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System interconnections

Control as interconnections

— control is about changing behavior of systems
— two options

1. redesign
2. interact

Basic interconnections

parallel series feedback

Main questions:
— how interactions change properties?

— when degrees are preserved?

Assume:
_ A2 B
Gi(s) = {Cl D1:| and  Gy(s) = [Cz Dz]

are minimal realizations of order n; and np, respectively.




Parallel interconnections

Gl A1 0 Bl
y—%a v |0 A4l B
G G G|Di+ D

Realization modes are the union of those of its components. Minimality?

Unobservable modes:

Ar — Al 0

(A1 — Al)m
0=| 0 Ay—Aal [’71] = | (A — Ao
G G 2 Cim + G

— m#0and 2 #0
— A € spec(A1) Nspec(Az)
— Ciker(Al — Ay) N Goker(Al — Ay) # {0}

by observability of (Cy, A1) and (Cy, Az)

Parallel interconnections (contd)

Proposition

Suppose that both (A1, B1, C1, D1) and (Az, Bz, Co, D>) are minimal. The
realization of their parallel interconnection is controllable iff

pdir,-(Gl, )t) N pdir,-(G2, )t) = {0}
and is observable iff
pdiro(Gi, A) N pdire(Go, A) = {0},

both for all A € spec(A1) N spec(Az).

Cascade interconnections

Al 0| B
Y | G, | | G, | Y = | BG Ay| BoDy
DG G| DDy

Realization modes are the union of those of its components. Minimality?

Unobservable modes:

A1 — Al 0 / 0 0 (Al —A/)T}l
0= | BG Ay—Al {”1]: 0 Ay— Al By 1o
D>y G 2 0 G D Gim
- m#0 by observability of (C,, Az)

— A € spec(A;)

B _ A, — Al B 2 B
— (A1 —=Al)n1 =0and [ G D, ] {le ] =0

— Ciker(Al = A;) N[0 1] ker Rg,(A) # {0}

Cascade interconnections (contd)

Proposition

Suppose that both (A1, B1, Ci, D1) and (A2, B2, Gy, D2) are minimal. The
realization of their cascade interconnection is controllable iff

pdir,'(G2, )L) N zdiro(Gl, /\) = {0}
for all A € spec(Ap) and is observable iff
Zdir,'(Gz, A) n pdiro(Gl, A) = {0},

for all A € spec(Ay).

Remark: zdiro(Gi, A) and zdiri( G», A) might be nontrivial even if A is not a zero of G; and
G, respectively. If nrank(Rg,(s)) < ni+p1, be it because my < p; or because of its normal
rank deficiency, zdiro( Gy, s) is nontrivial for all s. Likewise, if nrank(Rg,(s)) < n2 + mo for
whatever reason, zdiri( G, s) is nontrivial for all s too. Hence, if G(s) has its McMillan
degree below n; + na, we call it just “cancellation,” rather than “pole-zero cancellation.”




Feedback interconnections

If D, =0 (simplicity), then

8 Gy 2 A1 B1 G By
= | BG Ay+ BDi1G | BaDy
G G D;G; | D

Realization modes are unrelated to those of its components. Minimality?

Observability PBH:

A — Al B1G / 0 O A — Al B G
B,CG A+ BDiG—-Al | =101 B 0 Ax — Al
G D1 G 00 |/ G D1G
Hence

— observability here is lost iff it's lost in Gy G

Feedback interconnections (contd)

Proposition

Suppose that both (A1, B, C1, D1) and (Az, By, Co, D2) are minimal and
that det(/ — D1D,) # 0. The realization of their feedback interconnection
is controllable iff

pdir,'(G2, )L) N zdiro(Gl, /\) = {0}

and is observable iff
zdiri( Gy, A) N pdire(Ga, A) = {0},

both for all A € spec(Ap).

Outline

Linear fractional transformations

LFT
Y1 ) u
G G2 H
Gy Gy 7 uy
Y2 2 G G2
el
y2 - [25)
lower, ]—'|(G, H) upper, .FU(G, H)

The lower LFT ]—](H, G) Uy — yp reads
Fi(H,G) = Gi1 + GioH(l — GoH) ' Gy = Gi1 + Gio(l — HGy) ' HGyy
The upper LFT ]—'U(H, G) : Up — Yo reads
Fu(G, H) = G + Go1(I — HG11) ' HG1p = G + G H(I — Gi1H) 1 Gia

Moreover,

Fu(6.H) = Fill§ol6[7o]. H)




Special cases

Parallel:
Gy |
G1+G2=]:|<[ /1 0] ,G2>
Series:
GGy = F 0/ G;
Feedback:

_ G G
Gi(l — GGy) 1:]:'<[G1 Gi},Gz)

GoF (positive feedback):

B 2}::[7](/—/9/?)1[/ Pl=r

,,,,,,,,,,

State-space realization:

o] -~ ([¢ 5] )

Well posedness

Clearly,
| — GyoH is invertible — ]-"|(G, H) is well defined
Example
Fll17a 0,1l =1 va

10:0 0
although

(10 a 0 l1—a 0

’_G”H__o 1]_{0 0]_[ 0 1}

is singular for « = 1. But (internal signal) up, satisfyng

1-a« 0] 1
0 1 U2— O Ul,

is not well defined under o = 1.

Well posedness (contd)

LFT is well posed if all mappings v; — e; are well defined.

110 —Go)lfea]l [Gu:i00][wn

03 I —Gx e | = 6213/ 0 Vo

Ol—H / €3 0 10 / V3
U

/ —622 .. .
[ _H | ] is invertible
N8

| — GyoH is invertible <= [ — HGy; is invertible

|/O inversion

Proposition
Iff/(G, H) is square and Gi1 is nonsingular, then
[Fi(G. H) ™ = }—lq Cut’ 1 _GﬁlGlzl } H) :
’ G21 Gl_l G22 - G21 G1_1 G12 '

If Fu(G, H) is square and Gy is nonsingular, then

_ Gi1 — G126yt o1 Gi12Gyt } >
Fu(G. H) ' =F, i 22 | H).
(6. 1)) <[ —Gy'Gn Gyt

Proof (outline):  The lower LFT relation follows by

nf_|bu Go|ju| . fu|_ Gy ~Gyp' G
2 G G ||

¥ G G1—11 Gy — Gy Gl_ll G2
The upper LFT relation swaps y» and ws. O




T—H inversion

Proposition
If G is invertible, with square and invertible Gio> and Go1, then

T=F(G H) <= H=F,(GLT)=7r/(9,1c[91.7).

Proof (outline) :  Relation follows by

T:up—y1 in [yl}:G[ul} and up = Hys,
Y2 uz

H:y,— up in {ul}:G_l[yl} and y; =T us.
uz Y2

The invertibility of Gi» and Gp; is required to show the equivalence of the
well-posedness properties of .7-](G, H) and fu(G_l, T). O

Redheffer star product

Y1 Uy Y uy
Gll G12 Gll G12

G21 G22

SO
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