Linear Control Systems (036012) chapter 4

Leonid Mirkin
Faculty of Mechanical Engineering
Technion-IIT

Preliminary: linear algebra facts

$-(\operatorname{ker} M)^{\perp}=\operatorname{Im} M^{\prime}$ and $(\operatorname{lm} M)^{\perp}=\operatorname{ker} M^{\prime}$
$-\operatorname{Im} M_{1}=\operatorname{Im} M_{2} \Longleftrightarrow \operatorname{ker} M_{1}^{\prime}=\operatorname{ker} M_{2}^{\prime}$

- if $M=M^{\prime} \geq 0$, then $M x=0 \Longleftrightarrow x^{\prime} M x=0$
- if $M=M^{\prime} \geq 0$, then left \& right singular vectors coincide, $M=U \Sigma U^{\prime}$
- if $f(x)$ is analytic, $M, T \in \mathbb{F}^{m \times m}$ with $\operatorname{det} T \neq 0$, then

$$
f\left(T M T^{-1}\right)=T f(M) T^{-1}
$$

(in particular, $\left(T M T^{-1}\right)^{i}=T M^{i} T^{-1}$ and $\mathrm{e}^{T M T^{-1}}=T \mathrm{e}^{M} T^{-1}$)

Preliminary: Cayley-Hamilton

In essence, each square matrix satisfies its own characteristic equation:

$$
\chi_{A}(A):=A^{n}+\chi_{n-1} A^{n-1}+\cdots+\chi_{1} A+\chi_{0} I_{n}=0 .
$$

Important consequence:

- A^{k} for all $k \geq n$ is a linear combination of $A^{i}, i=0, \ldots, n-1$, like

$$
\begin{aligned}
A^{n} & =-\chi_{n-1} A^{n-1}-\cdots-\chi_{1} A-\chi_{0} I_{n} \\
A^{n+1} & =-\chi_{n-1} A^{n}-\cdots-\chi_{1} A^{2}-\chi_{0} A \\
& =\chi_{n-1}\left(\chi_{n-1} A^{n-1}+\cdots+\chi_{1} A+\chi_{0} I_{n}\right)-\cdots-\chi_{1} A^{2}-\chi_{0} A \\
& =\left(\chi_{n-1}^{2}-\chi_{n-2}\right) A^{n-1}+\cdots+\left(\chi_{n-1} \chi_{1}-\chi_{0}\right) A+\chi_{n-1} \chi_{0} I_{n}
\end{aligned}
$$

Preliminary: matrix Sylvester and Lyapunov equations

Given $A_{1} \in \mathbb{F}^{p \times p}, A_{2} \in \mathbb{F}^{m \times m}, Q \in \mathbb{F}^{p \times m}$, solve in $X \in \mathbb{F}^{p \times m}$

$$
A_{1} X+X A_{2}+Q=0
$$

If $\operatorname{spec}\left(A_{1}\right) \cap \operatorname{spec}\left(-A_{2}\right)=\varnothing, X$ exists for all Q and is unique. Otherwise, there might be either no or infinitely many solutions, depending on Q.

Preliminary: matrix Sylvester and Lyapunov equations

Given $A_{1} \in \mathbb{F}^{p \times p}, A_{2} \in \mathbb{F}^{m \times m}, Q \in \mathbb{F}^{p \times m}$, solve in $X \in \mathbb{F}^{p \times m}$

$$
A_{1} X+X A_{2}+Q=0
$$

If $\operatorname{spec}\left(A_{1}\right) \cap \operatorname{spec}\left(-A_{2}\right)=\varnothing, X$ exists for all Q and is unique. Otherwise, there might be either no or infinitely many solutions, depending on Q.

Its special case for $A_{2}=A_{1}^{\prime}$ and $Q=Q^{\prime}$ is known as the matrix Lyapunov equation,

$$
A X+X A^{\prime}+Q=0
$$

If A is Hurwitz, then

$$
X=\int_{\mathbb{R}^{+}} e^{A t} Q \mathrm{e}^{A^{\prime} t} \mathrm{~d} t
$$

Outline

State-space realizations
System interconnections in terms of state-space realizations

Structural properties

Kalman canonical decomposition and minimality
Coprime factorization via state-space realizations
Poles / zeros / directions via state-space realizations
System norms via state-space realizations
Model reduction by balanced truncation

State-space realizations

Let $G: \mathfrak{D}_{G} \subset \mathbb{R}^{n} \times L_{2}^{m}\left(\mathbb{R}_{+}\right) \rightarrow L_{2}^{p}\left(\mathbb{R}_{+}\right)$be LTI, finite dimensional, and have a proper transfer function. There are $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, and $D \in \mathbb{R}^{p \times m}$ such that $u \mapsto y=G u$ reads

$$
G:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

The quadruple (A, B, C, D) is called a state-space realization of G. If $x_{0}=0$, we have that $G: \mathfrak{D}_{G} \subset L_{2}^{m}\left(\mathbb{R}_{+}\right) \rightarrow L_{2}^{p}\left(\mathbb{R}_{+}\right)$and we write

$$
G:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

State-space realizations

Let $G: \mathfrak{D}_{G} \subset \mathbb{R}^{n} \times L_{2}^{m}\left(\mathbb{R}_{+}\right) \rightarrow L_{2}^{p}\left(\mathbb{R}_{+}\right)$be LTI, finite dimensional, and have a proper transfer function. There are $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, and $D \in \mathbb{R}^{p \times m}$ such that $u \mapsto y=G u$ reads

$$
G:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

The quadruple (A, B, C, D) is called a state-space realization of G. If $x_{0}=0$, we have that $G: \mathfrak{D}_{G} \subset L_{2}^{m}\left(\mathbb{R}_{+}\right) \rightarrow L_{2}^{p}\left(\mathbb{R}_{+}\right)$and we write

$$
G:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

Solution:

$$
x(t)=\mathrm{e}^{A t} x_{0}+\int_{0}^{t} \mathrm{e}^{A(t-s)} B u(s) \mathrm{d} s
$$

Similarity transformations

Let

$$
\tilde{x}(t):=T x(t)
$$

for some nonsingular $T \in \mathbb{R}^{n \times n}$. We have:

$$
\dot{\tilde{x}}(t)=T \dot{x}(t)=T(A x(t)+B u(t))=T A T^{-1} \tilde{x}(t)+T B u(t)
$$

and also

$$
y(t)=C x(t)+D u(t)=C T^{-1} \tilde{x}(t)+D u(t)
$$

Hence,

$$
\left(T A T^{-1}, T B, C T^{-1}, D\right)
$$

is also a realization of the same G.

Similarity transformations

Let

$$
\tilde{x}(t):=T x(t)
$$

for some nonsingular $T \in \mathbb{R}^{n \times n}$. We have:

$$
\dot{\tilde{x}}(t)=T \dot{x}(t)=T(A x(t)+B u(t))=T A T^{-1} \tilde{x}(t)+T B u(t)
$$

and also

$$
y(t)=C x(t)+D u(t)=C T^{-1} \tilde{x}(t)+D u(t)
$$

Hence,

$$
\left(T A T^{-1}, T B, C T^{-1}, D\right)
$$

is also a realization of the same G. This realization is said to be similar to (A, B, C, D).

Impulse response and transfer function

The impulse response of G is

$$
g(t)=D \delta(t)+C \mathrm{e}^{A t} B
$$

The corresponding transfer function

$$
G(s)=D+C(s l-A)^{-1} B=:\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right],
$$

with $G(\infty)=D$, so that $G(s)$ is

- strictly proper iff $D=0$ and bi-proper iff $\operatorname{det}(D) \neq 0$.

Impulse response and transfer function

The impulse response of G is

$$
g(t)=D \delta(t)+C \mathrm{e}^{A t} B
$$

The corresponding transfer function

$$
G(s)=D+C(s l-A)^{-1} B=:\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

with $G(\infty)=D$, so that $G(s)$ is

- strictly proper iff $D=0$ and bi-proper iff $\operatorname{det}(D) \neq 0$.

Readily seen that

$$
D \delta(t)+C T^{-1} \mathrm{e}^{T A T^{-1} t} T B=D \delta(t)+C \mathrm{e}^{A t} B
$$

and

$$
\left[\begin{array}{c|c}
T A T^{-1} & T B \\
\hline C T^{-1} & D
\end{array}\right]=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] .
$$

Outline

System interconnections in terms of state-space realizations

Interconnecting in state space

For transfer functions, algebraic manipulations over complex functions:

- parallel: $G_{1}(s)+G_{2}(s)$
- series: $G_{2}(s) G_{1}(s)$
- inverse: $G^{-1}(s)$

For state-space realizations:

- can be done via matrix algebra.

Interconnecting in state space

For transfer functions, algebraic manipulations over complex functions:

- parallel: $G_{1}(s)+G_{2}(s)$
- series: $G_{2}(s) G_{1}(s)$
- inverse: $G^{-1}(s)$

For state-space realizations:

- can be done via matrix algebra.

Let
$G_{1}:\left\{\begin{array}{l}\dot{x}_{1}(t)=A_{1} x_{1}(t)+B_{1} u_{1}(t) \\ y_{1}(t)=C_{1} x_{1}(t)+D_{1} u_{1}(t)\end{array} \quad\right.$ and $\quad G_{2}:\left\{\begin{array}{l}\dot{x}_{2}(t)=A_{2} x_{2}(t)+B_{2} u_{2}(t) \\ y_{2}(t)=C_{2} x_{2}(t)+D_{2} u_{2}(t)\end{array}\right.$
An efficient way of interconnecting such systems is to

- unite state vectors
- determine what inputs / outputs to connect

Parallel interconnection

corresponds to

$$
\begin{aligned}
& -u_{1}=u_{2}=u \\
& -y=y_{1}+y_{2}
\end{aligned}
$$

Hence,

$$
G:\left\{\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right] } & =\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left(D_{1}+D_{2}\right) u(t)
\end{aligned}\right.
$$

Series / cascade interconnection

corresponds to

$$
\begin{aligned}
& -u_{1}=u \\
& -u_{2}=y_{1} \\
& -\quad y=y_{2}
\end{aligned}
$$

Then

$$
G:\left\{\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right] } & =\left[\begin{array}{cc}
A_{1} & 0 \\
B_{2} C_{1} & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
B_{2} D_{1}
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
D_{2} C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+D_{2} D_{1} u(t)
\end{aligned}\right.
$$

Inversion

Let

$$
G:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

be square (i.e. $p=m$) and bi-proper (i.e. $\operatorname{det}(D) \neq 0$). Its inverse is the system mapping $y \mapsto u$. Then

$$
u(t)=-D^{-1} C x(t)+D^{-1} y(t)
$$

and

$$
\dot{x}(t)=A x(t)+B\left(-D^{-1} C x(t)+D^{-1} y(t)\right)
$$

Therefore,

$$
G^{-1}:\left\{\begin{array}{l}
\dot{x}(t)=\left(A-B D^{-1} C\right) x(t)+B D^{-1} y(t) \\
u(t)=-D^{-1} C x(t)+D^{-1} y(t)
\end{array}\right.
$$

Summary

If

$$
G_{i}(s)=\left[\begin{array}{c|c}
A_{i} & B_{i} \\
\hline C_{i} & D_{i}
\end{array}\right], \quad i \in\{1,2\}
$$

then

$$
\begin{aligned}
& -G_{1}(s)+G_{2}(s)=\left[\begin{array}{cc|c}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
\hline C_{1} & C_{2} & D_{1}+D_{2}
\end{array}\right]=\left[\begin{array}{cc|c}
A_{2} & 0 & B_{2} \\
0 & A_{1} & B_{1} \\
\hline C_{2} & C_{1} & D_{1}+D_{2}
\end{array}\right] \\
& -G_{2}(s) G_{1}(s)=\left[\begin{array}{cc|c}
A_{1} & 0 & B_{1} \\
B_{2} C_{1} & A_{2} & B_{2} D_{1} \\
\hline D_{2} C_{1} & C_{2} & D_{2} D_{1}
\end{array}\right]=\left[\begin{array}{cc|c}
A_{2} & B_{2} C_{1} & B_{2} D_{1} \\
0 & A_{1} & B_{1} \\
\hline C_{2} & D_{2} C_{1} & D_{2} D_{1}
\end{array}\right] \\
& -G_{i}^{-1}(s)=\left[\begin{array}{cc|c}
A_{i}-B_{i} D_{i}^{-1} C_{i} & B_{i} D_{i}^{-1} \\
\hline-D_{i}^{-1} C_{i} & D_{i}^{-1}
\end{array}\right]=\left[\begin{array}{cc|c}
A_{i}-B_{i} D_{i}^{-1} C_{i} & -B_{i} D_{i}^{-1} \\
\hline D_{i}^{-1} C_{i} & D_{i}^{-1}
\end{array}\right]
\end{aligned}
$$

Partial fraction expansion

Partition

$$
G_{2}(s) G_{1}(s)=H_{1}(s)+H_{2}(s)
$$

with $H_{i}(s)$ having the " A " matrices of $G_{i}(s)$.

Partial fraction expansion

Partition

$$
G_{2}(s) G_{1}(s)=H_{1}(s)+H_{2}(s)
$$

with $H_{i}(s)$ having the " A " matrices of $G_{i}(s)$. Roth's removal rule:
$-\left[\begin{array}{cc}A_{1} & Q \\ 0 & A_{2}\end{array}\right]$ and $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ are similar iff $X A_{1}-A_{2} X=-Q$ is solvable

Partial fraction expansion

Partition

$$
G_{2}(s) G_{1}(s)=H_{1}(s)+H_{2}(s)
$$

with $H_{i}(s)$ having the " A " matrices of $G_{i}(s)$. Roth's removal rule:

$$
-\left[\begin{array}{cc}
A_{1} & Q \\
0 & A_{2}
\end{array}\right] \text { and }\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] \text { are similar iff } X A_{1}-A_{2} X=-Q \text { is solvable }
$$

Thus, assuming the Sylvester equation $X A_{1}-A_{2} X=-B_{2} C_{1}$ is solvable (it is enough to have $\left.\operatorname{spec}\left(A_{1}\right) \cap \operatorname{spec}\left(A_{2}\right)=\varnothing\right)$, use $T=\left[\begin{array}{cc}1 & X \\ 0 & 1\end{array}\right]$ to get

$$
\begin{aligned}
G_{2}(s) G_{1}(s) & =\left[\begin{array}{cc|c}
A_{2} & B_{2} C_{1} & B_{2} D_{1} \\
0 & A_{1} & B_{1} \\
\hline C_{2} & D_{2} C_{1} & D_{2} D_{1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc|c}
A_{2} & 0 & B_{2} D_{1}+X B_{1} \\
0 & A_{1} & B_{1} \\
\hline C_{2} & D_{2} C_{1}-C_{2} X & D_{2} D_{1}
\end{array}\right]}_{H_{1}(s)} \\
& =\underbrace{\left[\begin{array}{c|c}
A_{1} & B_{1} \\
\hline D_{2} C_{1}-C_{2} X & 0
\end{array}\right]}_{H_{2}(s)}+\underbrace{}_{\left.\begin{array}{c|c}
A_{2} & B_{2} D_{1}+X B_{1} \\
C_{2} & D_{2} D_{1}
\end{array}\right]}
\end{aligned}
$$

Moral: similarity transformations are a powerful tool.

Controllability

We say that $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ is controllable if the

- eigenvalues of $A+B K$ can be freely assigned by a choice of $K \in \mathbb{R}^{m \times n}$ (with the restriction that complex eigenvalues are in conjugate pairs).

Controllability criteria

The following statements are equivalent:

1. The pair (A, B) is controllable.
2. The matrix

$$
\left[\begin{array}{ll}
A-\lambda I & B
\end{array}\right] \in \mathbb{C}^{n \times(n+m)}
$$

has full rank $\forall \lambda \in \mathbb{C}$ (the PBH [Popov-Belevich-Hautus] test).
3. The matrix

$$
W_{c}(t):=\int_{0}^{t} \mathrm{e}^{A s} B B^{\prime} \mathrm{e}^{A^{\prime} s} \mathrm{~d} s \in \mathbb{R}^{n \times n}
$$

is positive definite for all $t>0$ (the Gramian-based test).
4. The controllability matrix

$$
M_{c}:=\left[\begin{array}{llll}
B & A B & \ldots & A^{n-1} B
\end{array}\right] \in \mathbb{R}^{n \times(n m)}
$$

has full rank (i.e. $\operatorname{rank}\left(M_{c}\right)=n$).

Technical Lemma 1

Lemma

$\operatorname{Im} W_{c}(t)=\operatorname{Im} M_{c}$ for every $t>0$ or, equivalently, $\operatorname{ker} W_{c}(t)=\operatorname{ker} M_{c}^{\prime}$.
Proof (outline).
$W_{\mathrm{c}}(t)=\left[W_{\mathrm{c}}(t)\right]^{\prime} \geq 0$ implies that $\eta \in \operatorname{ker} W_{\mathrm{c}}(t)$ iff
$\eta^{\prime} W_{c}(t) \eta=0 \Longleftrightarrow \int_{0}^{t}\left\|\eta^{\prime} \mathrm{e}^{A s} B\right\|^{2} \mathrm{~d} s=0 \Longleftrightarrow \eta^{\prime} \mathrm{e}^{A s} B=0, \quad \forall s \in[0, t]$
As $\mathrm{e}^{A t}$ is analytic (every Taylor series converges), the latter implies

$$
\left.\eta^{\prime}\left(\mathrm{e}^{A s}\right)^{(i)} B\right|_{s=0}=0, \quad \forall i \in \mathbb{Z}_{+} \Longleftrightarrow \eta^{\prime}\left[\begin{array}{llll}
B & A B & A^{2} B & \cdots
\end{array}\right]=0
$$

By Cayley-Hamilton,

$$
\operatorname{ker}\left[\begin{array}{llll}
B & A B & A^{2} B & \cdots
\end{array}\right]^{\prime}=\operatorname{ker} M_{\mathrm{c}}^{\prime} .
$$

Result follows because η is arbitrary.

Technical Lemma 2

Lemma

If rank $W_{c}(t)=r<n$, then there is a unitary matrix U_{c} such that

$$
\left(U_{c} A U_{c}^{\prime}, U_{c} B\right)=\left(\left[\begin{array}{cc}
A_{c} & \times \\
0 & A_{\bar{c}}
\end{array}\right],\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right]\right)
$$

where $\left(A_{c}, B_{c}\right) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{r \times m}$ is such that $\int_{0}^{t} \mathrm{e}^{A_{c} s} B_{c} B_{c}^{\prime} \mathrm{e}^{A_{c}^{\prime} s} \mathrm{~d} s>0$. We prove it for Hurwitz A. In this case rank $W_{c}(t)=\operatorname{rank} P$, where

$$
P:=W_{\mathrm{c}}(\infty) \geq 0, \quad \text { verifying Lyapunov eqn. } A P+P A^{\prime}+B B^{\prime}=0
$$

aka the controllability Gramian of (A, B). If A is not Hurwitz, $\hat{A}:=A-\alpha$ I is Hurwitz for a sufficiently large $\alpha>0$ and
$\operatorname{ker} \int_{0}^{t} \mathrm{e}^{\hat{A} s} B B^{\prime} \mathrm{e}^{\hat{A}^{\prime} s} \mathrm{~d} s=\bigcap_{s \in[0, t]} \operatorname{ker} B^{\prime} \mathrm{e}^{(A-\alpha I)^{\prime} s}=\bigcap_{s \in[0, t]} \operatorname{ker} B^{\prime} \mathrm{e}^{A^{\prime} s}=\operatorname{ker} W_{c}(t)$
so nothing changes if we prove the result for $\hat{A} \ldots$

Technical Lemma 2 (contd)

Proof (outline).
If rank $P=r<m, \exists$ unitary U_{c} s.t. $U_{c} P U_{c}^{\prime}=\left[\begin{array}{cc}P_{c} & 0 \\ 0 & 0\end{array}\right]$ for $r \times r P_{c}>0$. Let

$$
\left(U_{c} A U_{c}^{\prime}, U_{c} B\right)=\left(\left[\begin{array}{cc}
A_{c} & A_{12} \\
A_{21} & A_{\bar{c}}
\end{array}\right],\left[\begin{array}{l}
B_{c} \\
B_{2}
\end{array}\right]\right)
$$

The Lyapunov equation for P reads then

$$
\left[\begin{array}{cc}
A_{\mathrm{c}} P_{\mathrm{c}}+P_{\mathrm{c}} A_{\mathrm{c}}^{\prime}+B_{\mathrm{c}} B_{\mathrm{c}}^{\prime} & P_{\mathrm{c}} A_{21}^{\prime}+B_{\mathrm{c}} B_{2}^{\prime} \\
A_{21} P_{\mathrm{c}}+B_{2} B_{\mathrm{c}}^{\prime} & B_{2} B_{2}^{\prime}
\end{array}\right]=0 .
$$

$(2,2) \Longrightarrow B_{2}=0 \stackrel{(1,2)}{\Longrightarrow} A_{21}=0 \Longrightarrow A_{c}$ is Hurwitz $\stackrel{(1,1)}{\Longrightarrow}$

$$
P_{c}=\int_{\mathbb{R}^{+}} \mathrm{e}^{A_{c} s} B_{\mathrm{c}} B_{\mathrm{c}}^{\prime} \mathrm{e}^{A_{c}^{\prime} s} \mathrm{~d} s>0
$$

which leads to the last claim by already familiar arguments.

Equivalence of controllability conditions

$2 \Longrightarrow 3:$ Let rank $\left[\begin{array}{cc}A-s l & B\end{array}\right]=n, \forall s \in \mathbb{C}$, but rank $W_{c}(t)=r<n$. By TL2 there is a unitary U_{c} such that

$$
U_{c}\left[\begin{array}{cc}
A-s l & B
\end{array}\right]\left[\begin{array}{cc}
U_{c}^{\prime} & 0 \\
0 & l
\end{array}\right]=\left[\begin{array}{cc:c}
A_{c}-s I_{r} & \times & B_{\mathrm{c}} \\
0 & A_{\bar{c}}-s I_{n-r} & 0
\end{array}\right],
$$

whose rank drops at every $s \in \operatorname{spec}\left(A_{\bar{c}}\right) \Longrightarrow$ contradiction.

Equivalence of controllability conditions

$2 \Longrightarrow 3:$ Let rank $\left[\begin{array}{cc}A-s l & B\end{array}\right]=n, \forall s \in \mathbb{C}$, but rank $W_{c}(t)=r<n$. By TL2 there is a unitary U_{c} such that

$$
U_{c}\left[\begin{array}{cc}
A-s l & B
\end{array}\right]\left[\begin{array}{cc}
U_{c}^{\prime} & 0 \\
0 & l
\end{array}\right]=\left[\begin{array}{cc:c}
A_{c}-s I_{r} & \times & B_{\mathrm{c}} \\
0 & A_{\bar{c}}-s I_{n-r} & 0
\end{array}\right],
$$

whose rank drops at every $s \in \operatorname{spec}\left(A_{\bar{c}}\right) \Longrightarrow$ contradiction.
$2 \Longleftarrow 3:$ Let rank $W_{c}(t)=n$, but rank $\left[A-s_{0} I B\right]<n$ for $s_{0} \in \mathbb{C}$. In this case $\exists \eta_{0} \neq 0$ such that

$$
\eta_{0}^{\prime}\left[\begin{array}{ll}
A-s_{0} & B
\end{array}\right]=0 \Longleftrightarrow\left(\eta_{0}^{\prime} A=s_{0} \eta_{0}^{\prime}\right) \wedge\left(\eta_{0}^{\prime} B=0\right) .
$$

Hence, $\eta_{0}^{\prime} \mathrm{e}^{A t} B=\mathrm{e}^{s_{0} t} \eta_{0}^{\prime} B=0, \forall t \Longrightarrow \eta_{0}^{\prime} W_{\mathrm{c}}(t)=0 \Longrightarrow$ contradiction.

Equivalence of controllability conditions

$2 \Longrightarrow 3:$ Let rank $\left[\begin{array}{cc}A-s l & B\end{array}\right]=n, \forall s \in \mathbb{C}$, but rank $W_{c}(t)=r<n$. By TL2 there is a unitary U_{c} such that

$$
U_{\mathrm{c}}\left[\begin{array}{ll}
A-s l & B
\end{array}\right]\left[\begin{array}{cc}
U_{\mathrm{c}}^{\prime} & 0 \\
0 & l
\end{array}\right]=\left[\begin{array}{cc:c}
A_{\mathrm{c}}-s I_{r} & \times & B_{\mathrm{c}} \\
0 & A_{\bar{c}}-s I_{n-r} & 0
\end{array}\right],
$$

whose rank drops at every $s \in \operatorname{spec}\left(A_{\bar{c}}\right) \Longrightarrow$ contradiction.
$2 \Longleftarrow 3:$ Let rank $W_{c}(t)=n$, but rank $\left[A-s_{0} I B\right]<n$ for $s_{0} \in \mathbb{C}$. In this case $\exists \eta_{0} \neq 0$ such that

$$
\eta_{0}^{\prime}\left[\begin{array}{ll}
A-s_{0} & B
\end{array}\right]=0 \Longleftrightarrow\left(\eta_{0}^{\prime} A=s_{0} \eta_{0}^{\prime}\right) \wedge\left(\eta_{0}^{\prime} B=0\right)
$$

Hence, $\eta_{0}^{\prime} \mathrm{e}^{A t} B=\mathrm{e}^{s_{0} t} \eta_{0}^{\prime} B=0, \forall t \Longrightarrow \eta_{0}^{\prime} W_{\mathrm{c}}(t)=0 \Longrightarrow$ contradiction.
$3 \Longleftrightarrow 4: \quad$ Follows by TL1.

Equivalence of controllability conditions (contd)

$1 \Longrightarrow 2$: Let (A, B) be controllable, but rank $\left[A-s_{0} l B\right]<n$ for $s_{0} \in \mathbb{C}$. In this case $\exists \eta_{0} \neq 0$ such that

$$
\eta_{0}^{\prime}\left[\begin{array}{ll}
A-s_{0} & B
\end{array}\right]=0 \Longleftrightarrow\left(\eta_{0}^{\prime} A=s_{0} \eta_{0}^{\prime}\right) \wedge\left(\eta_{0}^{\prime} B=0\right)
$$

Hence, $\eta_{0}^{\prime}(A+B K)=s_{0} \eta_{0}^{\prime} \Longrightarrow s_{0} \in \operatorname{spec}(A+B K)$ for all $K \Longrightarrow(A, B)$ is not controllable \Longrightarrow contradiction.

Equivalence of controllability conditions (contd)

$1 \Longrightarrow 2:$ Let (A, B) be controllable, but rank $\left[A-s_{0} I B\right]<n$ for $s_{0} \in \mathbb{C}$. In this case $\exists \eta_{0} \neq 0$ such that

$$
\eta_{0}^{\prime}\left[\begin{array}{ll}
A-s_{0} l & B
\end{array}\right]=0 \Longleftrightarrow\left(\eta_{0}^{\prime} A=s_{0} \eta_{0}^{\prime}\right) \wedge\left(\eta_{0}^{\prime} B=0\right)
$$

Hence, $\eta_{0}^{\prime}(A+B K)=s_{0} \eta_{0}^{\prime} \Longrightarrow s_{0} \in \operatorname{spec}(A+B K)$ for all $K \Longrightarrow(A, B)$ is not controllable \Longrightarrow contradiction.
$4 \Longrightarrow 1$: If $m=1$, then $\operatorname{det}\left(M_{c}\right) \neq 0$ and by Ackermann's formula

$$
K=-e_{n}^{\prime} M_{c}^{-1} \chi_{\mathrm{cl}}(A)
$$

assigns $\operatorname{spec}(A+B K)$ to roots of (an arbitrary) $\chi_{\mathrm{cl}}(s) \Longrightarrow$ controllability. If $m>1$, then for any $0 \neq \tilde{b} \in \operatorname{Im} B, \exists \tilde{K} \in \mathbb{R}^{m \times n}$ such that $(A+B \tilde{K}, \tilde{b})$ is controllable (Heymann, 1968). Hence,

$$
K=\tilde{K}-\tilde{u} e_{n}^{\prime} \tilde{M}_{c}^{-1} \chi_{\mathrm{cl}}(A+B \tilde{K})
$$

does the trick, where $\tilde{u} \in \mathbb{R}^{m}$ is such that $B \tilde{u}=\tilde{b} \Longrightarrow$ controllability.

Controllability and similarity transformations

Let $(\tilde{A}, \tilde{B}, \tilde{C}, D):=\left(T A T^{-1}, T B, C T^{-1}, D\right)$. We have that

$$
\begin{aligned}
\tilde{M}_{c} & =\left[\begin{array}{llll}
\tilde{B} & \tilde{A} \tilde{B} & \cdots & \tilde{A}^{n-1} \tilde{B}
\end{array}\right]=T\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right] \\
& =T M_{c}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{W}_{c}(t) & =\int_{0}^{t} \mathrm{e}^{\tilde{A} s} \tilde{B} \tilde{B}^{\prime} \mathrm{e}^{\tilde{A}^{\prime} s} \mathrm{~d} s=\int_{0}^{t} T \mathrm{e}^{A s} T^{-1} T B B^{\prime} T^{\prime} T^{-\prime} \mathrm{e}^{A^{\prime} s} T^{\prime} \mathrm{d} s \\
& =T \int_{0}^{t} \mathrm{e}^{A s} B B^{\prime} \mathrm{e}^{A^{\prime} s} \mathrm{~d} s T^{\prime} \\
& =T W_{c}(t) T^{\prime}
\end{aligned}
$$

Hence,

- controllability is invariant under similarity transformations.

Uncontrollable modes

If PBH fails at some $\lambda \in \mathbb{C}$, there is $0 \neq \eta \in \mathbb{C}^{n}$ such that

$$
\eta^{\prime}\left[\begin{array}{ll}
A-\lambda I & B
\end{array}\right]=0 \Longleftrightarrow\left(\eta^{\prime} A=\lambda \eta^{\prime}\right) \wedge\left(\eta^{\prime} B=0\right)
$$

Hence,

- PBH can fail only if $\lambda \in \operatorname{spec}(A)$
- PBH fails iff $\eta^{\prime} B=0$ for a left eigenvector of A

Uncontrollable modes

If PBH fails at some $\lambda \in \mathbb{C}$, there is $0 \neq \eta \in \mathbb{C}^{n}$ such that

$$
\eta^{\prime}\left[\begin{array}{ll}
A-\lambda \prime & B
\end{array}\right]=0 \Longleftrightarrow\left(\eta^{\prime} A=\lambda \eta^{\prime}\right) \wedge\left(\eta^{\prime} B=0\right)
$$

Hence,

- PBH can fail only if $\lambda \in \operatorname{spec}(A)$
- PBH fails iff $\eta^{\prime} B=0$ for a left eigenvector of A

If PBH fails on $\lambda \in \operatorname{spec}(A)$ with corresponding left eigenvector η, then

$$
\eta^{\prime}(A+B K)=\lambda \eta^{\prime} \Longrightarrow \lambda \in \operatorname{spec}(A+B K), \quad \forall K
$$

i.e. λ remains an eigenvalue (mode) of $A+B K$ for all K. Hence, every
$-\lambda \in \mathbb{C}$ at which PBH fails is called an uncontrollable mode of (A, B).

Stabilizability

We say that $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ is stabilizable if

- there is $K \in \mathbb{R}^{m \times n}$ such that $A+B K$ is Hurwitz.

The following statements are equivalent:

1. The pair (A, B) is stabilizable.
2. The matrix $\left[\begin{array}{ll}A-\lambda I & B\end{array}\right]$ has full row rank for all $\lambda \in \overline{\mathbb{C}}_{0}$.

Controllable decomposition

There is a nonsingular matrix T_{c} such that

$$
\left(T_{\mathrm{c}} A T_{\mathrm{c}}^{-1}, T_{\mathrm{c}} B\right)=\left(\left[\begin{array}{cc}
A_{\mathrm{c}} & \times \\
0 & A_{\bar{c}}
\end{array}\right],\left[\begin{array}{c}
B_{\mathrm{c}} \\
0
\end{array}\right]\right)
$$

where $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is controllable and $\operatorname{spec}\left(A_{\bar{c}}\right)$ comprises all uncontrollable modes of (A, B). Moreover, T_{c} brings (A, B) to this form iff

$$
T_{\mathrm{c}} W_{\mathrm{c}}(t) T_{\mathrm{c}}^{\prime}=\left[\begin{array}{cc}
\tilde{W}_{\mathrm{c}}(t) & 0 \\
0 & 0
\end{array}\right]
$$

for some $\tilde{W}_{\mathrm{c}}(t)>0$.

Observability \& detectability

We say that $(C, A) \in \mathbb{R}^{p \times n} \times \mathbb{R}^{n \times n}$ is observable if the

- eigenvalues of $A+L C$ can be freely assigned by a choice of $L \in \mathbb{R}^{n \times p}$ (with the restriction that complex eigenvalues are in conjugate pairs).

We say that $(C, A) \in \mathbb{R}^{p \times n} \times \mathbb{R}^{n \times n}$ is detectable if

- there is $L \in \mathbb{R}^{n \times p}$ such that $A+L C$ is Hurwitz.

Observability \& detectability

We say that $(C, A) \in \mathbb{R}^{p \times n} \times \mathbb{R}^{n \times n}$ is observable if the

- eigenvalues of $A+L C$ can be freely assigned by a choice of $L \in \mathbb{R}^{n \times p}$ (with the restriction that complex eigenvalues are in conjugate pairs).

We say that $(C, A) \in \mathbb{R}^{p \times n} \times \mathbb{R}^{n \times n}$ is detectable if

- there is $L \in \mathbb{R}^{n \times p}$ such that $A+L C$ is Hurwitz.

Because

$$
\operatorname{spec}(A+L C)=\operatorname{spec}\left(A^{\prime}+C^{\prime} L^{\prime}\right)
$$

we have that
$-(C, A)$ is observable iff $\left(A^{\prime}, C^{\prime}\right)$ is controllable

- (C, A) is detectable iff $\left(A^{\prime}, C^{\prime}\right)$ is stabilizable
and can use all tests (with the observability matrix, observability Gramians, PBH, observable decomposition, et cetera).

Observability criteria

The following statements are equivalent:

1. The pair (C, A) is observable.
2. The matrix $\left[\begin{array}{c}A-s l \\ C\end{array}\right]$ has full column rank $\forall s \in \mathbb{C}$.
3. The matrix

$$
W_{o}(t):=\int_{0}^{t} \mathrm{e}^{A^{\prime} \tau} C^{\prime} C \mathrm{e}^{A \tau} \mathrm{~d} \tau
$$

is positive definite for any $t>0$.
4. The observability matrix

$$
M_{\mathrm{o}}:=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

has full rank (i.e. $\operatorname{rank}\left(M_{\circ}\right)=n$).

Observable decomposition

There is a nonsingular matrix T_{0} such that

$$
\left(C T_{\circ}^{-1}, T_{\circ} A T_{\circ}^{-1}\right)=\left(\left[\begin{array}{ll}
C_{\circ} & 0
\end{array}\right],\left[\begin{array}{cc}
A_{\circ} & 0 \\
\times & A_{\bar{\circ}}
\end{array}\right]\right)
$$

where $\left(C_{\circ}, A_{\circ}\right)$ is observable and $\operatorname{spec}\left(A_{\bar{\circ}}\right)$ comprises all unobservable modes of (C, A). Moreover, T_{\circ} brings (C, A) to this form iff

$$
T_{\circ}^{-\prime} W_{\circ}(t) T_{\circ}^{-1}=\left[\begin{array}{cc}
\tilde{W}_{\circ}(t) & 0 \\
0 & 0
\end{array}\right]
$$

for some $\tilde{W}_{\mathrm{c}}(t)>0$.

Observable decomposition

There is a nonsingular matrix T_{0} such that

$$
\left(C T_{\circ}^{-1}, T_{\circ} A T_{\circ}^{-1}\right)=\left(\left[\begin{array}{cc}
C_{\circ} & 0
\end{array}\right],\left[\begin{array}{cc}
A_{\circ} & 0 \\
\times & A_{\bar{\circ}}
\end{array}\right]\right)
$$

where $\left(C_{\mathrm{o}}, A_{\mathrm{o}}\right)$ is observable and $\operatorname{spec}\left(A_{\bar{\circ}}\right)$ comprises all unobservable modes of (C, A). Moreover, T_{\circ} brings (C, A) to this form iff

$$
T_{\circ}^{-\prime} W_{\circ}(t) T_{\circ}^{-1}=\left[\begin{array}{cc}
\tilde{W}_{\circ}(t) & 0 \\
0 & 0
\end{array}\right]
$$

for some $\tilde{W}_{c}(t)>0$.

As a matter of fact,

$$
\tilde{W}_{\circ}(t)=T^{-\prime} W_{\circ}(t) T^{-1} \quad \text { and } \quad \tilde{M}_{\circ}=M_{\circ} T^{-1}
$$

Outline

Kalman canonical decomposition and minimality

Uncontrollable modes and transfer functions

Let

$$
G(s)=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{c|c}
T A T^{-1} & T B \\
\hline C T^{-1} & D
\end{array}\right]=\left[\begin{array}{cc|c}
A_{c} & \times & B_{\mathrm{c}} \\
0 & A_{\bar{c}} & 0 \\
\hline C_{\mathrm{c}} & \times & D
\end{array}\right],
$$

where $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is controllable. Now,

$$
\begin{aligned}
G(s) & =D+\left[\begin{array}{ll}
C_{c} & \times
\end{array}\right]\left(s l-\left[\begin{array}{cc}
A_{c} & \times \\
0 & A_{\bar{c}}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right] \\
& =D+\left[\begin{array}{ll}
C_{c} & \times
\end{array}\right]\left[\begin{array}{cc}
\left(s l-A_{c}\right)^{-1} & \times \\
0 & \left(s l-A_{\bar{c}}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right] \\
& =D+C_{c}\left(s l-A_{c}\right)^{-1} B_{c} .
\end{aligned}
$$

In other words,

- uncontrollable modes do not affect the corresponding transfer function.

Uncontrollable modes and transfer functions

Let

$$
G(s)=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{c|c}
T A T^{-1} & T B \\
\hline C T^{-1} & D
\end{array}\right]=\left[\begin{array}{cc|c}
A_{c} & \times & B_{\mathrm{c}} \\
0 & A_{\bar{c}} & 0 \\
\hline C_{\mathrm{c}} & \times & D
\end{array}\right],
$$

where $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is controllable. Now,

$$
\begin{aligned}
G(s) & =D+\left[\begin{array}{ll}
C_{c} & \times
\end{array}\right]\left(s l-\left[\begin{array}{cc}
A_{c} & \times \\
0 & A_{\bar{c}}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right] \\
& =D+\left[\begin{array}{ll}
C_{c} & \times
\end{array}\right]\left[\begin{array}{cc}
\left(s l-A_{c}\right)^{-1} & \times \\
0 & \left(s l-A_{\bar{c}}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
B_{c} \\
0
\end{array}\right] \\
& =D+C_{c}\left(s l-A_{c}\right)^{-1} B_{c} .
\end{aligned}
$$

In other words,

- uncontrollable modes do not affect the corresponding transfer function.

The same conclusion holds for unobservable modes of a realization.

Kalman canonical decomposition

There is a nonsingular matrix T such that

$$
G(s)=\left[\begin{array}{c|c}
T A T^{-1} & T B \\
\hline C T^{-1} & D
\end{array}\right]=\left[\begin{array}{cccc|c}
A_{\mathrm{c} \bar{o}} & \times & \times & \times & B_{\mathrm{c} \bar{o}} \\
0 & A_{\mathrm{co}} & 0 & \times & B_{\mathrm{co}} \\
0 & 0 & A_{\overline{\mathrm{c}} \overline{\mathrm{o}}} & \times & 0 \\
0 & 0 & 0 & A_{\overline{\mathrm{co}}} & 0 \\
\hline 0 & C_{\mathrm{co}} & 0 & C_{\overline{\mathrm{co}}} & D
\end{array}\right]=\left[\begin{array}{c|c}
A_{\mathrm{co}} & B_{\mathrm{co}} \\
\hline C_{\mathrm{co}} & D
\end{array}\right],
$$

where $\left(A_{\mathrm{co}}, B_{\mathrm{co}}\right)$ is controllable and $\left(C_{\mathrm{co}}, A_{\mathrm{co}}\right)$ is observable, so that the
$-\operatorname{spec}\left(A_{\text {co }}\right)$ contains controllable-and-observable
$-\operatorname{spec}\left(A_{c \bar{o}}\right)$ contains controllable-but-unobservable
$-\operatorname{spec}\left(A_{\bar{c} \circ}\right)$ contains observable-but-uncontrollable
$-\operatorname{spec}\left(A_{\bar{c} \bar{o}}\right)$ contains uncontrollable-and-unobservable modes of the triple (C, A, B), respectively.

Kalman canonical decomposition

There is a nonsingular matrix T such that

$$
G(s)=\left[\begin{array}{c|c}
T A T^{-1} & T B \\
\hline C T^{-1} & D
\end{array}\right]=\left[\begin{array}{cccc|c}
A_{\mathrm{c} \bar{o}} & \times & \times & \times & B_{\mathrm{c} \bar{o}} \\
0 & A_{\mathrm{co}} & 0 & \times & B_{\mathrm{co}} \\
0 & 0 & A_{\overline{\mathrm{c}} \overline{\mathrm{o}}} & \times & 0 \\
0 & 0 & 0 & A_{\overline{\mathrm{co}}} & 0 \\
\hline 0 & C_{\mathrm{co}} & 0 & C_{\overline{\mathrm{co}}} & D
\end{array}\right]=\left[\begin{array}{c|c}
A_{\mathrm{co}} & B_{\mathrm{co}} \\
\hline C_{\mathrm{co}} & D
\end{array}\right],
$$

where $\left(A_{\mathrm{co}}, B_{\mathrm{co}}\right)$ is controllable and $\left(C_{\mathrm{co}}, A_{\mathrm{co}}\right)$ is observable, so that the
$-\operatorname{spec}\left(A_{\mathrm{co}}\right)$ contains controllable-and-observable
$-\operatorname{spec}\left(A_{\mathrm{co}}\right)$ contains controllable-but-unobservable

- $\operatorname{spec}\left(A_{\bar{c} \circ}\right)$ contains observable-but-uncontrollable
$-\operatorname{spec}\left(A_{\bar{c} \bar{o}}\right)$ contains uncontrollable-and-unobservable modes of the triple (C, A, B), respectively. Again, neither uncontrollable nor unobservable modes (aka hidden modes) affect the transfer function.

Minimality

A realization (A, B, C, D) of a given system G is said to be

- minimal if the dimension of A is smallest among all realizations of G.

Minimality

A realization (A, B, C, D) of a given system G is said to be

- minimal if the dimension of A is smallest among all realizations of G.

Theorem

A realization (A, B, C, D) is minimal iff (A, B) is controllable and (C, A) is observable.

Proof (outline of the "only if" part).
Follows from the Kalman canonical decomposition.

Minimality (contd)

Proof (outline of the "if" part).
Let (A, B) be controllable, (C, A) be observable, but the realization be not minimal for $A \in \mathbb{R}^{n \times n}$. I.e. there are $A_{r} \in \mathbb{R}^{n_{r} \times n_{r}}, B_{r}$, and C_{r} so that

$$
\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{c|c}
A_{\mathrm{r}} & B_{\mathrm{r}} \\
\hline C_{\mathrm{r}} & D
\end{array}\right] \quad \text { with } n_{\mathrm{r}}<n .
$$

Hence, $C e^{A t} B=C_{r} e^{A_{r} t} B_{r}, \forall t$

Minimality (contd)

Proof (outline of the "if" part).
Let (A, B) be controllable, (C, A) be observable, but the realization be not minimal for $A \in \mathbb{R}^{n \times n}$. I.e. there are $A_{r} \in \mathbb{R}^{n_{r} \times n_{r}}, B_{r}$, and C_{r} so that

$$
\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{c|c}
A_{\mathrm{r}} & B_{\mathrm{r}} \\
\hline C_{\mathrm{r}} & D
\end{array}\right] \quad \text { with } n_{\mathrm{r}}<n
$$

Hence, $C \mathrm{e}^{A t} B=C_{\mathrm{r}} \mathrm{e}^{A_{r} t} B_{\mathrm{r}}, \forall t$, or $C \mathrm{e}^{A \sigma} \mathrm{e}^{A \tau} B=C_{\mathrm{r}} \mathrm{e}^{A_{r} \sigma} \mathrm{e}^{A_{\mathrm{r}} \tau} B_{\mathrm{r}}$. This yields

$$
\mathrm{e}^{A^{\prime} \sigma} C^{\prime} C \mathrm{e}^{A \sigma} \mathrm{e}^{A \tau} B B^{\prime} \mathrm{e}^{A^{\prime} \tau}=\mathrm{e}^{A^{\prime} \sigma} C^{\prime} C_{\mathrm{r}} \mathrm{e}^{A_{r} \sigma} \mathrm{e}^{A_{r} \tau} B_{\mathrm{r}} B^{\prime} \mathrm{e}^{A^{\prime} \tau}
$$

Minimality (contd)

Proof (outline of the "if" part).

Let (A, B) be controllable, (C, A) be observable, but the realization be not minimal for $A \in \mathbb{R}^{n \times n}$. I.e. there are $A_{r} \in \mathbb{R}^{n_{r} \times n_{r}}, B_{r}$, and C_{r} so that

$$
\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{c|c}
A_{\mathrm{r}} & B_{\mathrm{r}} \\
\hline C_{\mathrm{r}} & D
\end{array}\right] \quad \text { with } n_{\mathrm{r}}<n .
$$

Hence, $C \mathrm{e}^{A t} B=C_{\mathrm{r}} \mathrm{e}^{A_{r} t} B_{\mathrm{r}}, \forall t$, or $C \mathrm{e}^{A \sigma} \mathrm{e}^{A \tau} B=C_{\mathrm{r}} \mathrm{e}^{A_{r} \sigma} \mathrm{e}^{A_{\mathrm{r}} \tau} B_{\mathrm{r}}$. This yields

$$
\mathrm{e}^{A^{\prime} \sigma} C^{\prime} C \mathrm{e}^{A \sigma} \mathrm{e}^{A \tau} B B^{\prime} \mathrm{e}^{A^{\prime} \tau}=\mathrm{e}^{A^{\prime} \sigma} C^{\prime} C_{r} \mathrm{e}^{A_{r} \sigma} \mathrm{e}^{A_{r} \tau} B_{\mathrm{r}} B^{\prime} \mathrm{e}^{A^{\prime} \tau}
$$

Integrating both sides from 0 to t over both σ and τ,

$$
\underbrace{W_{\mathrm{o}}(t) W_{c}(t)}_{\text {rank }=n}=\int_{0}^{t} \mathrm{e}^{A^{\prime} \sigma} C^{\prime} C_{\mathrm{r}} \mathrm{e}^{A_{r} \sigma} \mathrm{~d} \sigma \int_{0}^{t} \mathrm{e}^{A_{\mathrm{r}} \tau} B_{\mathrm{r}} B^{\prime} \mathrm{e}^{A^{\prime} \tau} \mathrm{d} \tau=: \underbrace{W_{\mathrm{r} 1}(t) W_{\mathrm{r} 2}(t)}_{\mathrm{rank} \leq n_{\mathrm{r}}}
$$

with $W_{\mathrm{r} 1}(t) \in \mathbb{R}^{n \times n_{r}}$ and $W_{\mathrm{r} 2}(t) \in \mathbb{R}^{n_{r} \times n}$. Ranks do not agree then.

All minimal realizations

Theorem

Any two minimal realizations of a finite-dimensional LTI system are similar.
Proof (outline).
Obviously, any realization, similar to another minimal realization, is minimal.

All minimal realizations

Theorem

Any two minimal realizations of a finite-dimensional LTI system are similar.
Proof (outline).
Obviously, any realization, similar to another minimal realization, is minimal. Now, let (A, B, C, D) and $(\tilde{A}, \tilde{B}, \tilde{C}, D)$ be minimal. Hence,

$$
C \mathrm{e}^{A t} B=\tilde{C} \mathrm{e}^{\tilde{A} t} \tilde{B} \Longleftrightarrow C A^{i} B=\tilde{C} \tilde{A}^{i} \tilde{B}
$$

All minimal realizations

Theorem

Any two minimal realizations of a finite-dimensional LTI system are similar.
Proof (outline).
Obviously, any realization, similar to another minimal realization, is minimal. Now, let (A, B, C, D) and $(\tilde{A}, \tilde{B}, \tilde{C}, D)$ be minimal. Hence,

$$
C \mathrm{e}^{A t} B=\tilde{C} \mathrm{e}^{\tilde{A} t} \tilde{B} \Longleftrightarrow C A^{i} B=\tilde{C} \tilde{A}^{i} \tilde{B} \Longrightarrow M_{\circ} A^{i} M_{\mathrm{c}}=\tilde{M}_{\circ} \tilde{A}^{i} \tilde{M}_{\mathrm{c}}, \quad \forall i
$$

Construct now

$$
T:=\left(\tilde{M}_{\mathrm{o}}^{\prime} \tilde{M}_{\mathrm{o}}\right)^{-1} \tilde{M}_{\mathrm{o}}^{\prime} M_{\mathrm{o}} \quad \text { and } \quad S:=M_{\mathrm{c}} \tilde{M}_{\mathrm{c}}^{\prime}\left(\tilde{M}_{\mathrm{c}} \tilde{M}_{\mathrm{c}}^{\prime}\right)^{-1}
$$

It can be shown that $T=S^{-1}, T M_{c}=\tilde{M}_{\mathrm{c}}, M_{\mathrm{o}} S=M_{\mathrm{o}} T^{-1}=\tilde{M}_{\mathrm{o}}$, and then $T A S=T A T^{-1}=\tilde{A}$.

Gilbert's realization

If $G(s)$ is proper and such that

$$
G(s)=\frac{1}{d(s)} N_{G}(s), \quad \text { for } d(s)=\left(s-a_{1}\right) \cdots\left(s-a_{r}\right) \text { with } a_{j} \neq a_{i}
$$

and polynomial matrix $N_{G}(s)$, then

$$
G(s)=G(\infty)+\sum_{i=1}^{r} \frac{1}{s-a_{i}} G_{i} \text { for } G_{i}:=\lim _{s \rightarrow a_{i}}\left(s-a_{i}\right) G(s)
$$

If rank $G_{i}=n_{i}$, then $\exists B_{i} \in \mathbb{R}^{n_{i} \times m}, C_{i} \in \mathbb{R}^{p \times n_{i}}$ having rank n_{i} and such that

$$
G_{i}=C_{i} B_{i}
$$

(rank decomposition).

Gilbert's realization (contd)

Theorem

The realization

$$
G(s)=\left[\begin{array}{ccc|c}
a_{1} I_{n_{1}} & & 0 & B_{1} \\
& \ddots & & \vdots \\
0 & & a_{r} I_{n_{r}} & B_{r} \\
\hline C_{1} & \cdots & C_{r} & G(\infty)
\end{array}\right]
$$

is minimal (its dimension is $\sum_{i=1}^{r} n_{i}$).
Proof (outline): If $\lambda=a_{i}$ is uncontrollable mode, then $\exists \eta \neq 0$ such that

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\eta_{1}^{\prime} & \cdots & \eta_{r}^{\prime}
\end{array}\right]\left[\begin{array}{cccc}
\left(a_{1}-\lambda\right) I_{n_{1}} & & 0 & B_{1} \\
& \ddots & & \vdots \\
0 & & \left(a_{r}-\lambda\right) I_{n_{r}} & B_{r}
\end{array}\right]} \\
& \quad=\left[\begin{array}{llll}
\left(a_{1}-\lambda\right) \eta_{1}^{\prime} & \cdots & \left(a_{r}-\lambda\right) \eta_{r}^{\prime} & \sum_{i=1}^{r} \eta_{i}^{\prime} B_{i}
\end{array}\right]=0
\end{aligned}
$$

So $\eta_{j}=0$ for all $j \neq i$ and then $\eta_{i}^{\prime} B_{i}=0 \Longrightarrow \eta_{i}=0$ (contradiction).

Outline

Coprime factorization via state-space realizations

Reminder: doubly coprime factorization over $R H_{\infty}$

Given a real-rational proper $G(s)$, there are right coprime $N, M \in R H_{\infty}$ and left coprime $\tilde{N}, \tilde{M} \in R H_{\infty}$ such that

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

and their Bézout factors verifying

$$
\left[\begin{array}{cc}
X(s) & Y(s) \\
-\tilde{N}(s) & \tilde{M}(s)
\end{array}\right]\left[\begin{array}{cc}
M(s) & -\tilde{Y}(s) \\
N(s) & \tilde{X}(s)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The question is

- how to construct these functions?

State-space way

Let

$$
G(s)=\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

with (A, B) stabilizable and (C, A) detectable. Let K and L be any matrices such that $A+B K$ and $A+L C$ are Hurwitz. Then

$$
\left[\begin{array}{cc}
X(s) & Y(s) \\
-\tilde{N}(s) & \tilde{M}(s)
\end{array}\right]=\left[\begin{array}{c|cc}
A+L C & B+L D & -L \\
\hline-K & I & 0 \\
-C & -D & I
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
M(s) & -\tilde{Y}(s) \\
N(s) & \tilde{X}(s)
\end{array}\right]=\left[\begin{array}{c|cc}
A+B K & B & -L \\
\hline K & I & 0 \\
C+D K & D & I
\end{array}\right]
$$

State-space way (contd)

Remember,

$$
\left[\begin{array}{c|c}
\bar{A} & \bar{B} \\
\hline \bar{C} & \bar{D}
\end{array}\right]^{-1}=\left[\begin{array}{c|c}
\bar{A}-\bar{B} \bar{D}^{-1} \bar{C} & \bar{B} \bar{D}^{-1} \\
\hline-\bar{D}^{-1} \bar{C} & \bar{D}^{-1}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
{\left[\begin{array}{cc}
X(s) & Y(s) \\
-\tilde{N}(s) & \tilde{M}(s)
\end{array}\right]^{-1} } & =\left[\begin{array}{c|cc}
A+L C & B+L D & -L \\
\hline-K & I & 0 \\
-C & -D & I
\end{array}\right]^{-1}=\left[\begin{array}{cc|cc}
A+B K & B & -L \\
\hline K & 1 & 0 \\
C+D K & D & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
M(s) & -\tilde{Y}(s) \\
N(s) & \tilde{X}(s)
\end{array}\right]
\end{aligned}
$$

because

$$
\left[\begin{array}{cc}
1 & 0 \\
-D & 1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & 0 \\
D & 1
\end{array}\right], \quad\left[\begin{array}{ll}
B+L D & -L
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
D & 1
\end{array}\right]\left[\begin{array}{l}
K \\
C
\end{array}\right]=B K-L C .
$$

State-space way (contd)

Remember,

$$
\left[\begin{array}{c|c}
\bar{A} & \bar{B} \\
\hline \bar{C} & \bar{D}
\end{array}\right]^{-1}=\left[\begin{array}{c|c}
\bar{A}-\bar{B} \bar{D}^{-1} \bar{C} & \bar{B} \bar{D}^{-1} \\
\hline-\bar{D}^{-1} \bar{C} & \bar{D}^{-1}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
{\left[\begin{array}{cc}
X(s) & Y(s) \\
-\tilde{N}(s) & \tilde{M}(s)
\end{array}\right]^{-1} } & =\left[\begin{array}{c|cc}
A+L C & B+L D & -L \\
\hline-K & l & 0 \\
-C & -D & I
\end{array}\right]^{-1}=\left[\begin{array}{cc|cc}
A+B K & B & -L \\
\hline K & I & 0 \\
C+D K & D & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
M(s) & -\tilde{Y}(s) \\
N(s) & \tilde{X}(s)
\end{array}\right]
\end{aligned}
$$

because

$$
\left[\begin{array}{cc}
I & 0 \\
-D & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I & 0 \\
D & I
\end{array}\right], \quad[B+L D \quad-L]\left[\begin{array}{cc}
I & 0 \\
D & I
\end{array}\right]\left[\begin{array}{l}
K \\
C
\end{array}\right]=B K-L C .
$$

The fact that $N(s) M^{-1}(s)=G(s)=\tilde{M}^{-1}(s) \tilde{N}(s)$ is also easy to show...

Outline

Poles / zeros / directions via state-space realizations

Poles of the realization

Eigenvalues of A are called poles of the realization (A, B, C, D). Because

$$
G(s)=D+C(s l-A)^{-1} B=D+\frac{1}{\operatorname{det}(s l-A)} C \operatorname{adj}(s l-A) B
$$

poles of $G(s)$ are also poles of its realization.

Poles of the realization

Eigenvalues of A are called poles of the realization (A, B, C, D). Because

$$
G(s)=D+C(s l-A)^{-1} B=D+\frac{1}{\operatorname{det}(s l-A)} C \operatorname{adj}(s l-A) B
$$

poles of $G(s)$ are also poles of its realization. Then

Theorem

The McMillan degree of $G(s)$ is equal to the order of its minimal realization (A, B, C, D) and the set of poles of $G(s)$ coincides with $\operatorname{spec}(A)$.

Proof (outline).
It follows by the Kalman canonical decomposition that hidden modes don't affect transfer functions. The proof that every pole of a minimal realization is a pole of $G(s)$ is too technical...

Reminder: pole directions

Remember the Smith-McMillan form:

$$
U(s) G(s) V(s)=\left[\begin{array}{cccc}
\alpha_{1}(s) / \beta_{1}(s) & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \alpha_{r}(s) / \beta_{r}(s) & 0 \\
0 & \cdots & 0 & 0
\end{array}\right]
$$

where $\alpha_{i}(s)$ divides $\alpha_{i+1}(s), \beta_{i+1}(s)$ divides $\beta_{i}(s)$. Then

$$
\begin{aligned}
& \operatorname{pdir}_{\mathrm{i}}\left(G, p_{i}\right)=\left(\operatorname{lm} V\left(p_{i}\right)\left[\begin{array}{lll}
e_{\mu_{i}+1} & \cdots & e_{m}
\end{array}\right]\right)^{\perp}=\operatorname{ker}\left[\begin{array}{c}
e_{\mu_{i}+1}^{\prime} \\
\vdots \\
e_{m}^{\prime}
\end{array}\right]\left[V\left(p_{i}\right)\right]^{\prime} \\
& \operatorname{pdir}_{\mathrm{o}}\left(G, p_{i}\right)=\operatorname{ker}\left[\begin{array}{c}
\tilde{e}_{\mu_{i}+1}^{\prime} \\
\vdots \\
\tilde{e}_{p}^{\prime}
\end{array}\right] U\left(p_{i}\right)=\left(\operatorname { l m } [U (p _ { i })] ^ { \prime } \left[\begin{array}{ccc}
\tilde{e}_{\mu_{i}+1} & \cdots & \left.\left.\tilde{e}_{p}\right]\right)^{\perp}
\end{array}\right.\right.
\end{aligned}
$$

When Smith-McMillan meets Jordan

Example:

$$
\underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -s & 1 \\
-s & 1 & 0
\end{array}\right]}_{U(s)} \underbrace{\left[\begin{array}{ccc}
s & -1 & 0 \\
0 & s & -1 \\
0 & 0 & s
\end{array}\right]^{-1}}_{(s l-A)^{-1}} \underbrace{\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
1 & s & s^{2}
\end{array}\right]}_{V(s)}=\left[\begin{array}{ccc}
1 / s^{3} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\begin{aligned}
& \operatorname{ker}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right][V(0)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\operatorname{ker}(0 I-A)^{\prime}, \\
& \operatorname{ker}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] U(0)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\operatorname{ker}(0 I-A) .
\end{aligned}
$$

Pole directions via state-space realizations

It can be shown that

- the geometric multiplicity of a pole of $\Phi(s):=(s I-A)^{-1}$ at p_{i} equals the geometric multiplicity of an eigenvalue of A at p_{i}
and then $\operatorname{pdir}_{\mathrm{i}}\left(\Phi, p_{i}\right)=\operatorname{ker}\left[\left(p_{i} I-A\right)\right]^{\prime}$ and $\operatorname{pdir}_{\mathrm{o}}\left(\Phi, p_{i}\right)=\operatorname{ker}\left(p_{i} I-A\right)$.

Pole directions via state-space realizations

It can be shown that

- the geometric multiplicity of a pole of $\Phi(s):=(s l-A)^{-1}$ at p_{i} equals the geometric multiplicity of an eigenvalue of A at p_{i}
and then $\operatorname{pdir}_{\mathrm{i}}\left(\Phi, p_{i}\right)=\operatorname{ker}\left[\left(p_{i} I-A\right)\right]^{\prime}$ and $\operatorname{pdir}_{\mathrm{o}}\left(\Phi, p_{i}\right)=\operatorname{ker}\left(p_{i} I-A\right)$.
Motivated by that, for $G(s)=D+C(s l-A)^{-1} B$

$$
\operatorname{pdir}_{\mathrm{i}}\left(G, p_{i}\right)=B^{\prime} \operatorname{ker}\left[\left(p_{i} I-A\right)\right]^{\prime} \quad \text { and } \quad \operatorname{pdir}\left(G, p_{i}\right)=C \operatorname{ker}\left(p_{i} I-A\right) .
$$

Pole directions via state-space realizations

It can be shown that

- the geometric multiplicity of a pole of $\Phi(s):=(s l-A)^{-1}$ at p_{i} equals the geometric multiplicity of an eigenvalue of A at p_{i}
and then $\operatorname{pdir}_{\mathrm{i}}\left(\Phi, p_{i}\right)=\operatorname{ker}\left[\left(p_{i} I-A\right)\right]^{\prime}$ and $\operatorname{pdir}_{\mathrm{o}}\left(\Phi, p_{i}\right)=\operatorname{ker}\left(p_{i} I-A\right)$.
Motivated by that, for $G(s)=D+C(s l-A)^{-1} B$

$$
\operatorname{pdir}_{i}\left(G, p_{i}\right)=B^{\prime} \operatorname{ker}\left[\left(p_{i} I-A\right)\right]^{\prime} \quad \text { and } \quad \operatorname{pdir}\left(G, p_{i}\right)=C \operatorname{ker}\left(p_{i} I-A\right) .
$$

In Gilbert's realization

$$
G(s)=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{ccc|c}
a_{1} I_{n_{1}} & & 0 & B_{1} \\
& \ddots & & \vdots \\
0 & & a_{r} I_{n_{r}} & B_{r} \\
\hline C_{1} & \cdots & C_{r} & D
\end{array}\right],
$$

$\operatorname{pdir}_{\mathrm{i}}\left(G, a_{i}\right)=\operatorname{Im} B_{i}^{\prime}$ and $\operatorname{pdir}_{\mathrm{o}}\left(G, a_{i}\right)=\operatorname{lm} C_{i}$.

Rosenbrock system matrix

The polynomial matrix

$$
R_{G}(s):=\left[\begin{array}{cc}
A-s I_{n} & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]-s\left[\begin{array}{cc}
I_{n} & 0 \\
0 & 0
\end{array}\right]
$$

is called the Rosenbrock system matrix of G given in terms of (A, B, C, D). Because

$$
\begin{aligned}
R_{G}(s) & =\left[\begin{array}{cc}
A-s l & 0 \\
C & G(s)
\end{array}\right]\left[\begin{array}{cc}
I & -(s l-A)^{-1} B \\
0 & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
I & 0 \\
-C(s l-A)^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A-s l & B \\
0 & G(s)
\end{array}\right],
\end{aligned}
$$

we have that

$$
\operatorname{rank}\left(R_{G}\left(s_{0}\right)\right)=n+\operatorname{rank}\left(G\left(s_{0}\right)\right), \quad \forall s_{0} \notin \operatorname{spec}(A)
$$

and then $\operatorname{nrank}\left(R_{G}(s)\right)=n+\operatorname{nrank}(G(s))$.

Invariant zeros of the realization

Every $z_{i} \in \mathbb{C}$ at which

$$
\operatorname{rank}\left(R_{G}\left(z_{i}\right)\right)<\operatorname{nrank}\left(R_{G}(s)\right)
$$

is called an invariant zero of the realization (A, B, C, D). Because

$$
\left[\begin{array}{cc}
T A T^{-1}-s l & T B \\
C T^{-1} & D
\end{array}\right]=\left[\begin{array}{cc}
T & 0 \\
0 & I_{p}
\end{array}\right]\left[\begin{array}{cc}
A-s l & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
T^{-1} & 0 \\
0 & I_{m}
\end{array}\right],
$$

they are invariant under similarity. Finding them is a generalized eigenvalue problem (e.g. eig $([A, B ; C, D],[\operatorname{eye}(n, n+m) ; \operatorname{zeros}(m, n+m)])$ if $p=m)$.

Invariant zeros of the realization

Every $z_{i} \in \mathbb{C}$ at which

$$
\operatorname{rank}\left(R_{G}\left(z_{i}\right)\right)<\operatorname{nrank}\left(R_{G}(s)\right)
$$

is called an invariant zero of the realization (A, B, C, D). Because

$$
\left[\begin{array}{cc}
T A T^{-1}-s l & T B \\
C T^{-1} & D
\end{array}\right]=\left[\begin{array}{cc}
T & 0 \\
0 & I_{p}
\end{array}\right]\left[\begin{array}{cc}
A-s l & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
T^{-1} & 0 \\
0 & I_{m}
\end{array}\right],
$$

they are invariant under similarity. Finding them is a generalized eigenvalue problem (e.g. eig $([A, B ; C, D],[\operatorname{eye}(n, n+m) ; \operatorname{zeros}(m, n+m)])$ if $p=m)$.

Theorem

Invariant zeros of (A, B, C, D) comprise all its hidden modes, as well as the transmission zeros of $G(s)=D+C(s l-A)^{-1} B$.

Proof (observations).
Straightforward if invariant zeros are not in $\operatorname{spec}(A)$, nasty otherwise.

Zero directions

Remember, zero directions for transfer functions (if zeros are not poles):

$$
\operatorname{zdir}_{\mathrm{i}}\left(G, z_{i}\right)=\operatorname{ker} G\left(z_{i}\right) \subset \mathbb{C}^{m} \quad \text { and } \quad \operatorname{zdir}_{\mathrm{o}}\left(G, z_{i}\right)=\operatorname{ker}\left[G\left(z_{i}\right)\right]^{\prime} \subset \mathbb{C}^{p}
$$

Then

$$
\begin{aligned}
0 & =\left[\begin{array}{cc}
A-z_{i} l & 0 \\
C & G\left(z_{i}\right)
\end{array}\right]\left[\begin{array}{l}
0 \\
u_{i}
\end{array}\right]=\left[\begin{array}{cc}
A-z_{i} l & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
I & \left(z_{i} l-A\right)^{-1} B \\
0 & I
\end{array}\right]\left[\begin{array}{c}
0 \\
u_{i}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A-z_{i} l & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
\left(z_{i} I-A\right)^{-1} B u_{i} \\
u_{i}
\end{array}\right] .
\end{aligned}
$$

so that $\operatorname{zdir}_{i}\left(G, z_{i}\right) \in\left[\begin{array}{ll}0 & I_{m}\end{array}\right] \operatorname{ker} R_{G}\left(z_{i}\right)$. The other direction is also true:

$$
0=\left[\begin{array}{cc}
A-z_{i} l & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
u_{i}
\end{array}\right]=\left[\begin{array}{cc}
A-z_{i} l & 0 \\
C & G\left(z_{i}\right)
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{i} \\
u_{i}
\end{array}\right],
$$

where $\tilde{x}_{i}:=x_{i}-\left(z_{i} I-A\right)^{-1} B u_{i}=0$ then, because $\operatorname{det}\left(A-z_{i} l\right) \neq 0$.

Zero directions (contd)

Thus, we have that

$$
\operatorname{zdir}_{i}\left(G, z_{i}\right)=\left[\begin{array}{ll}
0 & I_{m}
\end{array}\right] \operatorname{ker} R_{G}\left(z_{i}\right)
$$

and, by similar arguments, that

$$
\operatorname{zdir}_{\circ}\left(G, z_{i}\right)=\left[\begin{array}{ll}
0 & I_{p}
\end{array}\right] \operatorname{ker}\left[R_{G}\left(z_{i}\right)\right]^{\prime}
$$

Zero directions (contd)

Thus, we have that

$$
\operatorname{zdir}_{i}\left(G, z_{i}\right)=\left[\begin{array}{ll}
0 & I_{m}
\end{array}\right] \operatorname{ker} R_{G}\left(z_{i}\right)
$$

and, by similar arguments, that

$$
\operatorname{zdir}_{\circ}\left(G, z_{i}\right)=\left[\begin{array}{ll}
0 & I_{p}
\end{array}\right] \operatorname{ker}\left[R_{G}\left(z_{i}\right)\right]^{\prime}
$$

These relations should also hold true if $z_{i} \in \operatorname{spec}(A)$, perhaps. At least if

$$
\left[\begin{array}{cc}
A-z_{i} l & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
u_{i}
\end{array}\right]=0
$$

then $u_{i} \neq 0$ (by observability) and $\left(A-z_{i} I\right) x_{i}+B u_{i}=0$ implies that
$-\operatorname{zdir}_{i}\left(G, z_{i}\right) \perp \operatorname{pdir}_{\mathrm{i}}\left(G, z_{i}\right)$ whenever $z_{i} \in \operatorname{spec}(A)$
($\operatorname{zdir}_{\circ}\left(G, z_{i}\right) \perp \operatorname{pdir}_{\circ}\left(G, z_{i}\right)$ then too), which is a circumstantial evidence.

Example 1

Let

$$
G(s)=\frac{1}{s}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\frac{1}{s}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right] .
$$

Its minimal (Gilbert's) realization is

$$
G(s)=\left[\begin{array}{c|cc}
0 & 1 & 1 \\
\hline 1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

It has one pole at the origin and because $\left.\operatorname{ker}(s-0)\right|_{s=0}=\mathbb{C}$, we have that

$$
\operatorname{pdir}_{\mathrm{i}}(G, 0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathbb{C}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
$$

and

$$
\operatorname{pdir}_{\circ}(G, 0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathbb{C}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) .
$$

Example 1 (contd)

The Rosenbrock system matrix

$$
R_{G}(s)=\left[\begin{array}{ccc}
-s & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

is such that $\operatorname{rank}\left(R_{G}(s)\right)=2$ for all $s \in \mathbb{C}$. Thus, the system has no zeros. All these results agree with those derived in Chapter 3.

Example 2

Let

$$
G(s)=\left[\begin{array}{cc}
1 & 1 / s \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{1}{s}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{1}{s}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right] .
$$

Its minimal (Gilbert's) realization is

$$
G(s)=\left[\begin{array}{l|ll}
0 & 0 & 1 \\
\hline 1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

It has one pole at the origin and because $\left.\operatorname{ker}(s-0)\right|_{s=0}=\mathbb{C}$, we have that

$$
\operatorname{pdir}_{\mathrm{i}}(G, 0)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathbb{C}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

and

$$
\operatorname{pdir}_{\mathrm{o}}(G, 0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \mathbb{C}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) .
$$

Example 2 (contd)

The Rosenbrock system matrix

$$
R_{G}(s)=\left[\begin{array}{ccc}
-s & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

has full normal rank and $\operatorname{det}\left(R_{G}(s)\right)=-s$. Thus, the system has a zero at the origin too. Because

$$
\operatorname{ker} R_{G}(0)=\operatorname{span}\left(\left[\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right]\right) \quad \text { and } \quad \operatorname{ker}\left[R_{G}(0)\right]^{\prime}=\operatorname{span}\left(\left[\begin{array}{c}
-1 \\
\cdots \\
1
\end{array}\right]\right)
$$

we have that

$$
\operatorname{zdir}_{i}(G, 0)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \quad \text { and } \quad \operatorname{zdir}_{o}(G, 0)=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

All these results agree with those derived in Chapter 3.

Invariant zeros: filtering inputs

In the SISO case, if $G(s)$ has a zero at z_{i}, then

$$
u(t)=\mathrm{e}^{z_{i} t} \mathbb{T}(t)
$$

is filtered out by $G\left(Y(s)=\frac{1}{s-z_{i}} G(s)\right.$ is well defined at $s=z_{i}$, so that $y(t)$ does not contain a component with $\left.\mathrm{e}^{z_{i} t}\right)$.

Invariant zeros: filtering inputs

In the SISO case, if $G(s)$ has a zero at z_{i}, then

$$
u(t)=\mathrm{e}^{z_{i} t} \mathbb{1}(t)
$$

is filtered out by $G\left(Y(s)=\frac{1}{s-z_{i}} G(s)\right.$ is well defined at $s=z_{i}$, so that $y(t)$ does not contain a component with $\left.\mathrm{e}^{z_{i} t}\right)$.

In the MIMO case, let

$$
u(t)=u_{i} \mathrm{e}^{z_{i} t} \mathbb{1}(t)
$$

for $u_{i} \neq 0$ such that which the Sylvester equation $-x_{i} z_{i}+A x_{i}+B u_{i}=0$ is solvable in $x_{i} \in \mathbb{C}^{n}$. This happens

- for all $u_{i} \in \mathbb{C}^{m}$ if $z_{i} \notin \operatorname{spec}(A)$
- for all $u_{i} \perp \operatorname{pdir}_{i}\left(G, z_{i}\right) \subset \mathbb{C}^{m}$ if $z_{i} \in \operatorname{spec}(A)$

Invariant zeros: filtering inputs (contd)

Then (remember the partial fraction expansion formula from Slide 15)

$$
\begin{aligned}
Y(s) & =G(s) u_{i} \frac{1}{s-z_{i}}=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]\left[\begin{array}{c|c}
z_{i} & 1 \\
\hline u_{i} & 0
\end{array}\right]=\left[\begin{array}{cc|c}
A & B u_{i} & 0 \\
0 & z_{i} & 1 \\
\hline C & D u_{i} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
A & B u_{i} & -x_{i} \\
0 & z_{i} & 1 \\
\hline C & C x_{i}+D u_{i} & 0
\end{array}\right]=-C(s l-A)^{-1} x_{i}+\left(C x_{i}+D u_{i}\right) \frac{1}{s-z_{i}}
\end{aligned}
$$

Hence,

$$
y(t)=\underbrace{-C \mathrm{e}^{A t} x_{i} \mathbb{\rrbracket}(t)}_{\text {transients }}+\underbrace{\left(C x_{i}+D u_{i}\right) \mathrm{e}^{z_{i} t} \mathbb{1}(t)}_{\text {steady-state effect of } u(t)}
$$

Invariant zeros: filtering inputs (contd)

Then (remember the partial fraction expansion formula from Slide 15)

$$
\begin{aligned}
Y(s) & =G(s) u_{i} \frac{1}{s-z_{i}}=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]\left[\begin{array}{c|c}
z_{i} & 1 \\
\hline u_{i} & 0
\end{array}\right]=\left[\begin{array}{cc|c}
A & B u_{i} & 0 \\
0 & z_{i} & 1 \\
\hline C & D u_{i} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
A & B u_{i} & -x_{i} \\
0 & z_{i} & 1 \\
\hline C & C x_{i}+D u_{i} & 0
\end{array}\right]=-C(s l-A)^{-1} x_{i}+\left(C x_{i}+D u_{i}\right) \frac{1}{s-z_{i}}
\end{aligned}
$$

Hence,

If

$$
y(t)=\underbrace{-C \mathrm{e}^{A t} x_{i} \mathbb{1}(t)}_{\text {transients }}+\underbrace{\left(C x_{i}+D u_{i}\right) \mathrm{e}^{z_{i} t} \mathbb{1}(t)}_{\text {steady-state effect of } u(t)}
$$

$$
C x_{i}+D u_{i}=0 \Longleftrightarrow\left[\begin{array}{cc}
A-z_{i} I & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
u_{i}
\end{array}\right]=0 \Longleftrightarrow u_{i} \in \operatorname{zir}_{i}\left(G, z_{i}\right)
$$

then the response to $u(t)$ includes only transients.

Invariant zeros: filtering inputs (contd)

Then (remember the partial fraction expansion formula from Slide 15)

$$
\begin{aligned}
Y(s) & =G(s) u_{i} \frac{1}{s-z_{i}}=\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]\left[\begin{array}{c|c}
z_{i} & 1 \\
\hline u_{i} & 0
\end{array}\right]=\left[\begin{array}{cc|c}
A & B u_{i} & 0 \\
0 & z_{i} & 1 \\
\hline C & D u_{i} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
A & B u_{i} & -x_{i} \\
0 & z_{i} & 1 \\
\hline C & C x_{i}+D u_{i} & 0
\end{array}\right]=-C(s l-A)^{-1} x_{i}+\left(C x_{i}+D u_{i}\right) \frac{1}{s-z_{i}}
\end{aligned}
$$

Hence,

If

$$
y(t)=\underbrace{-C \mathrm{e}^{A t} x_{i} \mathbb{1}(t)}_{\text {transients }}+\underbrace{\left(C x_{i}+D u_{i}\right) \mathrm{e}^{z_{i} t} \mathbb{1}(t)}_{\text {steady-state effect of } u(t)}
$$

$$
C x_{i}+D u_{i}=0 \Longleftrightarrow\left[\begin{array}{cc}
A-z_{i} I & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
u_{i}
\end{array}\right]=0 \Longleftrightarrow u_{i} \in \operatorname{zdir}_{i}\left(G, z_{i}\right)
$$

then the response to $u(t)$ includes only transients. In addition, if
$-x(0)=x_{i} \Longrightarrow y(t) \equiv 0$, i.e. no response to $u(t)=u_{i} \mathrm{e}^{z_{i} t} \mathbb{1}(t)$ at all.

Realization poles and coprime factors

Remember, $G=\tilde{M}^{-1} \tilde{N}=N M^{-1}$ with

$$
\tilde{M}(s)=\left[\begin{array}{c|c}
A+L C-s l & L \\
\hline C & I
\end{array}\right] \quad \text { and } \quad M(s)=\left[\begin{array}{c|c}
A+B K-s l & B \\
\hline K & I
\end{array}\right] .
$$

Now,

$$
\begin{aligned}
& R_{\tilde{M}}(s)=\left[\begin{array}{cc}
A+L C-s l & L \\
C & I
\end{array}\right]=\left[\begin{array}{cc}
A-s l & L \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
C & I
\end{array}\right], \\
& R_{M}(s)=\left[\begin{array}{cc}
A+B K-s l & B \\
K & I
\end{array}\right]=\left[\begin{array}{ll}
I & B \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A-s l & 0 \\
K & I
\end{array}\right]
\end{aligned}
$$

Realization poles and coprime factors

Remember, $G=\tilde{M}^{-1} \tilde{N}=N M^{-1}$ with

$$
\tilde{M}(s)=\left[\begin{array}{c|c}
A+L C-s l & L \\
\hline C & I
\end{array}\right] \quad \text { and } \quad M(s)=\left[\begin{array}{c|c}
A+B K-s l & B \\
\hline K & I
\end{array}\right] .
$$

Now,

$$
\begin{aligned}
& R_{\tilde{M}}(s)=\left[\begin{array}{cc}
A+L C-s l & L \\
C & I
\end{array}\right]=\left[\begin{array}{cc}
A-s l & L \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
C & I
\end{array}\right], \\
& R_{M}(s)=\left[\begin{array}{cc}
A+B K-s l & B \\
K & I
\end{array}\right]=\left[\begin{array}{ll}
l & B \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A-s l & 0 \\
K & I
\end{array}\right]
\end{aligned}
$$

Hence
$-z_{i} \in \mathbb{C}$ is an invariant zero of \tilde{M} iff it is a realization pole of G, with $\operatorname{zdir}_{i}\left(\tilde{M}, z_{i}\right)=\operatorname{pdir}_{0}\left(G, z_{i}\right)$;
$-z_{i} \in \mathbb{C}$ is an invariant zero of M iff it is a realization pole of G, with $\operatorname{zdir}_{\mathrm{o}}\left(M, z_{i}\right)=\operatorname{pdir}_{\mathrm{i}}\left(G, z_{i}\right)$.

Invariant zeros and coprime factors

Again, because $G=\tilde{M}^{-1} \tilde{N}=N M^{-1}$ with

$$
\tilde{N}(s)=\left[\begin{array}{c|c}
A+L C & B+L D \\
\hline C & D
\end{array}\right] \quad \text { and } \quad N(s)=\left[\begin{array}{c|c}
A+B K & B \\
\hline C+D K & D
\end{array}\right],
$$

we have that

$$
\left.\begin{array}{rl}
R_{G}(s) & =\left[\begin{array}{cc}
I & -L \\
0 & l
\end{array}\right]\left[\begin{array}{cc}
A+L C-s l & B+L D \\
C & D
\end{array}\right]
\end{array}=\left[\begin{array}{cc}
I & -L \\
0 & I
\end{array}\right] R_{\tilde{N}(s)}\right)
$$

Invariant zeros and coprime factors

Again, because $G=\tilde{M}^{-1} \tilde{N}=N M^{-1}$ with

$$
\tilde{N}(s)=\left[\begin{array}{c|c}
A+L C & B+L D \\
\hline C & D
\end{array}\right] \quad \text { and } \quad N(s)=\left[\begin{array}{c|c}
A+B K & B \\
\hline C+D K & D
\end{array}\right],
$$

we have that

$$
\left.\begin{array}{rl}
R_{G}(s) & =\left[\begin{array}{cc}
l & -L \\
0 & l
\end{array}\right]\left[\begin{array}{cc}
A+L C-s l & B+L D \\
C & D
\end{array}\right]
\end{array}=\left[\begin{array}{cc}
I & -L \\
0 & I
\end{array}\right] R_{\tilde{N}(s)}\right)
$$

Hence,
$-z_{i} \in \mathbb{C}$ is an invariant zero of \tilde{N} iff it is an invariant zero of G, with $\operatorname{zdir}_{\mathrm{i}}\left(\tilde{N}, z_{i}\right)=\operatorname{zdir}_{\mathrm{i}}\left(G, z_{i}\right)$;
$-z_{i} \in \mathbb{C}$ is an invariant zero of N iff it is an invariant zero of G, with $\operatorname{zdir}_{\mathrm{o}}\left(N, z_{i}\right)=\operatorname{zdir}_{\mathrm{o}}\left(G, z_{i}\right)$.

Outline

System norms via state-space realizations

Computing H_{2} norm

Proposition
If A is Hurwitz and $D=0$, then

$$
\|G\|_{2}^{2}=\operatorname{tr}\left(B^{\prime} Q B\right)=\operatorname{tr}\left(C P C^{\prime}\right)
$$

where Q and P are the observability and controllability Gramians of (C, A) and (A, B), respectively.

Proof.
The impulse response of G is $g(t)=C e^{A t} B \mathbb{1}(t)$. By Parseval,

$$
\begin{aligned}
\|G\|_{2}^{2} & =\|g\|_{2}^{2}=\int_{\mathbb{R}_{+}} \operatorname{tr}\left(g(t)^{\prime} g(t)\right) \mathrm{d} t=\int_{\mathbb{R}_{+}} \operatorname{tr}\left(B^{\prime} \mathrm{e}^{A^{\prime} t} C^{\prime} C \mathrm{e}^{A t} B\right) \mathrm{d} t \\
& =\operatorname{tr}\left(B^{\prime} \int_{\mathbb{R}_{+}} \mathrm{e}^{A^{\prime} t} C^{\prime} C \mathrm{e}^{A t} \mathrm{~d} t B\right)=\operatorname{tr}\left(B^{\prime} Q B\right)
\end{aligned}
$$

The other formula is derived similarly, because $\operatorname{tr}\left(M^{\prime} M\right)=\operatorname{tr}\left(M M^{\prime}\right)$.

Computing H_{∞} norm

Proposition

If A is Hurwitz, then $\|G\|_{\infty}<\gamma$ for a given $\gamma>0$ iff $\bar{\sigma}(D)<\gamma$ and

$$
H_{G}:=\left[\begin{array}{cc}
A & 0 \\
C^{\prime} C & -A^{\prime}
\end{array}\right]-\left[\begin{array}{c}
B \\
C^{\prime} D
\end{array}\right]\left(\gamma^{2} I-D^{\prime} D\right)^{-1}\left[-D^{\prime} C \quad B^{\prime}\right]
$$

has no pure imaginary eigenvalues.
Proof (outline).
Because $G \in R H_{\infty}$,

$$
\|G\|_{\infty}<\gamma \Longleftrightarrow \gamma^{2} I-[G(\mathrm{j} \omega)]^{\prime} G(\mathrm{j} \omega)>0, \quad \forall \omega \in \mathbb{R} \cup\{ \pm \infty\} .
$$

As $G(\mathrm{j} \infty)=D, \bar{\sigma}(D)<\gamma$ follows (and assumed hereafter). Thus,

$$
\|G\|_{\infty}<\gamma \Longleftrightarrow \Phi(s):=\gamma^{2} I-G^{\sim}(s) G(s) \text { has no pure imaginary zeros }
$$

How to verify that?

Computing H_{∞} norm (contd)

Proof (outline, contd).
Now,

$$
G(s)=\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right] \Longrightarrow G^{\sim}(s)=\left[\begin{array}{l|l}
-A^{\prime} & C^{\prime} \\
\hline-B^{\prime} & D^{\prime}
\end{array}\right]
$$

Hence,

$$
\Phi(s)=\gamma^{2} I-\left[\begin{array}{c|c}
-A^{\prime} & C^{\prime} \\
\hline-B^{\prime} & D^{\prime}
\end{array}\right]\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{cc|c}
A & 0 & B \\
C^{\prime} C & -A^{\prime} & C^{\prime} D \\
\hline-D^{\prime} C & B^{\prime} & \gamma^{2} I-D^{\prime} D
\end{array}\right] .
$$

As $\operatorname{spec}(A) \cap j \mathbb{R}=\varnothing$, imaginary zeros of $\Phi(s)$ are its invariant zeros. Then

$$
R_{\Phi}(\mathrm{j} \omega)=\left[\begin{array}{ccc}
A-\mathrm{j} \omega I & 0 & B \\
C^{\prime} C & -A^{\prime}-\mathrm{j} \omega I & C^{\prime} D \\
-D^{\prime} C & B^{\prime} & \gamma^{2} I-D^{\prime} D
\end{array}\right]
$$

and H_{G} is the Schur complement of $\gamma^{2} I-D^{\prime} D$ in it.

KYP (Kalman-Yakubovich-Popov) lemma

Consider $p \times m$ system $G(s)=D+C(s l-A)^{-1} B$, with $\operatorname{spec}(A) \cap \mathrm{j} \mathbb{R}=\varnothing$, and let $M_{K Y P}=M_{K Y P}^{\prime} \in \mathbb{R}^{(m+p) \times(m+p)}$. The frequency-dependent inequality

$$
\left[\left[\begin{array}{ll}
G(\mathrm{j} \omega)]^{\prime} & I_{m}
\end{array}\right] M_{K Y P}\left[\begin{array}{c}
G(\mathrm{j} \omega) \\
I_{m}
\end{array}\right]<0, \quad \forall \omega\right.
$$

holds iff there is $X=X^{\prime} \in \mathbb{R}^{n \times n}$ verifying the linear matrix inequality (LMI)

$$
\left[\begin{array}{cc}
C^{\prime} & 0 \\
D^{\prime} & I_{m}
\end{array}\right] M_{K Y P}\left[\begin{array}{cc}
C & D \\
0 & I_{m}
\end{array}\right]+\left[\begin{array}{cc}
I_{n} & A^{\prime} \\
0 & B^{\prime}
\end{array}\right]\left[\begin{array}{cc}
0 & X \\
X & 0
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
A & B
\end{array}\right]<0
$$

KYP (Kalman-Yakubovich-Popov) lemma

Consider $p \times m$ system $G(s)=D+C(s l-A)^{-1} B$, with $\operatorname{spec}(A) \cap \mathrm{j} \mathbb{R}=\varnothing$, and let $M_{K Y P}=M_{K Y P}^{\prime} \in \mathbb{R}^{(m+p) \times(m+p)}$. The frequency-dependent inequality

$$
\left[\left[\begin{array}{ll}
G(\mathrm{j} \omega)]^{\prime} & I_{m}
\end{array}\right] M_{K Y P}\left[\begin{array}{c}
G(\mathrm{j} \omega) \\
I_{m}
\end{array}\right]<0, \quad \forall \omega\right.
$$

holds iff there is $X=X^{\prime} \in \mathbb{R}^{n \times n}$ verifying the linear matrix inequality (LMI)

$$
\left[\begin{array}{cc}
C^{\prime} & 0 \\
D^{\prime} & I_{m}
\end{array}\right] M_{K Y P}\left[\begin{array}{cc}
C & D \\
0 & I_{m}
\end{array}\right]+\left[\begin{array}{cc}
I_{n} & A^{\prime} \\
0 & B^{\prime}
\end{array}\right]\left[\begin{array}{cc}
0 & X \\
X & 0
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
A & B
\end{array}\right]<0
$$

KYP implies that

- infinite set of inequalities \Longleftrightarrow finite number of LMIs (solvable)

KYP (Kalman-Yakubovich-Popov) lemma

Consider $p \times m$ system $G(s)=D+C(s l-A)^{-1} B$, with $\operatorname{spec}(A) \cap \mathrm{j} \mathbb{R}=\varnothing$, and let $M_{K Y P}=M_{K Y P}^{\prime} \in \mathbb{R}^{(m+p) \times(m+p)}$. The frequency-dependent inequality

$$
\left[\left[\begin{array}{ll}
G(\mathrm{j} \omega)]^{\prime} & I_{m}
\end{array}\right] M_{K Y P}\left[\begin{array}{c}
G(\mathrm{j} \omega) \\
I_{m}
\end{array}\right]<0, \quad \forall \omega\right.
$$

holds iff there is $X=X^{\prime} \in \mathbb{R}^{n \times n}$ verifying the linear matrix inequality (LMI)

$$
\left[\begin{array}{cc}
C^{\prime} & 0 \\
D^{\prime} & I_{m}
\end{array}\right] M_{K Y P}\left[\begin{array}{cc}
C & D \\
0 & I_{m}
\end{array}\right]+\left[\begin{array}{cc}
I_{n} & A^{\prime} \\
0 & B^{\prime}
\end{array}\right]\left[\begin{array}{cc}
0 & X \\
X & 0
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
A & B
\end{array}\right]<0
$$

KYP implies that

- infinite set of inequalities \Longleftrightarrow finite number of LMIs (solvable)

Many important special cases, e.g.

$$
M_{\mathrm{KYP}}=\left[\begin{array}{cc}
1 & 0 \\
0 & -\gamma^{2} I
\end{array}\right] \Longrightarrow \text { calculate the } L_{\infty}(j \mathbb{R}) \text {-norm of } G
$$

Outline

Model reduction by balanced truncation

Model reduction problem

Complexity vs. accuracy is one of the key tradeoffs in (control) engineering. "Complexity" is understood as "order" in the LTI case. Then:

- given an n-order $p \times m$ LTI G and $n_{r}<n$, find an n_{r}-order $p \times m$ LTI G_{r}, which is "close" to G,
say in the sense that $\left\|G-G_{r}\right\|_{\infty}$ is "small."

Model reduction problem

Complexity vs. accuracy is one of the key tradeoffs in (control) engineering. "Complexity" is understood as "order" in the LTI case. Then:

- given an n-order $p \times m$ LTI G and $n_{r}<n$, find an n_{r}-order $p \times m$ LTI G_{r}, which is "close" to G,
say in the sense that $\left\|G-G_{r}\right\|_{\infty}$ is "small."

In what follows, an approach based on

- structural properties of state-space realizations
is considered. It is both practical (for relatively small n 's) and enlightening. We consider model reduction for stable systems only.

Classical control recipes

Thinking in terms of pole dominance, i.e.

- all poles are equal, but some poles are more equal than others.

Classical control recipes

Thinking in terms of pole dominance, i.e.

- all poles are equal, but some poles are more equal than others.

Example 1:

$$
G(s)=\frac{1}{(s+1)(\tau s+1)} \quad \text { for } \tau \in(0,1) \quad \Longrightarrow \quad G_{r}(s)=\frac{1}{s+1},
$$

justifiable if $\tau \ll 1$ (far right), $\left\|G-G_{r}\right\|_{\infty}=\tau /(1+\tau)$.

Classical control recipes

Thinking in terms of pole dominance, i.e.

- all poles are equal, but some poles are more equal than others.

Example 1:

$$
G(s)=\frac{1}{(s+1)(\tau s+1)} \quad \text { for } \tau \in(0,1) \quad \Longrightarrow \quad G_{r}(s)=\frac{1}{s+1}
$$

justifiable if $\tau \ll 1$ (far right), $\left\|G-G_{r}\right\|_{\infty}=\tau /(1+\tau)$.

Example 2:

$$
G(s)=\frac{2 s+1}{(s+1)((2-\epsilon) s+1)} \quad \text { for } \epsilon \in(0,1) \quad \Longrightarrow \quad G_{r}(s)=\frac{1}{s+1} \text {, }
$$

justifiable if $\epsilon \ll 1$ (almost cancels the zero), $\left\|G-G_{\mathrm{r}}\right\|_{\infty}=\epsilon /(3-\epsilon)$.

MIMO extensions

Dominant poles ideas are
$\underset{\sim}{\sim}$ overly hand-waving
\because messy if directional properties have to be accounted for

MIMO extensions

Dominant poles ideas are
$\underset{\sim}{\sim}$ overly hand-waving
\because messy if directional properties have to be accounted for
Alternative thinking:

- hidden modes can be detected and eliminated w/o consequences
- what about "almost hidden" modes?
- detect?
- costs of eliminating?

MIMO extensions

Dominant poles ideas are
$\underset{\sim}{\sim}$ overly hand-waving
$\ddot{\sim}$ messy if directional properties have to be accounted for
Alternative thinking:

- hidden modes can be detected and eliminated w/o consequences
- what about "almost hidden" modes?
- detect?
- costs of eliminating?

Controllability and observability Gramians are $P=P^{\prime} \geq 0$ and $Q=Q^{\prime} \geq 0$ satisfying

$$
A P+P A^{\prime}+B B^{\prime}=0 \quad \text { and } \quad A^{\prime} Q+Q A+C^{\prime} C=0
$$

$P>0$ iff (A, B) is controllable and $Q>0$ iff (C, A) is observable.

First try

We (maybe) remember that if (A, B) is uncontrollable, there is T_{c} such that

$$
\left[\begin{array}{c|c}
T_{\mathrm{c}} A T_{\mathrm{c}}^{-1} & T_{\mathrm{c}} B \\
\hline C T_{\mathrm{c}}^{-1} & 0
\end{array}\right]=\left[\begin{array}{cc|c}
A_{\mathrm{c}} & \times & B_{\mathrm{c}} \\
0 & A_{\bar{c}} & 0 \\
\hline C_{\mathrm{c}} & C_{\overline{\mathrm{c}}} & 0
\end{array}\right]=\left[\begin{array}{c|c}
A_{\mathrm{c}} & B_{\mathrm{c}} \\
\hline C_{\mathrm{c}} & 0
\end{array}\right] .
$$

and this T_{c} can be constructed via the Gramian, $T_{\mathrm{c}} P T_{\mathrm{c}}^{\prime}=\left[\begin{array}{cc}P_{\mathrm{c}} & 0 \\ 0 & 0\end{array}\right]$. So if

$$
T P T^{\prime}=\left[\begin{array}{cc}
\Sigma_{P_{1}} & 0 \\
0 & \Sigma_{P_{2}}
\end{array}\right] \quad \text { with }\left\|\Sigma_{P_{1}}\right\| \gg\left\|\Sigma_{P_{2}}\right\|
$$

is

$$
\left[\begin{array}{c|c}
T A T^{-1} & T B \\
\hline C T^{-1} & 0
\end{array}\right]=\left[\begin{array}{cc|c}
A_{11} & A_{12} & B_{1} \\
A_{21} & A_{22} & B_{2} \\
\hline C_{1} & C_{2} & 0
\end{array}\right] \approx\left[\begin{array}{c|c}
A_{11} & B_{1} \\
\hline C_{1} & 0
\end{array}\right]
$$

if A_{21} and B_{2} are "small"?

First try: example 3

Let

$$
G(s)=\frac{18}{5 s^{2}+12 s+9}=\left[\begin{array}{cc|c}
-2 & -1 / \alpha & 1 \\
\alpha & -0.4 & \alpha \\
\hline-1 & 1 / \alpha & 0
\end{array}\right]
$$

which is true for all $\alpha \neq 0$ and its controllability Gramian,

$$
P=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 \alpha^{2}
\end{array}\right],
$$

is of the requires form if $\alpha \ll 1$.

First try: example 3

Let

$$
G(s)=\frac{18}{5 s^{2}+12 s+9}=\left[\begin{array}{cc|c}
-2 & -1 / \alpha & 1 \\
\alpha & -0.4 & \alpha \\
\hline-1 & 1 / \alpha & 0
\end{array}\right]
$$

which is true for all $\alpha \neq 0$ and its controllability Gramian,

$$
P=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 \alpha^{2}
\end{array}\right],
$$

is of the requires form if $\alpha \ll 1$. Yet the choice

$$
G_{r}(s)=\left[\begin{array}{l|l}
-2 & 1 \\
\hline-1 & 0
\end{array}\right]=-\frac{1}{s+2}
$$

is not what we need, as

$$
\left\|G-G_{r}\right\|_{\infty}=2.5>\|G-0\|_{\infty}=\|G\|_{\infty}=2 .
$$

First try: example 3 (contd)

Observability Gramian

$$
Q=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 / \alpha^{2}
\end{array}\right] \quad \text { compare with } P=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 \alpha^{2}
\end{array}\right]
$$

indicates that

- the second state becomes in a sense "over-observable" if $\alpha \ll 1$.

First try: example 3 (contd)

Observability Gramian

$$
Q=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 / \alpha^{2}
\end{array}\right] \quad \text { compare with } P=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 \alpha^{2}
\end{array}\right]
$$

indicates that

- the second state becomes in a sense "over-observable" if $\alpha \ll 1$.

Moral:

- $P($ or $Q)$ alone is not an accurate indication of the relative importance of the system modes in the input / output behavior.

First try: example 3 (contd)

Observability Gramian

$$
Q=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 / \alpha^{2}
\end{array}\right] \quad \text { compare with } P=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 \alpha^{2}
\end{array}\right]
$$

indicates that

- the second state becomes in a sense "over-observable" if $\alpha \ll 1$.

Moral:

- $P($ or $Q)$ alone is not an accurate indication of the relative importance of the system modes in the input / output behavior.

Remedy:

- balance "degrees" of controllability and observability of each mode.

Similarity transformations and Gramians

If $(\tilde{A}, \tilde{B}, \tilde{C}, 0)=\left(T A T^{-1}, T B, C T^{-1}, 0\right)$, then

$$
\tilde{P}=T P T^{\prime} \quad \text { and } \quad \tilde{Q}=T^{-1} Q T^{-1} .
$$

Hence,

- eigenvalues of P and Q are not preserved under similarity.

Similarity transformations and Gramians

If $(\tilde{A}, \tilde{B}, \tilde{C}, 0)=\left(T A T^{-1}, T B, C T^{-1}, 0\right)$, then

$$
\tilde{P}=T P T^{\prime} \quad \text { and } \quad \tilde{Q}=T^{-1} Q T^{-1}
$$

Hence,

- eigenvalues of P and Q are not preserved under similarity.

But

$$
\tilde{P} \tilde{Q}=T P Q T^{-1}
$$

is similar to $P Q$, so its eigenvalues are invariant under similarity. Moreover,

$$
\operatorname{spec}(P Q)=\operatorname{spec}\left(Q^{1 / 2} P Q Q^{-1 / 2}\right)=\operatorname{spec}\left(Q^{1 / 2} P Q^{1 / 2}\right)
$$

implying

- eigenvalues of $P Q$ are real and nonnegative $Q^{1 / 2} P Q^{1 / 2}$ is symmetric
$-P Q$ is diagonalizable $\quad U Q^{1 / 2} P Q^{1 / 2} U^{\prime}=\left(U Q^{1 / 2}\right) P Q\left(U Q^{1 / 2}\right)^{-1}$

Balanced realization

Theorem

If (A, B, C, D) is a minimal realization of an n-dimensional stable G, then there is T such that $(\tilde{A}, \tilde{B}, \tilde{C}, D):=\left(T A T^{-1}, T B, C T^{-1}, D\right)$ has ${ }^{1}$

$$
\tilde{P}=\tilde{Q}=\Sigma:=\left[\begin{array}{lll}
\sigma_{1} I_{n_{1}} & & \\
& \ddots & \\
& & \sigma_{l} I_{n_{l}}
\end{array}\right],
$$

where $\sigma_{1}>\cdots>\sigma_{l}>0$ and $n_{i} \in \mathbb{N}$ with $\sum_{i} n_{i}=n$.

[^0]
Balanced realization

Theorem

If (A, B, C, D) is a minimal realization of an n-dimensional stable G, then there is T such that $(\tilde{A}, \tilde{B}, \tilde{C}, D):=\left(T A T^{-1}, T B, C T^{-1}, D\right)$ has 1

$$
\tilde{P}=\tilde{Q}=\Sigma:=\left[\begin{array}{lll}
\sigma_{1} I_{n_{1}} & & \\
& \ddots & \\
& & \sigma_{l} I_{n_{l}}
\end{array}\right]
$$

where $\sigma_{1}>\cdots>\sigma_{l}>0$ and $n_{i} \in \mathbb{N}$ with $\sum_{i} n_{i}=n$.
Some facts about σ_{i} :

- known as Hankel singular values of G
- square roots of the singular values of $P Q$
$-\|G\|_{H}:=\sigma_{1}=\sqrt{\rho(P Q)}$ is known as the Hankel norm of G

[^1]
Balanced realization

Theorem

If (A, B, C, D) is a minimal realization of an n-dimensional stable G, then there is T such that $(\tilde{A}, \tilde{B}, \tilde{C}, D):=\left(T A T^{-1}, T B, C T^{-1}, D\right)$ has 1

$$
\tilde{P}=\tilde{Q}=\Sigma:=\left[\begin{array}{lll}
\sigma_{1} I_{n_{1}} & & \\
& \ddots & \\
& & \sigma_{l} I_{n_{l}}
\end{array}\right]
$$

where $\sigma_{1}>\cdots>\sigma_{l}>0$ and $n_{i} \in \mathbb{N}$ with $\sum_{i} n_{i}=n$.
Some facts about σ_{i} :

- known as Hankel singular values of G
- square roots of the singular values of $P Q$
- $\|G\|_{H}:=\sigma_{1}=\sqrt{\rho(P Q)}$ is known as the Hankel norm of G - $L_{2}\left(\mathbb{R}_{-}\right) \rightarrow L_{2}\left(\mathbb{R}_{+}\right)$induced norm of G

Second try: balanced truncation

Let G be stable and (A, D, C, D) be its balanced realization. Partition

$$
P=Q=\Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right],
$$

where $\Sigma_{1}=\operatorname{diag}\left\{\sigma_{1} I_{n_{1}}, \ldots, \sigma_{r} I_{n_{r}}\right\}$ and $\Sigma_{2}=\operatorname{diag}\left\{\sigma_{r+1} I_{n_{r+1}}, \ldots, \sigma_{l} I_{n_{l}}\right\}$ for $\sigma_{1}>\cdots>\sigma_{r}>\sigma_{r+1}>\cdots>\sigma_{l}$. The correspondent state partition is

$$
G(s)=\left[\begin{array}{cc|c}
A_{11} & A_{12} & B_{1} \\
A_{21} & A_{22} & B_{2} \\
\hline C_{1} & C_{2} & D
\end{array}\right]
$$

The system G_{r} with the transfer function

$$
G_{r}(s)=\left[\begin{array}{c|c}
A_{11} & B_{1} \\
\hline C_{1} & D
\end{array}\right]
$$

is called the balanced truncation of G.

Balanced truncation properties

If G_{r} is the balanced truncation of of G, then

- $P_{1}=Q_{1}=\Sigma_{1}>0$ are Gramians of $\left(A_{11}, B_{1}, C_{1}, D\right)$

Balanced truncation properties

If G_{r} is the balanced truncation of of G, then

- $P_{1}=Q_{1}=\Sigma_{1}>0$ are Gramians of $\left(A_{11}, B_{1}, C_{1}, D\right)$
$-G_{r} \in R H_{\infty}$

Balanced truncation properties

If G_{r} is the balanced truncation of of G, then

- $P_{1}=Q_{1}=\Sigma_{1}>0$ are Gramians of $\left(A_{11}, B_{1}, C_{1}, D\right)$
$-G_{r} \in R H_{\infty}$
$-\left\|G-G_{r}\right\|_{\infty} \leq 2\left(\sigma_{r+1}+\cdots+\sigma_{l}\right)$

Balanced truncation properties

If G_{r} is the balanced truncation of of G, then

- $P_{1}=Q_{1}=\Sigma_{1}>0$ are Gramians of $\left(A_{11}, B_{1}, C_{1}, D\right)$
$-G_{r} \in R H_{\infty}$
$-\left\|G-G_{r}\right\|_{\infty} \leq 2\left(\sigma_{r+1}+\cdots+\sigma_{l}\right)$
- if $r=I-1$, then the bound above is achieved, i.e. $\left\|G-G_{I-1}\right\|_{\infty}=2 \sigma_{I}$

Balanced truncation: example 3

Let

$$
G(s)=\frac{18}{5 s^{2}+12 s+9}=\left[\begin{array}{cc|c}
-2 & -1 / \alpha & 1 \\
\alpha & -0.4 & \alpha \\
\hline-1 & 1 / \alpha & 0
\end{array}\right]
$$

with

$$
P=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 \alpha^{2}
\end{array}\right] \quad \text { and } \quad Q=\left[\begin{array}{cc}
0.25 & 0 \\
0 & 1.25 / \alpha^{2}
\end{array}\right] .
$$

Its HSV s are $\sigma_{1}=1.25$ and $\sigma_{2}=0.25$ and balanced realization (for $\alpha=1$)

$$
G(s)=\left[\begin{array}{cc|c}
-0.4 & 1 & 1 \\
-1 & -2 & 1 \\
\hline 1 & -1 & 0
\end{array}\right]
$$

Balanced truncation for $r=1$:

$$
G_{1}(s)=\left[\begin{array}{c|c}
-0.4 & 1 \\
\hline 1 & 0
\end{array}\right]=\frac{5}{5 s+2} \quad \Longrightarrow \quad\left\|G-G_{1}\right\|_{\infty}=2 \times 0.25=0.5
$$

which is smaller than $\|G\|_{\infty}=2$.

Balanced truncation: example 1 (contd)

If

$$
G(s)=\frac{1}{(s+1)(\tau s+1)}
$$

then balanced truncation to $r=1$ results in

$$
G_{1}(s)=\frac{k_{1}}{\tau_{1} s+1} \quad \text { with } \tau_{1}={ }_{10}^{3.41}{ }_{1} \tau
$$

which is different from keeping the rightmost pole at -1 . Also,

$$
\left\|G-G_{1}\right\|_{\infty}=\underset{0}{0.21} \sum_{0}^{0.5}{ }_{0},
$$

where

- red line corresponds to the naïve modal truncation
- dashed lines correspond to the (brute force) optimal H_{∞} reduction

Balanced truncation: example 2 (contd)

If

$$
G(s)=\frac{2 s+1}{(s+1)((2-\epsilon) s+1)}
$$

then balanced truncation to $r=1$ results in
which is different from keeping the pole at -1 . Also,

$$
\left\|G-G_{1}\right\|_{\infty}=\underset{0}{0.21} \sum_{0}^{0.5} \epsilon^{\prime}
$$

where

- red line corresponds to the naïve modal truncation
- dashed lines correspond to the (brute force) optimal H_{∞} reduction

Balanced truncation: example 4

Let

$$
G(s)=1-\left(\frac{s+1}{s+2}\right)^{25} .
$$

It has

Balanced truncation: example 4

Let

$$
G(s)=1-\left(\frac{s+1}{s+2}\right)^{25} .
$$

It has

Then

$$
G_{4}(s)=\frac{24.986(s+3.196)\left(s^{2}+3.165 s+19.48\right)}{\left(s^{2}+5.629 s+24.58\right)\left(s^{2}+14.69 s+63.86\right)}
$$

is quite accurate (and its poles are not related to those of $G(s)$).

Balanced truncation: example 5 (need for $\sigma_{r}>\sigma_{r+1}$)

Let

$$
G(s)=\frac{(s-1)^{2}}{(s+1)^{2}}
$$

Its balance realization

$$
G(s)=\left[\begin{array}{c:c|c}
-1+\cos 2 \theta & 1-\sin 2 \theta & 2 \sin \theta \\
\hdashline-1-\sin 2 \theta & -1-\cos 2 \theta & 2 \cos \theta \\
\hline-2 \sin \theta & -2 \cos \theta & 1
\end{array}\right] .
$$

for every θ and $P=Q=I_{2}$. But

$$
A_{11}=-1+\cos 2 \theta
$$

is not Hurwitz if $\theta=\pi k$ for $k \in \mathbb{Z}$.

[^0]: ${ }^{1}$ Matlab command: $[\mathrm{Gb}, \mathrm{Sig}]=$ balreal (G).

[^1]: ${ }^{1}$ Matlab command: $[\mathrm{Gb}, \mathrm{Sig}]=$ balreal (G).

