Linear Control Systems (036012)
chapter 5

Leonid Mirkin

Faculty of Mechanical Engineering Technion-IIT
Σ

Control as interconnections

- control is about changing behavior of systems
- two options

1. redesign
2. interact

Outline

System interconnections

Basic interconnections

Main questions:

- how interactions change properties?
- when degrees are preserved?

Assume:

$$
G_{1}(s)=\left[\begin{array}{l|l}
A_{1} & B_{1} \\
\hline C_{1} & D_{1}
\end{array}\right] \quad \text { and } \quad G_{2}(s)=\left[\begin{array}{c|c}
A_{2} & B_{2} \\
\hline C_{2} & D_{2}
\end{array}\right]
$$

are minimal realizations of order n_{1} and n_{2}, respectively.

Parallel interconnections

Realization modes are the union of those of its components. Minimality?
Unobservable modes:

$$
0=\left[\begin{array}{cc}
A_{1}-\lambda I & 0 \\
0 & A_{2}-\lambda I \\
C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{c}
\left(A_{1}-\lambda I\right) \eta_{1} \\
\left(A_{2}-\lambda I\right) \eta_{2} \\
C_{1} \eta_{1}+C_{2} \eta_{2}
\end{array}\right]
$$

- $\eta_{1} \neq 0$ and $\eta_{2} \neq 0$
by observability of $\left(C_{1}, A_{1}\right)$ and $\left(C_{2}, A_{2}\right)$
$-\lambda \in \operatorname{spec}\left(A_{1}\right) \cap \operatorname{spec}\left(A_{2}\right)$
$-C_{1} \operatorname{ker}\left(\lambda I-A_{1}\right) \cap C_{2} \operatorname{ker}\left(\lambda I-A_{2}\right) \neq\{0\}$

Cascade interconnections

$$
G_{2} \quad u \quad=\left[\begin{array}{cc|c}
A_{1} & 0 & B_{1} \\
B_{2} C_{1} & A_{2} & B_{2} D_{1} \\
\hline D_{2} C_{1} & C_{2} & D_{2} D_{1}
\end{array}\right]
$$

Realization modes are the union of those of its components. Minimality? Unobservable modes:

$$
0=\left[\begin{array}{cc}
A_{1}-\lambda I & 0 \\
B_{2} C_{1} & A_{2}-\lambda I \\
D_{2} C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & A_{2}-\lambda I & B_{2} \\
0 & C_{2} & D_{2}
\end{array}\right]\left[\begin{array}{c}
\left(A_{1}-\lambda I\right) \eta_{1} \\
\eta_{2} \\
C_{1} \eta_{1}
\end{array}\right]
$$

$-\eta_{1} \neq 0$
by observability of $\left(C_{2}, A_{2}\right)$
$-\lambda \in \operatorname{spec}\left(A_{1}\right)$
$-\left(A_{1}-\lambda I\right) \eta_{1}=0$ and $\left[\begin{array}{cc}A_{2}-\lambda I & B_{2} \\ C_{2} & D_{2}\end{array}\right]\left[\begin{array}{c}\eta_{2} \\ C_{1} \eta_{1}\end{array}\right]=0$
$-C_{1} \operatorname{ker}\left(\lambda I-A_{1}\right) \cap\left[\begin{array}{ll}0 & I\end{array}\right] \operatorname{ker} R_{G_{2}}(\lambda) \neq\{0\}$

Parallel interconnections (contd)

Proposition
Suppose that both $\left(A_{1}, B_{1}, C_{1}, D_{1}\right)$ and $\left(A_{2}, B_{2}, C_{2}, D_{2}\right)$ are minimal. The realization of their parallel interconnection is controllable iff

$$
\operatorname{pdir}_{i}\left(G_{1}, \lambda\right) \cap \operatorname{pdir}_{i}\left(G_{2}, \lambda\right)=\{0\}
$$

and is observable iff

$$
\operatorname{pdir}_{o}\left(G_{1}, \lambda\right) \cap \operatorname{pdir}_{o}\left(G_{2}, \lambda\right)=\{0\}
$$

both for all $\lambda \in \operatorname{spec}\left(A_{1}\right) \cap \operatorname{spec}\left(A_{2}\right)$.

Cascade interconnections (contd)

Proposition
Suppose that both $\left(A_{1}, B_{1}, C_{1}, D_{1}\right)$ and $\left(A_{2}, B_{2}, C_{2}, D_{2}\right)$ are minimal. The realization of their cascade interconnection is controllable iff

$$
\operatorname{pdir}_{i}\left(G_{2}, \lambda\right) \cap \operatorname{zdir}_{o}\left(G_{1}, \lambda\right)=\{0\}
$$

for all $\lambda \in \operatorname{spec}\left(A_{2}\right)$ and is observable iff

$$
\operatorname{zdir}_{i}\left(G_{2}, \lambda\right) \cap \operatorname{pdir}_{o}\left(G_{1}, \lambda\right)=\{0\}
$$

for all $\lambda \in \operatorname{spec}\left(A_{1}\right)$.

Remark: $\operatorname{zdir}_{0}\left(G_{1}, \lambda\right)$ and $\operatorname{zdir}_{i}\left(G_{2}, \lambda\right)$ might be nontrivial even if λ is not a zero of G_{1} and G_{2}, respectively. If $\operatorname{nrank}\left(R_{G_{1}}(s)\right)<n_{1}+p_{1}$, be it because $m_{1}<p_{1}$ or because of its normal rank deficiency, $\operatorname{zdir}_{\circ}\left(G_{1}, s\right)$ is nontrivial for all s. Likewise, if $\operatorname{nrank}\left(R_{G_{2}}(s)\right)<n_{2}+m_{2}$ for whatever reason, $z^{2} \mathrm{dir}_{\mathrm{i}}\left(G_{2}, s\right)$ is nontrivial for all s too. Hence, if $G(s)$ has its McMillan degree below $n_{1}+n_{2}$, we call it just "cancellation," rather than "pole-zero cancellation."

Feedback interconnections

If $D_{2}=0$ (simplicity), then

Realization modes are unrelated to those of its components. Minimality?

Observability PBH:

$$
\left[\begin{array}{cc}
A_{1}-\lambda I & B_{1} C_{2} \\
B_{2} C_{1} & A_{2}+B_{2} D_{1} C_{2}-\lambda I \\
C_{1} & D_{1} C_{2}
\end{array}\right]=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & B_{2} \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{cc}
A_{1}-\lambda I & B_{1} C_{2} \\
0 & A_{2}-\lambda I \\
C_{1} & D_{1} C_{2}
\end{array}\right]
$$

Hence

- observability here is lost iff it's lost in $G_{1} G_{2}$

Outline

Linear fractional transformations

Feedback interconnections (contd)

Proposition
Suppose that both $\left(A_{1}, B_{1}, C_{1}, D_{1}\right)$ and $\left(A_{2}, B_{2}, C_{2}, D_{2}\right)$ are minimal and that $\operatorname{det}\left(I-D_{1} D_{2}\right) \neq 0$. The realization of their feedback interconnection is controllable iff

$$
\operatorname{pdir}_{i}\left(G_{2}, \lambda\right) \cap \operatorname{zdir}_{o}\left(G_{1}, \lambda\right)=\{0\}
$$

and is observable iff

$$
\operatorname{zdir}_{i}\left(G_{1}, \lambda\right) \cap \operatorname{pdir}_{o}\left(G_{2}, \lambda\right)=\{0\},
$$

both for all $\lambda \in \operatorname{spec}\left(A_{2}\right)$.

LFT

The lower LFT $\mathcal{F}_{1}(H, G): u_{1} \mapsto y_{1}$ reads
$\mathcal{F}_{1}(H, G)=G_{11}+G_{12} H\left(I-G_{22} H\right)^{-1} G_{21}=G_{11}+G_{12}\left(I-H G_{22}\right)^{-1} H G_{21}$
The upper LFT $\mathcal{F}_{\mathrm{u}}(H, G): u_{2} \mapsto y_{2}$ reads
$\mathcal{F}_{\mathrm{u}}(G, H)=G_{22}+G_{21}\left(I-H G_{11}\right)^{-1} H G_{12}=G_{22}+G_{21} H\left(I-G_{11} H\right)^{-1} G_{12}$
Moreover,

$$
\mathcal{F}_{\mathrm{u}}(G, H)=\mathcal{F}_{1}\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] G\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], H\right)
$$

Special cases

Parallel:

$$
G_{1}+G_{2}=\mathcal{F}_{1}\left(\left[\begin{array}{cc}
G_{1} & I \\
l & 0
\end{array}\right], G_{2}\right)
$$

Series:

$$
G_{2} G_{1}=\mathcal{F}_{1}\left(\left[\begin{array}{cc}
0 & I \\
G_{1} & 0
\end{array}\right], G_{2}\right)
$$

Feedback:

$$
G_{1}\left(I-G_{2} G_{1}\right)^{-1}=\mathcal{F}_{1}\left(\left[\begin{array}{ll}
G_{1} & G_{1} \\
G_{1} & G_{1}
\end{array}\right], G_{2}\right)
$$

GoF (positive feedback):

$$
\left[\begin{array}{cc}
T_{\mathrm{c}} & T_{\mathrm{i}} \\
S_{\mathrm{o}} & T_{\mathrm{d}}
\end{array}\right]:=\left[\begin{array}{c}
R \\
I
\end{array}\right](I-P R)^{-1}\left[\begin{array}{ll}
I & P
\end{array}\right]=\mathcal{F}_{1}\left(\left[\begin{array}{cc:c}
0 & 0 & I \\
I & P & P \\
\hdashline I & P
\end{array}\right], R\right)
$$

State-space realization:

$$
\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\mathcal{F}_{\mathrm{u}}\left(\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right], \frac{1}{s} I\right)
$$

Well posedness (contd)

LFT is well posed if all mappings $v_{i} \mapsto e_{j}$ are well defined.

$$
\begin{gathered}
{\left[\begin{array}{c:cc}
I & 0 & -G_{12} \\
\hdashline 0 & I & -G_{G_{22}} \\
0 & -H & I
\end{array}\right]\left[\begin{array}{c}
e_{1} \\
\hdashline e_{2} \\
e_{3}
\end{array}\right]=\left[\begin{array}{c:cc}
G_{11} & 0 & 0 \\
\hdashline G_{21} & 1 & 0 \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\hdashline v_{2} \\
v_{3}
\end{array}\right]} \\
\left.\Downarrow \begin{array}{cc}
l & -G_{22} \\
-H & I
\end{array}\right] \text { is invertible } \\
\Downarrow \\
I-G_{22} H \text { is invertible } \Longleftrightarrow l-H G_{22} \text { is invertible }
\end{gathered}
$$

Well posedness

Clearly,

$$
I-G_{22} H \text { is invertible } \Longrightarrow \mathcal{F}_{1}(G, H) \text { is well defined }
$$

Example
The LFT

$$
\mathcal{F}_{1}\left(\left[\begin{array}{c:cc}
1 & 0 & 1 \\
\hdashline 1 & \alpha & 0 \\
0 & 0 & 0
\end{array}\right], l\right)=1, \quad \forall \alpha
$$

although

$$
I-G_{22} H=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
\alpha & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
1-\alpha & 0 \\
0 & 1
\end{array}\right]
$$

is singular for $\alpha=1$. But (internal signal) u_{2}, satisfyng

$$
\left[\begin{array}{cc}
1-\alpha & 0 \\
0 & 1
\end{array}\right] u_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{1}
$$

is not well defined under $\alpha=1$.

I/O inversion

Proposition
If $\mathcal{F}_{I}(G, H)$ is square and G_{11} is nonsingular, then

$$
\left[\mathcal{F}_{l}(G, H)\right]^{-1}=\mathcal{F}_{l}\left(\left[\begin{array}{cc}
G_{11}^{-1} & -G_{11}^{-1} G_{12} \\
G_{21} G_{11}^{-1} & G_{22}-G_{21} G_{11}^{-1} G_{12}
\end{array}\right], H\right)
$$

If $\mathcal{F}_{u}(G, H)$ is square and G_{22} is nonsingular, then

$$
\left[\mathcal{F}_{u}(G, H)\right]^{-1}=\mathcal{F}_{u}\left(\left[\begin{array}{cc}
G_{11}-G_{12} G_{22}^{-1} G_{21} & G_{12} G_{22}^{-1} \\
-G_{22}^{-1} G_{21} & G_{22}^{-1}
\end{array}\right], H\right) .
$$

Proof (outline): The lower LFT relation follows by

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \Longleftrightarrow\left[\begin{array}{l}
u_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
G_{11}^{-1} & -G_{11}^{-1} G_{12} \\
G_{21} G_{11}^{-1} & G_{22}-G_{21} G_{11}^{-1} G_{12}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
u_{2}
\end{array}\right]
$$

The upper LFT relation swaps y_{2} and u_{2}.

$T-H$ inversion

Proposition

If G is invertible, with square and invertible G_{12} and G_{21}, then

$$
T=\mathcal{F}_{l}(G, H) \Longleftrightarrow H=\mathcal{F}_{u}\left(G^{-1}, T\right)=\mathcal{F}_{l}\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] G^{-1}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], T\right)
$$

Proof (outline): Relation follows by

$$
T: u_{1} \mapsto y_{1} \quad \text { in } \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=G\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \text { and } \quad u_{2}=H y_{2}
$$

so

$$
H: y_{2} \mapsto u_{2} \quad \text { in } \quad\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=G^{-1}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \quad \text { and } \quad y_{1}=T u_{1}
$$

The invertibility of G_{12} and G_{21} is required to show the equivalence of the well-posedness properties of $\mathcal{F}_{1}(G, H)$ and $\mathcal{F}_{\mathrm{u}}\left(G^{-1}, T\right)$.

Redheffer star product

so

$$
\mathcal{F}_{1}\left(G, \mathcal{F}_{1}(\tilde{G}, H)\right)=\mathcal{F}_{1}(G \star \tilde{G}, H) .
$$

