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Basics

Signals are mappings from R (time) to F n for n ∈ N, denoted x : R → F n.
The value of x at a time instance t is denoted x(t) ∈ F n. We say that x is

− scalar-valued if n = 1

− vector-valued if n > 1

Set of signals is a vector space, with

addition: x = y + z reads x(t) = y(t) + z(t) for at t

multiplication by scalar: x = ˛y reads x(t) = ˛y(t) for all t

Another important operation is

shift: S�x reads (S�x)(t) = x(t + �) for all t

The set
supp(x) ··= {t ∈ R | x(t) ̸= 0}

is called the support of x .
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Normed (Banach) spaces

Admissibility → signal spaces:

Ln1(R) ··=
{
x : R → F n

∣∣ ∥x∥1 ··= ∫
R

∥x(t)∥1dt <∞
}

Ln∞(R) ··=
{
x : R → F n

∣∣ ∥x∥∞ ··= sup
t∈R

∥x(t)∥∞ <∞
}

Ln2(R) ··=
{
x : R → F n

∣∣ ∥x∥22 ··= ∫
R

∥x(t)∥2dt <∞
}

Ln2+(R) ··=
{
x ∈ Ln2(R) | x(t) = 0 for all t < 0

}
Ln2−(R) ··=

{
x ∈ Ln2(R) | x(t) = 0 for all t > 0

}
L2 is Hilbert, with

⟨x ; y⟩2 ··=
∫

R

y ′(t)x(t)dt
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Fourier transform

Defined

F{x} = X (j!) ··=
∫

R

x(t)e−j!t dt;

where ! ∈ R called the (angular) frequency and measured in rad/sec. F{x}
is the frequency-domain representation or spectrum of x .

F−1{X} = x(t) =
1

2�

∫
R

X (j!)ej!t d!;

i.e. x is a superposition, weighted by X (j!), of harmonic signals expj! with
frequencies !.
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Fourier transform (contd)

Existence:

− well defined (absolute convergence) for x ∈ L1

− extendible (weaker convergence) for x ∈ L2 by the Plancherel Theorem

F{·} is a unitary mapping L2(R) → L2(jR), i.e. it preserves sizes:∫
R

∥x(t)∥2dt︸ ︷︷ ︸
∥x∥22

=
1

2�

∫
R

∥X (j!)∥2d!︸ ︷︷ ︸
∥X∥22

It also preserves angles:∫
R

[x2(t)]
′x1(t)dt︸ ︷︷ ︸

⟨x1;x2⟩

=
1

2�

∫
R

[X2(j!)]
′X1(j!)d!︸ ︷︷ ︸

⟨X1;X2⟩2

(Parseval’s theorem, in engineering literature).
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Laplace transform

The two-sided (bilateral) Laplace transform:

L{x} = F (s) ··=
∫

R

x(t)e−st dt

at all s ∈ C where the integral converges (region of convergence, aka RoC).
We need x exp−s ∈ L1 for absolute convergence.

Normally used for signals supported on semi-axes:

− if supp(x) ⊂ R+, then RoC is typically C˛ (may be C̄˛)

− if supp(x) ⊂ R−, then RoC is typically C \ C̄˛ (may be C \ C˛)

for some ˛ ∈ R ∪ {−∞;∞}.
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Laplace transform: mind RoC

Readily verifiable that

− x(t) = x+(t) ··= e−t1(t) = =⇒ X (s) =
1

s + 1

− x(t) = x−(t) ··= −e−t1(−t) = =⇒ X (s) =
1

s + 1

i.e.

− X alone does not define x unambiguously.

If the knowledge of X is complemented by its RoC:

− X (s) =
1

s + 1
and RoC = C−1 =⇒ x = x+

− X (s) =
1

s + 1
and RoC = C \ C−1 =⇒ x = x−
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Paley–Wiener and H2 space

L{·} is a unitary mapping L2+(R) → H2, where

Hn
2
··=
{
X : C0 → Cn

∣∣∣ X (s) is holomorphic in C0 and

∥X∥2 ··= sup
�>0

(
1

2�

∫
R

∥X (� + j!)∥2 d!
)

1=2
<∞

}
Important:

− the boundary function X̃ (j!) ··= lim�↓0 X (� + j!) exists for almost all
! and ∥X̃∥2 = ∥X∥2 (so X̃ ∈ L2(jR))

− H2 functions are identified with boundary functions =⇒ H2 ⊂ L2(jR)

− H2-norm (provided X ∈ H2):

∥X∥2 =
(

1

2�

∫
R

∥X (j!)∥2 d!
)

1=2
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Linear systems on L2

Linear operators
G : DG ⊂ Lm2 → Lp2

for some domain DG .

Sufficiently general class of G : u 7→ y satisfies

y(t) =

∫
R

g(t; s)u(s)ds

where g : R2 → Rp×m is the impulse response (kernel) of G , whose

− g•j(t; s) is y(t) under u(t) = ejı(t − s).
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Some systems u 7→ y

Gint (integrator) ẏ(t) = u(t) =⇒ gint(t; s) = 1(t − s)

Gdint (discrete integrator)

y(t) = y(t − T ) + u(t) =⇒ gdint(t; s) =
∑
i∈N

ı(t − s − (i − 1)T )

Gfmint (finite-memory integrator)

y(t) =

∫ t

t−T
u(s)ds =⇒ gfmint(t; s) = 1(t − s)− 1(t − s − T )

D� (� -delay operator) y(t) = u(t − �) =⇒ d� (t; s) = ı(t − s − �)

Filp (ideal low-pass filter)

filp(t; s) =
!b

�
sinc(!b(t − s))
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Causality

G : u 7→ y is causal if for every tc ∈ R

− y(t) = 0 for all t ≤ tc whenever u(t) = 0 for all t ≤ tc.

Roughly, it says that

− y(t) may only depend on past and present inputs u for all t.

Consequently,

− causal systems may be thought of as DG ⊂ Lm2+ → Lp2+.

Criterion:

y(t) =

∫
R

g(t; s)u(s)ds =

∫ ∞

tc

g(t; s)u(s)ds = 0; ∀t < tc; u ∈ DG

whence
G is causal ⇐⇒ g(t; s) = 0 for all s > t:

Remark: G is said to be anti-causal if y may only depend on future and present inputs u.
A linear G is anti-causal ⇐⇒ g(t; s) = 0 for all s < t.
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Time (shift) invariance

Linear G : DG ⊂ Lm2 → Lp2 is time invariant (shift invariant) if

− GS� = S�G for all � ∈ R

If G LTI, its impulse response g(t; s) = (GS−sı)(t) and then

y(t) =

∫
R

(
GS−sı

)
(t)u(s)ds =

∫
R

(
S−sGı

)
(t)u(s)ds

=

∫
R

(Gı)(t − s)u(s)ds;

i.e. only the response of G to ı applied at t = 0 matters. We then treat

− g : R → Rp×m (i.e. g(t))

− can write the response as the convolution integral

y(t) =

∫
R

g(t − s)u(s)ds =·· g ∗ u
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Adjoint system

L2 is Hilbert =⇒ G has its adjoint G ′, defined via ⟨Gu; v⟩ = ⟨u;G ′v⟩. If

(Gu)(t) =

∫
R

g(t; s)u(s)ds;

then

⟨Gu; v⟩ =
∫

R

v ′(t)(Gu)(t)dt =

∫
R

v ′(t)

∫
R

g(t; s)u(s)dsdt

=

∫
R

∫
R

(
v ′(t)g(t; s)

)
u(s)dsdt =

∫
R

∫
R

(
g ′(t; s)v(t)

)′
u(s)dtds

=

∫
R

(∫
R

g ′(t; s)v(t)dt

)′
u(s)ds =

∫
R

(∫
R

g ′(s; t)v(s)ds︸ ︷︷ ︸
(G ′v)(t)

)′
u(t)dt

= ⟨u;G ′v⟩:

Thus, the impulse response of G ′ is [g(s; t)]′, or [g(−t)]′ if G is LTI.

− G is causal =⇒ G ′ is anti-causal.
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Stability

Linear G : DG ⊂ Lm2 → Lp2 is stable (L2-stable)

− DG = Lm2 and

− ∥G∥ ··= sup∥u∥2=1∥Gu∥2 <∞ (L2-induced norm)

It is known (Young’s convolution inequality) that

g ∈ L1; u ∈ L2 =⇒ g ∗ u ∈ L2 and ∥g ∗ u∥2 ≤ ∥g∥1∥u∥2:

Hence, if G is LTI, then it is

− stable whenever g ∈ L1.

But g ; u ∈ L2 might not imply that g ∗ u ∈ L2, so

− g ∈ L2 does not necessarily imply the stability of G .

Unfortunately,

_̈ no N&S stability test in terms of the impulse response in general.
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Basic property

Because

y = g ∗ u ⇐⇒ L{y} = L{g}L{u} ⇐⇒ F{y} = F{g}F{u}

convolution representations become product in transformed domains, i.e. if
G is LTI, then

y = Gu ⇐⇒ Y (j!) = G (j!)U(j!)

whenever both g and u are Fourier transformable and

y = Gu ⇐⇒ Y (s) = G (s)U(s)

for all s ∈ RoC(g) ∩ RoC(u). Here

− G (s) = (L{g})(s) is the transfer function of G

− G (j!) = (F{g})(j!) is the frequency response of G
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Beware of frequency response analysis: example

Consider

ruy
P − =⇒ ry

G

for
p(t) = −2 e−t1(t) = t :

Then

y(t) = −2

∫ t

−∞
e−(t−s)u(s)ds ⇐⇒ ẏ(t) = −y(t)− 2u(t):

As u(t) = r(t)− y(t),

ẏ(t) = y(t)− 2r(t) ⇐⇒ y(t) = −2

∫ t

−∞
et−su(s)ds;

so G is causal, with g(t) = −2et1(t), and unstable.
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Beware of frequency response analysis: example (contd)

In the frequency domain,

ruy
P(j!) − =⇒ ry

G (j!)

with Y (j!) = P(j!)(R(j!)− Y (j!)). Hence

G (j!) =
P(j!)

1 + P(j!)
=

2

1− j!
=⇒ g(t) = 2 et1(−t) = t

This G is anti-causal and stable (for this g ∈ L1), which makes no sense.

Hazards of analyzing systems in the Fourier domain:

_̈ hard to cope with exponentially growing signals

_̈ hard to trace causality

20/60



Feedback in Laplace domain: example

In the Laplace domain,

ruy
P(s) − =⇒ ry

G (s)

for

p(t) = −2 e−t1(t) =⇒ P(s) = − 2

s + 1

whose RoC = C−1 (includes jR). Then, via Y (s) = P(s)(R(s)− Y (s)),

G (s) =
P(s)

1 + P(s)
=

2

1− s
=⇒ g(t) =

{
2 et1(−t) if RoC = C \ C̄1

−2 et1(t) if RoC = C1

It is not unreasonable to assume that

− causality is preserved under this feedback =⇒ RoC must remain a RHP

The correct impulse response can then be obtained immediately.
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Systems in Laplace domain

Typically,

− control applications are concerned with causal systems

− impulse responses are supported in R+

− signals are assumed to have support in R+ too

− RoC’s are C˛ for some ˛ ∈ R ∪ {−∞;∞}
− causal LTI systems treated as operators G : DG ⊂ Lm2+ → Lp2+

Outcomes:

¨̂ causal LTI systems = transfer functions

¨̂ dynamical systems can be manipulated algebraically
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Transfer function: examples

Systems we already saw:

− gint(t) = 1(t) =⇒ Gint(s) =
1

s

− gdint(t) =
∑

ı(t − iT ) =⇒ Gdint(s) =
∑

e−siT =
1

1− e−sT

− gfmint(t) = 1[0;T ](t) =⇒ Gfmint(s) =
1− e−sT

s

− d� (t) = ı(t − �) =⇒ D� (s) = e−s�

whose RoC’s are C0, C0, C, and C, respectively.
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Causality+ stability in Laplace domain

An LTI G is causal and stable iff its transfer function G ∈ Hp×m
∞ , where

Hp×m
∞ ··=

{
G : C0 → Cp×m

∣∣ G (s) is holomorphic and bounded in C0

}
Thus,

− GHm
2 ⊂ Hp

2 ⇐⇒ G ∈ Hp×m
∞

− if p = m and G ;G−1 ∈ Hm×m
∞ , then GHm

2 = Hm
2

H∞ is Banach, with ∥G∥∞ ··= sups∈C0
∥G (s)∥. Can be associated with its

boundary function from

Lp×m
∞ (jR) ··=

{
G : jR → Cp×m

∣∣ ∥G∥∞ ··= ess sup
!∈R

∥G (j!)∥ <∞
}

and H∞ ⊂ L∞(jR). Then, provided G ∈ H∞,

∥G∥∞ = ess sup
!∈R

∥G (j!)∥:
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Examples

− Gint ̸∈ H∞ as 1=s is holomorphic but not bounded in C0

− Gdint ̸∈ H∞ as 1=(1− e−sT ) is holomorphic but not bounded in C0

− Gfmint ∈ H∞ as (1− e−sT )=s is holomorphic and bounded in C0

for every s = (� + j!)=T ,

|Gfmint(s)|2 = T 2

∣∣∣∣1− e−(�+j!)

� + j!

∣∣∣∣2 = T 2 1− 2e−� cos! + e−2�

�2 + !2

= T 2

(
1− e−�

�

)
2

− T 2 4!2e−�

�2(�2 + !2)

(
sinh2

(�
2

)
− 2

1− cos!

!2

(�
2

)2)
≤ T 2

(
1− e−�

�

)
2

− T 2 4!2e−� (sinh2(�=2)− (�=2)2)

�2(�2 + !2)

≤ T 2

(
1− e−�

�

)
2

< T 2

where 2(1− cos!)=!2 ≤ 1 and sinh2 x > x2 for all x ̸= 0 were used

− D� ∈ H∞ as e−s� is holomorphic and bounded in C0

for every s = � + j!, |e−(�+j!)� | = e−�� ≤ 1
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Causality+ stability and system poles

Let

G (s) =
1

1 + s + se−s
:

Its poles are all in the OLHP C \ C̄0. To see this, let s = � + j! be a pole,
then 1 + � + j! + (� + j!)e−�−j! = 0 reads

e−� e−j! = −1− 1

� + j!
= −

(
1 +

�

�2 + !2

)
+ j

!

�2 + !2
:

Hence, � must satisfy

e−� =

∣∣∣∣(1 + �

�2 + !2

)
− j

!

�2 + !2

∣∣∣∣ ≥ ∣∣∣∣1 + �

�2 + !2

∣∣∣∣ ≥ 1:

which is a contradiction for all � > 0. If � = 0, we have 1 = 1 + 1
|!| , which

also holds for none ! ∈ R.
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Causality+ stability and system poles (contd)

But G ̸∈ H∞. To see this, let {sk} ∈ C \ C̄0 be a sequence of poles of G (s)
satisfying

sk + 1 + sk e
−sk = 0; with limk→±∞|sk | = ∞ :

(known to exist). Then

G (−sk) =
1

1− sk − sk esk
=

1

1− sk + s2k=(1 + sk)
= 1 + sk :

so there is a sequence {sk} in C0 such that limk→∞|G (−sk)| = ∞. Hence,

− G is not L2-stable, despite having all poles in the OLHP

(curiously, 1
s+1G (s) is an H∞ transfer function).
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H2 system space

Defined as

Hp×m
2

··=
{
G : C0 → Cp×m

∣∣∣ G (s) is holomorphic in C0 and

∥G∥2 ··= sup
�>0

(
1

2�

∫
R

∥G (� + j!)∥2F d!
)

1=2
<∞

}
With the good ol’ boundary function trick, H2 ⊂ L2(jR) and if G ∈ H2,

∥G∥2 =
(

1

2�

∫
R

∥G (j!)∥2F d!
)

1=2

and H2 inherits the inner product from L2(jR).
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Examples

− Gint ̸∈ H2 as 1=s is holomorphic in C0 but

1

2�

∫
R

d!

�2 + !2
=

1

2�

�↓0−−−→ ∞

(simpler, ∥1∥2 = ∞)

− Gdint ̸∈ H2 for similar reasons

− Gfmint ∈ H2 as (1− e−sT )=s is holomorphic in C0 and

1

2�

∫
R

1− 2e−�T cos(!T ) + e−2�T

�2 + !2
d! =

1− e−2�T

2�
< T

(simpler, ∥1[0;T ]∥2 =
√
T <∞)

− D� ̸∈ H2 as e−s� is holomorphic in C0 but

e−2��

2�

∫
R

d! = ∞
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H2 system space (contd)

Is Hilbert, with

⟨G1;G2⟩2 ··=
1

2�

∫
R

tr
(
[G2(j!)]

′G1(j!)
)
d! =

∫
R

tr
(
[g2(t)]

′g1(t)
)
dt:

Usage:

− unrelated to stability (D� ∈ H∞ but D� ̸∈ H2, may be vice versa)

− popular performance measure (LQG, Kalman filtering)

− ∥G∥22 equals the energy of y = Gı
− if u is Gaussian unit-intensity white, ∥G∥22 equals the variance of y = Gu
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Properness

G (s) is

− proper if ∃˛ ≥ 0 such that sups∈C˛∥G (s)∥ <∞
− strictly proper if ∃˛ ≥ 0 such that lim|s|→∞;s∈C˛∥G (s)∥ = 0

Examples:

− Gint(s) is strictly proper (and thus proper)

− Gdint(s) is proper but not strictly proper

1

1 + e−�T
≤ 1

|1− e−(�+j!)T |
≤ 1

1− e−�T

− Gfmint(s) is strictly proper (and thus proper)

− D� (s) is proper but not strictly proper
as |e−(�+j!)� | = e−�� > 0 for all finite � > 0

Important:

− G ∈ H∞ =⇒ G (s) is proper =⇒ stable causal G have proper t.f.’s

− G ∈ H2 =⇒ G (s) is strictly proper
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Conjugate transfer function

If G is LTI, its adjoint G ′ has impulse response [g(−t)]′ and

L{g ′} =

∫
R

[g(−t)]′e−st dt =
[∫

R

g(t)e−(−s)t dt
]′

= [G (−s)]′:

with RoC in C \ C̄˛. Thus, the transfer function of G ′ is

G∼(s) ··= [G (−s)]′;

known as conjugate transfer function and verifying G∼(j!) = [G (j!)]′.

Usage:

− mostly in analysis

− limited to systems operating over the whole R
convolution theorem doesn’t hold for non-causal systems if considered on L2(R+)
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Inner and co-inner transfer functions

G ∈ Hp×m
∞ is

− inner if G∼(s)G (s) = Im (so p ≥ m)

− co-inner if G (s)G∼(s) = Ip (so p ≤ m)

If G (s) is inner, the system G is an isometry on L2(R):

∥Gu∥22 = ∥GU∥22 = ⟨GU;GU⟩2 = ⟨G∼GU;U⟩2 = ⟨U;U⟩22 = ∥U∥22 = ∥u∥22

and if G (s) is co-inner, the system G ′ is an isometry on L2(R).

If Wi(s) and Wci(s) are inner and co-inner, then

− ∥G∥∞ = ∥WiGWci∥∞ for all G ∈ H∞

− ∥G∥2 = ∥WiGWci∥2 for all G ∈ H2
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Coprimeness over H∞
M ∈ Hm×m

∞ and N ∈ Hp×m
∞ are (strongly) right coprime over H∞ if there

are Bézout factors X ∈ Hm×m
∞ and Y ∈ Hm×p

∞ satisfying

[
X (s) Y (s)

] [M(s)
N(s)

]
= X (s)M(s) + Y (s)N(s) = Im

(Bézout equality). Implies left invertibility of
[
M
N

]
over H∞.

M̃ ∈ Hp×p
∞ and Ñ ∈ Hp×m

∞ are (strongly) left coprime over H∞ if there are
Bézout factors X̃ ∈ Hp×p

∞ and Ỹ ∈ Hm×p
∞ satisfying

[
M̃(s) Ñ(s)

] [ X̃ (s)

Ỹ (s)

]
= M̃(s)X̃ (s) + Ñ(s)Ỹ (s) = Ip

(Bézout equality). Implies right invertibility of
[
M̃ Ñ

]
over H∞.

If p = m = 1, then “left coprime” ⇐⇒ “right coprime” (so simply coprime).
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Corona theorem

M ∈ Hm×m
∞ and N ∈ Hp×m

∞ are (strongly) right coprime over H∞ iff

inf
s∈C0

�

([
M(s)
N(s)

])
> 0:

M̃ ∈ Hp×p
∞ and Ñ ∈ Hp×m

∞ are (strongly) left coprime over H∞ iff

inf
s∈C0

�
([

M̃(s) Ñ(s)
])
> 0:

Thus,

− M(s) =
1

s + 1
and N(s) =

se−s

s + 1
are not coprime

− M(s) =
e−s

s + 1
and N(s) =

s

s + 1
are coprime
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Coprime factorization

Effectively every stabilizable transfer function can be expressed as

G (s) = N(s)M−1(s) = M̃−1(s)Ñ(s)

for right / left coprime M;N / M̃; Ñ ∈ H∞ and bi-proper M(s) and M̃(s).

Examples:

− Gint(s) =
1
s = 1

s+a ·
(

s
s+a

)−1
, a > 0, with X (s) = 1 and Y (s) = a

− Gdint(s) =
1

1−e−sT = 1 · (1− e−sT )−1, with X (s) = 1 and Y (s) = e−sT

− Gfmint(s) =
1−e−sT

s = 1−e−sT

s · 1−1, with X (s) = 1 and Y (s) = 0

− D� (s) = e−s� = e−s� · 1−1, with X (s) = 1 and Y (s) = 0

Constructing coprime factors:

− if G ∈ H∞, then M(s) = I , N(s) = G (s), X (s) = I , and Y (s) = 0

− if G ̸∈ H∞, wait for state space
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Two lemmas

Lemma
If N1M

−1
1 = N2M

−1
2 and M̃−1

1 Ñ1 = M̃−1
2 Ñ2 are rcf’s and lcf’s of some G ,

respectively, then[
M2

N2

]
=

[
M1

N1

]
U and

[
M̃2 Ñ2

]
= Ũ

[
M̃1 Ñ1

]
for some U;U−1; Ũ; Ũ−1 ∈ H∞.

Implies that

− if detM1(s0) = 0 for s0 ∈ C0, then detM2(s0) = 0 for any other rcf

− if det M̃1(s0) = 0 for s0 ∈ C0, then det M̃2(s0) = 0 for any other lcf

Lemma
If G = NM−1 = M̃−1Ñ are rcf and lcf, respectively, then

G ∈ H∞ ⇐⇒ M−1 ∈ H∞ ⇐⇒ M̃−1 ∈ H∞:
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Domain of L2 systems

If G : DG ⊂ Lm2 → Lp2 is LTI and such that its transfer function admits a
rcf over H∞, G (s) = N(s)M−1(s), then

DG = MLm2 = ImM = {u | ∃v ∈ Lm2 such that u = Mv}:

Proof (outline).

− M ∈ H∞ =⇒ MLm2 ⊂ Lm2
− GMLm2 = NLm2 ⊂ Lp2 =⇒ MLm2 ⊂ DG

− For any u0 ∈ DG , denote v0 ··= M−1u0. We have:

Lm+p
2 ∋

[
u0
y0

]
=

[
I
G

]
u0 =

[
M
N

]
v0

Thus,
v0 = Xu0 + Yy0 ∈ Lm2 =⇒ DG ⊂ MLm2
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Doubly coprime factorization

Coprime factors of G (s) and their Bézout can always be selected so that[
X (s) Y (s)

−Ñ(s) M̃(s)

] [
M(s) −Ỹ (s)

N(s) X̃ (s)

]
=

[
Im 0
0 Ip

]
;

i.e. [
X (s) Y (s)

−Ñ(s) M̃(s)

]
and

[
M(s) −Ỹ (s)

N(s) X̃ (s)

]
are invertible in H∞.
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Definition

We say that G (s) is real-rational if

− Gij(s) =
Nij (s)
Mij (s)

for finite polynomials Nij(s) andMij(s) with real coeff’s.

Examples:

− Gint(s) =
1
s is real-rational

− Gdint(s) =
1

1−e−sT is not real-rational

− Gfmint(s) =
1−e−sT

s is not real-rational

− D� (s) = e−s� is not real-rational
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Implications

Any real-rational G (s)

− is proper iff ∥G (∞)∥ <∞, i.e. deg(Nij(s)) ≤ deg(Mij(s)), ∀i ; j

− is strictly proper iff ∥G (∞)∥ = 0, i.e. deg(Nij(s)) < deg(Mij(s)), ∀i ; j

− G ∈ H∞ iff G (s) is proper & has no poles in C̄0 called RH∞

− G ∈ H2 iff G (s) is strictly proper & has no poles in C̄0 called RH2

− admits doubly coprime factorizations over RH∞

By-products:

− stability ⇐⇒ proper + no poles in C̄0

− RH2 ⊂ RH∞

− always stabilizable by feedback
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Diagonal case: poles, zeros, and . . .

Every

G (s) =

 G1(s) · · · 0
...

. . .
...

0 · · · Gm(s)

 =·· diag{Gi (s)}

is effectively a union of m independent systems, so that

− poles and zeros of G (s) are unions of poles and zeros of Gi (s).

Consequences:

− may have uncancellable pole(s) and zero(s) at the same point

− det(G (s)) might be a poor indicator of its dynamical properties

− mere location of poles and zeros is not sufficient
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Diagonal case: poles, zeros, and . . . (contd)

Poles and zeros of

G (s) =

 G1(s) · · · 0
...

. . .
...

0 · · · Gm(s)


should be

− complemented by their association with subsystems

− complemented by their directions
− if pk (zk) is a pole (zero) of Gi (s), its direction is span(ei )

− if pk (zk) is a pole (zero) of Gi (s) and Gj(s), its direction is span(ei ; ej)

− pole direction of pk : ⊥ to any v for which G (s)v has no pole at pk

− zero direction of zk : span of all v for which G (s)v |s→zk = 0

− if pk (zk) is a pole (zero) of �k subsystems, its geometric multiplicity is
�k

− the multiplicity of pk (zk) in Gi (s) is its ith partial multiplicity

− the sum of all partial multiplicities of pk is its algebraic multiplicity
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General case: preliminaries

− normal rank: nrank(G (s)) ··= maxs∈C rank(G (s))
if G(s) is proper, then rank(G(s)) = nrank(G(s)) for all but a finitely many s

− unimodular polynomial matrix: square and det(U(s)) = const ̸= 0
U−1(s) is also a polynomial matrix

− polynomial ˇ(s) divides polynomial ˛(s) if ˛(s)
ˇ(s)

is a polynomial
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Smith–McMillan form & poles / degree / zeros

Given a p×m transfer function G (s) having nrank(G (s)) = r ≤ min{p;m},
there are unimodular polynomial matrices U(s) and V (s) such that

U(s)G (s)V (s) =


˛1(s)=ˇ1(s) · · · 0 0

...
. . .

...
...

0 · · · ˛r (s)=ˇr (s) 0
0 · · · 0 0

 ;
where ˛i (s) divides ˛i+1(s), ˇi+1(s) divides ˇi (s), and ˛i (s) and ˇi (s) are
coprime at every i ∈ Z1::r .

− roots of �p(s) ··=
r∏

i=1

ˇi (s) are the poles of G (s)

− n ··= deg(�p(s)) is the McMillan degree (or degree) of G (s)

− roots of �z(s) ··=
r∏

i=1

˛i (s) are the transmission zeros (or zeros) of G (s)
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Pole directions

Let pi ∈ C be a pole of geometric multiplicity �i of

G (s) = U−1(s)


˛1(s)=ˇ1(s) · · · 0 0

...
. . .

...
...

0 · · · ˛r (s)=ˇr (s) 0
0 · · · 0 0

V−1(s)

input pole direction, pdiri(G ; pi ) ⊂ Cm:

pdiri(G ; pi ) =
(
ImV (pi )

[
e�i+1 · · · em

])⊥
= ker

 e ′�i+1
...
e ′m

[V (pi )]
′

output pole direction, pdiro(G ; pi ) ⊂ Cp:

pdiro(G ; pi ) = ker

 ẽ ′�i+1
...
ẽ ′p

U(pi ) =
(
Im[U(pi )]

′ [ ẽ�i+1 · · · ẽp
])⊥
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Zero directions

Let zi ∈ C be a pole of geometric multiplicity �i of

G (s) = U−1(s)


˛1(s)=ˇ1(s) · · · 0 0

...
. . .

...
...

0 · · · ˛r (s)=ˇr (s) 0
0 · · · 0 0

V−1(s)

input zero direction, zdiri(G ; pi ) ⊂ Cm:

zdiri(G ; zi ) ··= ImV (zi )
[
er−�i+1 · · · em

]
output zero direction, zdiro(G ; pi ) ⊂ Cp:

zdiro(G ; pi ) ··= Im[U(zi )]
′ [ ẽr−�i+1 · · · ẽp

]
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Example 1

Let

G (s) =
1

s

[
1 1
1 1

]
=⇒

U(s)︷ ︸︸ ︷[
1 0
−1 1

]
G (s)

V (s)︷ ︸︸ ︷[
1 −1
0 1

]
=

[
1=s 0
0 0

]
One pole at s = 0, with

pdiri(G ; 0) = ker
[
0 1

]
[V (0)]′ = span

([
1
1

])
pdiro(G ; 0) = ker

[
0 1

]
U(0) = span

([
1
1

])
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Example 2

Let

G (s) =

[
1 1=s
0 1

]
=⇒

U(s)︷ ︸︸ ︷[
1 0
s −1

]
G (s)

V (s)︷ ︸︸ ︷[
0 1
1 −s

]
=

[
1=s 0
0 s

]
One pole and one transmission zero at s = 0, with

pdiri(G ; 0) = ker
[
0 1

]
[V (0)]′ = span

([
0
1

])
pdiro(G ; 0) = ker

[
0 1

]
U(0) = span

([
1
0

])

zdiri(G ; 0) = ImV (0)

[
0
1

]
= span

([
1
0

])
⊥ pdiri(G ; 0)

zdiro(G ; 0) = Im[U(0)]′
[
0
1

]
= span

([
0
1

])
⊥ pdiro(G ; 0)
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Example 3

Let

G (s) =

[
1

s+1 0 s−1
(s+1)(s+2)

− 1
s−1

1
s+2

1
s+2

]
and define unimodular polynomials

U(s) =
1

6

[
3 3

s3 − s2 − 4s − 2 s3 − s2 − 4s + 4

]
;

V (s) =
1

6

 2(s − 2) −6(s − 1) −3(s − 1)
4 −24 −6(s + 2)
0 6 3(s + 2)

 :
Then

U(s)G (s)V (s) =

[
1

(s2−1)(s+2)
0 0

0 s−1
s+2 0

]
:

Four poles, at {−2;−2;−1; 1}, and one transmission zero at {1}.
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Example 3 (contd)

Pole directions:

pdiri(G ; 1) = ker

[
0 1 0
0 0 1

]
[V (1)]′ = span

([
1
0
0

])
;

pdiro(G ; 1) = ker
[
0 1

]
U(1) = span

([
0
1

])
;

pdiri(G ;−1) = ker

[
0 1 0
0 0 1

]
[V (−1)]′ = span

([−1
0
2

])
;

pdiro(G ;−1) = ker
[
0 1

]
U(−1) = span

([
1
0

])
;

pdiri(G ;−2) = ker
[
0 0 1

]
[V (−2)]′ = span

([
0
1
0

]
;

[
0
0
1

])
;

and pdiro(G ;−2) = C2.
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Example 3 (contd)

Zero directions:

zdiri(G ; 1) = ImV (1)

 0 0
1 0
0 1

 = span

([
0
1
0

]
;

[
0
0
1

])

zdiro(G ; 1) = Im[U(1)]′
[
0
1

]
= span

([
1
0

])
:

Again,

span

([
0
1
0

]
;

[
0
0
1

])
= zdiri(G ; 1) ⊥ pdiri(G ; 1) = span

([
1
0
0

])

span

([
1
0

])
= zdiro(G ; 1) ⊥ pdiro(G ; 1) = span

([
0
1

])
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Example 4

Let

G (s) =

[
1=s 1=s2

0 1=s

]
:

Its Smith–McMillan form is[
1 0
−s 1

]
G (s)

[
0 −1
1 s

]
=

[
1=s2 0
0 1

]
:

Double pole at s = 0, with

pdiri(G ; 0) = ker
[
0 1

]
[V (0)]′ = span

([
0
1

])
and

pdiro(G ; 0) = ker
[
0 1

]
U(0) = span

([
1
0

])
:

Although e1 ⊥ pdiri(G ; 0), G (s)e1 = 1=s e1, i.e. it still has a pole at s = 0.
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Simplifications

Let nrank(G (s)) = r . The following statements hold true:

1. �p(s) is the least common denominator of all nonzero minors of G (s)
of all orders provided all common poles and zeros in each of these
minors were canceled.

2. �z(s) is the greatest common divisor of all the numerators of all
r -order minors of G (s) provided these minors have been adjusted to
have �p(s) as their denominators.
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Example 3 (contd)

For

G (s) =

[
1

s+1 0 s−1
(s+1)(s+2)

− 1
s−1

1
s+2

1
s+2

]
nonzero minors of order 1 are

1

s + 1
;

s − 1

(s + 1)(s + 2)
; − 1

s − 1
;

1

s + 2
; and

1

s + 2

and the minors of order 2 are

− s − 1

(s + 1)(s + 2)2
;

2

(s + 1)(s + 2)
; and

1

(s + 1)(s + 2)
:

Hence,
�p(s) = (s + 2)2(s + 1)(s − 1) = (s + 2)2(s2 − 1);

as before.
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Example 3 (contd)

For

G (s) =

[
1

s+1 0 s−1
(s+1)(s+2)

− 1
s−1

1
s+2

1
s+2

]
the minors of order 2 are:

− s − 1

(s + 1)(s + 2)2
;

2

(s + 1)(s + 2)
; and

1

(s + 1)(s + 2)

or, equivalently, with �p(s) = (s + 2)2(s + 1)(s − 1)

−(s − 1)2

�p(s)
;

2(s + 2)(s − 1)

�p(s)
; and

(s + 2)(s − 1)

�p(s)
:

Hence,
�z(s) = s − 1;

as before.
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Simplifications (contd)

Let G (s) be a p ×m real-rational proper transfer function.

1. If zi ∈ C isn’t a pole of G (s), then it’s a transmission zero of G (s) iff
rank

(
G (zi )

)
< nrank

(
G (s)

)
and nrank(G (s))− rank(G (zi )) equals the

geometric multiplicity of the zero at zi , with

zdiri(G ; zi ) = kerG (zi ) and zdiro(G ; zi ) = ker[G (zi )]
′:

2. If p = m = nrank(G (s)) and pi ∈ C isn’t a transmission zero of G (s),
it’s a pole of G (s) iff det

(
G−1(pi )

)
= 0 and m− rank(G−1(pi )) equals

the geometric multiplicity of the pole at pi , with

pdiri(G ; pi ) = ker[G−1(pi )]
′ and pdiro(G ; pi ) = kerG−1(pi ):
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