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Preliminary: linear algebra facts

− (kerM)⊥ = ImM ′ and (ImM)⊥ = kerM ′

− ImM1 = ImM2 ⇐⇒ kerM ′
1 = kerM ′

2

− if M = M ′ ≥ 0, then Mx = 0 ⇐⇒ x ′Mx = 0

− if M = M ′ ≥ 0, then left & right singular vectors coincide,
M = U˙U ′

− if f (x) is analytic, M;T ∈ Fm×m with detT ̸= 0, then

f (TMT−1) = Tf (M)T−1

(in particular, (TMT−1)i = TM iT−1 and eTMT−1
= T eMT−1)
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Preliminary: Cayley–Hamilton

In essence, each square matrix satisfies its own characteristic equation:

�A(A) ··= An + �n−1A
n−1 + · · ·+ �1A+ �0In = 0:

Important consequence:

− Ak for all k ≥ n is a linear combination of Ai , i = 0; : : : ; n − 1, like

An = −�n−1A
n−1 − · · · − �1A− �0In

An+1 = −�n−1A
n − · · · − �1A2 − �0A

= �n−1(�n−1A
n−1 + · · ·+ �1A+ �0In)− · · · − �1A2 − �0A

= (�2n−1 − �n−2)A
n−1 + · · ·+ (�n−1�1 − �0)A+ �n−1�0In

...



State space Interconnections Structural properties Minimality Coprime factorization Poles/zeros System norms Balanced truncation

Preliminary: matrix Sylvester and Lyapunov equations

Given A1 ∈ F p×p, A2 ∈ Fm×m, Q ∈ F p×m, solve in X ∈ F p×m

A1X + XA2 + Q = 0:

If spec(A1) ∩ spec(−A2) = ∅, X exists for all Q and is unique. Otherwise,
there might be either no or infinitely many solutions, depending on Q.

Its special case for A2 = A′
1 and Q = Q ′ is known as the matrix Lyapunov

equation,
AX + XA′ + Q = 0:

If A is Hurwitz, then

X =

∫
R+

eAtQeA
′t dt;
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State-space realizations

Let G : DG ⊂ Rn × Lm2 (R+) → Lp2(R+) be LTI, finite dimensional, and have
a proper transfer function. There are A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and
D ∈ Rp×m such that u 7→ y = Gu reads

G :

{
ẋ(t) = Ax(t) + Bu(t); x(0) = x0

y(t) = Cx(t) + Du(t)

The quadruple (A;B;C ;D) is called a state-space realization of G .

If x0 = 0, we have that G : DG ⊂ Lm2 (R+) → Lp2(R+) and we write

G :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Solution:

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds:
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Similarity transformations

Let
x̃(t) ··= Tx(t)

for some nonsingular T ∈ Rn×n. We have:

˙̃x(t) = Tẋ(t) = T
(
Ax(t) + Bu(t)

)
= TAT−1x̃(t) + TBu(t)

and also
y(t) = Cx(t) + Du(t) = CT−1x̃(t) + Du(t):

Hence,
(TAT−1;TB;CT−1;D)

is also a realization of the same G . This realization is said to be similar to
(A;B;C ;D).
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(
Ax(t) + Bu(t)

)
= TAT−1x̃(t) + TBu(t)

and also
y(t) = Cx(t) + Du(t) = CT−1x̃(t) + Du(t):

Hence,
(TAT−1;TB;CT−1;D)

is also a realization of the same G . This realization is said to be similar to
(A;B;C ;D).



State space Interconnections Structural properties Minimality Coprime factorization Poles/zeros System norms Balanced truncation

Impulse response and transfer function

The impulse response of G is

g(t) = Dı(t) + C eAtB :

The corresponding transfer function

G (s) = D + C (sI − A)−1B =··
[
A B

C D

]
;

with G (∞) = D, so that G (s) is

− strictly proper iff D = 0 and bi-proper iff det(D) ̸= 0.

Readily seen that

Dı(t) + CT−1eTAT
−1tTB = Dı(t) + C eAtB

and [
TAT−1 TB

CT−1 D

]
=

[
A B

C D

]
:
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Interconnecting in state space

For transfer functions, algebraic manipulations over complex functions:

− parallel: G1(s) + G2(s)

− series: G2(s)G1(s)

− inverse: G−1(s)

For state-space realizations:

− can be done via matrix algebra.

Let

G1 :

{
ẋ1(t) = A1x1(t) + B1u1(t)

y1(t) = C1x1(t) + D1u1(t)
and G2 :

{
ẋ2(t) = A2x2(t) + B2u2(t)

y2(t) = C2x2(t) + D2u2(t)

An efficient way of interconnecting such systems is to

− unite state vectors

− determine what inputs / outputs to connect
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Parallel interconnection

G1

G2

uy

corresponds to

− u1 = u2 = u

− y = y1 + y2

Hence,

G :


[
ẋ1(t)
ẋ2(t)

]
=

[
A1 0
0 A2

] [
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t)

y(t) =
[
C1 C2

] [ x1(t)
x2(t)

]
+ (D1 + D2)u(t)
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Series / cascade interconnection

G1G2
uy

corresponds to

− u1 = u

− u2 = y1

− y = y2

Then

G :


[
ẋ1(t)
ẋ2(t)

]
=

[
A1 0

B2C1 A2

] [
x1(t)
x2(t)

]
+

[
B1

B2D1

]
u(t)

y(t) =
[
D2C1 C2

] [ x1(t)
x2(t)

]
+ D2D1u(t)
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Inversion

Let

G :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

be square (i.e. p = m) and bi-proper (i.e. det(D) ̸= 0). Its inverse is the
system mapping y 7→ u. Then

u(t) = −D−1Cx(t) + D−1y(t)

and
ẋ(t) = Ax(t) + B

(
−D−1Cx(t) + D−1y(t)

)
Therefore,

G−1 :

{
ẋ(t) = (A− BD−1C )x(t) + BD−1y(t)

u(t) = −D−1Cx(t) + D−1y(t)
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Summary

If

Gi (s) =

[
Ai Bi

Ci Di

]
; i ∈ {1; 2}

then

− G1(s) + G2(s) =

 A1 0 B1

0 A2 B2

C1 C2 D1 + D2

 =

 A2 0 B2

0 A1 B1

C2 C1 D1 + D2



− G2(s)G1(s) =

 A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

 =

 A2 B2C1 B2D1

0 A1 B1

C2 D2C1 D2D1


− G−1

i (s) =

[
Ai − BiD

−1
i Ci BiD

−1
i

−D−1
i Ci D−1

i

]
=

[
Ai − BiD

−1
i Ci −BiD

−1
i

D−1
i Ci D−1

i

]
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Partial fraction expansion

Partition
G2(s)G1(s) = H1(s) + H2(s)

with Hi (s) having the “A” matrices of Gi (s). Roth’s removal rule:

−
[
A1 Q
0 A2

]
and

[
A1 0
0 A2

]
are similar iff XA1 − A2X = −Q is solvable

Thus, assuming the Sylvester equation XA1 − A2X = −B2C1 is solvable (it
is enough to have spec(A1) ∩ spec(A2) = ∅), use T =

[
I X
0 I

]
to get

G2(s)G1(s) =

 A2 B2C1 B2D1

0 A1 B1

C2 D2C1 D2D1

 =

 A2 0 B2D1 + XB1

0 A1 B1

C2 D2C1 − C2X D2D1


=

[
A1 B1

D2C1 − C2X 0

]
︸ ︷︷ ︸

H1(s)

+

[
A2 B2D1 + XB1

C2 D2D1

]
︸ ︷︷ ︸

H2(s)

Moral: similarity transformations are a powerful tool.
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Controllability

We say that (A;B) ∈ Rn×n × Rn×m is controllable if the

− eigenvalues of A+BK can be freely assigned by a choice of K ∈ Rm×n

(with the restriction that complex eigenvalues are in conjugate pairs).
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Controllability criteria

The following statements are equivalent:

1. The pair (A;B) is controllable.

2. The matrix [
A− �I B

]
∈ Cn×(n+m)

has full rank ∀� ∈ C (the PBH [Popov-Belevich-Hautus] test).

3. The matrix

Wc(t) ··=
∫ t

0
eAsBB ′eA

′s ds ∈ Rn×n

is positive definite for all t > 0 (the Gramian-based test).

4. The controllability matrix

Mc ··=
[
B AB : : : An−1B

]
∈ Rn×(nm)

has full rank (i.e. rank(Mc) = n).
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Technical Lemma 1

Lemma
ImWc(t) = ImMc for every t > 0 or, equivalently, kerWc(t) = kerM ′

c.

Proof (outline).

Wc(t) = [Wc(t)]
′ ≥ 0 implies that � ∈ kerWc(t) iff

�′Wc(t)� = 0 ⇐⇒
∫ t

0
∥�′eAsB∥2ds = 0 ⇐⇒ �′eAsB = 0; ∀s ∈ [0; t]

As eAt is analytic (every Taylor series converges), the latter implies

�′(eAs)(i)B|s=0 = 0; ∀i ∈ Z+ ⇐⇒ �′
[
B AB A2B · · ·

]
= 0

By Cayley–Hamilton,

ker
[
B AB A2B · · ·

]′
= kerM ′

c:

Result follows because � is arbitrary.
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Technical Lemma 2

Lemma
If rankWc(t) = r < n, then there is a unitary matrix Uc such that

(UcAU
′
c;UcB) =

([
Ac ×
0 Ac̄

]
;

[
Bc

0

])
;

where (Ac;Bc) ∈ Rr×r × Rr×m is such that

∫ t

0
eAcsBcB

′
ce

A′
cs ds > 0.

We prove it for Hurwitz A. In this case rankWc(t) = rankP, where

P ··= Wc(∞) ≥ 0; verifying Lyapunov eqn. AP + PA′ + BB ′ = 0

aka the controllability Gramian of (A;B). If A is not Hurwitz, Â ··= A− ˛I
is Hurwitz for a sufficiently large ˛ > 0 and

ker

∫ t

0
eÂsBB ′eÂ

′s ds =
⋂

s∈[0;t]

kerB ′e(A−˛I )
′s =

⋂
s∈[0;t]

kerB ′eA
′s = kerWc(t)

so nothing changes if we prove the result for Â . . .
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Technical Lemma 2 (contd)

Proof (outline).

If rankP = r < m, ∃ unitary Uc s.t. UcPU
′
c =

[
Pc 0
0 0

]
for r × r Pc > 0. Let

(UcAU
′
c;UcB) =

([
Ac A12

A21 Ac̄

]
;

[
Bc

B2

])
The Lyapunov equation for P reads then[

AcPc + PcA
′
c + BcB

′
c PcA

′
21 + BcB

′
2

A21Pc + B2B
′
c B2B

′
2

]
= 0:

(2; 2) =⇒ B2 = 0
(1;2)
=⇒ A21 = 0 =⇒ Ac is Hurwitz

(1;1)
=⇒

Pc =

∫
R+

eAcsBcB
′
ce

A′
cs ds > 0

which leads to the last claim by already familiar arguments.
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Equivalence of controllability conditions

2 =⇒ 3 : Let rank
[
A− sI B

]
= n, ∀s ∈ C, but rankWc(t) = r < n.

By TL2 there is a unitary Uc such that

Uc

[
A− sI B

] [ U ′
c 0
0 I

]
=

[
Ac − sIr × Bc

0 Ac̄ − sIn−r 0

]
;

whose rank drops at every s ∈ spec(Ac̄) =⇒ contradiction.

2 ⇐= 3 : Let rankWc(t) = n, but rank
[
A− s0I B

]
< n for s0 ∈ C. In

this case ∃�0 ̸= 0 such that

�′0
[
A− s0I B

]
= 0 ⇐⇒ (�′0A = s0�

′
0) ∧ (�′0B = 0):

Hence, �′0e
AtB = es0t�′0B = 0, ∀t =⇒ �′0Wc(t) = 0 =⇒ contradiction.

3 ⇐⇒ 4 : Follows by TL1.
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Equivalence of controllability conditions (contd)

1 =⇒ 2 : Let (A;B) be controllable, but rank
[
A− s0I B

]
< n for

s0 ∈ C. In this case ∃�0 ̸= 0 such that

�′0
[
A− s0I B

]
= 0 ⇐⇒ (�′0A = s0�

′
0) ∧ (�′0B = 0):

Hence, �′0(A+ BK ) = s0�
′
0 =⇒ s0 ∈ spec(A+ BK ) for all K =⇒ (A;B)

is not controllable =⇒ contradiction.

4 =⇒ 1 : If m = 1, then det(Mc) ̸= 0 and by Ackermann’s formula

K = −e ′nM
−1
c �cl(A)

assigns spec(A+ BK ) to roots of (an arbitrary) �cl(s) =⇒ controllability.

If m > 1, then for any 0 ̸= b̃ ∈ ImB, ∃K̃ ∈ Rm×n such that (A+ BK̃ ; b̃) is
controllable (Heymann, 1968). Hence,

K = K̃ − ũe ′nM̃
−1
c �cl(A+ BK̃ )

does the trick, where ũ ∈ Rm is such that Bũ = b̃ =⇒ controllability.
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Equivalence of controllability conditions (contd)

1 =⇒ 2 : Let (A;B) be controllable, but rank
[
A− s0I B

]
< n for

s0 ∈ C. In this case ∃�0 ̸= 0 such that

�′0
[
A− s0I B

]
= 0 ⇐⇒ (�′0A = s0�

′
0) ∧ (�′0B = 0):

Hence, �′0(A+ BK ) = s0�
′
0 =⇒ s0 ∈ spec(A+ BK ) for all K =⇒ (A;B)

is not controllable =⇒ contradiction.
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If m > 1, then for any 0 ̸= b̃ ∈ ImB, ∃K̃ ∈ Rm×n such that (A+ BK̃ ; b̃) is
controllable (Heymann, 1968). Hence,

K = K̃ − ũe ′nM̃
−1
c �cl(A+ BK̃ )

does the trick, where ũ ∈ Rm is such that Bũ = b̃ =⇒ controllability.
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Controllability and similarity transformations

Let (Ã; B̃; C̃ ;D) ··= (TAT−1;TB;CT−1;D). We have that

M̃c =
[
B̃ ÃB̃ · · · Ãn−1B̃

]
= T

[
B AB · · · An−1B

]
= TMc

and

W̃c(t) =

∫ t

0
eÃs B̃B̃ ′eÃ

′s ds =

∫ t

0
T eAsT−1TBB ′T ′T−′eA

′sT ′ds

= T

∫ t

0
eAsBB ′eA

′s dsT ′

= TWc(t)T
′:

Hence,

− controllability is invariant under similarity transformations.
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Uncontrollable modes

If PBH fails at some � ∈ C, there is 0 ̸= � ∈ Cn such that

�′
[
A− �I B

]
= 0 ⇐⇒ (�′A = ��′) ∧ (�′B = 0)

Hence,

− PBH can fail only if � ∈ spec(A)

− PBH fails iff �′B = 0 for a left eigenvector of A

If PBH fails on � ∈ spec(A) with corresponding left eigenvector �, then

�′(A+ BK ) = ��′ =⇒ � ∈ spec(A+ BK ); ∀K

i.e. � remains an eigenvalue (mode) of A+ BK for all K . Hence, every

− � ∈ C at which PBH fails is called an uncontrollable mode of (A;B).
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Stabilizability

We say that (A;B) ∈ Rn×n × Rn×m is stabilizable if

− there is K ∈ Rm×n such that A+ BK is Hurwitz.

The following statements are equivalent:

1. The pair (A;B) is stabilizable.

2. The matrix
[
A− �I B

]
has full row rank for all � ∈ C̄0.
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Controllable decomposition

There is a nonsingular matrix Tc such that

(TcAT
−1
c ;TcB) =

([
Ac ×
0 Ac̄

]
;

[
Bc

0

])
;

where (Ac;Bc) is controllable and spec(Ac̄) comprises all uncontrollable
modes of (A;B). Moreover, Tc brings (A;B) to this form iff

TcWc(t)T
′
c =

[
W̃c(t) 0

0 0

]
for some W̃c(t) > 0.
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Observability & detectability

We say that (C ;A) ∈ Rp×n × Rn×n is observable if the

− eigenvalues of A+ LC can be freely assigned by a choice of L ∈ Rn×p

(with the restriction that complex eigenvalues are in conjugate pairs).

We say that (C ;A) ∈ Rp×n × Rn×n is detectable if

− there is L ∈ Rn×p such that A+ LC is Hurwitz.

Because
spec(A+ LC ) = spec(A′ + C ′L′);

we have that

− (C ;A) is observable iff (A′;C ′) is controllable

− (C ;A) is detectable iff (A′;C ′) is stabilizable

and can use all tests (with the observability matrix, observability Gramians,
PBH, observable decomposition, et cetera).
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Observability criteria

The following statements are equivalent:

1. The pair (C ;A) is observable.

2. The matrix

[
A− sI
C

]
has full column rank ∀s ∈ C.

3. The matrix

Wo(t) ··=
∫ t

0
eA

′�C ′C eA� d�

is positive definite for any t > 0.

4. The observability matrix

Mo ··=


C
CA
...

CAn−1


has full rank (i.e. rank(Mo) = n).
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Observable decomposition

There is a nonsingular matrix To such that

(CT−1
o ;ToAT

−1
o ) =

([
Co 0

]
;

[
Ao 0
× Aō

])
;

where (Co;Ao) is observable and spec(Aō) comprises all unobservable
modes of (C ;A). Moreover, To brings (C ;A) to this form iff

T−′
o Wo(t)T

−1
o =

[
W̃o(t) 0

0 0

]
for some W̃c(t) > 0.

As a matter of fact,

W̃o(t) = T−′Wo(t)T
−1 and M̃o = MoT

−1:
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Outline

State-space realizations

System interconnections in terms of state-space realizations

Structural properties

Kalman canonical decomposition and minimality

Coprime factorization via state-space realizations

Poles / zeros / directions via state-space realizations

System norms via state-space realizations

Model reduction by balanced truncation



State space Interconnections Structural properties Minimality Coprime factorization Poles/zeros System norms Balanced truncation

Uncontrollable modes and transfer functions

Let

G (s) =

[
A B

C D

]
=

[
TAT−1 TB

CT−1 D

]
=

 Ac × Bc

0 Ac̄ 0

Cc × D

 ;
where (Ac;Bc) is controllable. Now,

G (s) = D +
[
Cc ×

](
sI −

[
Ac ×
0 Ac̄

])−1 [
Bc

0

]
= D +

[
Cc ×

] [ (sI − Ac)
−1 ×

0 (sI − Ac̄)
−1

] [
Bc

0

]
= D + Cc(sI − Ac)

−1Bc:

In other words,

− uncontrollable modes do not affect the corresponding transfer function.

The same conclusion holds for unobservable modes of a realization.
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Kalman canonical decomposition

There is a nonsingular matrix T such that

G (s) =

[
TAT−1 TB

CT−1 D

]
=


Acō × × × Bcō

0 Aco 0 × Bco

0 0 Ac̄ō × 0
0 0 0 Ac̄o 0

0 Cco 0 Cc̄o D

 =

[
Aco Bco

Cco D

]
;

where (Aco;Bco) is controllable and (Cco;Aco) is observable, so that the

− spec(Aco) contains controllable-and-observable

− spec(Acō) contains controllable-but-unobservable

− spec(Ac̄o) contains observable-but-uncontrollable

− spec(Ac̄ō) contains uncontrollable-and-unobservable

modes of the triple (C ;A;B), respectively. Again, neither uncontrollable nor
unobservable modes (aka hidden modes) affect the transfer function.
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− spec(Acō) contains controllable-but-unobservable

− spec(Ac̄o) contains observable-but-uncontrollable
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Minimality

A realization (A;B;C ;D) of a given system G is said to be

− minimal if the dimension of A is smallest among all realizations of G .

Theorem
A realization (A;B;C ;D) is minimal iff (A;B) is controllable and (C ;A) is
observable.

Proof (outline of the “only if” part).

Follows from the Kalman canonical decomposition.
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Minimality (contd)

Proof (outline of the “if” part).

Let (A;B) be controllable, (C ;A) be observable, but the realization be not
minimal for A ∈ Rn×n. I.e. there are Ar ∈ Rnr×nr , Br, and Cr so that[

A B

C D

]
=

[
Ar Br

Cr D

]
with nr < n:

Hence, C eAtB = Cre
ArtBr, ∀t, or C eA� eA�B = Cre

Ar� eAr�Br. This yields

eA
′�C ′C eA� eA�BB ′eA

′� = eA
′�C ′Cre

Ar� eAr�BrB
′eA

′� :

Integrating both sides from 0 to t over both � and � ,

Wo(t)Wc(t)︸ ︷︷ ︸
rank=n

=

∫ t

0
eA

′�C ′Cre
Ar� d�

∫ t

0
eAr�BrB

′eA
′� d� =·· Wr1(t)Wr2(t)︸ ︷︷ ︸

rank≤nr

with Wr1(t) ∈ Rn×nr and Wr2(t) ∈ Rnr×n. Ranks do not agree then.
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All minimal realizations

Theorem
Any two minimal realizations of a finite-dimensional LTI system are similar.

Proof (outline).

Obviously, any realization, similar to another minimal realization, is minimal.
Now, let (A;B;C ;D) and (Ã; B̃; C̃ ;D) be minimal. Hence,

C eAtB = C̃ eÃtB̃ ⇐⇒ CAiB = C̃ Ãi B̃ =⇒ MoA
iMc = M̃oÃ

iM̃c; ∀i

Construct now

T ··= (M̃ ′
oM̃o)

−1M̃ ′
oMo and S ··= McM̃

′
c(M̃cM̃

′
c)

−1:

It can be shown thatT = S−1,TMc = M̃c,MoS = MoT
−1 = M̃o, and then

TAS = TAT−1 = Ã.
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Gilbert’s realization

If G (s) is proper and such that

G (s) =
1

d(s)
NG (s); for d(s) = (s − a1) · · · (s − ar ) with aj ̸= ai

and polynomial matrix NG (s), then

G (s) = G (∞) +
r∑

i=1

1

s − ai
Gi for Gi ··= lim

s→ai
(s − ai )G (s).

If rankGi = ni , then ∃Bi ∈ Rni×m;Ci ∈ Rp×ni having rank ni and such that

Gi = CiBi

(rank decomposition).
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Gilbert’s realization (contd)

Theorem
The realization

G (s) =


a1In1 0 B1

. . .
...

0 ar Inr Br

C1 · · · Cr G (∞)


is minimal (its dimension is

∑r
i=1 ni ).

Proof (outline) : If � = ai is uncontrollable mode, then ∃� ̸= 0 such that

[
�′1 · · · �′r

]  (a1 − �)In1 0 B1

. . .
...

0 (ar − �)Inr Br


=
[
(a1 − �)�′1 · · · (ar − �)�′r

∑r
i=1 �

′
iBi

]
= 0

So �j = 0 for all j ̸= i and then �′iBi = 0 =⇒ �i = 0 (contradiction).



State space Interconnections Structural properties Minimality Coprime factorization Poles/zeros System norms Balanced truncation

Outline

State-space realizations

System interconnections in terms of state-space realizations

Structural properties

Kalman canonical decomposition and minimality

Coprime factorization via state-space realizations

Poles / zeros / directions via state-space realizations

System norms via state-space realizations

Model reduction by balanced truncation



State space Interconnections Structural properties Minimality Coprime factorization Poles/zeros System norms Balanced truncation

Reminder: doubly coprime factorization over RH∞

Given a real-rational proper G (s), there are right coprime N;M ∈ RH∞ and
left coprime Ñ; M̃ ∈ RH∞ such that

G (s) = N(s)M−1(s) = M̃−1(s)Ñ(s)

and their Bézout factors verifying[
X (s) Y (s)

−Ñ(s) M̃(s)

] [
M(s) −Ỹ (s)

N(s) X̃ (s)

]
=

[
I 0
0 I

]
:

The question is

− how to construct these functions ?
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State-space way

Let

G (s) =

[
A B

C D

]
with (A;B) stabilizable and (C ;A) detectable. Let K and L be any matrices
such that A+ BK and A+ LC are Hurwitz. Then

[
X (s) Y (s)

−Ñ(s) M̃(s)

]
=

 A+ LC B + LD −L

−K I 0
−C −D I


and [

M(s) −Ỹ (s)

N(s) X̃ (s)

]
=

 A+ BK B −L

K I 0
C + DK D I

 :
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State-space way (contd)

Remember, [
Ā B̄

C̄ D̄

]−1

=

[
Ā− B̄D̄−1C̄ B̄D̄−1

−D̄−1C̄ D̄−1

]
:

Then

[
X (s) Y (s)

−Ñ(s) M̃(s)

]−1

=

 A+ LC B + LD −L

−K I 0
−C −D I

−1

=

 A+ BK B −L

K I 0
C + DK D I


=

[
M(s) −Ỹ (s)

N(s) X̃ (s)

]
because[

I 0
−D I

]−1

=

[
I 0
D I

]
;
[
B + LD −L

] [ I 0
D I

] [
K
C

]
= BK − LC :

The fact that N(s)M−1(s) = G (s) = M̃−1(s)Ñ(s) is also easy to show . . .
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N(s) X̃ (s)

]
because[

I 0
−D I

]−1

=

[
I 0
D I

]
;
[
B + LD −L

] [ I 0
D I

] [
K
C

]
= BK − LC :

The fact that N(s)M−1(s) = G (s) = M̃−1(s)Ñ(s) is also easy to show . . .
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Poles of the realization

Eigenvalues of A are called poles of the realization (A;B;C ;D). Because

G (s) = D + C (sI − A)−1B = D +
1

det(sI − A)
C adj(sI − A)B

poles of G (s) are also poles of its realization. Then

Theorem
The McMillan degree of G (s) is equal to the order of its minimal realization
(A;B;C ;D) and the set of poles of G (s) coincides with spec(A).

Proof (outline).

It follows by the Kalman canonical decomposition that hidden modes don’t
affect transfer functions. The proof that every pole of a minimal realization
is a pole of G (s) is too technical . . .
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Reminder: pole directions

Remember the Smith–McMillan form:

U(s)G (s)V (s) =


˛1(s)=ˇ1(s) · · · 0 0

...
. . .

...
...

0 · · · ˛r (s)=ˇr (s) 0
0 · · · 0 0

 ;
where ˛i (s) divides ˛i+1(s), ˇi+1(s) divides ˇi (s). Then

pdiri(G ; pi ) =
(
ImV (pi )

[
e�i+1 · · · em

])⊥
= ker

 e ′�i+1
...
e ′m

[V (pi )]
′

pdiro(G ; pi ) = ker

 ẽ ′�i+1
...
ẽ ′p

U(pi ) =
(
Im[U(pi )]

′ [ ẽ�i+1 · · · ẽp
])⊥
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When Smith–McMillan meets Jordan

Example: 1 0 0
0 −s 1
−s 1 0


︸ ︷︷ ︸

U(s)

 s −1 0
0 s −1
0 0 s

−1

︸ ︷︷ ︸
(sI−A)−1

 0 0 −1
0 −1 0
1 s s2


︸ ︷︷ ︸

V (s)

=

 1=s3 0 0
0 1 0
0 0 1



and

ker

[
0 1 0
0 0 1

]
[V (0)]′ = span

 0
0
1

 = ker(0I − A)′;

ker

[
0 1 0
0 0 1

]
U(0) = span

 1
0
0

 = ker(0I − A):
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Pole directions via state-space realizations

It can be shown that

− the geometric multiplicity of a pole of Φ(s) ··= (sI − A)−1 at pi equals
the geometric multiplicity of an eigenvalue of A at pi

and then pdiri(Φ; pi ) = ker[(pi I − A)]′ and pdiro(Φ; pi ) = ker(pi I − A).

Motivated by that, for G (s) = D + C (sI − A)−1B

pdiri(G ; pi ) = B ′ ker[(pi I − A)]′ and pdiro(G ; pi ) = C ker(pi I − A):

In Gilbert’s realization

G (s) =

[
A B

C D

]
=


a1In1 0 B1

. . .
...

0 ar Inr Br

C1 · · · Cr D

 ;
pdiri(G ; ai ) = ImB ′

i and pdiro(G ; ai ) = ImCi .
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Rosenbrock system matrix

The polynomial matrix

RG (s) ··=
[
A− sIn B

C D

]
=

[
A B
C D

]
− s

[
In 0
0 0

]
is called the Rosenbrock system matrix of G given in terms of (A;B;C ;D).
Because

RG (s) =

[
A− sI 0
C G (s)

] [
I −(sI − A)−1B
0 I

]
=

[
I 0

−C (sI − A)−1 I

] [
A− sI B

0 G (s)

]
;

we have that

rank(RG (s0)) = n + rank(G (s0)); ∀s0 ̸∈ spec(A):

and then nrank(RG (s)) = n + nrank(G (s)).
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Invariant zeros of the realization

Every zi ∈ C at which

rank(RG (zi )) < nrank(RG (s))

is called an invariant zero of the realization (A;B;C ;D). Because[
TAT−1 − sI TB

CT−1 D

]
=

[
T 0
0 Ip

] [
A− sI B
C D

] [
T−1 0
0 Im

]
;

they are invariant under similarity. Finding them is a generalized eigenvalue
problem (e.g. eig([A,B;C,D],[eye(n,n+m);zeros(m,n+m)]) if p = m).

Theorem
Invariant zeros of (A;B;C ;D) comprise all its hidden modes, as well as the
transmission zeros of G (s) = D + C (sI − A)−1B.

Proof (observations).
Straightforward if invariant zeros are not in spec(A), nasty otherwise.



State space Interconnections Structural properties Minimality Coprime factorization Poles/zeros System norms Balanced truncation

Invariant zeros of the realization

Every zi ∈ C at which

rank(RG (zi )) < nrank(RG (s))

is called an invariant zero of the realization (A;B;C ;D). Because[
TAT−1 − sI TB

CT−1 D

]
=

[
T 0
0 Ip

] [
A− sI B
C D

] [
T−1 0
0 Im

]
;

they are invariant under similarity. Finding them is a generalized eigenvalue
problem (e.g. eig([A,B;C,D],[eye(n,n+m);zeros(m,n+m)]) if p = m).

Theorem
Invariant zeros of (A;B;C ;D) comprise all its hidden modes, as well as the
transmission zeros of G (s) = D + C (sI − A)−1B.

Proof (observations).
Straightforward if invariant zeros are not in spec(A), nasty otherwise.



State space Interconnections Structural properties Minimality Coprime factorization Poles/zeros System norms Balanced truncation

Zero directions

Remember, zero directions for transfer functions (if zeros are not poles):

zdiri(G ; zi ) = kerG (zi ) ⊂ Cm and zdiro(G ; zi ) = ker[G (zi )]
′ ⊂ Cp:

Then

0 =

[
A− zi I 0

C G (zi )

] [
0
ui

]
=

[
A− zi I B

C D

] [
I (zi I − A)−1B
0 I

] [
0
ui

]
=

[
A− zi I B

C D

] [
(zi I − A)−1Bui

ui

]
:

so that zdiri(G ; zi ) ∈
[
0 Im

]
kerRG (zi ). The other direction is also true:

0 =

[
A− zi I B

C D

] [
xi
ui

]
=

[
A− zi I 0

C G (zi )

] [
x̃i
ui

]
;

where x̃i ··= xi − (zi I − A)−1Bui = 0 then, because det(A− zi I ) ̸= 0.
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Zero directions (contd)

Thus, we have that

zdiri(G ; zi ) =
[
0 Im

]
kerRG (zi )

and, by similar arguments, that

zdiro(G ; zi ) =
[
0 Ip

]
ker[RG (zi )]

′:

These relations should also hold true if zi ∈ spec(A), perhaps. At least if[
A− zi I B

C D

] [
xi
ui

]
= 0;

then ui ̸= 0 (by observability) and (A− zi I )xi + Bui = 0 implies that

− zdiri(G ; zi ) ⊥ pdiri(G ; zi ) whenever zi ∈ spec(A)

(zdiro(G ; zi ) ⊥ pdiro(G ; zi ) then too), which is a circumstantial evidence.
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Example 1

Let

G (s) =
1

s

[
1 1
1 1

]
=

1

s

[
1
1

] [
1 1

]
:

Its minimal (Gilbert’s) realization is

G (s) =

 0 1 1

1 0 0
1 0 0

 :
It has one pole at the origin and because ker(s − 0)|s=0 = C, we have that

pdiri(G ; 0) =

[
1
1

]
C = span

([
1
1

])
and

pdiro(G ; 0) =

[
1
1

]
C = span

([
1
1

])
:
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Example 1 (contd)

The Rosenbrock system matrix

RG (s) =

−s 1 1
1 0 0
1 0 0


is such that rank(RG (s)) = 2 for all s ∈ C. Thus, the system has no zeros.
All these results agree with those derived in Chapter 3.
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Example 2

Let

G (s) =

[
1 1=s
0 1

]
=

[
1 0
0 1

]
+

1

s

[
0 1
0 0

]
=

[
1 0
0 1

]
+

1

s

[
1
0

] [
0 1

]
:

Its minimal (Gilbert’s) realization is

G (s) =

 0 0 1

1 1 0
0 0 1


It has one pole at the origin and because ker(s − 0)|s=0 = C, we have that

pdiri(G ; 0) =

[
0
1

]
C = span

([
0
1

])
and

pdiro(G ; 0) =

[
1
0

]
C = span

([
1
0

])
:
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Example 2 (contd)

The Rosenbrock system matrix

RG (s) =

−s 0 1
1 1 0
0 0 1


has full normal rank and det(RG (s)) = −s. Thus, the system has a zero at
the origin too. Because

kerRG (0) = span

([
−1
1
0

])
and ker[RG (0)]

′ = span

([
−1
0
1

])
;

we have that

zdiri(G ; 0) = span

([
1
0

])
and zdiro(G ; 0) = span

([
0
1

])
:

All these results agree with those derived in Chapter 3.
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Invariant zeros: filtering inputs

In the SISO case, if G (s) has a zero at zi , then

u(t) = ezi t1(t)

is filtered out by G (Y (s) = 1
s−zi

G (s) is well defined at s = zi , so that y(t)

does not contain a component with ezi t).

In the MIMO case, let
u(t) = ui e

zi t1(t)

for ui ̸= 0 such that which the Sylvester equation −xizi + Axi + Bui = 0 is
solvable in xi ∈ Cn. This happens

− for all ui ∈ Cm if zi ̸∈ spec(A)

− for all ui ⊥ pdiri(G ; zi ) ⊂ Cm if zi ∈ spec(A)



State space Interconnections Structural properties Minimality Coprime factorization Poles/zeros System norms Balanced truncation

Invariant zeros: filtering inputs

In the SISO case, if G (s) has a zero at zi , then

u(t) = ezi t1(t)

is filtered out by G (Y (s) = 1
s−zi

G (s) is well defined at s = zi , so that y(t)

does not contain a component with ezi t).

In the MIMO case, let
u(t) = ui e

zi t1(t)

for ui ̸= 0 such that which the Sylvester equation −xizi + Axi + Bui = 0 is
solvable in xi ∈ Cn. This happens

− for all ui ∈ Cm if zi ̸∈ spec(A)

− for all ui ⊥ pdiri(G ; zi ) ⊂ Cm if zi ∈ spec(A)



State space Interconnections Structural properties Minimality Coprime factorization Poles/zeros System norms Balanced truncation

Invariant zeros: filtering inputs (contd)

Then (remember the partial fraction expansion formula from Slide 15)

Y (s) = G (s)ui
1

s − zi
=

[
A B

C D

] [
zi 1

ui 0

]
=

 A Bui 0
0 zi 1

C Dui 0


=

 A Bui −xi
0 zi 1

C Cxi + Dui 0

 = −C (sI − A)−1xi + (Cxi + Dui )
1

s − zi

Hence,
y(t) = −C eAtxi1(t)︸ ︷︷ ︸

transients

+ (Cxi + Dui ) e
zi t1(t)︸ ︷︷ ︸

steady-state effect of u(t)If

Cxi + Dui = 0 ⇐⇒
[
A− zi I B

C D

] [
xi
ui

]
= 0 ⇐⇒ ui ∈ zdiri(G ; zi );

then the response to u(t) includes only transients. In addition, if

− x(0) = xi =⇒ y(t) ≡ 0, i.e. no response to u(t) = ui e
zi t1(t) at all.
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Realization poles and coprime factors

Remember, G = M̃−1Ñ = NM−1 with

M̃(s) =

[
A+ LC − sI L

C I

]
and M(s) =

[
A+ BK − sI B

K I

]
:

Now,

RM̃(s) =

[
A+ LC − sI L

C I

]
=

[
A− sI L

0 I

] [
I 0
C I

]
;

RM(s) =

[
A+ BK − sI B

K I

]
=

[
I B
0 I

] [
A− sI 0
K I

]
Hence

− zi ∈ C is an invariant zero of M̃ iff it is a realization pole of G , with
zdiri(M̃; zi ) = pdiro(G ; zi );

− zi ∈ C is an invariant zero of M iff it is a realization pole of G , with
zdiro(M; zi ) = pdiri(G ; zi ).
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Invariant zeros and coprime factors

Again, because G = M̃−1Ñ = NM−1 with

Ñ(s) =

[
A+ LC B + LD

C D

]
and N(s) =

[
A+ BK B

C + DK D

]
;

we have that

RG (s) =

[
I −L
0 I

] [
A+ LC − sI B + LD

C D

]
=

[
I −L
0 I

]
RÑ(s)

=

[
A+ BK − sI B
C + DK D

] [
I 0

−K I

]
= RN(s)

[
I 0

−K I

]
Hence,

− zi ∈ C is an invariant zero of Ñ iff it is an invariant zero of G , with
zdiri(Ñ; zi ) = zdiri(G ; zi );

− zi ∈ C is an invariant zero of N iff it is an invariant zero of G , with
zdiro(N; zi ) = zdiro(G ; zi ).
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Computing H2 norm

Proposition

If A is Hurwitz and D = 0, then

∥G∥22 = tr(B ′QB) = tr(CPC ′);

where Q and P are the observability and controllability Gramians of (C ;A)
and (A;B), respectively.

Proof.
The impulse response of G is g(t) = C eAtB1(t). By Parseval,

∥G∥22 = ∥g∥22 =
∫

R+

tr
(
g(t)′g(t)

)
dt =

∫
R+

tr
(
B ′eA

′tC ′C eAtB
)
dt

= tr

(
B ′
∫

R+

eA
′tC ′C eAt dt B

)
= tr(B ′QB);

The other formula is derived similarly, because tr(M ′M) = tr(MM ′).
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Computing H∞ norm

Proposition

If A is Hurwitz, then ∥G∥∞ <  for a given  > 0 iff �(D) <  and

HG ··=
[

A 0
C ′C −A′

]
−
[

B
C ′D

]
(2I − D ′D)−1

[
−D ′C B ′ ]

has no pure imaginary eigenvalues.

Proof (outline).
Because G ∈ RH∞,

∥G∥∞ <  ⇐⇒ 2I − [G (j!)]′G (j!) > 0; ∀! ∈ R ∪ {±∞}:

As G (j∞) = D, �(D) <  follows (and assumed hereafter). Thus,

∥G∥∞ <  ⇐⇒ Φ(s) ··= 2I − G∼(s)G (s) has no pure imaginary zeros

How to verify that?
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Computing H∞ norm (contd)

Proof (outline, contd).
Now,

G (s) =

[
A B

C D

]
=⇒ G∼(s) =

[
−A′ C ′

−B ′ D ′

]
:

Hence,

Φ(s) = 2I −
[
−A′ C ′

−B ′ D ′

] [
A B

C D

]
=

 A 0 B
C ′C −A′ C ′D

−D ′C B ′ 2I − D ′D

 :
As spec(A) ∩ jR = ∅, imaginary zeros of Φ(s) are its invariant zeros. Then

RΦ(j!) =

 A− j!I 0 B
C ′C −A′ − j!I C ′D
−D ′C B ′ 2I − D ′D


and HG is the Schur complement of 2I − D ′D in it.
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KYP (Kalman–Yakubovich–Popov) lemma

Consider p×m system G (s) = D +C (sI −A)−1B, with spec(A)∩ jR = ∅,
and let MKYP = M ′

KYP ∈ R(m+p)×(m+p). The frequency-dependent inequality

[
[G (j!)]′ Im

]
MKYP

[
G (j!)
Im

]
< 0; ∀!

holds iff there is X = X ′ ∈ Rn×n verifying the linear matrix inequality (LMI)[
C ′ 0
D ′ Im

]
MKYP

[
C D
0 Im

]
+

[
In A′

0 B ′

] [
0 X
X 0

] [
In 0
A B

]
< 0:

KYP implies that

− infinite set of inequalities ⇐⇒ finite number of LMIs (solvable)

Many important special cases, e.g.

MKYP =
[
I 0
0 −2I

]
=⇒ calculate the L∞(jR)-norm of G
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Outline

State-space realizations

System interconnections in terms of state-space realizations

Structural properties

Kalman canonical decomposition and minimality

Coprime factorization via state-space realizations

Poles / zeros / directions via state-space realizations

System norms via state-space realizations

Model reduction by balanced truncation
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Model reduction problem

Complexity vs. accuracy is one of the key tradeoffs in (control) engineering.
“Complexity” is understood as “order” in the LTI case. Then:

− given an n-order p ×m LTI G and nr < n, find an nr-order p ×m LTI
Gr, which is “close” to G ,

say in the sense that ∥G − Gr∥∞ is “small.”

In what follows, an approach based on

− structural properties of state-space realizations

is considered. It is both practical (for relatively small n’s) and enlightening.
We consider model reduction for stable systems only.
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Classical control recipes

Thinking in terms of pole dominance, i.e.

− all poles are equal, but some poles are more equal than others.

Example 1:

G (s) =
1

(s + 1)(�s + 1)
for � ∈ (0; 1) =⇒ Gr(s) =

1

s + 1
;

justifiable if � ≪ 1 (far right), ∥G − Gr∥∞ = �=(1 + �).

Example 2:

G (s) =
2s + 1

(s + 1)((2− �)s + 1)
for � ∈ (0; 1) =⇒ Gr(s) =

1

s + 1
;

justifiable if � ≪ 1 (almost cancels the zero), ∥G − Gr∥∞ = �=(3− �).
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MIMO extensions

Dominant poles ideas are

_̈ overly hand-waving

_̈ messy if directional properties have to be accounted for

Alternative thinking:

− hidden modes can be detected and eliminated w/o consequences

− what about “almost hidden” modes?

− detect?
− costs of eliminating?

Controllability and observability Gramians are P = P ′ ≥ 0 and Q = Q ′ ≥ 0
satisfying

AP + PA′ + BB ′ = 0 and A′Q + QA+ C ′C = 0:

P > 0 iff (A;B) is controllable and Q > 0 iff (C ;A) is observable.
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First try

We (maybe) remember that if (A;B) is uncontrollable, there is Tc such that

[
TcAT

−1
c TcB

CT−1
c 0

]
=

 Ac × Bc

0 Ac̄ 0

Cc Cc̄ 0

 =

[
Ac Bc

Cc 0

]
:

and this Tc can be constructed via the Gramian, TcPT
′
c =

[
Pc 0
0 0

]
. So if

TPT ′ =

[
ΣP1 0
0 ΣP2

]
with ∥ΣP1∥ ≫ ∥ΣP2∥;

is [
TAT−1 TB

CT−1 0

]
=

 A11 A12 B1

A21 A22 B2

C1 C2 0

 ≈
[
A11 B1

C1 0

]
if A21 and B2 are “small”?
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First try: example 3

Let

G (s) =
18

5s2 + 12s + 9
=

−2 −1=˛ 1
˛ −0:4 ˛

−1 1=˛ 0

 ;
which is true for all ˛ ̸= 0 and its controllability Gramian,

P =

[
0:25 0
0 1:25˛2

]
;

is of the requires form if ˛ ≪ 1. Yet the choice

Gr(s) =

[
−2 1

−1 0

]
= − 1

s + 2

is not what we need, as

∥G − Gr∥∞ = 2:5 > ∥G − 0∥∞ = ∥G∥∞ = 2:
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First try: example 3 (contd)

Observability Gramian

Q =

[
0:25 0
0 1:25=˛2

]
compare with P =

[
0:25 0
0 1:25˛2

]
indicates that

− the second state becomes in a sense “over-observable” if ˛ ≪ 1.

Moral:

− P (or Q) alone is not an accurate indication of the relative importance
of the system modes in the input / output behavior.

Remedy:

− balance “degrees” of controllability and observability of each mode.
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Similarity transformations and Gramians

If (Ã; B̃; C̃ ; 0) = (TAT−1;TB;CT−1; 0), then

P̃ = TPT ′ and Q̃ = T−′QT−1:

Hence,

− eigenvalues of P and Q are not preserved under similarity.

But
P̃Q̃ = TPQT−1

is similar to PQ, so its eigenvalues are invariant under similarity. Moreover,

spec(PQ) = spec(Q1=2PQQ−1=2) = spec(Q1=2PQ1=2);

implying

− eigenvalues of PQ are real and nonnegative Q1=2PQ1=2 is symmetric

− PQ is diagonalizable UQ1=2PQ1=2U ′ = (UQ1=2)PQ(UQ1=2)−1
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Balanced realization

Theorem
If (A;B;C ;D) is a minimal realization of an n-dimensional stable G , then
there is T such that (Ã; B̃; C̃ ;D) ··= (TAT−1;TB;CT−1;D) has1

P̃ = Q̃ = Σ ··=

[
�1In1 . . .

�l Inl

]
;

where �1 > · · · > �l > 0 and ni ∈ N with
∑

i ni = n.

Some facts about �i :

− known as Hankel singular values of G

− square roots of the singular values of PQ

− ∥G∥H
··= �1 =

√
�(PQ) is known as the Hankel norm of G

− L2(R−) → L2(R+) induced norm of G

1Matlab command: [Gb,Sig]=balreal(G).
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Second try: balanced truncation

Let G be stable and (A;D;C ;D) be its balanced realization. Partition

P = Q = Σ =

[
Σ1 0
0 Σ2

]
;

where Σ1 = diag{�1In1 ; : : : ; �r Inr } and Σ2 = diag{�r+1Inr+1 ; : : : ; �l Inl} for
�1 > · · · > �r > �r+1 > · · · > �l . The correspondent state partition is

G (s) =

 A11 A12 B1

A21 A22 B2

C1 C2 D

 :
The system Gr with the transfer function

Gr (s) =

[
A11 B1

C1 D

]
is called the balanced truncation of G .
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Balanced truncation properties

If Gr is the balanced truncation of of G , then

− P1 = Q1 = Σ1 > 0 are Gramians of (A11;B1;C1;D)

− Gr ∈ RH∞

− ∥G − Gr∥∞ ≤ 2(�r+1 + · · ·+ �l)
− if r = l − 1, then the bound above is achieved, i.e. ∥G −Gl−1∥∞ = 2�l
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Balanced truncation: example 3

Let

G (s) =
18

5s2 + 12s + 9
=

−2 −1=˛ 1
˛ −0:4 ˛

−1 1=˛ 0

 ;
with

P =

[
0:25 0
0 1:25˛2

]
and Q =

[
0:25 0
0 1:25=˛2

]
:

Its HSVs are �1 = 1:25 and �2 = 0:25 and balanced realization (for ˛ = 1)

G (s) =

−0:4 1 1
−1 −2 1

1 −1 0

 :
Balanced truncation for r = 1:

G1(s) =

[
−0:4 1

1 0

]
=

5

5s + 2
=⇒ ∥G − G1∥∞ = 2× 0:25 = 0:5;

which is smaller than ∥G∥∞ = 2.
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Balanced truncation: example 1 (contd)

If

G (s) =
1

(s + 1)(�s + 1)
;

then balanced truncation to r = 1 results in

G1(s) =
k1

�1s + 1
with �1 =

�
0 1

1

3.41
2.91

and k1 = �
0 1

1

1.21

which is different from keeping the rightmost pole at −1. Also,

∥G − G1∥∞ =
�

0 1
0

0.21

0.5

;

where

− red line corresponds to the näıve modal truncation

− dashed lines correspond to the (brute force) optimal H∞ reduction
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Balanced truncation: example 2 (contd)

If

G (s) =
2s + 1

(s + 1)((2− �)s + 1)
;

then balanced truncation to r = 1 results in

G1(s) =
k2

�2s + 1
with �2 =

�
0 1

1

0.59
0.47

and k2 = �
0 1

1

1.21
1.11

which is different from keeping the pole at −1. Also,

∥G − G1∥∞ =
�

0 1
0

0.21

0.5

;

where

− red line corresponds to the näıve modal truncation

− dashed lines correspond to the (brute force) optimal H∞ reduction
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Balanced truncation: example 4

Let
G (s) = 1−

(
s + 1

s + 2

)
25

:

It has

Then

G4(s) =
24:986(s + 3:196)(s2 + 3:165s + 19:48)

(s2 + 5:629s + 24:58)(s2 + 14:69s + 63:86)

is quite accurate (and its poles are not related to those of G (s)).
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Balanced truncation: example 5 (need for �r > �r+1)

Let

G (s) =
(s − 1)2

(s + 1)2
:

Its balance realization

G (s) =

−1 + cos 2� 1− sin 2� 2 sin �

−1− sin 2� −1− cos 2� 2 cos �

−2 sin � −2 cos � 1

 :
for every � and P = Q = I2. But

A11 = −1 + cos 2�

is not Hurwitz if � = �k for k ∈ Z.
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