff there is Q@ € RHy, such that

_ Ro / ~ 1 Apg—1
R= f’({ I —P(I — RoP)™! } Mg, Q’V’Ro>

and such that | + P(oo)(/\?l,;ol(oo)Q(oo)l\/l,gol(oo) — Ro(0)) is nonsingular.



Extensions

All stabilizing controllers from a given one

Theorem o
Let Ry stabilizes P and Ng,, Mg,, Ngr,, Mg, € RHy, be its coprime factors.
R stabilizes the system iff there is Q@ € RHy, such that

_ Ro / ~ 1 g1
R= f’q I —P(l — RoP)™! } Mg, Q’V’Ro>
and such that | + P(oo)(/\?l,;ol(oo)Q(oo)l\/l,;OI(oo) — Ro(o0)) is nonsingular.

Remark: If R stabilizes Py, then all plants stabilized by this controller are

-1
P[RR 1] o)
0

for Q € RH.



Extensions

Stabilizing controllers from those for the unstable part

P =Py +T1 forsomell € Hy

then its doubly coprime factorization

M —N )~<~ N Mg —Nig — Mggll )?fd—ﬂnf/fd Neg +MMeg | _
Y X -Y M Yia  Xed — Ysall — Y Mg

If Reg = (— Yia + Miq Q) (X 4+ NegQ) ! stabilizes Py, then all stabilizing R
for P are

= (=Y +MQ)X +NQ)™!

(— d+MfdQ)(de+/VfdQ+|_|(*f/fd+ Mig)) ™

(—Yia + M Q)(Xea + Nea Q)1 (1 + M(—Yeg + Mieg)(Kea + NuQ) 1)~
Req(I + MRe) L,

which is 1 in negative feedback with Riq.



Extensions

Dead-time compensation as YK

P(s) = Po(s)e™™ = [%‘% s,

— If Py is stable, take Pgy(s) = Po(s), for which

Let

M(s) = Po(s)e™ ™ — Pr(s) = —Po(s)(1 — e ™)

and we end up with the Smith controller.



Let

Extensions

Dead-time compensation as YK

P(s) = Po(s)e™™ = [%‘% s,

If Py is stable, take Pg(s) = Po(s), for which
M(s) = Po(s)e ™ — Pgy(s) = —Po(s)(1 — e~ ™)
and we end up with the Smith controller.
If Py is unstable, take Pey(s) = Ce A%(sl — A)~1B, for which
MN(s) = Po(s)e ™ — Pr(s) = C(e ™1 — e 7)(s| — A)'B

= —C/T eAlt-T)e=styp
0

and we end up with the modified Smith controller.
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Open-loop stabilization



OL stabilization

Open-loop stabilization problems

Given G11, G12, and G21,
— find R € RH,, such that G, := Gy1 + G12RGy1 € RH.

Known as two-sided and could be messy.



OL stabilization

Open-loop stabilization problems

Given G11, G12, and G21,
— find R € RH,, such that G, := Gy1 + G12RGy1 € RH.

Known as two-sided and could be messy.

Simplified one-sided versions:
— “tracking” setup with Gp1 =/ (and Gi11 = G; and Gi2 = G2), so

Ge := G + &R
“estimation” setup with Gi2 =/ (and G131 = G; and Gp; = Gp), so

Ge := Gy + RG>



OL stabilization

Motivation

Example
Let

for P(s)=1/(s+1) and R € RHx. If r =1, then

lim e(t) =0 <= R(0) =1.

t—o0



OL stabilization

Motivation

Example
Let

for P(s) =1/(s+1) and R € RHy. If r = 1, then

lim e(t) =0 < R(0) =1.

t—o0

et W(S) B 1/5' then € RH for all R € RHs

W(s)(1 — P(s)R(s)) = % _ 5(5$)1) _1- sR(O) _R(s) ;(ff)l()s +1)

and
W(1L— PR) € RHyx <= R(0) =1.



OL stabilization

Motivation

Example
Let

for P(s)=1/(s+1) and R € RHx. If r =1, then

lim e(t) =0 < R(0) = L.

t—o00

et W(S) B 1/5' then € RH for all R € RHs

W(s)(1 — P(s)R(s)) = % _ S(S(j)1) _1- sR(O) _R(s) ;(ff)l()s +1)

and
W(1 - PR) € RHy, < R(0)=1.



OL stabilization

Estimation stabilization: insight

Intuitively, there is R € RH,, stabilizing G; + RG; if
— unstable poles of Gi(s) are also poles of Gy(s) and
— R(s) reshapes directions of poles to cancel them with those of Gi(s)

But directional properties complicate matters.



OL stabilization

Estimation stabilization: insight

Intuitively, there is R € RH,, stabilizing G; + RG; if
— unstable poles of Gi(s) are also poles of Gy(s) and
— R(s) reshapes directions of poles to cancel them with those of Gi(s)

But directional properties complicate matters.

Example

Let
_|1/s O [1/s 0
Gi(s) = [ 0 1/5} and - Ga(s) = [ 0 1/(s2+1)]

In this case

Ge(s) = [(1+R11(5))/5 Riz(s)/(s? +1) ]
T Ra(s)/s 1/s+ Raa(s)/(s* +1)

and stability conditions are Ry1(0) = —1, R21(0) = 0, Ri2(£j) =0, but no
stabilizing Ry»(s) exists.



OL stabilization

Estimation stabilization: stabilizability

Lemma
Let G = No M5 1 My N, be coprime factorizations over RH,.,. The
following conditions are equivalent:

1. there is R € RHy, such that G, = Gi + RGy € RHy,
2. Gi1My € RHy (equivalently, D¢, C D¢, ),

3. there is a left coprime factorization of the form
G 1 (1 VTR [ i
G| |0 /\712 NQ a M{ l/\/2

for some Ny, My € RHoo.



OL stabilization

Estimation stabilization: all stabilizing R

Theorem
If a factorization of the form

Gl [ ] Ry
G2 N 0 M2 N2
exists, then R € RHy, stabilizes G iff there is Q € RHy, such that

R:Ml-i-QMz

and then y y
Ge = N1 + QN>

is the set of all attainable stable error systems.



OL stabilization

Estimation stabilization: state-space condition

Lemma
If the realization
Al B
6= | i | - oo
2 G | D

is stabilizable, then G admits a left coprime factorization of form

G1 - / /\7]1 ! Nl
G| [0 M N,
iff (Cy, A) is detectable, in which case
A+ LGl Ly B+ LoD

[@W)@@]— G |0 D
Ma G / D,

for any Ly such that A+ L, Cy is Hurwitz.



OL stabilization

Estimation stabilization: state-space condition (contd)

Example

Return to tracking, which can be written as




OL stabilization

Estimation stabilization: state-space condition (contd)

Example

Return to tracking, which can be written as




OL stabilization

Integral action in R

Assume an integral action is required in the controller (for all good reasons
we know). We may think of two approaches:

1. augmented design immediate

1.1 augment an integrator to the plant
1.2 design a stabilizer for the augmented plant

1.3 move the integrator to the stabilizer

2. constrained YK parametrization need to figure out how

2.1 start with all stabilizing controllers, say R = (X + QN)~1(=Y + QM)

2.2 find under what conditions on @ it contains an integral action

For the sake of simplicity, we consider the SISO case only.



OL stabilization

Integral action in R: YK condition
So let .
—Y(s) + Q(s)M(s)
X(s) + Q(s)N(s)
We know that unstable poles of R(s) are unstable zeros of its denominator.
Hence,

R(s) =

_R(s)

R(s) <

— X(0) + Q(0)N(0) =0




OL stabilization

Integral action in R: YK condition
So let .
—Y(s) + Q(s)M(s)
X(s) + Q(s)N(s)
We know that unstable poles of R(s) are unstable zeros of its denominator.
Hence,

R(s) =

_R(s)

S

where W(s) =1/s.

R(s) — X(0)+ QO)N(0) =0 <= (X + QN)W € RH4,




OL stabilization

Integral action in R: YK condition
So let .
—Y(s) + Q(s)M(s)
X(s) + Q(s)N(s)
We know that unstable poles of R(s) are unstable zeros of its denominator.
Hence,

R(s) =

_R(s)

o = X(0)+ Q(O)N(0) =0 < (X + QN)W € RHo,

R(s)

where W(s) =1/s. But this is
— the estimation stability setup with G; = XW and G, = NW.



OL stabilization

Integral action in R: YK condition
So let .
—Y(s) + Q(s)M(s)
X(s) + Q(s)N(s)
We know that unstable poles of R(s) are unstable zeros of its denominator.
Hence,

R(s) =

_R(s)

R(s) — X(0)+ QO)N(0) =0 <= (X + QN)W € RH4,

where W(s) =1/s. But this is
— the estimation stability setup with G; = XW and G, = NW.

If N(0) =0, then X(0) # 0 and
— Gy = W € RHx, while Gy = XW ¢ RHo ™ =2™ 1ot stabilizable
(naturally). We thus assume that N/(0) # 0.



OL stabilization

Integral action in R: YK condition (contd)

If N(0) # 0, then Gy(s) = N(s)/s has its only unstable pole at s = 0 and a
possible choice M, = s/(s + 1), for which

{Gl(S)} _ [1 ~X(0)/N(0) }_1 {(’V(O)X(S); N(s)X(0))/(N(0)s)
Ga(s) 0 s/(s+1) N(s)/(s +1)

is the required Icf. Hence, all @ € RH,, for which R has an integral action
are given as

L XO) g8

Q(s) = 10 + Qo )S+1
All such Q’s ensure that X(0)
O ="

irrespective of (.



OL stabilization

Example

Consider )
G(s)=—
(5) =~
Its coprime factors and their Bézout coefficients are
. 1 ~ s
N(s) = . M(s)= . X(s)=1, and Y(s)=1
()= 1y M) =g X =1 and Y(s)
All stabilizing:
-5 —1+5sQ(s)

R(s) =

s+ 1+ Q(s)



OL stabilization

Example

Consider )
G(s)=—
(5) =~
Its coprime factors and their Bézout coefficients are
. 1 ~ s
N(s) = M(s) = X(s)=1 Y(s)=1
(5) =77 Ml)=_7 X(@)=1 and Y(s)
All stabilizing:
-5 —1+5sQ(s)
R(s) =
() s+ 1+ Q(s)
All Q's guaranteeing an integral action in R(s):
Q(s)=-1+ sQols)

s+1
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Example

Consider )
G(s)=—
(5) =~
Its coprime factors and their Bézout coefficients are
. 1 ~ s
N(s) = M(s) = X(s)=1 Y(s)=1
()= g ME=—7 X6 =1 and ¥(5
All stabilizing:
—s—1
R(s) s —1+45Q(s)
s+ 1+ Q(s)
All Q's guaranteeing an integral action in R(s):
sQo(s)
— 14 20/
Qs) + s+1

All stabilizing controllers with an integral action:
) 2 _ -1 2
R(s) = s*—3s + 5°Qo(s)
s(s + 1+ Qo(s))
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Outline

Stabilization in the LFT setting



LFT stabilization

Internal stability

is said to be internally stable if all nine systems v; — ¢; are stable (in H).



LFT stabilization

Internal stability

/| 0 — G12 e1 G1 1 00 Vi
0 / — G22 [S] = G2 1 I 0 Vo
0 —R / €3 0 0/ V3

If Taux : (v1, v2, v3) — (e1, €2, €3), then

Gi1 0 G2 G2
Tax= | Gu | Gun |+ |Gn |R(I—GuR) ™ [Gn | Gx].
0o o0 [/ /
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Stabilizability conditions

Theorem

There is an internally stabilizing R iff there are coprime factorizations of
the form

~ 1~ ~ —1

[Gn Gl2:|:|:/ /\fl12} [/\fn /\~/12]:[/V11 N12H / 0 }
G21 G22 0 M22 N21 N22 N21 N22 M21 M22

with right coprime /\722, I\7122 and left coprime Ny, Moy. If factorizations as

above exist, then R internally stabilizes the system iff it internally stabilizes
’ § under P = G22.
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Stabilizability conditions (contd)

Proof (rough outline) :  First, note that

[0 0 G G Yoo GiaMp G2
Taux | O )522 —Ny | = | Gy /\42_21 0 + | G | T [ G Mz_zl 0 ]
0 Yoo M 0 Y22 Mos /

Hence, necessity of GioMay € RHy (cf. open-loop stabilizability). Second,

/ /\2712 —/S/12 G11j-M12G21 /\2712 0
0 My —Nop | Taux = Moo Goy My 0
0 Yoo X Y22 G2y Yoo Ms!
0
+1 0 |Tc[Gu | G,
M,

Hence, necessity of G + M15Gy1 € RHy, and Moy Gy € RHa. Then a lot of hard
labor and the result follows. .. O
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Stabilizability conditions: interpretation

Conditions

[ Gt
Go1

imply that

Gi2
&

]_

[ N —~/\7/12£\7/{21 Noy  Nia —~/\7/12£\7/2721 N }
L M{QI N21 Mil N22

[Ny N Mol o1 o

i 81 82]_ [ _ }M221[N21 Noy |
[ Ny — NiaMss' Moy Nip My ]

| Noy — Nop M5 Moy Nop My

N1 O Niz | /1 _
| N1 0][N22]M22 [Mar ]

— all unstable modes of G must be present in Gy,

around which the feedback loop is closed.
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All stable closed-loop maps

From
Gi1 0 G2 G2
Tax= | G | Gy |+ |Gn | RUI—GuR) ™ [Gy | G|
0o o0 [/ /

and R(I — G22R)_1 = —\722,\222 + Mng/\Nﬂgg, we have that
Teyvy = Gi1 — G2 YoM Go1 + GraMan Q Moy Gyy
= Ny — (Mg + Ni2 Ya2) Moyt Nog + Nip QNoy
= N1 + XioNoy + N2 QNoy

(With the help of M521 \722 = Y22M£21 and )?12/\222 = *Mu — Nio Y22).
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Stabilizability conditions in state space

Proposition
Let

D11 D1
Dy1 Do

It is stabilizable iff (A, By) is stabilizable and (Cy, A) is detectable. If these
conditions hold, then all stabilizing controllers are given by

|:G11(S) G12(S):|
G21(S) G22(S)

A+ ByK + LG + LDpK | —L By + LDy,
R(s) = F; K 0 / ,Q(s) ] .
-G — DK / —Dn

where K and L are such that A+ BoK and A+ LG, are Hurwitz and
Q € RHx and such that det(] — Q(oc0)Da2) # 0, but otherwise arbitrary.
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