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Control as interconnections

— control is about changing behavior of systems
— two options

1. redesign
2. interact
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System interconnections

Basic interconnections

parallel series feedback

Main questions:
— how interactions change properties?

— when degrees are preserved?

Assume:
. Al Bl o A2 B2
Gi(s) = [Cl D1:| and Gy(s) = [Q DJ

are minimal realizations of order n; and ny, respectively.



System interconnections

Parallel interconnections

Ai O Bi
=0 A B>
G G ‘ D1 + Do

Realization modes are the union of those of its components. Minimality?

Unobservable modes:

A — Al 0 |: (Al—kl)rll
1} _

0= 0 A2—/\/ (Ag—k/)ﬂz
G G Cin + Gonz
— nm#0and 92 #0 by observability of (C1, A1) and (G, A2)

— A € spec(A1) Nspec(Az)
- G ker(/\/ — Al) NG ker()kl - A2) % {0}



System interconnections

Parallel interconnections (contd)

Proposition

Suppose that both (A1, Bi, Ci, D1) and (A2, Bz, Co, D2) are minimal. The
realization of their parallel interconnection is controllable iff

pdiri( Gy, A) N pdir( Gy, A) = {0}
and is observable iff
pdiro(Gi, 1) N pdire(Ga, A) = {0},

both for all A € spec(A1) N spec(Ay).



System interconnections

Cascade interconnections

Ay 0 B
X {Gz } {Gl } Y = | BbG Ay | BoDy
DG G| DD

Realization modes are the union of those of its components. Minimality?

Unobservable modes:

A —Al 0 I 0 07 [(A—ADn
0= | BG Asr—Al [”1]: 0 Ar—Al By 2
D> G G 2 0 G D Gm

- m#0
— A € spec(A;)

_ A — Al B n |
— (A1 —Aln1 =0 and [ G Dz] [Clnl =0

— Ciker(Al — A1) N [0 1] ker Rg, (1) # {0}



System interconnections

Cascade interconnections (contd)

Proposition

Suppose that both (A1, Bi, Ci, D1) and (A2, Bz, Co, D2) are minimal. The
realization of their cascade interconnection is controllable iff

pdil’,'(Gz, A) N zdiro(Gl, /\) = {0}
for all A € spec(Az) and is observable iff
Zdil’,‘(Gg, )L) N pdiro(Gl, )&) = {0},

for all A € spec(A1).



System interconnections

Cascade interconnections (contd)

Proposition
Suppose that both (A1, Bi, Ci, D1) and (A2, Bz, Co, D2) are minimal. The
realization of their cascade interconnection is controllable iff

pdiri( Gz, A) N zdir,(G1, A) = {0}
for all A € spec(Az) and is observable iff
Zdir,'(Gz, /\) N pdiro(Gl, A) = {0},

for all A € spec(A1).

Remark: zdiro(G1, A) and zdiri(Gz, A) might be nontrivial even if A is not a zero of G; and
G, respectively. If nrank(Rg, (s)) < ni+p1, be it because m; < p1 or because of its normal
rank deficiency, zdiro( G, s) is nontrivial for all s. Likewise, if nrank(Rg,(s)) < n2 + my for
whatever reason, zdiri(Go, s) is nontrivial for all s too. Hence, if G(s) has its McMillan
degree below n; + n2, we call it just “cancellation,” rather than “pole-zero cancellation.”



System interconnections

Feedback interconnections

If Dy =0 (simplicity), then

X G 3 A1 B1G By
— = | BG A+ BDiG | BDy

C D, C D

G2 1 1C2 | D

Realization modes are unrelated to those of its components. Minimality?

Observability PBH:

A — Al Bi1G /I 0 0 Al — Al Bi1G
B, A +BDIG-A | =01 B 0 As — Al
G D1G 00 |/ G D1 G
Hence

— observability here is lost iff it's lost in Gy G



System interconnections

Feedback interconnections (contd)

Proposition

Suppose that both (A1, B1, C1, D1) and (Az, Bz, Co, D) are minimal and

that det(/ — D1D») # 0. The realization of their feedback interconnection
is controllable iff

pdiri( Gz, A) N zdiry( Gy, A) = {0}
and is observable iff
Zdir,'(G1,)L) N pdiro(Gz,)t) = {0},

both for all A € spec(A2).
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LFT

LFT

Yy, up
G Gio H
G21 G22 341 uy
Y2 2 Gi1 Gi2
H [ — Go1 G2 -—
l J 2 L ) 2
lower, Fi(G, H) upper, 7, (G, H)

The lower LFT .7-"|(H, G) iUy — yp reads
Fi(H,G) = Gi1 + GioH(l — GooH) Gyt = Gi1 + Gia(l — HGy) ' HGx
The upper LFT Fy(H. G) : uz — y reads
Fu(G H) = G+ Go1(l — HG11) P HG1o = G + GoiH(I — GiiH) 1 Gio

Moreover,
Fu(G.H)=FA([95]G[6]. H)
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Special cases

Gy |
G1—|-G2=]:|<[ Il 0},6‘2)

Parallel:
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Special cases

Gy |
G1—|-G2=]:|<[ Il 0},6‘2)

0o 1/
ca=r([3 1]

Parallel:

Series:
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Special cases

Parallel:
Gy |/
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Series:
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Special cases

Parallel:
Gy |/
G1—|-G2=-7:|<[ Il O} ,G2>
Series:
GG = F 0/ G,
2 1 - | G]_ 0 ’ 2
Feedback:

. G G
all = Ga) 12?’([@1 Gﬂ’@)

GoF (positive feedback):

(=] [*u-em1 P]f.(
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Special cases

Parallel:
Gy |/
G1—|-G2=-7:|<[ Il O} ,G2>
Series:
GG = F 0/ G,
2 1 - | G]_ 0 ’ 2
Feedback:

. G G
all = Ga) 12?’([@1 Gﬂ’@)

GoF (positive feedback):

(=] [*u-em1 P]f.(

State-space realization:

o] -([e 5]2)
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Well posedness

LFT

| — GyoH is invertible — ]-"|(G, H) is well defined

Clearly,
Example
The LFT
Fi
although
| — GpoH =

is singular for ¢ = 1.

1.0 1
lia 0,1 =1,
0:00
10 | 0|
01 00|

l—« 0}



LFT

Well posedness

Clearly,
| — GyoH is invertible — ]-](G, H) is well defined
Example
The LFT M1 : 01
Flllao|.1]=1 va

10:0 0
although

(10 a 0 1—a 0

F=GaH = 0 1]_[0 0]_[ 0 1}

is singular for « = 1. But (internal signal) u, satisfyng

1-« 0] J1
0o 1|/ " |o|"

is not well defined under o = 1.
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Well posedness (contd)

LFT is well posed if all mappings v; — ¢; are well defined.



Well posedness (contd)

LFT is well posed if all mappings v; — ¢; are well defined.

110 —Gr|la G110 07 [wn
03 I —Gx e | = G213I 0 %)
0 l —H / €3 0 l 0/ V3
(S
/ —G22 .. .
{—H / ] is invertible
{3

| — GxoH is invertible <= | — HGy, is invertible

LFT
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I/O inversion

Proposition
If Fi(G. H) is square and Gi1 is nonsingular, then
[F/(G H)]fl _ fl<|: Gﬁl X —Gﬁ1G121 :| H) )
' GGy G — Go1Gy Gia |

If Fu(G., H) is square and Gy, is nonsingular, then

_ Gi1 — G126y ' Gy1 G12Gyyt
Fu (G, H 1:3([ 1o 22 L H).
[ ( )] —G221621 G2 1

Proof (outline): The lower LFT relation follows by

ni_ G G2 S PR ) Gl_ll —G1_11G12 "
y2 G Gy || w y2 Gn G Gy — GnG'Gr || w2

The upper LFT relation swaps y» and us. O O



LFT

T—H inversion

Proposition
If G is invertible, with square and invertible G1» and Gp1, then

T=F(GH) < H=F,(c1T)= A7 Y1)

Proof (outline): Relation follows by

T:uy—y in [yl}:G{ul} and ux = Hys,
Y2 u

2

H:y+—up in [ul]:Gl[?} and y1 =T u.
2

The invertibility of Gi» and Gp1 is required to show the equivalence of the
well-posedness properties of ]-](G, H) and fu(G_l, T). 0J



Redheffer star product

Y [0
Gll G12

LFT



Redheffer star product

Y 21 i
Gll G12

Gll G12
G21 G22

G:ll (17;12

-~— G21 G22

SO

u
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