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Control as interconnections

− control is about changing behavior of systems

− two options

1. redesign
2. interact
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Basic interconnections

G1

G2

uy
G1G2

uy

G2

G1
uy

parallel series feedback

Main questions:

− how interactions change properties?

− when degrees are preserved?

Assume:

G1(s) =

[
A1 B1

C1 D1

]
and G2(s) =

[
A2 B2

C2 D2

]

are minimal realizations of order n1 and n2, respectively.
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Parallel interconnections

G1

G2

uy =



A1 0 B1

0 A2 B2

C1 C2 D1 + D2




Realization modes are the union of those of its components. Minimality?

Unobservable modes:

0 =



A1 − �I 0

0 A2 − �I
C1 C2



[
�1
�2

]
=



(A1 − �I )�1
(A2 − �I )�2
C1�1 + C2�2




− �1 ̸= 0 and �2 ̸= 0 by observability of (C1;A1) and (C2;A2)

− � ∈ spec(A1) ∩ spec(A2)

− C1 ker(�I − A1) ∩ C2 ker(�I − A2) ̸= {0}
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Parallel interconnections (contd)

Proposition

Suppose that both (A1;B1;C1;D1) and (A2;B2;C2;D2) are minimal. The
realization of their parallel interconnection is controllable iff

pdiri(G1; �) ∩ pdiri(G2; �) = {0}

and is observable iff

pdiro(G1; �) ∩ pdiro(G2; �) = {0};

both for all � ∈ spec(A1) ∩ spec(A2).
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Cascade interconnections

G1G2
uy =




A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1




Realization modes are the union of those of its components. Minimality?

Unobservable modes:

0 =



A1 − �I 0
B2C1 A2 − �I
D2C1 C2



[
�1
�2

]
=



I 0 0
0 A2 − �I B2

0 C2 D2





(A1 − �I )�1

�2
C1�1




− �1 ̸= 0 by observability of (C2;A2)

− � ∈ spec(A1)

− (A1 − �I )�1 = 0 and

[
A2 − �I B2

C2 D2

] [
�2

C1�1

]
= 0

− C1 ker(�I − A1) ∩
[
0 I

]
kerRG2(�) ̸= {0}
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Cascade interconnections (contd)

Proposition

Suppose that both (A1;B1;C1;D1) and (A2;B2;C2;D2) are minimal. The
realization of their cascade interconnection is controllable iff

pdiri(G2; �) ∩ zdiro(G1; �) = {0}

for all � ∈ spec(A2) and is observable iff

zdiri(G2; �) ∩ pdiro(G1; �) = {0};

for all � ∈ spec(A1).

Remark: zdiro(G1; �) and zdiri(G2; �) might be nontrivial even if � is not a zero of G1 and
G2, respectively. If nrank(RG1(s)) < n1+p1, be it because m1 < p1 or because of its normal
rank deficiency, zdiro(G1; s) is nontrivial for all s. Likewise, if nrank(RG2(s)) < n2 +m2 for
whatever reason, zdiri(G2; s) is nontrivial for all s too. Hence, if G(s) has its McMillan
degree below n1 + n2, we call it just “cancellation,” rather than “pole-zero cancellation.”
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Feedback interconnections

If D2 = 0 (simplicity), then

G2

G1
uy

=




A1 B1C2 B1

B2C1 A2 + B2D1C2 B2D1

C1 D1C2 D1




Realization modes are unrelated to those of its components. Minimality?

Observability PBH:



A1 − �I B1C2

B2C1 A2 + B2D1C2 − �I
C1 D1C2


 =



I 0 0
0 I B2

0 0 I





A1 − �I B1C2

0 A2 − �I
C1 D1C2




Hence

− observability here is lost iff it’s lost in G1G2
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Feedback interconnections (contd)

Proposition

Suppose that both (A1;B1;C1;D1) and (A2;B2;C2;D2) are minimal and
that det(I − D1D2) ̸= 0. The realization of their feedback interconnection
is controllable iff

pdiri(G2; �) ∩ zdiro(G1; �) = {0}

and is observable iff

zdiri(G1; �) ∩ pdiro(G2; �) = {0};

both for all � ∈ spec(A2).
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LFT

[
G11 G12

G21 G22

]

H

u1y1

y2 u2
[
G11 G12

G21 G22

]

H

u2y2

y1 u1

lower, Fl

(
G ;H

)
upper, Fu

(
G ;H

)
The lower LFT Fl

(
H;G

)
: u1 7→ y1 reads

Fl

(
H;G

)
= G11 + G12H(I − G22H)−1G21 = G11 + G12(I − HG22)

−1HG21

The upper LFT Fu

(
H;G

)
: u2 7→ y2 reads

Fu

(
G ;H

)
= G22 + G21(I − HG11)

−1HG12 = G22 + G21H(I − G11H)−1G12

Moreover,
Fu

(
G ;H

)
= Fl

([
0 I
I 0

]
G
[
0 I
I 0

]
;H

)
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Special cases

Parallel:

G1 + G2 = Fl

([
G1 I
I 0

]
;G2

)

Series:

G2G1 = Fl

([
0 I
G1 0

]
;G2

)

Feedback:

G1(I − G2G1)
−1 = Fl

([
G1 G1

G1 G1

]
;G2

)

GoF (positive feedback):
[
Tc Ti

So Td

]
··=

[
R
I

]
(I − PR)−1

[
I P

]
= Fl





0 0 I
I P P

I P P


 ;R




State-space realization:
[
A B

C D

]
= Fu

([
A B
C D

]
;
1

s
I

)
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Well posedness

Clearly,
I − G22H is invertible =⇒ Fl

(
G ;H

)
is well defined

Example

The LFT

Fl





1 0 1

1 ˛ 0
0 0 0


 ; I


 = 1; ∀˛

although

I − G22H =

[
1 0
0 1

]
−
[
˛ 0
0 0

]
=

[
1− ˛ 0
0 1

]

is singular for ˛ = 1. But (internal signal) u2, satisfyng

[
1− ˛ 0
0 1

]
u2 =

[
1
0

]
u1;

is not well defined under ˛ = 1.
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Well posedness (contd)

v1

v2

v3

e1

e2 e3

[
G11 G12

G21 G22

]

H

LFT is well posed if all mappings vi 7→ ej are well defined.



I 0 −G12

0 I −G22

0 −H I





e1
e2
e3


 =



G11 0 0

G21 I 0
0 0 I





v1
v2
v3




⇓
[

I −G22

−H I

]
is invertible

⇓
I − G22H is invertible ⇐⇒ I − HG22 is invertible
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I/O inversion

Proposition

If Fl

(
G ;H

)
is square and G11 is nonsingular, then

[Fl

(
G ;H

)
]−1 = Fl

([
G−1
11 −G−1

11 G12

G21G
−1
11 G22 − G21G

−1
11 G12

]
;H

)
:

If Fu

(
G ;H

)
is square and G22 is nonsingular, then

[Fu

(
G ;H

)
]−1 = Fu

([
G11 − G12G

−1
22 G21 G12G

−1
22

−G−1
22 G21 G−1

22

]
;H

)
:

Proof (outline) : The lower LFT relation follows by
[
y1
y2

]
=

[
G11 G12

G21 G22

][
u1
u2

]
⇐⇒

[
u1
y2

]
=

[
G−1
11 −G−1

11 G12

G21G
−1
11 G22 − G21G

−1
11 G12

][
y1
u2

]

The upper LFT relation swaps y2 and u2.



System interconnections LFT

T–H inversion

Proposition

If G is invertible, with square and invertible G12 and G21, then

T = Fl

(
G ;H

)
⇐⇒ H = Fu

(
G−1;T

)
= Fl

([
0 I
I 0

]
G−1

[
0 I
I 0

]
;T

)
:

Proof (outline) : Relation follows by

T : u1 7→ y1 in

[
y1
y2

]
= G

[
u1
u2

]
and u2 = Hy2;

so

H : y2 7→ u2 in

[
u1
u2

]
= G−1

[
y1
y2

]
and y1 = T u1:

The invertibility of G12 and G21 is required to show the equivalence of the
well-posedness properties of Fl

(
G ;H

)
and Fu

(
G−1;T

)
.
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Redheffer star product

[
G11 G12

G21 G22

]

[
G̃11 G̃12

G̃21 G̃22

]

H

u1

ỹ1

u2

y1

y2

ũ1

ỹ2 ũ2

[
G11 G12

G21 G22

]

[
G̃11 G̃12

G̃21 G̃22

]

u1y1

ỹ2 ũ2

Fl

(
G ;Fl

(
G̃ ;H

))

G ? G̃

so
Fl

(
G ;Fl

(
G̃ ;H

))
= Fl

(
G ? G̃ ;H

)
:
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