Linear Control Systems (036012) chapter 3

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT

1/60

Basics

Signals are mappings from \mathbb{R} (time) to \mathbb{F}^n for $n \in \mathbb{N}$, denoted $x : \mathbb{R} \to \mathbb{F}^n$. The value of x at a time instance t is denoted $x(t) \in \mathbb{F}^n$. We say that x is

- scalar-valued if n=1
- vector-valued if n > 1

Set of signals is a vector space, with

addition: x = y + z reads x(t) = y(t) + z(t) for at t

multiplication by scalar: $x = \alpha y$ reads $x(t) = \alpha y(t)$ for all t

Another important operation is

shift: $\mathbb{S}_{\tau}x$ reads $(\mathbb{S}_{\tau}x)(t) = x(t+\tau)$ for all t

The set

 $supp(x) := \{t \in \mathbb{R} \mid x(t) \neq 0\}$

is called the support of x.

Outline

Continuous-time signals

Continuous-time dynamic systems in time domair

Continuous-time dynamic LTI systems in transformed domains

Coprime factorization of transfer functions over H_{∞}

Real-rational transfer functions

Poles, zeros, & Co

2/60

Normed (Banach) spaces

Admissibility \rightarrow signal spaces:

$$L_1^n(\mathbb{R}) := \left\{ x : \mathbb{R} \to \mathbb{F}^n \, \big| \, \|x\|_1 := \int_{\mathbb{R}} \|x(t)\|_1 \mathrm{d}t < \infty \, \right\}$$

$$L_{\infty}^{n}(\mathbb{R}) := \left\{ x : \mathbb{R} \to \mathbb{F}^{n} \, \big| \, \|x\|_{\infty} := \sup_{t \in \mathbb{R}} \|x(t)\|_{\infty} < \infty \, \right\}$$

$$L_2^n(\mathbb{R}) := \left\{ x : \mathbb{R} \to \mathbb{F}^n \, \big| \, \|x\|_2^2 := \int_{\mathbb{R}} \|x(t)\|^2 dt < \infty \, \right\}$$

$$L_{2+}^n(\mathbb{R}) := \{ x \in L_2^n(\mathbb{R}) \mid x(t) = 0 \text{ for all } t < 0 \}$$

$$L_{2-}^{n}(\mathbb{R}) := \{ x \in L_{2}^{n}(\mathbb{R}) \mid x(t) = 0 \text{ for all } t > 0 \}$$

L₂ is Hilbert, with

$$\langle x,y\rangle_2 := \int_{\mathbb{R}} y'(t)x(t)dt$$

Fourier transform

Defined

$$\mathfrak{F}\{x\} = X(j\omega) := \int_{\mathbb{R}} x(t) e^{-j\omega t} dt,$$

where $\omega \in \mathbb{R}$ called the (angular) frequency and measured in rad/sec. $\mathfrak{F}\{x\}$ is the frequency-domain representation or spectrum of x.

$$\mathfrak{F}^{-1}\{X\} = x(t) = \frac{1}{2\pi} \int_{\mathbb{R}} X(j\omega) e^{j\omega t} d\omega,$$

i.e. x is a superposition, weighted by $X(j\omega)$, of harmonic signals $\exp_{i\omega}$ with frequencies ω .

Laplace transform

The two-sided (bilateral) Laplace transform:

$$\mathfrak{L}\{x\} = F(s) := \int_{\mathbb{R}} x(t) e^{-st} dt$$

at all $s \in \mathbb{C}$ where the integral converges (region of convergence, aka RoC). We need $x \exp_{-s} \in L_1$ for absolute convergence.

Normally used for signals supported on semi-axes:

- if supp $(x) \subset \mathbb{R}_+$, then RoC is typically \mathbb{C}_{α} (may be $\bar{\mathbb{C}}_{\alpha}$)
- if supp $(x) \subset \mathbb{R}_-$, then RoC is typically $\mathbb{C} \setminus \bar{\mathbb{C}}_{\alpha}$ (may be $\mathbb{C} \setminus \mathbb{C}_{\alpha}$) for some $\alpha \in \mathbb{R} \cup \{-\infty, \infty\}$.

Fourier transform (contd)

Existence:

- well defined (absolute convergence) for $x \in L_1$
- extendible (weaker convergence) for $x \in L_2$ by the Plancherel Theorem

 $\mathfrak{F}\{\cdot\}$ is a unitary mapping $L_2(\mathbb{R}) \to L_2(j\mathbb{R})$, i.e. it preserves sizes:

$$\underbrace{\int_{\mathbb{R}} \|x(t)\|^2 dt}_{\|x\|_2^2} = \underbrace{\frac{1}{2\pi} \int_{\mathbb{R}} \|X(j\omega)\|^2 d\omega}_{\|X\|_2^2}$$

It also preserves angles:

$$\underbrace{\int_{\mathbb{R}} [x_2(t)]' x_1(t) dt}_{\langle x_1, x_2 \rangle} = \underbrace{\frac{1}{2\pi} \int_{\mathbb{R}} [X_2(j\omega)]' X_1(j\omega) d\omega}_{\langle X_1, X_2 \rangle_2}$$

(Parseval's theorem, in engineering literature).

Laplace transform: mind RoC

Readily verifiable that

$$-x(t) = x_{+}(t) := e^{-t} \mathbb{1}(t) =$$
 $\implies X(s) = \frac{1}{s+1}$

$$-x(t) = x_{-}(t) := -e^{-t} \mathbb{1}(-t) = \longrightarrow X(s) = \frac{1}{s+1}$$

i.e.

X alone does not define x unambiguously.

If the knowledge of X is complemented by its RoC:

$$-X(s)=rac{1}{s+1} ext{ and } ext{RoC}=\mathbb{C}_{-1} \qquad \Longrightarrow x=x_{+} \ -X(s)=rac{1}{s+1} ext{ and } ext{RoC}=\mathbb{C}\setminus\mathbb{C}_{-1} \qquad \Longrightarrow x=x_{-}$$

$$-X(s)=rac{1}{s+1}$$
 and $\operatorname{RoC}=\mathbb{C}\setminus\mathbb{C}_{-1}$ $\Longrightarrow x=x_{-1}$

Paley–Wiener and H_2 space

 $\mathfrak{L}\{\cdot\}$ is a unitary mapping $L_{2+}(\mathbb{R}) \to H_2$, where

$$H_2^n:=\left\{X:\mathbb{C}_0 o\mathbb{C}^n\,\Big|\,X(s) ext{ is holomorphic in }\mathbb{C}_0 ext{ and }
ight.$$

$$\|X\|_2 := \sup_{\sigma>0} \left(\frac{1}{2\pi} \int_{\mathbb{R}} \|X(\sigma + j\omega)\|^2 d\omega\right)^{1/2} < \infty$$

Important:

- the boundary function $\tilde{X}(j\omega) := \lim_{\sigma \downarrow 0} X(\sigma + j\omega)$ exists for almost all ω and $\|\tilde{X}\|_2 = \|X\|_2$ (so $\tilde{X} \in L_2(j\mathbb{R})$)
- H_2 functions are identified with boundary functions $\implies H_2 \subset L_2(j\mathbb{R})$
- H_2 -norm (provided $X ∈ H_2$):

$$\|X\|_2 = \left(\frac{1}{2\pi} \int_{\mathbb{R}} \|X(\mathrm{j}\omega)\|^2 \,\mathrm{d}\omega\right)^{1/2}$$

9/60

Linear systems on L_2

Linear operators

$$G:\mathfrak{D}_G\subset L_2^m\to L_2^p$$

for some domain \mathfrak{D}_G .

Sufficiently general class of $G: u \mapsto y$ satisfies

$$y(t) = \int_{\mathbb{R}} g(t,s)u(s)ds$$

where $g: \mathbb{R}^2 \to \mathbb{R}^{p \times m}$ is the impulse response (kernel) of G, whose $-g_{\bullet i}(t,s)$ is y(t) under $u(t)=e_i\delta(t-s)$.

Outline

Continuous-time signals

Continuous-time dynamic systems in time domain

Continuous-time dynamic LTI systems in transformed domains

Coprime factorization of transfer functions over H_{∞}

Real-rational transfer functions

Poles, zeros, & C^c

10/60

Some systems $u \mapsto y$

$$G_{\text{int}}$$
 (integrator) $\dot{y}(t) = u(t) \implies g_{\text{int}}(t,s) = \mathbb{1}(t-s)$

G_{dint} (discrete integrator)

$$y(t) = y(t-T) + u(t) \implies g_{\mathsf{dint}}(t,s) = \sum_{i \in \mathbb{N}} \delta(t-s-(i-1)T)$$

G_{fmint} (finite-memory integrator)

$$y(t) = \int_{t-T}^{t} u(s) ds \implies g_{fmint}(t,s) = \mathbb{I}(t-s) - \mathbb{I}(t-s-T)$$

$$D_{ au}$$
 (au -delay operator) $y(t)=u(t- au) \implies d_{ au}(t,s)=\delta(t-s- au)$

Filp (ideal low-pass filter)

$$f_{\mathsf{ilp}}(t,s) = \frac{\omega_{\mathsf{b}}}{\pi} \mathsf{sinc}(\omega_{\mathsf{b}}(t-s))$$

Causality

 $G: u \mapsto y$ is causal if for every $t_c \in \mathbb{R}$

-y(t)=0 for all $t \leq t_c$ whenever u(t)=0 for all $t \leq t_c$.

Roughly, it says that

-y(t) may only depend on past and present inputs u for all t.

Consequently,

- causal systems may be thought of as $\mathfrak{D}_G \subset L^m_{2+} \to L^p_{2+}$.

Criterion:

$$y(t) = \int_{\mathbb{R}} g(t,s)u(s)ds = \int_{t_c}^{\infty} g(t,s)u(s)ds = 0, \quad \forall t < t_c, u \in \mathfrak{D}_G$$

whence

G is causal
$$\iff$$
 $g(t,s) = 0$ for all $s > t$.

Remark: G is said to be anti-causal if y may only depend on future and present inputs u. A linear G is anti-causal $\iff g(t,s)=0$ for all s< t.

13/60

Adjoint system

 L_2 is Hilbert \implies G has its adjoint G', defined via $\langle Gu,v \rangle = \langle u,G'v \rangle$. If

$$(Gu)(t) = \int_{\mathbb{R}} g(t,s)u(s)ds,$$

then

$$\langle Gu, v \rangle = \int_{\mathbb{R}} v'(t)(Gu)(t) dt = \int_{\mathbb{R}} v'(t) \int_{\mathbb{R}} g(t, s) u(s) ds dt$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \left(v'(t) g(t, s) \right) u(s) ds dt = \int_{\mathbb{R}} \int_{\mathbb{R}} \left(g'(t, s) v(t) \right)' u(s) dt ds$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} g'(t, s) v(t) dt \right)' u(s) ds = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} g'(s, t) v(s) ds \right)' u(t) dt$$

$$= \langle u, G'v \rangle.$$

$$(G'v)(t)$$

Thus, the impulse response of G' is [g(s,t)]', or [g(-t)]' if G is LTI.

- G is causal $\implies G'$ is anti-causal.

Time (shift) invariance

Linear $G: \mathfrak{D}_G \subset L_2^m \to L_2^p$ is time invariant (shift invariant) if

-
$$G$$
\$ $_{\tau}$ = \$ $_{\tau}$ G for all $\tau \in \mathbb{R}$

If G LTI, its impulse response $g(t,s)=(G\mathbb{S}_{-s}\delta)(t)$ and then

$$egin{aligned} y(t) &= \int_{\mathbb{R}} ig(G\mathbb{S}_{-s}\deltaig)(t)u(s)\mathrm{d}s = \int_{\mathbb{R}} ig(\mathbb{S}_{-s}G\deltaig)(t)u(s)\mathrm{d}s \ &= \int_{\mathbb{R}} ig(G\deltaig)(t-s)u(s)\mathrm{d}s, \end{aligned}$$

i.e. only the response of G to δ applied at t=0 matters. We then treat

- $g:\mathbb{R}
 ightarrow\mathbb{R}^{p imes m}$ (i.e. g(t))
- can write the response as the convolution integral

$$y(t) = \int_{\mathbb{D}} g(t-s)u(s)ds =: g * u$$

14/60

Stability

Linear $G: \mathfrak{D}_G \subset L_2^m \to L_2^p$ is stable (L_2 -stable)

- $-\mathfrak{D}_G=L_2^m$ and
- $\ \| \textit{G} \| := \sup_{\|\textit{u}\|_2 = 1} \| \textit{Gu} \|_2 < \infty \ (\textit{L}_2\text{-induced norm})$

It is known (Young's convolution inequality) that

$$g \in L_1, u \in L_2 \implies g * u \in L_2 \text{ and } \|g * u\|_2 \le \|g\|_1 \|u\|_2.$$

Hence, if G is LTI, then it is

− stable whenever $g \in L_1$.

But $g, u \in L_2$ might not imply that $g * u \in L_2$, so

 $-g \in L_2$ does not necessarily imply the stability of G.

Unfortunately,

in no N&S stability test in terms of the impulse response in general.

Outline

Continuous-time signals

Continuous-time dynamic systems in time domain

Continuous-time dynamic LTI systems in transformed domains

Coprime factorization of transfer functions over H_{∞}

Real-rational transfer functions

Poles, zeros, & C°

17/60

Beware of frequency response analysis: example

Consider

for

$$p(t) = -2 e^{-t} \mathbb{1}(t) = \frac{1}{t}$$

Then

$$y(t) = -2\int_{-\infty}^{t} e^{-(t-s)}u(s)ds \iff \dot{y}(t) = -y(t) - 2u(t).$$

As u(t) = r(t) - y(t),

$$\dot{y}(t) = y(t) - 2r(t) \iff y(t) = -2 \int_{-\infty}^{t} e^{t-s} u(s) ds,$$

so G is causal, with $g(t) = -2e^{t}\mathbb{1}(t)$, and unstable.

Basic property

Because

$$y = g * u \iff \mathfrak{L}{y} = \mathfrak{L}{g}\mathfrak{L}{u} \iff \mathfrak{F}{y} = \mathfrak{F}{g}\mathfrak{F}{u}$$

convolution representations become product in transformed domains, i.e. if G is LTI, then

$$y = Gu \iff Y(j\omega) = G(j\omega)U(j\omega)$$

whenever both g and u are Fourier transformable and

$$y = Gu \iff Y(s) = G(s)U(s)$$

for all $s \in RoC(g) \cap RoC(u)$. Here

- $-G(s)=(\mathfrak{L}\lbrace g\rbrace)(s)$ is the transfer function of G
- $-G(j\omega)=(\mathfrak{F}\{g\})(j\omega)$ is the frequency response of G

18/60

Beware of frequency response analysis: example (contd)

In the frequency domain,

with $Y(j\omega) = P(j\omega)(R(j\omega) - Y(j\omega))$. Hence

$$G(\mathrm{j}\omega)=rac{P(\mathrm{j}\omega)}{1+P(\mathrm{j}\omega)}=rac{2}{1-\mathrm{j}\omega}\quad\Longrightarrow\quad g(t)=2\,\mathrm{e}^t\mathbb{1}(-t)=rac{1}{t}$$

This G is anti-causal and stable (for this $g \in L_1$), which makes no sense.

Hazards of analyzing systems in the Fourier domain:

- in hard to cope with exponentially growing signals
- ightharpoonup hard to trace causality

Feedback in Laplace domain: example

In the Laplace domain,

for

$$p(t) = -2 e^{-t} \mathbb{1}(t) \implies P(s) = -\frac{2}{s+1}$$

whose RoC = \mathbb{C}_{-1} (includes j \mathbb{R}). Then, via Y(s) = P(s)(R(s) - Y(s)),

$$G(s) = \frac{P(s)}{1 + P(s)} = \frac{2}{1 - s} \implies g(t) = \begin{cases} 2 e^{t} \mathbb{I}(-t) & \text{if } RoC = \mathbb{C} \setminus \overline{\mathbb{C}}_{1} \\ -2 e^{t} \mathbb{I}(t) & \text{if } RoC = \mathbb{C}_{1} \end{cases}$$

It is not unreasonable to assume that

causality is preserved under this feedback ⇒ RoC must remain a RHP
 The correct impulse response can then be obtained immediately.

21/60

Transfer function: examples

Systems we already saw:

$$- g_{ ext{int}}(t) = \mathbb{I}(t) \qquad \Longrightarrow G_{ ext{int}}(s) = \frac{1}{s}$$

$$- g_{\mathsf{dint}}(t) = \sum \delta(t - iT) \implies G_{\mathsf{dint}}(s) = \sum e^{-siT} = \frac{1}{1 - e^{-sT}}$$

$$- g_{\mathsf{fmint}}(t) = \mathbb{1}_{[0,T]}(t) \qquad \Longrightarrow \ G_{\mathsf{fmint}}(s) = \frac{1 - \mathrm{e}^{-sT}}{s}$$

$$- d_{ au}(t) = \delta(t - au) \implies D_{ au}(s) = e^{-s au}$$

whose RoC's are \mathbb{C}_0 , \mathbb{C}_0 , \mathbb{C} , and \mathbb{C} , respectively.

Systems in Laplace domain

Typically,

- control applications are concerned with causal systems
- impulse responses are supported in \mathbb{R}_+
- signals are assumed to have support in \mathbb{R}_+ too
- RoC's are \mathbb{C}_{α} for some $\alpha \in \mathbb{R} \cup \{-\infty, \infty\}$
- causal LTI systems treated as operators $G:\mathfrak{D}_G\subset L^m_{2+} o L^p_{2+}$

Outcomes:

- = causal LTI systems = transfer functions
- " dynamical systems can be manipulated algebraically

22/60

Causality + stability in Laplace domain

An LTI G is causal and stable iff its transfer function $G \in H^{p \times m}_{\infty}$, where

$$H^{p imes m}_{\infty}:=\left\{G:\mathbb{C}_0 o\mathbb{C}^{p imes m}\,ig|\,G(s) ext{ is holomorphic and bounded in }\mathbb{C}_0
ight\}$$

Thus,

- $-GH_2^m \subset H_2^p \iff G \in H_{\infty}^{p \times m}$
- if p=m and ${\it G},{\it G}^{-1}\in {\it H}_{\infty}^{m\times m}$, then ${\it GH}_2^m={\it H}_2^m$

 H_∞ is Banach, with $\|G\|_\infty:=\sup_{s\in\mathbb{C}_0}\|G(s)\|$. Can be associated with its boundary function from

$$L_{\infty}^{p\times m}(j\mathbb{R}) := \left\{ G : j\mathbb{R} \to \mathbb{C}^{p\times m} \, \big| \, \|G\|_{\infty} := \operatorname{ess\,sup} \|G(j\omega)\| < \infty \right\}$$

and $H_{\infty} \subset L_{\infty}(j\mathbb{R})$. Then, provided $G \in H_{\infty}$,

$$\|G\|_{\infty} = \operatorname*{ess\,sup}\|G(\mathrm{j}\omega)\|.$$

Examples

- $-G_{\text{int}} \notin H_{\infty}$ as 1/s is holomorphic but not bounded in \mathbb{C}_0
- $G_{\text{dint}} \notin H_{\infty}$ as $1/(1 e^{-sT})$ is holomorphic but not bounded in \mathbb{C}_0
- $G_{\text{fmint}} \in \mathcal{H}_{\infty}$ as $(1 e^{-sT})/s$ is holomorphic and bounded in \mathbb{C}_0 for every $s = (\sigma + j\omega)/T$,

$$\begin{split} |G_{\mathsf{fmint}}(s)|^2 &= T^2 \bigg| \frac{1 - \mathrm{e}^{-(\sigma + \mathrm{j}\omega)}}{\sigma + \mathrm{j}\omega} \bigg|^2 = T^2 \frac{1 - 2\mathrm{e}^{-\sigma}\cos\omega + \mathrm{e}^{-2\sigma}}{\sigma^2 + \omega^2} \\ &= T^2 \bigg(\frac{1 - \mathrm{e}^{-\sigma}}{\sigma} \bigg)^2 - T^2 \frac{4\omega^2 \mathrm{e}^{-\sigma}}{\sigma^2 (\sigma^2 + \omega^2)} \bigg(\sinh^2 \bigg(\frac{\sigma}{2} \bigg) - 2 \frac{1 - \cos\omega}{\omega^2} \bigg(\frac{\sigma}{2} \bigg)^2 \bigg) \\ &\leq T^2 \bigg(\frac{1 - \mathrm{e}^{-\sigma}}{\sigma} \bigg)^2 - T^2 \frac{4\omega^2 \mathrm{e}^{-\sigma} \big(\sinh^2 (\sigma/2) - (\sigma/2)^2 \big)}{\sigma^2 (\sigma^2 + \omega^2)} \\ &\leq T^2 \bigg(\frac{1 - \mathrm{e}^{-\sigma}}{\sigma} \bigg)^2 < T^2 \end{split}$$

where $2(1-\cos\omega)/\omega^2 \le 1$ and $\sinh^2 x > x^2$ for all $x \ne 0$ were used

- $D_{\tau} \in H_{\infty}$ as $e^{-s\tau}$ is holomorphic and bounded in \mathbb{C}_0 for every $s = \sigma + j\omega$, $|e^{-(\sigma + j\omega)\tau}| = e^{-\sigma\tau} \le 1$

25/60

Causality + stability and system poles (contd)

But $G \notin H_{\infty}$. To see this, let $\{s_k\} \in \mathbb{C} \setminus \bar{\mathbb{C}}_0$ be a sequence of poles of G(s) satisfying

$$s_k+1+s_k\mathrm{e}^{-s_k}=0, \quad ext{with } \lim_{k o\pm\infty}\lvert s_k
vert=\infty: \quad ext{*}$$

(known to exist). Then

$$G(-s_k) = rac{1}{1-s_k-s_k \mathrm{e}^{s_k}} = rac{1}{1-s_k+s_k^2/(1+s_k)} = 1+s_k.$$

so there is a sequence $\{s_k\}$ in \mathbb{C}_0 such that $\lim_{k\to\infty} |G(-s_k)|=\infty$. Hence,

- G is not L_2 -stable, despite having all poles in the OLHP (curiously, $\frac{1}{s+1}G(s)$ is an H_{∞} transfer function).

Causality + stability and system poles

Let

$$G(s) = \frac{1}{1 + s + se^{-s}}.$$

Its poles are all in the OLHP $\mathbb{C} \setminus \overline{\mathbb{C}}_0$. To see this, let $s = \sigma + j\omega$ be a pole, then $1 + \sigma + j\omega + (\sigma + j\omega)e^{-\sigma - j\omega} = 0$ reads

$$e^{-\sigma}e^{-j\omega} = -1 - \frac{1}{\sigma + j\omega} = -\left(1 + \frac{\sigma}{\sigma^2 + \omega^2}\right) + j\frac{\omega}{\sigma^2 + \omega^2}.$$

Hence, σ must satisfy

$$\mathsf{e}^{-\sigma} = \left| \left(1 + \frac{\sigma}{\sigma^2 + \omega^2} \right) - \mathsf{j} \frac{\omega}{\sigma^2 + \omega^2} \right| \ge \left| 1 + \frac{\sigma}{\sigma^2 + \omega^2} \right| \ge 1.$$

which is a contradiction for all $\sigma > 0$. If $\sigma = 0$, we have $1 = 1 + \frac{1}{|\omega|}$, which also holds for none $\omega \in \mathbb{R}$.

26/60

H_2 system space

Defined as

$$H_2^{p imes m} := \left\{ G : \mathbb{C}_0 o \mathbb{C}^{p imes m} \, \middle| \, G(s) \text{ is holomorphic in } \mathbb{C}_0 \text{ and} \right.$$

$$\|G\|_2 := \sup_{\sigma > 0} \left(\frac{1}{2\pi} \int_{\mathbb{R}} \|G(\sigma + \mathrm{j}\omega)\|_{\mathsf{F}}^2 \, \mathrm{d}\omega \right)^{1/2} < \infty \right\}$$

With the good ol' boundary function trick, $H_2 \subset L_2(j\mathbb{R})$ and if $G \in H_2$,

$$\|G\|_2 = \left(rac{1}{2\pi}\int_{\mathbb{R}}\|G(\mathrm{j}\omega)\|_{\scriptscriptstyle\mathsf{F}}^2\,\mathrm{d}\omega
ight)^{1/2}$$

and H_2 inherits the inner product from $L_2(j\mathbb{R})$.

27/60

Examples

- $G_{\text{int}} \notin H_2$ as 1/s is holomorphic in \mathbb{C}_0 but

$$\frac{1}{2\pi} \int_{\mathbb{R}} \frac{d\omega}{\sigma^2 + \omega^2} = \frac{1}{2\sigma} \xrightarrow{\sigma \downarrow 0} \infty$$

(simpler, $||1||_2 = \infty$)

- $G_{\text{dint}} \notin H_2$ for similar reasons
- $G_{\text{fmint}} \in H_2$ as $(1 e^{-sT})/s$ is holomorphic in \mathbb{C}_0 and

$$\frac{1}{2\pi} \int_{\mathbb{R}} \frac{1 - 2e^{-\sigma T} \cos(\omega T) + e^{-2\sigma T}}{\sigma^2 + \omega^2} d\omega = \frac{1 - e^{-2\sigma T}}{2\sigma} < T$$

(simpler, $\|1_{[0,T]}\|_2 = \sqrt{T} < \infty$)

- $D_{\tau} \notin H_2$ as $e^{-s\tau}$ is holomorphic in \mathbb{C}_0 but

$$\frac{\mathrm{e}^{-2\sigma\tau}}{2\pi}\int_{\mathbb{R}}\mathrm{d}\omega=\infty$$

29/60

Properness

G(s) is

- − proper if $\exists \alpha \geq 0$ such that $\sup_{s \in \mathbb{C}_{\alpha}} \|G(s)\| < \infty$
- strictly proper if $\exists \alpha \geq 0$ such that $\lim_{|s| \to \infty, s \in \mathbb{C}_{\alpha}} \|G(s)\| = 0$

Examples:

- $-G_{int}(s)$ is strictly proper (and thus proper)
- $-G_{dint}(s)$ is proper but not strictly proper

$$\frac{1}{1+\mathsf{e}^{-\sigma \, T}} \leq \frac{1}{|1-\mathsf{e}^{-(\sigma+j\omega)\, T}|} \leq \frac{1}{1-\mathsf{e}^{-\sigma \, T}}$$

- G_{fmint}(s) is strictly proper (and thus proper)
- $D_{\tau}(s)$ is proper but not strictly proper as $|e^{-(\sigma+j\omega)\tau}| = e^{-\sigma\tau} > 0$ for all finite $\sigma > 0$

Important:

- $-G \in H_{\infty} \implies G(s)$ is proper \implies stable causal G have proper t.f.'s
- $-G \in H_2 \implies G(s)$ is strictly proper

H_2 system space (contd)

Is Hilbert, with

$$\langle \mathit{G}_{1}, \mathit{G}_{2}
angle_{2} := rac{1}{2\pi} \int_{\mathbb{R}} \mathrm{tr}ig([\mathit{G}_{2}(\mathrm{j}\omega)]' \mathit{G}_{1}(\mathrm{j}\omega) ig) \, \mathrm{d}\omega = \int_{\mathbb{R}} \mathrm{tr}ig([\mathit{g}_{2}(t)]' \mathit{g}_{1}(t) ig) \, \mathrm{d}t.$$

Usage:

- unrelated to stability $(D_{\tau} \in H_{\infty} \text{ but } D_{\tau} \notin H_2, \text{ may be vice versa})$
- popular performance measure (LQG, Kalman filtering)
 - $\|G\|_2^2$ equals the energy of $y = G\delta$
 - if u is Gaussian unit-intensity white, $||G||_2^2$ equals the variance of y = Gu

30/60

Conjugate transfer function

If G is LTI, its adjoint G' has impulse response [g(-t)]' and

$$\mathfrak{L}\{g'\} = \int_{\mathbb{R}} [g(-t)]' \mathrm{e}^{-st} \mathrm{d}t = \left[\int_{\mathbb{R}} g(t) \mathrm{e}^{-(-\overline{s})t} \mathrm{d}t \right]' = [G(-\overline{s})]'.$$

with RoC in $\mathbb{C}\setminus \bar{\mathbb{C}}_{\alpha}$. Thus, the transfer function of G' is

$$G^{\sim}(s) := [G(-\overline{s})]',$$

known as conjugate transfer function and verifying $G^{\sim}(j\omega) = [G(j\omega)]'$.

Usage:

- mostly in analysis
- limited to systems operating over the whole \mathbb{R} convolution theorem doesn't hold for non-causal systems if considered on $L_2(\mathbb{R}_+)$

Inner and co-inner transfer functions

 $G \in H^{p imes m}_{\infty}$ is

- inner if $G^{\sim}(s)G(s) = I_m$ (so $p \geq m$)
- co-inner if $G(s)G^{\sim}(s) = I_p$ (so $p \leq m$)

If G(s) is inner, the system G is an isometry on $L_2(\mathbb{R})$:

$$||Gu||_2^2 = ||GU||_2^2 = \langle GU, GU \rangle_2 = \langle G^{\sim}GU, U \rangle_2 = \langle U, U \rangle_2^2 = ||U||_2^2 = ||u||_2^2$$

and if G(s) is co-inner, the system G' is an isometry on $L_2(\mathbb{R})$.

If $W_i(s)$ and $W_{ci}(s)$ are inner and co-inner, then

- $\|G\|_{\infty} = \|W_i G W_{ci}\|_{\infty}$ for all $G \in H_{\infty}$
- $\|G\|_2 = \|W_i G W_{ci}\|_2$ for all $G \in H_2$

33/60

Coprimeness over H_{∞}

 $M \in H_{\infty}^{m \times m}$ and $N \in H_{\infty}^{p \times m}$ are (strongly) right coprime over H_{∞} if there are Bézout factors $X \in H_{\infty}^{m \times m}$ and $Y \in H_{\infty}^{m \times p}$ satisfying

$$\begin{bmatrix} X(s) & Y(s) \end{bmatrix} \begin{bmatrix} M(s) \\ N(s) \end{bmatrix} = X(s)M(s) + Y(s)N(s) = I_m$$

(Bézout equality). Implies left invertibility of $\begin{bmatrix} M \\ N \end{bmatrix}$ over H_{∞} .

 $\tilde{M} \in H_{\infty}^{p \times p}$ and $\tilde{N} \in H_{\infty}^{p \times m}$ are (strongly) left coprime over H_{∞} if there are Bézout factors $\tilde{X} \in H_{\infty}^{p \times p}$ and $\tilde{Y} \in H_{\infty}^{m \times p}$ satisfying

$$\left[\begin{array}{cc} \tilde{\mathcal{M}}(s) & \tilde{\mathcal{N}}(s) \end{array} \right] \left[\begin{array}{c} \tilde{X}(s) \\ \tilde{Y}(s) \end{array} \right] = \tilde{\mathcal{M}}(s) \tilde{X}(s) + \tilde{\mathcal{N}}(s) \tilde{Y}(s) = I_p$$

(Bézout equality). Implies right invertibility of $\left[\ \tilde{M} \ \ \tilde{N} \ \right]$ over $H_{\infty}.$

If p = m = 1, then "left coprime" \iff "right coprime" (so simply coprime).

Outline

Continuous-time signals

Continuous-time dynamic systems in time domain

Continuous-time dynamic LTI systems in transformed domains

Coprime factorization of transfer functions over H_{∞}

Real-rational transfer functions

Poles, zeros, & Co

34/60

Corona theorem

 $M \in H_{\infty}^{m \times m}$ and $N \in H_{\infty}^{p \times m}$ are (strongly) right coprime over H_{∞} iff

$$\inf_{s\in\mathbb{C}_0}\underline{\sigma}\left(\left[\begin{array}{c}M(s)\\N(s)\end{array}\right]\right)>0.$$

 $\tilde{M} \in H^{p \times p}_{\infty}$ and $\tilde{N} \in H^{p \times m}_{\infty}$ are (strongly) left coprime over H_{∞} iff

$$\inf_{s\in\mathbb{C}_0}\underline{\sigma}\left(\left[\begin{array}{cc}\tilde{M}(s) & \tilde{N}(s)\end{array}\right]\right)>0.$$

Thus,

$$-M(s)=rac{1}{s+1}$$
 and $N(s)=rac{s\mathrm{e}^{-s}}{s+1}$ are not coprime

$$-M(s)=rac{{
m e}^{-s}}{s+1}$$
 and $N(s)=rac{s}{s+1}$ are coprime

OF /

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$G(s) = N(s)M^{-1}(s) = \tilde{M}^{-1}(s)\tilde{N}(s)$$

for right / left coprime M,N / $\tilde{M},\tilde{N}\in H_{\infty}$ and bi-proper M(s) and $\tilde{M}(s)$.

Examples:

$$-G_{\mathsf{int}}(s) = \frac{1}{s} = \frac{1}{s+a} \cdot \left(\frac{s}{s+a}\right)^{-1}$$
, $a > 0$, with $X(s) = 1$ and $Y(s) = a$

$$G_{\mathsf{dint}}(s) = rac{1}{1-\mathsf{e}^{-sT}} = 1 \cdot (1-\mathsf{e}^{-sT})^{-1}$$
, with $X(s) = 1$ and $Y(s) = \mathsf{e}^{-sT}$

$$-G_{\mathsf{fmint}}(s) = \frac{1 - \mathrm{e}^{-sT}}{s} = \frac{1 - \mathrm{e}^{-sT}}{s} \cdot 1^{-1}$$
, with $X(s) = 1$ and $Y(s) = 0$

$$D_{ au}(s)=\mathrm{e}^{-s au}=\mathrm{e}^{-s au}\cdot 1^{-1}$$
, with $X(s)=1$ and $Y(s)=0$

Constructing coprime factors:

- if $G \in H_{\infty}$, then M(s) = I, N(s) = G(s), X(s) = I, and Y(s) = 0
- if $G \notin H_{\infty}$, wait for state space

37/60

Domain of L_2 systems

If $G: \mathfrak{D}_G \subset L_2^m \to L_2^p$ is LTI and such that its transfer function admits a rcf over H_{∞} , $G(s) = N(s)M^{-1}(s)$, then

$$\mathfrak{D}_{\mathcal{G}} = ML_2^m = \operatorname{Im} M = \{u \mid \exists v \in L_2^m \text{ such that } u = Mv\}.$$

Proof (outline).

- $-M \in \mathcal{H}_{\infty} \implies ML_2^m \subset L_2^m$
- $GML_2^m = NL_2^m \subset L_2^p \implies ML_2^m \subset \mathfrak{D}_G$
- For any $u_0 \in \mathfrak{D}_G$, denote $v_0 := M^{-1}u_0$. We have:

$$L_2^{m+p}\ni \begin{bmatrix} u_0\\ y_0 \end{bmatrix} = \begin{bmatrix} I\\ G \end{bmatrix} u_0 = \begin{bmatrix} M\\ N \end{bmatrix} v_0$$

Thus,

$$v_0 = Xu_0 + Yy_0 \in L_2^m \implies \mathfrak{D}_G \subset ML_2^m$$

Two lemmas

Lemma

If $N_1M_1^{-1}=N_2M_2^{-1}$ and $\tilde{M}_1^{-1}\tilde{N}_1=\tilde{M}_2^{-1}\tilde{N}_2$ are rcf's and lcf's of some G, respectively, then

$$\left[\begin{array}{c} M_2 \\ N_2 \end{array}\right] = \left[\begin{array}{c} M_1 \\ N_1 \end{array}\right] U \quad \text{and} \quad \left[\begin{array}{c} \tilde{M}_2 \ \tilde{N}_2 \end{array}\right] = \tilde{U} \left[\begin{array}{c} \tilde{M}_1 \ \tilde{N}_1 \end{array}\right]$$

for some $U, U^{-1}, \tilde{U}, \tilde{U}^{-1} \in H_{\infty}$.

Implies that

- if det $M_1(s_0)=0$ for $s_0\in\mathbb{C}_0$, then det $M_2(s_0)=0$ for any other rcf
- if $\det ilde{M}_1(s_0)=0$ for $s_0\in \mathbb{C}_0$, then $\det ilde{M}_2(s_0)=0$ for any other lcf

Lemma

If $G = NM^{-1} = \tilde{M}^{-1}\tilde{N}$ are rcf and lcf, respectively, then

$$G \in H_{\infty} \iff M^{-1} \in H_{\infty} \iff \tilde{M}^{-1} \in H_{\infty}.$$

38/60

Doubly coprime factorization

Coprime factors of G(s) and their Bézout can always be selected so that

$$\begin{bmatrix} X(s) & Y(s) \\ -\tilde{N}(s) & \tilde{M}(s) \end{bmatrix} \begin{bmatrix} M(s) & -\tilde{Y}(s) \\ N(s) & \tilde{X}(s) \end{bmatrix} = \begin{bmatrix} I_m & 0 \\ 0 & I_p \end{bmatrix},$$

i.e.

$$\begin{bmatrix} X(s) & Y(s) \\ -\tilde{N}(s) & \tilde{M}(s) \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} M(s) & -\tilde{Y}(s) \\ N(s) & \tilde{X}(s) \end{bmatrix}$$

are invertible in H_{∞} .

Outline

Continuous-time signals

Continuous-time dynamic systems in time domain

Continuous-time dynamic LTI systems in transformed domains

Coprime factorization of transfer functions over H_{∞}

Real-rational transfer functions

Poles zeros & Co

41/60

Implications

Any real-rational G(s)

- is proper iff $||G(\infty)|| < \infty$, i.e. deg($N_{ij}(s)$) ≤ deg($M_{ij}(s)$), $\forall i, j$
- is strictly proper iff $||G(\infty)|| = 0$, i.e. deg($N_{ij}(s)$) < deg($M_{ij}(s)$), ∀i,j
- $-G \in H_{\infty}$ iff G(s) is proper & has no poles in $\bar{\mathbb{C}}_0$ called RH_{∞}
- $-G \in H_2$ iff G(s) is strictly proper & has no poles in $\overline{\mathbb{C}}_0$ called RH_2
- $-\,$ admits doubly coprime factorizations over RH_{∞}

By-products:

- stability \iff proper + no poles in $\bar{\mathbb{C}}_0$
- $-RH_2 \subset RH_{\infty}$
- always stabilizable by feedback

Definition

We say that G(s) is real-rational if

 $-G_{ij}(s)=rac{N_{ij}(s)}{M_{ij}(s)}$ for finite polynomials $N_{ij}(s)$ and $M_{ij}(s)$ with real coeff's.

Examples:

- $-G_{int}(s) = \frac{1}{s}$ is real-rational
- $G_{\mathrm{dint}}(s)=rac{1}{1-\mathrm{e}^{-sT}}$ is not real-rational
- $-G_{fmint}(s)=rac{1-{
 m e}^{-sT}}{s}$ is not real-rational
- $-D_{\tau}(s)=\mathrm{e}^{-s\tau}$ is not real-rational

42/60

Outline

Continuous-time signals

Continuous-time dynamic systems in time domair

Continuous-time dynamic LTI systems in transformed domains

Coprime factorization of transfer functions over H_{∞}

Real-rational transfer functions

Poles, zeros, & Co

Diagonal case: poles, zeros, and . . .

Every

$$G(s) = \left[egin{array}{ccc} G_1(s) & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & G_m(s) \end{array}
ight] =: \operatorname{diag}\{G_i(s)\}$$

is effectively a union of m independent systems, so that

- poles and zeros of G(s) are unions of poles and zeros of $G_i(s)$.

Consequences:

- may have uncancellable pole(s) and zero(s) at the same point
- $-\det(G(s))$ might be a poor indicator of its dynamical properties
- mere location of poles and zeros is not sufficient

45/60

General case: preliminaries

- normal rank: $\operatorname{nrank}(G(s)) := \max_{s \in \mathbb{C}} \operatorname{rank}(G(s))$ if G(s) is proper, then $\operatorname{rank}(G(s)) = \operatorname{nrank}(G(s))$ for all but a finitely many s
- unimodular polynomial matrix: square and $\det(U(s)) = \text{const} \neq 0$ $U^{-1}(s)$ is also a polynomial matrix
- polynomial $\beta(s)$ divides polynomial $\alpha(s)$ if $\frac{\alpha(s)}{\beta(s)}$ is a polynomial

Diagonal case: poles, zeros, and . . . (contd)

Poles and zeros of

$$G(s) = \left[egin{array}{ccc} G_1(s) & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & G_m(s) \end{array}
ight]$$

should be

- complemented by their association with subsystems
- complemented by their directions
 - if $p_k(z_k)$ is a pole (zero) of $G_i(s)$, its direction is span (e_i)
 - if $p_k(z_k)$ is a pole (zero) of $G_i(s)$ and $G_j(s)$, its direction is span (e_i, e_j)
 - pole direction of p_k : \perp to any ν for which $G(s)\nu$ has no pole at p_k
 - zero direction of z_k : span of all v for which $G(s)v|_{s\to z_k}=0$
 - if $p_k(z_k)$ is a pole (zero) of μ_k subsystems, its geometric multiplicity is μ_k
 - the multiplicity of $p_k(z_k)$ in $G_i(s)$ is its *i*th partial multiplicity
 - the sum of all partial multiplicities of p_k is its algebraic multiplicity

46/60

Smith–McMillan form & poles / degree / zeros

Given a $p \times m$ transfer function G(s) having nrank $(G(s)) = r \le \min\{p, m\}$, there are unimodular polynomial matrices U(s) and V(s) such that

$$U(s)G(s)V(s)= egin{bmatrix} lpha_1(s)/eta_1(s)&\cdots&0&0\ dots&\ddots&dots&dots\ 0&\cdots&lpha_r(s)/eta_r(s)&0\ 0&\cdots&0&0 \end{bmatrix},$$

where $\alpha_i(s)$ divides $\alpha_{i+1}(s)$, $\beta_{i+1}(s)$ divides $\beta_i(s)$, and $\alpha_i(s)$ and $\beta_i(s)$ are coprime at every $i \in \mathbb{Z}_{1..r}$.

- roots of $\phi_{\mathsf{p}}(s) := \prod_{i=1}^r \beta_i(s)$ are the poles of G(s)
- $-n:=\deg(\phi_{\mathsf{p}}(s))$ is the McMillan degree (or degree) of G(s)
- roots of $\phi_{\mathsf{z}}(s) := \prod_{i=1}^r \alpha_i(s)$ are the transmission zeros (or zeros) of G(s)

Pole directions

Let $p_i \in \mathbb{C}$ be a pole of geometric multiplicity μ_i of

$$G(s) = U^{-1}(s) egin{bmatrix} lpha_1(s)/eta_1(s) & \cdots & 0 & 0 \ dots & \ddots & dots & dots \ 0 & \cdots & lpha_r(s)/eta_r(s) & 0 \ 0 & \cdots & 0 & 0 \end{bmatrix} V^{-1}(s)$$

input pole direction, $pdir_i(G, p_i) \subset \mathbb{C}^m$:

$$\mathsf{pdir}_\mathsf{i}(\mathcal{G}, p_i) = ig(\mathsf{Im}\ V(p_i) ig[\ e_{\mu_i+1} \ \cdots \ e_m\ ig]ig)^\perp = \mathsf{ker}egin{bmatrix} e'_{\mu_i+1} \ dots \ e'_m \end{bmatrix} [V(p_i)]'$$

output pole direction, $pdir_o(G, p_i) \subset \mathbb{C}^p$:

$$\mathsf{pdir}_\mathsf{o}(G, p_i) = \mathsf{ker} \left[egin{array}{c} ilde{e}'_{\mu_i + 1} \ dots \ ilde{e}'_{p} \end{array}
ight] U(p_i) = \left(\mathsf{Im}[U(p_i)]' \left[egin{array}{c} ilde{e}_{\mu_i + 1} & \cdots & ilde{e}_{p} \end{array}
ight]
ight)^{\perp}$$

49/60

Example 1

Let

$$G(s) = \frac{1}{s} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \implies \begin{bmatrix} 0 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} G(s) \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/s & 0 \\ 0 & 0 \end{bmatrix}$$

One pole at s = 0, with

$$\begin{split} \mathsf{pdir}_{\mathsf{i}}(\mathit{G},0) &= \mathsf{ker} \left[\begin{array}{cc} 0 & 1 \end{array} \right] \left[\mathit{V}(0) \right]' = \mathsf{span} \left(\begin{bmatrix} 1 \\ 1 \end{array} \right) \\ \mathsf{pdir}_{\mathsf{o}}(\mathit{G},0) &= \mathsf{ker} \left[\begin{array}{cc} 0 & 1 \end{array} \right] \mathit{U}(0) = \mathsf{span} \left(\begin{bmatrix} 1 \\ 1 \end{array} \right) \end{split}$$

Zero directions

Let $z_i \in \mathbb{C}$ be a pole of geometric multiplicity μ_i of

$$G(s) = U^{-1}(s) \begin{bmatrix} \alpha_1(s)/\beta_1(s) & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \alpha_r(s)/\beta_r(s) & 0 \\ 0 & \cdots & 0 & 0 \end{bmatrix} V^{-1}(s)$$

input zero direction, $zdir_i(G, p_i) \subset \mathbb{C}^m$:

$$zdir_i(G, z_i) := Im V(z_i) [e_{r-\mu_i+1} \cdots e_m]$$

output zero direction, $zdir_o(G, p_i) \subset \mathbb{C}^p$:

$$zdir_{o}(G, p_{i}) := Im[U(z_{i})]' \begin{bmatrix} \tilde{e}_{r-\mu_{i}+1} & \cdots & \tilde{e}_{p} \end{bmatrix}$$

Example 2

Let

$$G(s) = \begin{bmatrix} 1 & 1/s \\ 0 & 1 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 \\ s & -1 \end{bmatrix} G(s) \begin{bmatrix} 0 & 1 \\ 1 & -s \end{bmatrix} = \begin{bmatrix} 1/s & 0 \\ 0 & s \end{bmatrix}$$

One pole and one transmission zero at s = 0, with

$$\begin{aligned} \operatorname{pdir}_{\mathsf{i}}(G,0) &= \ker \left[\begin{array}{c} 0 & 1 \end{array} \right] [V(0)]' = \operatorname{span} \left(\begin{bmatrix} 0 \\ 1 \end{array} \right] \right) \\ \operatorname{pdir}_{\mathsf{o}}(G,0) &= \ker \left[\begin{array}{c} 0 & 1 \end{array} \right] U(0) = \operatorname{span} \left(\begin{bmatrix} 1 \\ 0 \end{array} \right] \right) \\ \operatorname{zdir}_{\mathsf{i}}(G,0) &= \operatorname{Im} V(0) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \operatorname{span} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \perp \operatorname{pdir}_{\mathsf{i}}(G,0) \\ \operatorname{zdir}_{\mathsf{o}}(G,0) &= \operatorname{Im} [U(0)]' \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \operatorname{span} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) \perp \operatorname{pdir}_{\mathsf{o}}(G,0) \end{aligned}$$

--/--

Example 3

Let

$$G(s) = \begin{bmatrix} \frac{1}{s+1} & 0 & \frac{s-1}{(s+1)(s+2)} \\ -\frac{1}{s-1} & \frac{1}{s+2} & \frac{1}{s+2} \end{bmatrix}$$

and define unimodular polynomials

$$U(s) = \frac{1}{6} \begin{bmatrix} 3 & 3 \\ s^3 - s^2 - 4s - 2 & s^3 - s^2 - 4s + 4 \end{bmatrix},$$

$$V(s) = \frac{1}{6} \begin{bmatrix} 2(s-2) & -6(s-1) & -3(s-1) \\ 4 & -24 & -6(s+2) \\ 0 & 6 & 3(s+2) \end{bmatrix}.$$

Then

$$U(s)G(s)V(s) = \left[egin{array}{ccc} rac{1}{(s^2-1)(s+2)} & 0 & 0 \ 0 & rac{s-1}{s+2} & 0 \end{array}
ight].$$

Four poles, at $\{-2, -2, -1, 1\}$, and one transmission zero at $\{1\}$.

53/60

Example 3 (contd)

Zero directions:

$$\begin{aligned} \mathsf{zdir}_{\mathsf{i}}(G,1) &= \mathsf{Im}\,V(1) \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathsf{span} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) \\ \mathsf{zdir}_{\mathsf{o}}(G,1) &= \mathsf{Im}[U(1)]' \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathsf{span} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right). \end{aligned}$$

Again,

$$\begin{aligned} & \mathsf{span} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) = \mathsf{zdir}_{\mathsf{i}}(G, 1) \perp \mathsf{pdir}_{\mathsf{i}}(G, 1) = \mathsf{span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) \\ & \mathsf{span} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \mathsf{zdir}_{\mathsf{o}}(G, 1) \perp \mathsf{pdir}_{\mathsf{o}}(G, 1) = \mathsf{span} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) \end{aligned}$$

Example 3 (contd)

Pole directions:

$$\begin{aligned} \mathsf{pdir}_{\mathsf{i}}(G,1) &= \mathsf{ker} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} [V(1)]' = \mathsf{span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right), \\ \mathsf{pdir}_{\mathsf{o}}(G,1) &= \mathsf{ker} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} [V(1)] &= \mathsf{span} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right), \\ \mathsf{pdir}_{\mathsf{i}}(G,-1) &= \mathsf{ker} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} [V(-1)]' &= \mathsf{span} \left(\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} \right), \\ \mathsf{pdir}_{\mathsf{o}}(G,-1) &= \mathsf{ker} \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} U(-1) &= \mathsf{span} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right), \\ \mathsf{pdir}_{\mathsf{i}}(G,-2) &= \mathsf{ker} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} [V(-2)]' &= \mathsf{span} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right), \end{aligned}$$

and $pdir_o(G, -2) = \mathbb{C}^2$.

Example 4

Let

$$G(s) = \begin{bmatrix} 1/s & 1/s^2 \\ 0 & 1/s \end{bmatrix}.$$

Its Smith-McMillan form is

$$\left[\begin{array}{cc} 1 & 0 \\ -s & 1 \end{array}\right] G(s) \left[\begin{array}{cc} 0 & -1 \\ 1 & s \end{array}\right] = \left[\begin{array}{cc} 1/s^2 & 0 \\ 0 & 1 \end{array}\right].$$

Double pole at s = 0, with

$$\mathsf{pdir}_{\mathsf{i}}(G,0) = \mathsf{ker} \begin{bmatrix} 0 & 1 \end{bmatrix} [V(0)]' = \mathsf{span} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

and

$$\operatorname{pdir}_{\operatorname{o}}(G,0)=\ker\left[\begin{array}{cc} 0 & 1\end{array}\right]U(0)=\operatorname{span}\left(\left[\begin{array}{c} 1 \\ 0\end{array}\right]\right).$$

Although $e_1 \perp \mathsf{pdir}_\mathsf{i}(G,0)$, $G(s)e_1 = 1/s\,e_1$, i.e. it still has a pole at s=0.

Simplifications

Let nrank(G(s)) = r. The following statements hold true:

- 1. $\phi_p(s)$ is the least common denominator of all nonzero minors of G(s) of all orders provided all common poles and zeros in each of these minors were canceled.
- 2. $\phi_z(s)$ is the greatest common divisor of all the numerators of all r-order minors of G(s) provided these minors have been adjusted to have $\phi_p(s)$ as their denominators.

57/60

Example 3 (contd)

For

$$G(s) = \begin{bmatrix} \frac{1}{s+1} & 0 & \frac{s-1}{(s+1)(s+2)} \\ -\frac{1}{s-1} & \frac{1}{s+2} & \frac{1}{s+2} \end{bmatrix}$$

the minors of order 2 are:

$$-\frac{s-1}{(s+1)(s+2)^2}$$
, $\frac{2}{(s+1)(s+2)}$, and $\frac{1}{(s+1)(s+2)}$

or, equivalently, with $\phi_{\rm p}(s)=(s+2)^2(s+1)(s-1)$

$$-rac{(s-1)^2}{\phi_{
m p}(s)}, \quad rac{2(s+2)(s-1)}{\phi_{
m p}(s)}, \quad {
m and} \quad rac{(s+2)(s-1)}{\phi_{
m p}(s)}.$$

Hence,

$$\phi_{z}(s) = s - 1$$
,

as before.

Example 3 (contd)

For

$$G(s) = \left[egin{array}{ccc} rac{1}{s+1} & 0 & rac{s-1}{(s+1)(s+2)} \ -rac{1}{s-1} & rac{1}{s+2} & rac{1}{s+2} \end{array}
ight]$$

nonzero minors of order 1 are

$$\frac{1}{s+1}$$
, $\frac{s-1}{(s+1)(s+2)}$, $-\frac{1}{s-1}$, $\frac{1}{s+2}$, and $\frac{1}{s+2}$

and the minors of order 2 are

$$-\frac{s-1}{(s+1)(s+2)^2}$$
, $\frac{2}{(s+1)(s+2)}$, and $\frac{1}{(s+1)(s+2)}$.

Hence.

$$\phi_{\text{\tiny D}}(s) = (s+2)^2(s+1)(s-1) = (s+2)^2(s^2-1),$$

as before.

58/60

Simplifications (contd)

Let G(s) be a $p \times m$ real-rational proper transfer function.

1. If $z_i \in \mathbb{C}$ isn't a pole of G(s), then it's a transmission zero of G(s) iff $\operatorname{rank}(G(z_i)) < \operatorname{nrank}(G(s))$ and $\operatorname{nrank}(G(s)) - \operatorname{rank}(G(z_i))$ equals the geometric multiplicity of the zero at z_i , with

$$zdir_i(G, z_i) = ker G(z_i)$$
 and $zdir_o(G, z_i) = ker [G(z_i)]'$.

2. If $p=m=\operatorname{nrank}(G(s))$ and $p_i\in\mathbb{C}$ isn't a transmission zero of G(s), it's a pole of G(s) iff $\det(G^{-1}(p_i))=0$ and $m-\operatorname{rank}(G^{-1}(p_i))$ equals the geometric multiplicity of the pole at p_i , with

$$\operatorname{pdir}_{i}(G, p_{i}) = \ker[G^{-1}(p_{i})]'$$
 and $\operatorname{pdir}_{o}(G, p_{i}) = \ker G^{-1}(p_{i}).$