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Continuous-time signals

Basics
Signals are mappings from R (time) to F” for n € N, denoted x : R — F".
The value of x at a time instance t is denoted x(t) € F". We say that x is
— scalar-valued if n =1
— vector-valued if n > 1
Set of signals is a vector space, with
addition: x = y + z reads x(t) = y(t) + z(t) for at t

multiplication by scalar: x = ay reads x(t) = ay(t) for all t

Another important operation is
shift: S¢x reads (S¢x)(t) = x(t + ) for all t

The set
supp(x) := {t € R | x(t) # 0}

is called the support of x.

Normed (Banach) spaces

Admissibility — signal spaces:
L(R) = {x: R = F" | ]y := /{R Ix(e)hdt < oo }
LE(R) = {x - R = B[ o = sup ()]l < o0 }
L3(R) = {x: R > F" [ [[x]}} = / Ix(¢)|2de < 00 }
L5 (R) :={x € L3(R) | x(t) =0 forall t <0}

13 (R):={x € LJ(R) | x(t) =0 forall t >0}

L, is Hilbert, with

(x.y)2 = / Y (Dx(t)de




Fourier transform

Defined
§{x} = X(jow) := /x(t)e_jwtdt,
R

where w € R called the (angular) frequency and measured in rad/sec. F{x}
is the frequency-domain representation or spectrum of x.

1

FHXY =x(t) = 5 /[R X(jw)etdw,

i.e. x is a superposition, weighted by X(jo), of harmonic signals exp;,, with
frequencies w.

Fourier transform (contd)

Existence:
— well defined (absolute convergence) for x € Ly

— extendible (weaker convergence) for x € Ly by the Plancherel Theorem

§{-} is a unitary mapping L2(R) — L2(jR), i.e. it preserves sizes:

/{RIIX(t)Ith:zln/RHX(jw)n%w

l1x113 1X113

It also preserves angles:
1 : .
[ be((de = 5 [ patio) Xi(jo)do
R T JR

(x1,%2) (X1,X2)2

(Parseval’s theorem, in engineering literature).

Laplace transform

The two-sided (bilateral) Laplace transform:

Sx} = F(s) = /[Rx(t)e_“dt

at all s € C where the integral converges (region of convergence, aka RoC).
We need xexp_, € Ly for absolute convergence.

Normally used for signals supported on semi-axes:
— if supp(x) C R4, then RoC is typically C, (may be Cg)
— if supp(x) C R_, then RoC is typically C \ C, (may be C \ Cq)

for some @ € RU {—o00, 00}.

Laplace transform: mind RoC

Readily verifiable that

- X =xO=e )=~ = X()=

— x(t) = x_(t) == —et(—1) = % = X(s) = s+11

i.e.

— X alone does not define x unambiguously.

If the knowledge of X is complemented by its RoC:
- X(s) =

S+1andRoC:C,1 = X =Xx4

1
— X(s) = +1andRoC:<[Z\<E_1 = X =x_




Paley—Wiener and H, space
£{-} is a unitary mapping Lo+ (R) — Ha, where

Hé’::{X:CEO—HE”

X(s) is holomorphic in Cy and

1 o \1/2
Xl = sup (5 [ 1X( + o) do) " < oc
o>0\ 47T JR

Important:

— the boundary function )~<(j~w) := limg o X(0 + jw) exists for almost all
w and || X2 = || X]|2 (so X € La(jR))

— Ha functions are identified with boundary functions = Hy C L»(jR)
— Hz-norm (provided X € Ha):

1 1/2
X2 = == [ IX(jo)]?
X2 = (5 [IXG)I? do )
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Continuous-time dynamic systems in time domain

Linear systems on L,

Linear operators
G :®¢g C L12n — L‘%

for some domain Dg.

Sufficiently general class of G : u +— y satisfies

y(t) = / g(t.5)u(s)ds

where g : R> — RP*™ is the impulse response (kernel) of G, whose

— gej(t,s) is y(t) under u(t) = eid(t —s).

Some systems u — y
Gint (integrator) y(t) = u(t) = gint(t.s) = 1(t —s)
Ggint (discrete integrator)

y() =y(t=T)+u(t) = gam(t,s) =Y 8(t—s—(i-1)T)
iEN
Gfmint (finite-memory integrator)

y(t):/t;”(s)ds — gmint(t,s) =1(t —s) —1(t —s—T)

D, (t-delay operator) y(t) = u(t — 1) = d¢(t,s) =68(t —s— 1)

Fiip (ideal low-pass filter)

fip(t,s) = % sinc(wp(t — s))




Causality

G : u—> y is causal if for every t. € R

— y(t) =0 for all t < t. whenever u(t) =0 for all t < t..
Roughly, it says that

— y(t) may only depend on past and present inputs u for all t.
Consequently,

— causal systems may be thought of as ¢ C L7, — L5 ,.

Criterion:
y(t) / g(t,s)u(s)ds / g(t,s)u(s)ds =0, Vt<t,uecDg
JR te
whence

G is causal < g(t,s) =0 for all s > t.

Remark: G is said to be anti-causal if y may only depend on future and present inputs wv.

A linear G is anti-causal < g(t,s) =0 for all s < t.

Time (shift) invariance

Linear G : ©g C L3 — L5 is time invariant (shift invariant) if
— G%; =9%;Gforall T €R

If G LTI, its impulse response g(t,s) = (G$_s6)(t) and then
y(t) = /IR (GS_s8)(t)u(s)ds = /[R (5—sG8)(t)u(s)ds
:/IR(GS)(t—s)u(s)ds,

i.e. only the response of G to § applied at t = 0 matters. We then treat
— g:R— RP*7™ (ie. g(t))

— can write the response as the convolution integral

Y (1) :/[Rg(t—s)u(s)ds E—

Adjoint system
L, is Hilbert = G has its adjoint G’, defined via (Gu, v) = (u, G'v). If
(6u)() = [ (t.5)uls)ds.

then

(Guv) = [ V(OG0 = [ /(o) [ st syuls)asat
:AA(V’(t)g(f,S))U(S)dsdt:AA(g/(t’s)v(t)),u(s)dtds
- /[R (/[R g'(t, S)V(t)dt) u(s)ds = /[R</[R g'(s. t)v(s)ds) u(t)dt
= e T

Thus, the impulse response of G’ is [g(s, t)]’, or [g(—1t)]" if G is LTI

— G is causal = G’ is anti-causal.

Stability
Linear G : ©g C LY — L% is stable (L»-stable)
— D¢ = L7 and
— ||G]| := supjjy|,=1IGull2 < oo (L2-induced norm)

It is known (Young's convolution inequality) that
geliuely = gxuéelyand |gx*ul2 <|glilul2-

Hence, if G is LTI, then it is
— stable whenever g € L.
But g, u € Ly might not imply that g x u € Ly, so
— g € L does not necessarily imply the stability of G.

Unfortunately,

- no N&S stability test in terms of the impulse response in general.
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Continuous-time dynamic LTI systems in transformed domains

Basic property
Because
y=gx*u <= Ly} =L{gt{u} = F{y}=35{g}5{u}

convolution representations become product in transformed domains, i.e. if
G is LTI, then
y =Gu <= Y(jw) = G(jo)U(j»)

whenever both g and u are Fourier transformable and
y=Gu <= Y(s) = G(s)U(s)

for all s € RoC(g) N RoC(u). Here
— G(s) = (£{g})(s) is the transfer function of G
— G(jo) = (3{g})(jw) is the frequency response of G

Beware of frequency response analysis: example

Consider

e R
for —t
p(t):—2e ﬂ(t): T

Then

y(t) = —2/t e (=) y(s)ds = j(t) = —y(£) — 2u(t).

—0oQ

As u(t) = r(t) — y(t),

J(t) = y(t) — 2r(t) <= y(t) = -2 / et*u(s)ds,

— 00

so G is causal, with g(t) = —2e"1(t), and unstable.

Beware of frequency response analysis: example (contd)

In the frequency domain,

T Plo) o = | G(v)

with Y(jo) = P(jo)(R(jo) — Y(jw)). Hence

G(jw) = 15%‘6)60) = 1_2J.w = g(t)=2etﬂ(—t)=4p

This G is anti-causal and stable (for this g € L1), which makes no sense.

Hazards of analyzing systems in the Fourier domain:
A~ hard to cope with exponentially growing signals

A~ hard to trace causality




Feedback in Laplace domain: example

In the Laplace domain,

— P(s) = — —1 G(s)
for )
p(t) = —-2e f1(t) = P(s):_s—i—l

whose RoC = C_; (includes jR). Then, via Y(s) = P(s)(R(s) — Y(s)),

G(s) = P(s) _ 2 2etl(—t) if RoC=C\ Ty

1+P(s) 1-s — g(t):{—2et1](t) if RoC = Cy

It is not unreasonable to assume that
— causality is preserved under this feedback = RoC must remain a RHP

The correct impulse response can then be obtained immediately.

Systems in Laplace domain

Typically,
— control applications are concerned with causal systems
— impulse responses are supported in Ry
— signals are assumed to have support in Ry too
— RoC's are C,, for some a € RU {—00, 00}

— causal LTI systems treated as operators G : D¢ C L3, — L5,

Outcomes:
- causal LTI systems = transfer functions

-~ dynamical systems can be manipulated algebraically

Transfer function: examples

Systems we already saw:

1
— gint(t) = () = Gine(s) = ¢
i 1
= [ — —siT _
— gim(t) =D _8(t—iT) = Gaml(s) =D e =— 7
1— e—sT
- gfmint(t) = ]][O,T](t) — Gfmint(s) - - -

s
— d(t)=6(t—1)
whose RoC's are Cg, Co, C, and C, respectively.

= Di(s)=e"*"

Causality + stability in Laplace domain

An LTI G is causal and stable iff its transfer function G € HZ*™, where
HEXm {G . Co — CP*™ | G(s) is holomorphic and bounded in a:o}

Thus,
— GHy CHPY < G e HEX™
— ifp=mand G,G™! € HTX™, then GHJ" = HY

Hso is Banach, with [|G||o := supscc,||G(s)||. Can be associated with its
boundary function from

LPXM(iR) := {G IR = CPXM ||| Glog = esssup|| G (jo)|| < oo}
w€eR
and Hoo C Loo(jR). Then, provided G € Hy,

1Gllec = esssup|| G (jo)]|-
weR




Examples

— Gint € Hx as 1/s is holomorphic but not bounded in Cy

— Gyint & Hoo as 1/(1 — e7*T) is holomorphic but not bounded in Cg

— Gimint € Hoo as (1 — e75T)/s is holomorphic and bounded in Cg
for every s = (0 + jw)/ T,

20

1— e (otio) 2 _ 1—2e%cosw+e”

Gmin 2= T2 -
| Grmint(s)] 02 + @?

o+ jw

a1 —e77)2 > 4w?e @ L 2(O 1—cosw /0\2
_T< o -7 02(02+w2)(smh (2)_2 w? (2))
T2 1-e7\2 T2 4w?e™7 (sinh*(0/2) — (6/2)?)
o 02(0? + w?)

_ o O0\2
T2<1 : ) < T2

where 2(1 — cosw)/w? < 1 and sinh? x > x? for all x # 0 were used

IN

IN

— D; € Hy, as e °" is holomorphic and bounded in Cy

for every s = 0 + jo, |[e (OHO)T| = 77T <1

Causality + stability and system poles

Let
1

G(s) = Tosrses

lts poles are all in the OLHP C \ Cq. To see this, let s = o + jo be a pole,
then 1 +0 + jo + (0 + jo)e 73 = 0 reads

e 7e ¥ =-1-

B 14 o L ®
o+jo 02 + w? To2 102
Hence, 0 must satisfy

e =(1+-2 )2
02+ w? 02+ w?

which is a contradiction forallo > 0. If 0 =0, we have 1 =1 + ﬁ which
also holds for none w € R.

N o
. 02+ w?

> 1.

Causality + stability and system poles (contd)

But G & Hx. To see this, let {sx} € C\ Co be a sequence of poles of G(s)
satisfying

sk +1+se™™ =0, with lim_, 1oofsk[ = 00

(known to exist). Then

1 1

G —_ pum— pu—
(=sk) 1—se—sees  1—se+s2/(1+sk)

:1+Sk.

so there is a sequence {sx} in Cg such that limy_,,|G(—sk)| = oco. Hence,
— G is not Ly-stable, despite having all poles in the OLHP

(curiously, G(s) is an Hy transfer function).

1
s+1

H, system space

Defined as

HEX™ = {G :Co — Cpxm’ G(s) is holomorphic in Cq and

1 o \12
1G> := sup /y|G(a+Jw)y|Fdw -
>0\ 27 R

With the good ol' boundary function trick, Ho C L2(jR) and if G € H,,

1 ) 1/2
1612 = (57 [ I16Ga)E do)

and Hy inherits the inner product from Ly(jR).




Examples

Gint € H> as 1/s is holomorphic in Cq but

1 / dw 1 osJ0
il Y 00
2 Jp 02+ w? 20
(simpler, ||T||2 = o0)
Gdint € H> for similar reasons
— Gemint € Hz as (1 —e~*T)/s is holomorphic in Cg and
1 1-2e 9T cos(wT)+e 20T 1—e 207

_ do = < T
2 Jg 02+ w? @ 20

(simpler, HU[O_T]HQ =T < )
— D; & Hy as e °T is holomorphic in Cy but

ef2ar
/ dw = 00
27'[ R

H, system space (contd)

Is Hilbert, with

(G, Gp)p := 2tT/[Rtr([Gg(ja))]'Gl(ja)))da) = Atr([gg(t)]'gl(t))dt.

Usage:
— unrelated to stability (D, ¢ H.. but D, ¢ H», may be vice versa)
— popular performance measure (LQG, Kalman filtering)

— ||G|I3 equals the energy of y = G§
— if u is Gaussian unit-intensity white, ||G||3 equals the variance of y = Gu

Properness
G(s) is

— proper if da > 0 such that supgcc, || G(s)| < oo

— strictly proper if 3o > 0 such that lim|g . sec, |G(s)[| =0
Examples:

Gint(s) is strictly proper (and thus proper)
Gdint(s) is proper but not strictly proper

1 1 1
1+e 0T = |1 — e-(o+io)T| STeor

—  Gfmint(s) is strictly proper (and thus proper)

— D¢(s) is proper but not strictly proper

as [e7(@HO)T| = 79T 5 0 for all finite 0 > 0

Important:

— G € Hyw = G(s) is proper = stable causal G have proper t.f.'s
— G € Hy = G(s) is strictly proper

Conjugate transfer function

If G is LTI, its adjoint G’ has impulse response [g(—t)]" and

_ /
2(g} = [ le(-oyetde = [ [ gle)eae] = [6(-9).
R R
with RoC in C \ C,. Thus, the transfer function of G’ is
G™(s) = [G(-3)],

known as conjugate transfer function and verifying G~ (jo) = [G(jw)]’.

Usage:
— mostly in analysis

— limited to systems operating over the whole R

convolution theorem doesn’t hold for non-causal systems if considered on L>(R)




Inner and co-inner transfer functions
G € HPX™ is
— inner if G™(s)G(s) = I (so p > m)
— co-inner if G(s)G™(s) =1, (so p < m)
If G(s) is inner, the system G is an isometry on Lp(R):

IGull3 = |GU|Iz = (GU. GU)2 = (G~ GU. U)2 = (U. U); = || U|I3 = ||ull3

and if G(s) is co-inner, the system G’ is an isometry on La(R).

If Wi(s) and W,(s) are inner and co-inner, then
— ||G|loo = [|Wi GWi||oo for all G € Hy
— HG”Z = HVV,GWC,HQ for all G € H,

Outline

Coprime factorization of transfer functions over H,,

Coprimeness over H,,

M e HZ*™ and N € HEX™ are (strongly) right coprime over Hy, if there
are Bézout factors X € HZ*™ and Y € HJ*P satisfying

[ X(s) Y(s)] {AI\/II((:)) } = X(s)M(s) + Y(s)N(s) = Im

(Bézout equality). Implies left invertibility of [M] over Hy.

M € HPXP and N € HPX™ are (strongly) left coprime over H., if there are

Bézout factors X € HEXP and Y € H™*P satisfying

1) (s) ]| 5\ | = )% + W) V15) = 1

(Bézout equality). Implies right invertibility of [/\7/ N | over Hu.

If p=m =1, then “left coprime” <= "right coprime” (so simply coprime).

Corona theorem

M e HZ*™ and N € HEX™ are (strongly) right coprime over H iff

s (4] o

M € HEXP and N € HEX™ are (strongly) left coprime over H, iff

inf o ([ M(s) N(s)])>o0.

seCy
Thus,
e—S
— M(s) = ] and N(s) = L are not coprime
—s
— M(s) = 1 and N(s) = sy e coprime




Coprime factorization

Effectively every stabilizable transfer function can be expressed as
G(s) = N(s)M~(s) = M~*(s)N(s)

for right / left coprime M, N / M, N € Hy, and bi-proper M(s) and M(s).
Examples:

~ Gni(s)=1= ?12 - (;53)_1, a> 0, with X(s)=1and Y(s) =a

— Ggint(s) = lfe%ﬂ =1-(1—es")71, with X(s)=1and Y(s) =e5"

—sT

— Gimint(s) = =27 = 1===T . 1-1 with X(s) =1 and Y(s) =0

— Dy(s)=e " =e 57171 with X(s) =1 and Y(s) =0

Constructing coprime factors:
— if G € Hy, then M(s) =1, N(s) = G(s), X(s) =1, and Y(s) =0
— if G € Hy, wait for state space

Two lemmas

Lemma o o
If NyMyt = NoMy and My Ny = My Ny are rcf's and Icf's of some G,
respectively, then
M, My ~ .~
|:N2}:|: :|U and [MzNz]:U[MlNl]
for some U, UL, 0,071 e H.
Implies that

— if det M1 (sp) = 0 for sp € Co, then det Mx(sp) = O for any other rcf
— if det My(sp) = O for sy € Co, then det Ma(sy) = O for any other Icf

Lemma o
If G=NM~1 = M~N are rcfand Icf, respectively, then

GeHy — M'leH, & M'lecH,.

Domain of L, systems

If G:Dg C Ly — L5 is LTI and such that its transfer function admits a
rcf over Hoo, G(s) = N(s)M~1(s), then

D6 = MLy =Im M = {u | v € LT such that u = Mv}.

Proof (outline).

- MeH, = MLy C LY
— GMLY = NLY C L5 = ML C D¢
— For any ug € D¢, denote vy := M~ 1uy. We have:

N / M
o3 [o]=¢]w=[ V]

vo = Xug + Yy € LY — Dg C MLY [

Thus,

Doubly coprime factorization

Coprime factors of G(s) and their Bézout can always be selected so that

| Siea o) [y 56 =15 4]

N—
|
<
—~~
N

are invertible in Hy.
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Real-rational transfer functions

Definition
We say that G(s) is real-rational if

- Gjj(s) = ,\A/I,’IJJ((Z)) for finite polynomials Njj(s) and Mj(s) with real coeff’s.

Examples:

— Gint(s) = % is real-rational

Gyint(s) = H%g is not real-rational

_e—ST . .
Gemint(s) = 1=2— is not real-rational

— D¢(s) = e is not real-rational

Implications

Any real-rational G(s)
— is proper iff ||G(00)|| < o0, i.e. deg(Nji(s)) < deg(Mi(s)), Vi,j

— s strictly proper iff [|G(c0)|| = 0, i.e. deg(N;(s)) < deg(Mj(s)), Vi, j
— G € Hy iff G(s) is proper & has no poles in Cg called RH
— G € H, iff G(s) is strictly proper & has no poles in Cq  called RH-

— admits doubly coprime factorizations over RH

By-products:
— stability <= proper + no poles in Cg
— RHy C RHy

— always stabilizable by feedback

Outline

Poles, zeros, & C°




Diagonal case: poles, zeros, and. ..

Every
G]_(S) ce 0

G(s)=1| = . =: diag{Gi(s)}
0 - Gm(s)
is effectively a union of m independent systems, so that

— poles and zeros of G(s) are unions of poles and zeros of G;(s).

Consequences:
— may have uncancellable pole(s) and zero(s) at the same point
— det(G(s)) might be a poor indicator of its dynamical properties

— mere location of poles and zeros is not sufficient

Diagonal case: poles, zeros, and ... (contd)

Poles and zeros of
Gl(S) Ce 0

should be
B . . b cul

— complemented by their directions
— if px (zx) is a pole (zero) of G;(s), its direction is span(e;)
— if px (z«) is a pole (zero) of Gi(s) and Gj(s), its direction is span(e;, ;)
— pole direction of px: L to any v for which G(s)v has no pole at py
— zero direction of z,: span of all v for which G(s)v|s—, =0
— if px (2x) is a pole (zero) of 1) subsystems, its geometric multiplicity is
Mk
— the multiplicity of px (z«) in G;(s) is its ith partial multiplicity

— the sum of all partial multiplicities of py is its algebraic multiplicity

General case: preliminaries

— normal rank: nrank(G(s)) := maxsec rank(G(s))
if G(s) is proper, then rank(G(s)) = nrank(G(s)) for all but a finitely many s

— unimodular polynomial matrix: square and det(U(s)) = const # 0
U™(s) is also a polynomial matrix

— polynomial S(s) divides polynomial «(s) if % is a polynomial

Smith—McMillan form & poles / degree / zeros

Given a p x m transfer function G(s) having nrank(G(s)) = r < min{p, m},
there are unimodular polynomial matrices U(s) and V/(s) such that

a@)/pi(s) - 00
VSOVEI= | e 0|
0 0 0

where «;(s) divides oj+1(s), Bit+1(s) divides B;(s), and «;(s) and B;(s) are
coprime at every i € Z1 .

.
— roots of ¢p(s) := H,B,-(s) are the poles of G(s)
i=1
— n:=deg(¢p(s)) is the McMillan degree (or degree) of G(s)
r
— roots of ¢,(s) := Ha,-(s) are the transmission zeros (or zeros) of G(s)
i=1




Pole directions

Let p; € C be a pole of geometric multiplicity u; of

Zero directions

Let z; € C be a pole of geometric multiplicity u; of

a&/f(s) 00
S — U-1(s ; ; ; ~1(¢
e Y TE R R
0 0 0

input zero direction, zdir;(G, p;) C C™:
zdiri(G, z;) := Im V(z) [er,uiﬂ “e- em ]
output zero direction, zdiro(G, p;) C CP:

zdiro(G, p;) := Im[U(Z)] [ &—pjv1 -+ & |

ai(s)/Bi(s) - 0 0
G(s) = UX(s) 5 5 | vls)
0 -+ ar(s)/Br(s) O
0 0 0
input pole direction, pdir;(G, p;) C C™:
el//«H-l
. L . /
pdiri(G,pi) = (ImV(p;) [epp1 - em ) =ker| 1 [[V(pi)]
em
output pole direction, pdir(G, p;) C CP:
é‘,iL;Jrl .
pdiro(G, pi) = ker ; Ulpi) = (Im[U(P)] [ &uisr -+ & ])
&
Example 1
Let U(s) V(s)

so=2[1 1] = [ SJet )= 0]
One pole at s = 0, with
pi(6.0) = ber [0 1] (V(O) =span( [ }])
pdiro(G.0) = ker [0 1] U(O):Spa"qib

Example 2

Let ve) Y
s=[o 7] =[5 Sew]d L[5 7]
One pole and one transmission zero at s = 0, with
pdiri(G.0) = ker [0 1 ] [V(O)]' = Spa”q? D
pdire(G,0) = ker [0 1] U(O):Spa"qéb

2din(G, 0) = Im V/(0) [(1)] _ span([é D 1 pdiri(G,0)
2diro(G.0) = Im[U(0)] [‘1)] _ span<[(1) D 1 pdiro(G, 0)




Example 3

Let
1 0 s—1
G(S) — [_SJrll X (s+1)1(s+2) ]
s—1 s+2 s+2

and define unimodular polynomials

1 3 3
U(s)_6[s3—s2—4s—2 53—52—4s+4]’

1 [2(5 —-2) —6(s—1) -3(s—1) ]
4 —24 —6(s +2)
0 6 3(s + 2)

Then

(52—1%(54-2) 0 0
UG V(s = | EE 0 0
s+2

Four poles, at {—2,—2,—1,1}, and one transmission zero at {1}.

Example 3 (contd)

Pole directions:

. 01 o 1
pdlr;(G,l):ker[O 01 [V(l)] —span<[8]>

diro(G.1) = ker [0 1] U(1) = spanq

1
pi(G, 1) =ber | 0 o 1 | V(- 1)1'=span<
|
2
0

!))

and pdiro(G, —2) = C2.

Example 3 (contd)

Zero directions:

00 07 [0
zdiri(G,l)ImV(l)ll 0]5pan<[1],[0])
01 0 1

2dirg(G, 1) = Im[U(1)] [(1’ ] _ span({(l) D
Again,

0 0 1
ol [ ] -
p(HD — 2diro(G. 1) 1 pdire(G. 1) _spanq D

Example 4

Let

Its Smith—McMillan form is
1 0 0 -1] [1/s? 0
[—s 1]G(5)[1 s ]_{ 0 1}
Double pole at s = 0, with

pdiri(G.0) = ker [0 1] [V(0))' = Spa”([(ll D

and

pdire(G.0) = ker [ 0 1]U(O):span<{é]>.

Although e L pdiri(G,0), G(s)e; = 1/s ey, i.e. it still has a pole at s = 0.




Simplifications

Let nrank(G(s)) = r. The following statements hold true:

1. ¢p(s) is the least common denominator of all nonzero minors of G(s)
of all orders provided all common poles and zeros in each of these
minors were canceled.

2. ¢,(s) is the greatest common divisor of all the numerators of all
r-order minors of G(s) provided these minors have been adjusted to
have ¢,(s) as their denominators.

Example 3 (contd)

For
1 0 s—1
Gis)=| = 5
s—1 s+2 s+2

nonzero minors of order 1 are

1 s—1 1
s+1° (s+1)(s+2) s—1" s+2

and the minors of order 2 are

s—1 2 q 1
G+ +2?2 G+r1s+2) 9 Gr+2)

Hence,
Pp(s) = (s +2)*(s + 1)(s — 1) = (s + 2)*(s* - 1),

as before.

Example 3 (contd)

For
g1 0 e
Gis)=| i 5 G
s—1 s+2 s+2
the minors of order 2 are:
s—1 2 and 1
(s+1)(s+2)2 (s+1)(s+2) (s +1)(s+2)

or, equivalently, with ¢(s) = (s +2)?(s + 1)(s — 1)

_(5—1)2 2(s+2)(s—1) and (s+2)(s—1)
Po(s) Po(s) ’ $o(s) '
Hence,
¢.(s) =s—1,

as before.

Simplifications (contd)

Let G(s) be a p x m real-rational proper transfer function.

1. If zi € C isn't a pole of G(s), then it's a transmission zero of G(s) iff
rank(G(z)) < nrank(G(s)) and nrank(G(s)) — rank(G(z;)) equals the
geometric multiplicity of the zero at z;, with

zdiri(G, z;) = ker G(z;) and  zdir,(G, z;) = ker[G(z)]'.
2. If p=m = nrank(G(s)) and p; € C isn't a transmission zero of G(s),

it's a pole of G(s) iff det(G~*(p;)) = 0 and m — rank(G*(p;)) equals
the geometric multiplicity of the pole at p;, with

pdiri(G. pi) = ker[G'(p;)]' and pdire(G. pi) = ker G~ *(p).
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