Linear Control Systems (036012) chapter 3

Leonid Mirkin
Faculty of Mechanical Engineering
Technion-IIT

Outline

Continuous-time signals

Basics

Signals are mappings from \mathbb{R} (time) to \mathbb{F}^{n} for $n \in \mathbb{N}$, denoted $x: \mathbb{R} \rightarrow \mathbb{F}^{n}$. The value of x at a time instance t is denoted $x(t) \in \mathbb{F}^{n}$. We say that x is

- scalar-valued if $n=1$
- vector-valued if $n>1$

Set of signals is a vector space, with
addition: $x=y+z$ reads $x(t)=y(t)+z(t)$ for at t
multiplication by scalar: $x=\alpha y$ reads $x(t)=\alpha y(t)$ for all t

Basics

Signals are mappings from \mathbb{R} (time) to \mathbb{F}^{n} for $n \in \mathbb{N}$, denoted $x: \mathbb{R} \rightarrow \mathbb{F}^{n}$. The value of x at a time instance t is denoted $x(t) \in \mathbb{F}^{n}$. We say that x is

- scalar-valued if $n=1$
- vector-valued if $n>1$

Set of signals is a vector space, with
addition: $x=y+z$ reads $x(t)=y(t)+z(t)$ for at t
multiplication by scalar: $x=\alpha y$ reads $x(t)=\alpha y(t)$ for all t
Another important operation is
shift: $\mathbb{S}_{\tau} x$ reads $\left(\mathbb{S}_{\tau} x\right)(t)=x(t+\tau)$ for all t

Basics

Signals are mappings from \mathbb{R} (time) to \mathbb{F}^{n} for $n \in \mathbb{N}$, denoted $x: \mathbb{R} \rightarrow \mathbb{F}^{n}$. The value of x at a time instance t is denoted $x(t) \in \mathbb{F}^{n}$. We say that x is

- scalar-valued if $n=1$
- vector-valued if $n>1$

Set of signals is a vector space, with
addition: $x=y+z$ reads $x(t)=y(t)+z(t)$ for at t
multiplication by scalar: $x=\alpha y$ reads $x(t)=\alpha y(t)$ for all t
Another important operation is
shift: $\mathbb{S}_{\tau} x$ reads $\left(\mathbb{S}_{\tau} x\right)(t)=x(t+\tau)$ for all t
The set

$$
\operatorname{supp}(x):=\{t \in \mathbb{R} \mid x(t) \neq 0\}
$$

is called the support of x.

Normed (Banach) spaces

Admissibility \rightarrow signal spaces:

$$
\begin{aligned}
L_{1}^{n}(\mathbb{R}) & :=\left\{x: \mathbb{R} \rightarrow \mathbb{F}^{n} \mid\|x\|_{1}:=\int_{\mathbb{R}}\|x(t)\|_{1} \mathrm{~d} t<\infty\right\} \\
L_{\infty}^{n}(\mathbb{R}) & :=\left\{x: \mathbb{R} \rightarrow \mathbb{F}^{n} \mid\|x\|_{\infty}:=\sup _{t \in \mathbb{R}}\|x(t)\|_{\infty}<\infty\right\} \\
L_{2}^{n}(\mathbb{R}) & :=\left\{x: \mathbb{R} \rightarrow \mathbb{F}^{n} \mid\|x\|_{2}^{2}:=\int_{\mathbb{R}}\|x(t)\|^{2} \mathrm{~d} t<\infty\right\} \\
L_{2+}^{n}(\mathbb{R}) & :=\left\{x \in L_{2}^{n}(\mathbb{R}) \mid x(t)=0 \text { for all } t<0\right\} \\
L_{2-}^{n}(\mathbb{R}) & :=\left\{x \in L_{2}^{n}(\mathbb{R}) \mid x(t)=0 \text { for all } t>0\right\}
\end{aligned}
$$

Normed (Banach) spaces

Admissibility \rightarrow signal spaces:

$$
\begin{aligned}
L_{1}^{n}(\mathbb{R}) & :=\left\{x: \mathbb{R} \rightarrow \mathbb{F}^{n} \mid\|x\|_{1}:=\int_{\mathbb{R}}\|x(t)\|_{1} \mathrm{~d} t<\infty\right\} \\
L_{\infty}^{n}(\mathbb{R}) & :=\left\{x: \mathbb{R} \rightarrow \mathbb{F}^{n} \mid\|x\|_{\infty}:=\sup _{t \in \mathbb{R}}\|x(t)\|_{\infty}<\infty\right\} \\
L_{2}^{n}(\mathbb{R}) & :=\left\{x: \mathbb{R} \rightarrow \mathbb{F}^{n} \mid\|x\|_{2}^{2}:=\int_{\mathbb{R}}\|x(t)\|^{2} \mathrm{~d} t<\infty\right\} \\
L_{2+}^{n}(\mathbb{R}) & :=\left\{x \in L_{2}^{n}(\mathbb{R}) \mid x(t)=0 \text { for all } t<0\right\} \\
L_{2-}^{n}(\mathbb{R}) & :=\left\{x \in L_{2}^{n}(\mathbb{R}) \mid x(t)=0 \text { for all } t>0\right\}
\end{aligned}
$$

L_{2} is Hilbert, with

$$
\langle x, y\rangle_{2}:=\int_{\mathbb{R}} y^{\prime}(t) x(t) \mathrm{d} t
$$

Fourier transform

Defined

$$
\mathfrak{F}\{x\}=X(\mathrm{j} \omega):=\int_{\mathbb{R}} x(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t,
$$

where $\omega \in \mathbb{R}$ called the (angular) frequency and measured in $\mathrm{rad} / \mathrm{sec} . \mathfrak{F}\{x\}$ is the frequency-domain representation or spectrum of x.

$$
\mathfrak{F}^{-1}\{X\}=x(t)=\frac{1}{2 \pi} \int_{\mathbb{R}} X(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} \omega
$$

i.e. x is a superposition, weighted by $X(\mathrm{j} \omega)$, of harmonic signals $\exp _{\mathrm{j} \omega}$ with frequencies ω.

Fourier transform (contd)

Existence:

- well defined (absolute convergence) for $x \in L_{1}$
- extendible (weaker convergence) for $x \in L_{2}$ by the Plancherel Theorem
$\mathfrak{F}\{\cdot\}$ is a unitary mapping $L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathrm{j} \mathbb{R})$, i.e. it preserves sizes:

$$
\underbrace{\int_{\mathbb{R}}\|x(t)\|^{2} \mathrm{~d} t}_{\|x\|_{2}^{2}}=\underbrace{\frac{1}{2 \pi} \int_{\mathbb{R}}\|X(\mathrm{j} \omega)\|^{2} \mathrm{~d} \omega}_{\|X\|_{2}^{2}}
$$

It also preserves angles:

$$
\underbrace{\int_{\mathbb{R}}\left[x_{2}(t)\right]^{\prime} x_{1}(t) \mathrm{d} t}_{\left\langle x_{1}, x_{2}\right\rangle}=\underbrace{\frac{1}{2 \pi} \int_{\mathbb{R}}\left[X_{2}(\mathrm{j} \omega)\right]^{\prime} X_{1}(\mathrm{j} \omega) \mathrm{d} \omega}_{\left\langle x_{1}, X_{2}\right\rangle_{2}}
$$

(Parseval's theorem, in engineering literature).

Laplace transform

The two-sided (bilateral) Laplace transform:

$$
\mathfrak{L}\{x\}=F(s):=\int_{\mathbb{R}} x(t) \mathrm{e}^{-s t} \mathrm{~d} t
$$

at all $s \in \mathbb{C}$ where the integral converges (region of convergence, aka RoC). We need $x \exp _{-s} \in L_{1}$ for absolute convergence.

Normally used for signals supported on semi-axes:

- if $\operatorname{supp}(x) \subset \mathbb{R}_{+}$, then RoC is typically \mathbb{C}_{α} (may be $\overline{\mathbb{C}}_{\alpha}$)
- if $\operatorname{supp}(x) \subset \mathbb{R}_{-}$, then RoC is typically $\mathbb{C} \backslash \overline{\mathbb{C}}_{\alpha}$ (may be $\left.\mathbb{C} \backslash \mathbb{C}_{\alpha}\right)$ for some $\alpha \in \mathbb{R} \cup\{-\infty, \infty\}$.

Laplace transform: mind RoC

Readily verifiable that

$$
\begin{array}{ll}
-x(t)=x_{+}(t):=\mathrm{e}^{-t} \mathbb{1}(t)= \\
-x(t)=x_{-}(t):=-\mathrm{e}^{-t} \mathbb{\square}(-t)= & \Longrightarrow X(s)=\frac{1}{s+1} \\
& \Longrightarrow X(s)=\frac{1}{s+1}
\end{array}
$$

i.e.

- X alone does not define x unambiguously.

Laplace transform: mind RoC

Readily verifiable that

$$
\begin{array}{ll}
-x(t)=x_{+}(t):=\mathrm{e}^{-t} \mathbb{1}(t)= \\
-x(t)=x_{-}(t):=-\mathrm{e}^{-t} \mathbb{0}(-t)= & \Longrightarrow X(s)=\frac{1}{s+1} \\
& \Longrightarrow X(s)=\frac{1}{s+1}
\end{array}
$$

i.e.

- X alone does not define x unambiguously.

If the knowledge of X is complemented by its RoC:

$$
\begin{array}{ll}
-X(s)=\frac{1}{s+1} \text { and } \mathrm{RoC}=\mathbb{C}_{-1} & \Longrightarrow x=x_{+} \\
-X(s)=\frac{1}{s+1} \text { and } \operatorname{RoC}=\mathbb{C} \backslash \mathbb{C}_{-1} & \Longrightarrow x=x_{-}
\end{array}
$$

Paley-Wiener and H_{2} space

$\mathfrak{L}\{\cdot\}$ is a unitary mapping $L_{2+}(\mathbb{R}) \rightarrow H_{2}$, where

$$
\begin{aligned}
& H_{2}^{n}:=\left\{X: \mathbb{C}_{0} \rightarrow \mathbb{C}^{n} \mid X(s) \text { is holomorphic in } \mathbb{C}_{0}\right. \text { and } \\
&\left.\|X\|_{2}:=\sup _{\sigma>0}\left(\frac{1}{2 \pi} \int_{\mathbb{R}}\|X(\sigma+\mathrm{j} \omega)\|^{2} \mathrm{~d} \omega\right)^{1 / 2}<\infty\right\}
\end{aligned}
$$

Important:

- the boundary function $\tilde{X}\left(\underset{\tilde{X}}{ }(\mathrm{j}):=\lim _{\sigma \downarrow 0} X(\sigma+\mathrm{j} \omega)\right.$ exists for almost all ω and $\|\tilde{X}\|_{2}=\|X\|_{2}\left(\right.$ so $\left.\tilde{X} \in L_{2}(j \mathbb{R})\right)$
$-H_{2}$ functions are identified with boundary functions $\Longrightarrow H_{2} \subset L_{2}(j \mathbb{R})$
- H_{2}-norm (provided $X \in \mathrm{H}_{2}$):

$$
\|X\|_{2}=\left(\frac{1}{2 \pi} \int_{\mathbb{R}}\|X(\mathrm{j} \omega)\|^{2} \mathrm{~d} \omega\right)^{1 / 2}
$$

Outline

Continuous-time dynamic systems in time domain

Linear systems on L_{2}

Linear operators

$$
G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}
$$

for some domain \mathfrak{D}_{G}.

Linear systems on L_{2}

Linear operators

$$
G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}
$$

for some domain \mathfrak{D}_{G}.

Sufficiently general class of $G: u \mapsto y$ satisfies

$$
y(t)=\int_{\mathbb{R}} g(t, s) u(s) \mathrm{d} s
$$

where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{p \times m}$ is the impulse response (kernel) of G, whose
$-g_{\bullet j}(t, s)$ is $y(t)$ under $u(t)=e_{j} \delta(t-s)$.

Some systems $u \mapsto y$

$G_{\text {int }}($ integrator $) \dot{y}(t)=u(t)$
$G_{\text {dint }}$ (discrete integrator)

$$
y(t)=y(t-T)+u(t)
$$

$G_{\text {fmint }}$ (finite-memory integrator)

$$
y(t)=\int_{t-T}^{t} u(s) \mathrm{d} s
$$

D_{τ} (τ-delay operator) $y(t)=u(t-\tau)$
$F_{\text {ilp }}$ (ideal low-pass filter)

Some systems $u \mapsto y$

$G_{\text {int }}($ integrator $) \dot{y}(t)=u(t) \Longrightarrow \operatorname{gint}(t, s)=\mathbb{1}(t-s)$
$G_{\text {dint }}$ (discrete integrator)

$$
y(t)=y(t-T)+u(t)
$$

$G_{\text {fmint }}$ (finite-memory integrator)

$$
y(t)=\int_{t-T}^{t} u(s) \mathrm{d} s
$$

D_{τ} (τ-delay operator) $y(t)=u(t-\tau)$
$F_{\text {ilp }}$ (ideal low-pass filter)

Some systems $u \mapsto y$

$G_{\text {int }}($ integrator $) \dot{y}(t)=u(t) \Longrightarrow \operatorname{gint}(t, s)=\mathbb{1}(t-s)$
$G_{\text {dint }}$ (discrete integrator)

$$
y(t)=y(t-T)+u(t) \Longrightarrow g_{\text {dint }}(t, s)=\sum_{i \in \mathbb{N}} \delta(t-s-(i-1) T)
$$

$G_{\text {fmint }}$ (finite-memory integrator)

$$
y(t)=\int_{t-T}^{t} u(s) \mathrm{d} s
$$

D_{τ} (τ-delay operator) $y(t)=u(t-\tau)$
$F_{\text {ilp }}$ (ideal low-pass filter)

Some systems $u \mapsto y$

$G_{\text {int }}($ integrator $) \dot{y}(t)=u(t) \Longrightarrow \operatorname{gint}(t, s)=\mathbb{1}(t-s)$
$G_{\text {dint }}$ (discrete integrator)

$$
y(t)=y(t-T)+u(t) \Longrightarrow g_{\text {dint }}(t, s)=\sum_{i \in \mathbb{N}} \delta(t-s-(i-1) T)
$$

$G_{\text {fmint }}$ (finite-memory integrator)

$$
y(t)=\int_{t-T}^{t} u(s) \mathrm{d} s \Longrightarrow g_{\mathrm{fmint}}(t, s)=\mathbb{1}(t-s)-\mathbb{1}(t-s-T)
$$

D_{τ} (τ-delay operator) $y(t)=u(t-\tau)$
$F_{\text {ilp }}$ (ideal low-pass filter)

Some systems $u \mapsto y$

$G_{\text {int }}($ integrator $) \dot{y}(t)=u(t) \Longrightarrow \operatorname{gint}(t, s)=\mathbb{1}(t-s)$
$G_{\text {dint }}$ (discrete integrator)

$$
y(t)=y(t-T)+u(t) \Longrightarrow g_{\text {dint }}(t, s)=\sum_{i \in \mathbb{N}} \delta(t-s-(i-1) T)
$$

$G_{\text {fmint }}$ (finite-memory integrator)

$$
y(t)=\int_{t-T}^{t} u(s) \mathrm{d} s \Longrightarrow g_{\mathrm{fmint}}(t, s)=\mathbb{1}(t-s)-\mathbb{1}(t-s-T)
$$

D_{τ} (τ-delay operator) $y(t)=u(t-\tau) \Longrightarrow d_{\tau}(t, s)=\delta(t-s-\tau)$
$F_{\text {ilp }}$ (ideal low-pass filter)

Some systems $u \mapsto y$

$G_{\text {int }}$ (integrator) $\dot{y}(t)=u(t) \Longrightarrow g_{\text {int }}(t, s)=\mathbb{1}(t-s)$
$G_{\text {dint }}$ (discrete integrator)

$$
y(t)=y(t-T)+u(t) \Longrightarrow g_{\operatorname{dint}}(t, s)=\sum_{i \in \mathbb{N}} \delta(t-s-(i-1) T)
$$

$G_{\text {fmint }}$ (finite-memory integrator)

$$
y(t)=\int_{t-T}^{t} u(s) \mathrm{d} s \Longrightarrow g_{\mathrm{fmint}}(t, s)=\mathbb{1}(t-s)-\mathbb{1}(t-s-T)
$$

D_{τ} (τ-delay operator) $y(t)=u(t-\tau) \Longrightarrow d_{\tau}(t, s)=\delta(t-s-\tau)$
$F_{\text {ilp }}$ (ideal low-pass filter)

$$
f_{\mathrm{ilp}}(t, s)=\frac{\omega_{\mathrm{b}}}{\pi} \operatorname{sinc}\left(\omega_{\mathrm{b}}(t-s)\right)
$$

Causality

$G: u \mapsto y$ is causal if for every $t_{c} \in \mathbb{R}$
$-y(t)=0$ for all $t \leq t_{c}$ whenever $u(t)=0$ for all $t \leq t_{c}$.
Roughly, it says that

- $y(t)$ may only depend on past and present inputs u for all t.

Consequently,

- causal systems may be thought of as $\mathfrak{D}_{G} \subset L_{2+}^{m} \rightarrow L_{2+}^{p}$.

Causality

$G: u \mapsto y$ is causal if for every $t_{c} \in \mathbb{R}$
$-y(t)=0$ for all $t \leq t_{c}$ whenever $u(t)=0$ for all $t \leq t_{c}$.
Roughly, it says that

- $y(t)$ may only depend on past and present inputs u for all t.

Consequently,

- causal systems may be thought of as $\mathfrak{D}_{G} \subset L_{2+}^{m} \rightarrow L_{2+}^{p}$.

Criterion:

$$
y(t)=\int_{\mathbb{R}} g(t, s) u(s) \mathrm{d} s=\int_{t_{\mathrm{c}}}^{\infty} g(t, s) u(s) \mathrm{d} s=0, \quad \forall t<t_{\mathrm{c}}, u \in \mathfrak{D}_{G}
$$

whence

$$
G \text { is causal } \Longleftrightarrow g(t, s)=0 \text { for all } s>t .
$$

Causality

$G: u \mapsto y$ is causal if for every $t_{c} \in \mathbb{R}$
$-y(t)=0$ for all $t \leq t_{c}$ whenever $u(t)=0$ for all $t \leq t_{c}$.
Roughly, it says that

- $y(t)$ may only depend on past and present inputs u for all t.

Consequently,

- causal systems may be thought of as $\mathfrak{D}_{G} \subset L_{2+}^{m} \rightarrow L_{2+}^{p}$.

Criterion:

$$
y(t)=\int_{\mathbb{R}} g(t, s) u(s) \mathrm{d} s=\int_{t_{c}}^{\infty} g(t, s) u(s) \mathrm{d} s=0, \quad \forall t<t_{\mathrm{c}}, u \in \mathfrak{D}_{G}
$$

whence

$$
G \text { is causal } \Longleftrightarrow g(t, s)=0 \text { for all } s>t .
$$

Remark: G is said to be anti-causal if y may only depend on future and present inputs u. A linear G is anti-causal $\Longleftrightarrow g(t, s)=0$ for all $s<t$.

Time (shift) invariance

Linear $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is time invariant (shift invariant) if
$-G \mathbb{S}_{\tau}=\mathbb{S}_{\tau} G$ for all $\tau \in \mathbb{R}$

Time (shift) invariance

Linear $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is time invariant (shift invariant) if
$-G \mathbb{S}_{\tau}=\mathbb{S}_{\tau} G$ for all $\tau \in \mathbb{R}$
If $G L T I$, its impulse response $g(t, s)=\left(G \$_{-s} \delta\right)(t)$ and then

$$
\begin{aligned}
y(t) & =\int_{\mathbb{R}}\left(G \$_{-s} \delta\right)(t) u(s) \mathrm{d} s=\int_{\mathbb{R}}\left(\mathbb{S}_{-s} G \delta\right)(t) u(s) \mathrm{d} s \\
& =\int_{\mathbb{R}}(G \delta)(t-s) u(s) \mathrm{d} s,
\end{aligned}
$$

i.e. only the response of G to δ applied at $t=0$ matters.

Time (shift) invariance

Linear $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is time invariant (shift invariant) if
$-G \$_{\tau}=\$_{\tau} G$ for all $\tau \in \mathbb{R}$
If $G L T I$, its impulse response $g(t, s)=\left(G \$_{-s} \delta\right)(t)$ and then

$$
\begin{aligned}
y(t) & =\int_{\mathbb{R}}\left(G \$_{-s} \delta\right)(t) u(s) \mathrm{d} s=\int_{\mathbb{R}}\left(\mathbb{S}_{-s} G \delta\right)(t) u(s) \mathrm{d} s \\
& =\int_{\mathbb{R}}(G \delta)(t-s) u(s) \mathrm{d} s
\end{aligned}
$$

i.e. only the response of G to δ applied at $t=0$ matters. We then treat
$-g: \mathbb{R} \rightarrow \mathbb{R}^{p \times m}$ (i.e. $\left.g(t)\right)$

- can write the response as the convolution integral

$$
y(t)=\int_{\mathbb{R}} g(t-s) u(s) \mathrm{d} s=: g * u
$$

Adjoint system

L_{2} is Hilbert $\Longrightarrow G$ has its adjoint G^{\prime}, defined via $\langle G u, v\rangle=\left\langle u, G^{\prime} v\right\rangle$. If

$$
(G u)(t)=\int_{\mathbb{R}} g(t, s) u(s) \mathrm{d} s
$$

then

$$
\begin{aligned}
\langle G u, v\rangle & =\int_{\mathbb{R}} v^{\prime}(t)(G u)(t) \mathrm{d} t=\int_{\mathbb{R}} v^{\prime}(t) \int_{\mathbb{R}} g(t, s) u(s) \mathrm{d} s \mathrm{~d} t \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}}\left(v^{\prime}(t) g(t, s)\right) u(s) \mathrm{d} s \mathrm{~d} t=\int_{\mathbb{R}} \int_{\mathbb{R}}\left(g^{\prime}(t, s) v(t)\right)^{\prime} u(s) \mathrm{d} t \mathrm{~d} s \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} g^{\prime}(t, s) v(t) \mathrm{d} t\right)^{\prime} u(s) \mathrm{d} s=\int_{\mathbb{R}}(\underbrace{\left.\int_{\mathbb{R}} g^{\prime}(s, t) v(s) \mathrm{d} s\right)^{\prime} u(t) \mathrm{d} t}_{\left(G^{\prime} v\right)(t)} \\
& =\left\langle u, G^{\prime} v\right\rangle .
\end{aligned}
$$

Thus, the impulse response of G^{\prime} is $[g(s, t)]^{\prime}$, or $[g(-t)]^{\prime}$ if G is LTI.
$-G$ is causal $\Longrightarrow G^{\prime}$ is anti-causal.

Stability

Linear $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{P}$ is stable (L_{2}-stable)

- $\mathfrak{D}_{G}=L_{2}^{m}$ and
$-\|G\|:=\sup _{\|u\|_{2}=1}\|G u\|_{2}<\infty\left(L_{2}\right.$-induced norm)

Stability

Linear $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is stable (L_{2}-stable)

- $\mathfrak{D}_{G}=L_{2}^{m}$ and
$-\|G\|:=\sup _{\|u\|_{2}=1}\|G u\|_{2}<\infty\left(L_{2}\right.$-induced norm $)$
It is known (Young's convolution inequality) that

$$
g \in L_{1}, u \in L_{2} \Longrightarrow g * u \in L_{2} \text { and }\|g * u\|_{2} \leq\|g\|_{1}\|u\|_{2}
$$

Hence, if G is LTI, then it is

- stable whenever $g \in L_{1}$.

But $g, u \in L_{2}$ might not imply that $g * u \in L_{2}$, so
$-g \in L_{2}$ does not necessarily imply the stability of G.

Stability

Linear $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is stable (L_{2}-stable)

- $\mathfrak{D}_{G}=L_{2}^{m}$ and
$-\|G\|:=\sup _{\|u\|_{2}=1}\|G u\|_{2}<\infty\left(L_{2}\right.$-induced norm $)$
It is known (Young's convolution inequality) that

$$
g \in L_{1}, u \in L_{2} \Longrightarrow g * u \in L_{2} \text { and }\|g * u\|_{2} \leq\|g\|_{1}\|u\|_{2}
$$

Hence, if G is LTI, then it is

- stable whenever $g \in L_{1}$.

But $g, u \in L_{2}$ might not imply that $g * u \in L_{2}$, so
$-g \in L_{2}$ does not necessarily imply the stability of G.
Unfortunately,
$\ddot{\sim}$ no N\&S stability test in terms of the impulse response in general.

Outline

Continuous-time dynamic LTI systems in transformed domains

Basic property

Because

$$
y=g * u \Longleftrightarrow \mathfrak{L}\{y\}=\mathfrak{L}\{g\} \mathfrak{L}\{u\} \Longleftrightarrow \mathfrak{F}\{y\}=\mathfrak{F}\{g\} \mathfrak{F}\{u\}
$$

convolution representations become product in transformed domains, i.e. if G is LTI, then

$$
y=G u \Longleftrightarrow Y(\mathrm{j} \omega)=G(\mathrm{j} \omega) U(\mathrm{j} \omega)
$$

whenever both g and u are Fourier transformable and

$$
y=G u \Longleftrightarrow Y(s)=G(s) U(s)
$$

for all $s \in \operatorname{RoC}(g) \cap \operatorname{RoC}(u)$. Here

- $G(s)=(\mathfrak{L}\{g\})(s)$ is the transfer function of G
- $G(\mathrm{j} \omega)=(\mathfrak{F}\{g\})(\mathrm{j} \omega)$ is the frequency response of G

Beware of frequency response analysis: example

Consider

for

$$
p(t)=-2 \mathrm{e}^{-t} \mathbb{1}(t)=\square .
$$

Then

$$
y(t)=-2 \int_{-\infty}^{t} \mathrm{e}^{-(t-s)} u(s) \mathrm{d} s \Longleftrightarrow \dot{y}(t)=-y(t)-2 u(t)
$$

As $u(t)=r(t)-y(t)$,

$$
\dot{y}(t)=y(t)-2 r(t) \Longleftrightarrow y(t)=-2 \int_{-\infty}^{t} \mathrm{e}^{t-s} u(s) \mathrm{d} s,
$$

so G is causal, with $g(t)=-2 \mathrm{e}^{t} \mathbb{1}(t)$, and unstable.

Beware of frequency response analysis: example (contd)

In the frequency domain,

with $Y(\mathrm{j} \omega)=P(\mathrm{j} \omega)(R(\mathrm{j} \omega)-Y(\mathrm{j} \omega))$. Hence

$$
G(\mathrm{j} \omega)=\frac{P(\mathrm{j} \omega)}{1+P(\mathrm{j} \omega)}=\frac{2}{1-\mathrm{j} \omega}
$$

Beware of frequency response analysis: example (contd)

In the frequency domain,

with $Y(\mathrm{j} \omega)=P(\mathrm{j} \omega)(R(\mathrm{j} \omega)-Y(\mathrm{j} \omega))$. Hence

$$
G(\mathrm{j} \omega)=\frac{P(\mathrm{j} \omega)}{1+P(\mathrm{j} \omega)}=\frac{2}{1-\mathrm{j} \omega} \quad \Longrightarrow \quad g(t)=2 \mathrm{e}^{t} \mathbb{\mathbb { }}(-t)=\varliminf_{t}
$$

This G is anti-causal and stable (for this $g \in L_{1}$), which makes no sense.

Beware of frequency response analysis: example (contd)

In the frequency domain,

with $Y(\mathrm{j} \omega)=P(\mathrm{j} \omega)(R(\mathrm{j} \omega)-Y(\mathrm{j} \omega))$. Hence

$$
G(\mathrm{j} \omega)=\frac{P(\mathrm{j} \omega)}{1+P(\mathrm{j} \omega)}=\frac{2}{1-\mathrm{j} \omega} \quad \Longrightarrow \quad g(t)=2 \mathrm{e}^{t} \mathbb{\mathbb { }}(-t)=\square_{t}
$$

This G is anti-causal and stable (for this $g \in L_{1}$), which makes no sense.

Hazards of analyzing systems in the Fourier domain:
$\ddot{\sim}$ hard to cope with exponentially growing signals
\leadsto hard to trace causality

Feedback in Laplace domain: example

In the Laplace domain,

for

$$
p(t)=-2 \mathrm{e}^{-t} \mathbb{1}(t) \quad \Longrightarrow \quad P(s)=-\frac{2}{s+1}
$$

whose $\mathrm{RoC}=\mathbb{C}_{-1}$ (includes $\mathrm{j} \mathbb{R}$). Then, via $Y(s)=P(s)(R(s)-Y(s))$,

$$
G(s)=\frac{P(s)}{1+P(s)}=\frac{2}{1-s} \Longrightarrow g(t)= \begin{cases}2 \mathrm{e}^{t} \mathbb{1}(-t) & \text { if } \operatorname{RoC}=\mathbb{C} \backslash \overline{\mathbb{C}}_{1} \\ -2 \mathrm{e}^{t} \mathbb{\mathbb { }}(t) & \text { if } \operatorname{RoC}=\mathbb{C}_{1}\end{cases}
$$

Feedback in Laplace domain: example

In the Laplace domain,

for

$$
p(t)=-2 \mathrm{e}^{-t} \mathbb{T}(t) \quad \Longrightarrow \quad P(s)=-\frac{2}{s+1}
$$

whose $\mathrm{RoC}=\mathbb{C}_{-1}$ (includes $\mathrm{j} \mathbb{R}$). Then, via $Y(s)=P(s)(R(s)-Y(s))$,

$$
G(s)=\frac{P(s)}{1+P(s)}=\frac{2}{1-s} \Longrightarrow g(t)= \begin{cases}2 \mathrm{e}^{t} \mathbb{1}(-t) & \text { if } \operatorname{RoC}=\mathbb{C} \backslash \overline{\mathbb{C}}_{1} \\ -2 \mathrm{e}^{t} \mathbb{\mathbb { }}(t) & \text { if } \operatorname{RoC}=\mathbb{C}_{1}\end{cases}
$$

It is not unreasonable to assume that

- causality is preserved under this feedback \Longrightarrow RoC must remain a RHP The correct impulse response can then be obtained immediately.

Systems in Laplace domain

Typically,

- control applications are concerned with causal systems
- impulse responses are supported in \mathbb{R}_{+}
- signals are assumed to have support in \mathbb{R}_{+}too
- RoC's are \mathbb{C}_{α} for some $\alpha \in \mathbb{R} \cup\{-\infty, \infty\}$
- causal LTI systems treated as operators $G: \mathfrak{D}_{G} \subset L_{2+}^{m} \rightarrow L_{2+}^{p}$

Systems in Laplace domain

Typically,

- control applications are concerned with causal systems
- impulse responses are supported in \mathbb{R}_{+}
- signals are assumed to have support in \mathbb{R}_{+}too
- RoC's are \mathbb{C}_{α} for some $\alpha \in \mathbb{R} \cup\{-\infty, \infty\}$
- causal LTI systems treated as operators $G: \mathfrak{D}_{G} \subset L_{2+}^{m} \rightarrow L_{2+}^{p}$

Outcomes:

- causal LTI systems $=$ transfer functions
- dynamical systems can be manipulated algebraically

Transfer function: examples

Systems we already saw:
$-g_{\text {int }}(t)=\mathbb{1}(t)$
$-g_{\text {dint }}(t)=\sum \delta(t-i T)$
$-g_{\mathrm{fmint}}(t)=\mathbb{1}_{[0, T]}(t)$
$-d_{\tau}(t)=\delta(t-\tau)$

Transfer function: examples

Systems we already saw:
$-g_{\text {int }}(t)=\mathbb{1}(t)$
$\Longrightarrow G_{\text {int }}(s)=\frac{1}{s}$
$-g_{\text {dint }}(t)=\sum \delta(t-i T)$
$-g_{\mathrm{fmint}}(t)=\mathbb{1}_{[0, T]}(t)$
$-d_{\tau}(t)=\delta(t-\tau)$

Transfer function: examples

Systems we already saw:
$-g_{\text {int }}(t)=\mathbb{1}(t) \quad \Longrightarrow G_{\text {int }}(s)=\frac{1}{s}$
$-g_{\text {dint }}(t)=\sum \delta(t-i T) \Longrightarrow G_{\text {dint }}(s)=\sum \mathrm{e}^{-s i T}=\frac{1}{1-\mathrm{e}^{-s T}}$
$-g_{\mathrm{fmint}}(t)=\mathbb{1}_{[0, T]}(t)$
$-d_{\tau}(t)=\delta(t-\tau)$

Transfer function: examples

Systems we already saw:
$-g_{\text {int }}(t)=\mathbb{1}(t) \quad \Longrightarrow G_{\text {int }}(s)=\frac{1}{s}$
$-g_{\text {dint }}(t)=\sum \delta(t-i T) \Longrightarrow G_{\text {dint }}(s)=\sum \mathrm{e}^{-s i T}=\frac{1}{1-\mathrm{e}^{-s T}}$
$-g_{\mathrm{fmint}}(t)=\mathbb{1}_{[0, T]}(t) \Longrightarrow G_{\mathrm{fmint}}(s)=\frac{1-\mathrm{e}^{-s T}}{s}$
$-d_{\tau}(t)=\delta(t-\tau)$

Transfer function: examples

Systems we already saw:

$$
\begin{array}{ll}
-g_{\text {int }}(t)=\mathbb{1}(t) & \Longrightarrow G_{\text {int }}(s)=\frac{1}{s} \\
-g_{\text {dint }}(t)=\sum \delta(t-i T) & \Longrightarrow G_{\text {dint }}(s)=\sum \mathrm{e}^{-s i T}=\frac{1}{1-\mathrm{e}^{-s T}} \\
-g_{\mathrm{fmint}}(t)=\mathbb{1}_{[0, T]}(t) & \Longrightarrow G_{\mathrm{fmint}}(s)=\frac{1-\mathrm{e}^{-s T}}{s} \\
-d_{\tau}(t)=\delta(t-\tau) & \Longrightarrow D_{\tau}(s)=\mathrm{e}^{-s \tau}
\end{array}
$$

whose RoC's are $\mathbb{C}_{0}, \mathbb{C}_{0}, \mathbb{C}$, and \mathbb{C}, respectively.

Causality + stability in Laplace domain

An LTI G is causal and stable iff its transfer function $G \in H_{\infty}^{p \times m}$, where

$$
H_{\infty}^{p \times m}:=\left\{G: \mathbb{C}_{0} \rightarrow \mathbb{C}^{p \times m} \mid G(s) \text { is holomorphic and bounded in } \mathbb{C}_{0}\right\}
$$

Thus,
$-G H_{2}^{m} \subset H_{2}^{p} \Longleftrightarrow G \in H_{\infty}^{p \times m}$

- if $p=m$ and $G, G^{-1} \in H_{\infty}^{m \times m}$, then $G H_{2}^{m}=H_{2}^{m}$

Causality + stability in Laplace domain

An LTI G is causal and stable iff its transfer function $G \in H_{\infty}^{p \times m}$, where

$$
H_{\infty}^{p \times m}:=\left\{G: \mathbb{C}_{0} \rightarrow \mathbb{C}^{p \times m} \mid G(s) \text { is holomorphic and bounded in } \mathbb{C}_{0}\right\}
$$

Thus,
$-G H_{2}^{m} \subset H_{2}^{p} \Longleftrightarrow G \in H_{\infty}^{p \times m}$

- if $p=m$ and $G, G^{-1} \in H_{\infty}^{m \times m}$, then $G H_{2}^{m}=H_{2}^{m}$
H_{∞} is Banach, with $\|G\|_{\infty}:=\sup _{s \in \mathbb{C}_{0}}\|G(s)\|$. Can be associated with its boundary function from

$$
L_{\infty}^{p \times m}(\mathrm{j} \mathbb{R}):=\left\{G: \mathrm{j} \mathbb{R} \rightarrow \mathbb{C}^{p \times m} \mid\|G\|_{\infty}:=\underset{\omega \in \mathbb{R}}{\operatorname{ess} \sup }\|G(\mathrm{j} \omega)\|<\infty\right\}
$$

and $H_{\infty} \subset L_{\infty}(j \mathbb{R})$. Then, provided $G \in H_{\infty}$,

$$
\|G\|_{\infty}=\underset{\omega \in \mathbb{R}}{\operatorname{ess} \sup }\|G(\mathrm{j} \omega)\| .
$$

Examples

- $G_{\text {int }} \notin H_{\infty}$ as $1 / s$ is holomorphic but not bounded in \mathbb{C}_{0}

Examples

- $G_{\text {int }} \notin H_{\infty}$ as $1 / s$ is holomorphic but not bounded in \mathbb{C}_{0}
$-G_{\text {dint }} \notin H_{\infty}$ as $1 /\left(1-\mathrm{e}^{-s T}\right)$ is holomorphic but not bounded in \mathbb{C}_{0}

Examples

- $G_{\text {int }} \notin H_{\infty}$ as $1 / s$ is holomorphic but not bounded in \mathbb{C}_{0}
- $G_{\text {dint }} \notin H_{\infty}$ as $1 /\left(1-\mathrm{e}^{-s T}\right)$ is holomorphic but not bounded in \mathbb{C}_{0}
$-G_{\text {fmint }} \in H_{\infty}$ as $\left(1-\mathrm{e}^{-s T}\right) / s$ is holomorphic and bounded in \mathbb{C}_{0} for every $s=(\sigma+\mathrm{j} \omega) / T$,

$$
\begin{aligned}
\left|G_{\text {fmint }}(s)\right|^{2} & =T^{2}\left|\frac{1-\mathrm{e}^{-(\sigma+\mathrm{j} \omega)}}{\sigma+\mathrm{j} \omega}\right|^{2}=T^{2} \frac{1-2 \mathrm{e}^{-\sigma} \cos \omega+\mathrm{e}^{-2 \sigma}}{\sigma^{2}+\omega^{2}} \\
& =T^{2}\left(\frac{1-\mathrm{e}^{-\sigma}}{\sigma}\right)^{2}-T^{2} \frac{4 \omega^{2} \mathrm{e}^{-\sigma}}{\sigma^{2}\left(\sigma^{2}+\omega^{2}\right)}\left(\sinh ^{2}\left(\frac{\sigma}{2}\right)-2 \frac{1-\cos \omega}{\omega^{2}}\left(\frac{\sigma}{2}\right)^{2}\right) \\
& \leq T^{2}\left(\frac{1-\mathrm{e}^{-\sigma}}{\sigma}\right)^{2}-T^{2} \frac{4 \omega^{2} \mathrm{e}^{-\sigma}\left(\sinh ^{2}(\sigma / 2)-(\sigma / 2)^{2}\right)}{\sigma^{2}\left(\sigma^{2}+\omega^{2}\right)} \\
& \leq T^{2}\left(\frac{1-\mathrm{e}^{-\sigma}}{\sigma}\right)^{2}<T^{2}
\end{aligned}
$$

where $2(1-\cos \omega) / \omega^{2} \leq 1$ and $\sinh ^{2} x>x^{2}$ for all $x \neq 0$ were used

Examples

- $G_{\text {int }} \notin H_{\infty}$ as $1 / s$ is holomorphic but not bounded in \mathbb{C}_{0}
- $G_{\text {dint }} \notin H_{\infty}$ as $1 /\left(1-\mathrm{e}^{-s T}\right)$ is holomorphic but not bounded in \mathbb{C}_{0}
$-G_{\text {fmint }} \in H_{\infty}$ as $\left(1-\mathrm{e}^{-s T}\right) / s$ is holomorphic and bounded in \mathbb{C}_{0} for every $s=(\sigma+\mathrm{j} \omega) / T$,

$$
\begin{aligned}
\left|G_{f \text { fint }}(s)\right|^{2} & =T^{2}\left|\frac{1-\mathrm{e}^{-(\sigma+\mathrm{j} \omega)}}{\sigma+\mathrm{j} \omega}\right|^{2}=T^{2} \frac{1-2 \mathrm{e}^{-\sigma} \cos \omega+\mathrm{e}^{-2 \sigma}}{\sigma^{2}+\omega^{2}} \\
& =T^{2}\left(\frac{1-\mathrm{e}^{-\sigma}}{\sigma}\right)^{2}-T^{2} \frac{4 \omega^{2} \mathrm{e}^{-\sigma}}{\sigma^{2}\left(\sigma^{2}+\omega^{2}\right)}\left(\sinh ^{2}\left(\frac{\sigma}{2}\right)-2 \frac{1-\cos \omega}{\omega^{2}}\left(\frac{\sigma}{2}\right)^{2}\right) \\
& \leq T^{2}\left(\frac{1-\mathrm{e}^{-\sigma}}{\sigma}\right)^{2}-T^{2} \frac{4 \omega^{2} \mathrm{e}^{-\sigma}\left(\sinh ^{2}(\sigma / 2)-(\sigma / 2)^{2}\right)}{\sigma^{2}\left(\sigma^{2}+\omega^{2}\right)} \\
& \leq T^{2}\left(\frac{1-\mathrm{e}^{-\sigma}}{\sigma}\right)^{2}<T^{2}
\end{aligned}
$$

where $2(1-\cos \omega) / \omega^{2} \leq 1$ and $\sinh ^{2} x>x^{2}$ for all $x \neq 0$ were used
$-D_{\tau} \in H_{\infty}$ as $\mathrm{e}^{-s \tau}$ is holomorphic and bounded in \mathbb{C}_{0}
for every $s=\sigma+\mathrm{j} \omega,\left|\mathrm{e}^{-(\sigma+\mathrm{j} \omega) \tau}\right|=\mathrm{e}^{-\sigma \tau} \leq 1$

Causality + stability and system poles

Let

$$
G(s)=\frac{1}{1+s+s \mathrm{e}^{-s}}
$$

Its poles are all in the OLHP $\mathbb{C} \backslash \overline{\mathbb{C}}_{0}$. To see this, let $s=\sigma+\mathrm{j} \omega$ be a pole, then $1+\sigma+\mathrm{j} \omega+(\sigma+\mathrm{j} \omega) \mathrm{e}^{-\sigma-\mathrm{j} \omega}=0$ reads

$$
e^{-\sigma} e^{-j \omega}=-1-\frac{1}{\sigma+\mathrm{j} \omega}=-\left(1+\frac{\sigma}{\sigma^{2}+\omega^{2}}\right)+j \frac{\omega}{\sigma^{2}+\omega^{2}}
$$

Hence, σ must satisfy

$$
\mathrm{e}^{-\sigma}=\left|\left(1+\frac{\sigma}{\sigma^{2}+\omega^{2}}\right)-\mathrm{j} \frac{\omega}{\sigma^{2}+\omega^{2}}\right| \geq\left|1+\frac{\sigma}{\sigma^{2}+\omega^{2}}\right| \geq 1 .
$$

which is a contradiction for all $\sigma>0$. If $\sigma=0$, we have $1=1+\frac{1}{|\omega|}$, which also holds for none $\omega \in \mathbb{R}$.

Causality + stability and system poles (contd)

But $G \notin H_{\infty}$. To see this, let $\left\{s_{k}\right\} \in \mathbb{C} \backslash \overline{\mathbb{C}}_{0}$ be a sequence of poles of $G(s)$ satisfying

$$
s_{k}+1+s_{k} \mathrm{e}^{-s_{k}}=0, \quad \text { with } \lim _{k \rightarrow \pm \infty}\left|s_{k}\right|=\infty:
$$

(known to exist). Then

$$
G\left(-s_{k}\right)=\frac{1}{1-s_{k}-s_{k} \mathrm{e}^{s_{k}}}=\frac{1}{1-s_{k}+s_{k}^{2} /\left(1+s_{k}\right)}=1+s_{k}
$$

so there is a sequence $\left\{s_{k}\right\}$ in \mathbb{C}_{0} such that $\lim _{k \rightarrow \infty}\left|G\left(-s_{k}\right)\right|=\infty$.

Causality + stability and system poles (contd)

But $G \notin H_{\infty}$. To see this, let $\left\{s_{k}\right\} \in \mathbb{C} \backslash \overline{\mathbb{C}}_{0}$ be a sequence of poles of $G(s)$ satisfying

$$
s_{k}+1+s_{k} \mathrm{e}^{-s_{k}}=0, \quad \text { with } \lim _{k \rightarrow \pm \infty}\left|s_{k}\right|=\infty:
$$

(known to exist). Then

$$
G\left(-s_{k}\right)=\frac{1}{1-s_{k}-s_{k} \mathrm{e}^{s_{k}}}=\frac{1}{1-s_{k}+s_{k}^{2} /\left(1+s_{k}\right)}=1+s_{k}
$$

so there is a sequence $\left\{s_{k}\right\}$ in \mathbb{C}_{0} such that $\lim _{k \rightarrow \infty}\left|G\left(-s_{k}\right)\right|=\infty$. Hence,

- G is not L_{2}-stable, despite having all poles in the OLHP
(curiously, $\frac{1}{s+1} G(s)$ is an H_{∞} transfer function).

H_{2} system space

Defined as

$$
\begin{aligned}
H_{2}^{p \times m}:=\left\{G: \mathbb{C}_{0} \rightarrow\right. & \mathbb{C}^{p \times m} \mid G(s) \text { is holomorphic in } \mathbb{C}_{0} \text { and } \\
& \left.\|G\|_{2}:=\sup _{\sigma>0}\left(\frac{1}{2 \pi} \int_{\mathbb{R}}\|G(\sigma+\mathrm{j} \omega)\|_{\mathrm{F}}^{2} \mathrm{~d} \omega\right)^{1 / 2}<\infty\right\}
\end{aligned}
$$

With the good ol' boundary function trick, $H_{2} \subset L_{2}(j \mathbb{R})$ and if $G \in H_{2}$,

$$
\|G\|_{2}=\left(\frac{1}{2 \pi} \int_{\mathbb{R}}\|G(\mathrm{j} \omega)\|_{\mathrm{F}}^{2} \mathrm{~d} \omega\right)^{1 / 2}
$$

and H_{2} inherits the inner product from $L_{2}(j \mathbb{R})$.

Examples

- $G_{\text {int }} \notin H_{2}$ as $1 / s$ is holomorphic in \mathbb{C}_{0} but

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{\mathrm{d} \omega}{\sigma^{2}+\omega^{2}}=\frac{1}{2 \sigma} \xrightarrow{\sigma \downarrow 0} \infty
$$

(simpler, $\|\mathbb{1}\|_{2}=\infty$)

Examples

- $G_{\text {int }} \notin H_{2}$ as $1 / s$ is holomorphic in \mathbb{C}_{0} but

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{\mathrm{d} \omega}{\sigma^{2}+\omega^{2}}=\frac{1}{2 \sigma} \xrightarrow{\sigma \downarrow 0} \infty
$$

(simpler, $\|\mathbb{1}\|_{2}=\infty$)

- $G_{\text {dint }} \notin H_{2}$ for similar reasons

Examples

$-G_{\text {int }} \notin H_{2}$ as $1 / s$ is holomorphic in \mathbb{C}_{0} but

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{\mathrm{d} \omega}{\sigma^{2}+\omega^{2}}=\frac{1}{2 \sigma} \xrightarrow{\sigma \downarrow 0} \infty
$$

(simpler, $\|\mathbb{1}\|_{2}=\infty$)

- $G_{\text {dint }} \notin H_{2}$ for similar reasons
$-G_{f m i n t} \in H_{2}$ as $\left(1-\mathrm{e}^{-s T}\right) / s$ is holomorphic in \mathbb{C}_{0} and

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{1-2 \mathrm{e}^{-\sigma T} \cos (\omega T)+\mathrm{e}^{-2 \sigma T}}{\sigma^{2}+\omega^{2}} \mathrm{~d} \omega=\frac{1-\mathrm{e}^{-2 \sigma T}}{2 \sigma}<T
$$

(simpler, $\left\|\mathbb{1}_{[0, T]}\right\|_{2}=\sqrt{T}<\infty$)

Examples

- $G_{\text {int }} \notin H_{2}$ as $1 / s$ is holomorphic in \mathbb{C}_{0} but

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{\mathrm{d} \omega}{\sigma^{2}+\omega^{2}}=\frac{1}{2 \sigma} \xrightarrow{\sigma \downarrow 0} \infty
$$

(simpler, $\|\mathbb{1}\|_{2}=\infty$)

- $G_{\text {dint }} \notin H_{2}$ for similar reasons
$-G_{f m i n t} \in H_{2}$ as $\left(1-\mathrm{e}^{-s T}\right) / s$ is holomorphic in \mathbb{C}_{0} and

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{1-2 \mathrm{e}^{-\sigma T} \cos (\omega T)+\mathrm{e}^{-2 \sigma T}}{\sigma^{2}+\omega^{2}} \mathrm{~d} \omega=\frac{1-\mathrm{e}^{-2 \sigma T}}{2 \sigma}<T
$$

(simpler, $\left\|\mathbb{1}_{[0, T]}\right\|_{2}=\sqrt{T}<\infty$)

- $D_{\tau} \notin H_{2}$ as $\mathrm{e}^{-s \tau}$ is holomorphic in \mathbb{C}_{0} but

$$
\frac{\mathrm{e}^{-2 \sigma \tau}}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \omega=\infty
$$

H_{2} system space (contd)

Is Hilbert, with

$$
\left\langle G_{1}, G_{2}\right\rangle_{2}:=\frac{1}{2 \pi} \int_{\mathbb{R}} \operatorname{tr}\left(\left[G_{2}(\mathrm{j} \omega)\right]^{\prime} G_{1}(\mathrm{j} \omega)\right) \mathrm{d} \omega=\int_{\mathbb{R}} \operatorname{tr}\left(\left[g_{2}(t)\right]^{\prime} g_{1}(t)\right) \mathrm{d} t .
$$

Usage:

- unrelated to stability ($D_{\tau} \in H_{\infty}$ but $D_{\tau} \notin H_{2}$, may be vice versa)
- popular performance measure (LQG, Kalman filtering)
- \|G $\|_{2}^{2}$ equals the energy of $y=G \delta$
- if u is Gaussian unit-intensity white, $\|G\|_{2}^{2}$ equals the variance of $y=G u$

Properness

$G(s)$ is

- proper if $\exists \alpha \geq 0$ such that $\sup _{s \in \mathbb{C}_{\alpha}}\|G(s)\|<\infty$
- strictly proper if $\exists \alpha \geq 0$ such that $\lim _{|s| \rightarrow \infty, s \in \mathbb{C}_{\alpha}}\|G(s)\|=0$

Properness

$G(s)$ is

- proper if $\exists \alpha \geq 0$ such that $\sup _{s \in \mathbb{C}_{\alpha}}\|G(s)\|<\infty$
- strictly proper if $\exists \alpha \geq 0$ such that $\lim _{|s| \rightarrow \infty, s \in \mathbb{C}_{\alpha}}\|G(s)\|=0$

Examples:

- $G_{\text {int }}(s)$ is strictly proper (and thus proper)
- $G_{\text {dint }}(s)$ is proper but not strictly proper

$$
\frac{1}{1+\mathrm{e}^{-\sigma T}} \leq \frac{1}{\left|1-\mathrm{e}^{-(\sigma+\mathrm{j} \omega) T}\right|} \leq \frac{1}{1-\mathrm{e}^{-\sigma T}}
$$

- $G_{f m i n t}(s)$ is strictly proper (and thus proper)
- $D_{\tau}(s)$ is proper but not strictly proper as $\left|\mathrm{e}^{-(\sigma+\mathrm{j} \omega) \tau}\right|=\mathrm{e}^{-\sigma \tau}>0$ for all finite $\sigma>0$

Properness

$G(s)$ is

- proper if $\exists \alpha \geq 0$ such that $\sup _{s \in \mathbb{C}_{\alpha}}\|G(s)\|<\infty$
- strictly proper if $\exists \alpha \geq 0$ such that $\lim _{|s| \rightarrow \infty, s \in \mathbb{C}_{\alpha}}\|G(s)\|=0$

Examples:

- $G_{\text {int }}(s)$ is strictly proper (and thus proper)
- $G_{\text {dint }}(s)$ is proper but not strictly proper

$$
\frac{1}{1+\mathrm{e}^{-\sigma T}} \leq \frac{1}{\left|1-\mathrm{e}^{-(\sigma+\mathrm{j} \omega) T}\right|} \leq \frac{1}{1-\mathrm{e}^{-\sigma T}}
$$

- $G_{f m i n t}(s)$ is strictly proper (and thus proper)
- $D_{\tau}(s)$ is proper but not strictly proper as $\left|\mathrm{e}^{-(\sigma+\mathrm{j} \omega) \tau}\right|=\mathrm{e}^{-\sigma \tau}>0$ for all finite $\sigma>0$
Important:
$-G \in H_{\infty} \Longrightarrow G(s)$ is proper \Longrightarrow stable causal G have proper t.f.'s
$-G \in H_{2} \Longrightarrow G(s)$ is strictly proper

Conjugate transfer function

If G is LTI, its adjoint G^{\prime} has impulse response $[g(-t)]^{\prime}$ and

$$
\mathfrak{L}\left\{g^{\prime}\right\}=\int_{\mathbb{R}}[g(-t)]^{\prime} \mathrm{e}^{-s t} \mathrm{~d} t=\left[\int_{\mathbb{R}} g(t) \mathrm{e}^{-(-\bar{s}) t} \mathrm{~d} t\right]^{\prime}=[G(-\bar{s})]^{\prime}
$$

with RoC in $\mathbb{C} \backslash \overline{\mathbb{C}}_{\alpha}$. Thus, the transfer function of G^{\prime} is

$$
G^{\sim}(s):=[G(-\bar{s})]^{\prime},
$$

known as conjugate transfer function and verifying $G^{\sim}(\mathrm{j} \omega)=[G(\mathrm{j} \omega)]^{\prime}$.

Conjugate transfer function

If G is LTI, its adjoint G^{\prime} has impulse response $[g(-t)]^{\prime}$ and

$$
\mathfrak{L}\left\{g^{\prime}\right\}=\int_{\mathbb{R}}[g(-t)]^{\prime} \mathrm{e}^{-s t} \mathrm{~d} t=\left[\int_{\mathbb{R}} g(t) \mathrm{e}^{-(-\bar{s}) t} \mathrm{~d} t\right]^{\prime}=[G(-\bar{s})]^{\prime}
$$

with RoC in $\mathbb{C} \backslash \overline{\mathbb{C}}_{\alpha}$. Thus, the transfer function of G^{\prime} is

$$
G^{\sim}(s):=[G(-\bar{s})]^{\prime},
$$

known as conjugate transfer function and verifying $G^{\sim}(\mathrm{j} \omega)=[G(\mathrm{j} \omega)]^{\prime}$.

Usage:

- mostly in analysis
- limited to systems operating over the whole \mathbb{R} convolution theorem doesn't hold for non-causal systems if considered on $L_{2}\left(\mathbb{R}_{+}\right)$

Inner and co-inner transfer functions

$G \in H_{\infty}^{p \times m}$ is

- inner if $G^{\sim}(s) G(s)=I_{m}$ (so $\left.p \geq m\right)$
- co-inner if $G(s) G^{\sim}(s)=I_{p}$ (so $\left.p \leq m\right)$

If $G(s)$ is inner, the system G is an isometry on $L_{2}(\mathbb{R})$:

$$
\|G u\|_{2}^{2}=\|G U\|_{2}^{2}=\langle G U, G U\rangle_{2}=\left\langle G^{\sim} G U, U\right\rangle_{2}=\langle U, U\rangle_{2}^{2}=\|U\|_{2}^{2}=\|u\|_{2}^{2}
$$

and if $G(s)$ is co-inner, the system G^{\prime} is an isometry on $L_{2}(\mathbb{R})$.

Inner and co-inner transfer functions

$G \in H_{\infty}^{p \times m}$ is

- inner if $G^{\sim}(s) G(s)=I_{m}$ (so $\left.p \geq m\right)$
- co-inner if $G(s) G^{\sim}(s)=I_{p}$ (so $\left.p \leq m\right)$

If $G(s)$ is inner, the system G is an isometry on $L_{2}(\mathbb{R})$:

$$
\|G u\|_{2}^{2}=\|G U\|_{2}^{2}=\langle G U, G U\rangle_{2}=\left\langle G^{\sim} G U, U\right\rangle_{2}=\langle U, U\rangle_{2}^{2}=\|U\|_{2}^{2}=\|u\|_{2}^{2}
$$

and if $G(s)$ is co-inner, the system G^{\prime} is an isometry on $L_{2}(\mathbb{R})$.

If $W_{\mathrm{i}}(s)$ and $W_{\mathrm{ci}}(s)$ are inner and co-inner, then
$-\|G\|_{\infty}=\left\|W_{\mathrm{i}} G W_{\text {ci }}\right\|_{\infty}$ for all $G \in H_{\infty}$
$-\|G\|_{2}=\left\|W_{\mathrm{i}} G W_{\mathrm{ci}}\right\|_{2}$ for all $G \in H_{2}$

Outline

Coprime factorization of transfer functions over H_{∞}

Coprimeness over H_{∞}

$M \in H_{\infty}^{m \times m}$ and $N \in H_{\infty}^{p \times m}$ are (strongly) right coprime over H_{∞} if there are Bézout factors $X \in H_{\infty}^{m \times m}$ and $Y \in H_{\infty}^{m \times p}$ satisfying

$$
\left[\begin{array}{ll}
X(s) & Y(s)
\end{array}\right]\left[\begin{array}{l}
M(s) \\
N(s)
\end{array}\right]=X(s) M(s)+Y(s) N(s)=I_{m}
$$

(Bézout equality). Implies left invertibility of $\left[\begin{array}{c}M \\ N\end{array}\right]$ over H_{∞}.
$\tilde{M} \in H_{\infty}^{p \times p}$ and $\tilde{N} \in H_{\infty}^{p \times m}$ are (strongly) left coprime over H_{∞} if there are Bézout factors $\tilde{X} \in H_{\infty}^{p \times p}$ and $\tilde{Y} \in H_{\infty}^{m \times p}$ satisfying

$$
\left[\begin{array}{ll}
\tilde{M}(s) & \tilde{N}(s)
\end{array}\right]\left[\begin{array}{c}
\tilde{X}(s) \\
\tilde{Y}(s)
\end{array}\right]=\tilde{M}(s) \tilde{X}(s)+\tilde{N}(s) \tilde{Y}(s)=l_{p}
$$

Coprimeness over H_{∞}

$M \in H_{\infty}^{m \times m}$ and $N \in H_{\infty}^{p \times m}$ are (strongly) right coprime over H_{∞} if there are Bézout factors $X \in H_{\infty}^{m \times m}$ and $Y \in H_{\infty}^{m \times p}$ satisfying

$$
\left[\begin{array}{ll}
X(s) & Y(s)
\end{array}\right]\left[\begin{array}{l}
M(s) \\
N(s)
\end{array}\right]=X(s) M(s)+Y(s) N(s)=I_{m}
$$

(Bézout equality). Implies left invertibility of $\left[\begin{array}{c}M \\ N\end{array}\right]$ over H_{∞}.
$\tilde{M} \in H_{\infty}^{p \times p}$ and $\tilde{N} \in H_{\infty}^{p \times m}$ are (strongly) left coprime over H_{∞} if there are Bézout factors $\tilde{X} \in H_{\infty}^{p \times p}$ and $\tilde{Y} \in H_{\infty}^{m \times p}$ satisfying

$$
\left[\begin{array}{ll}
\tilde{M}(s) & \tilde{N}(s)
\end{array}\right]\left[\begin{array}{c}
\tilde{X}(s) \\
\tilde{Y}(s)
\end{array}\right]=\tilde{M}(s) \tilde{X}(s)+\tilde{N}(s) \tilde{Y}(s)=l_{p}
$$

 If $p=m=1$, then "left coprime" \Longleftrightarrow "right coprime" (so simply coprime).

Corona theorem

$M \in H_{\infty}^{m \times m}$ and $N \in H_{\infty}^{p \times m}$ are (strongly) right coprime over H_{∞} iff

$$
\inf _{s \in \mathbb{C}_{0}} \underline{\sigma}\left(\left[\begin{array}{l}
M(s) \\
N(s)
\end{array}\right]\right)>0 .
$$

$\tilde{M} \in H_{\infty}^{p \times p}$ and $\tilde{N} \in H_{\infty}^{p \times m}$ are (strongly) left coprime over H_{∞} iff

$$
\inf _{s \in \mathbb{C}_{0}} \underline{\sigma}([\tilde{M}(s) \tilde{N}(s)])>0
$$

Corona theorem

$M \in H_{\infty}^{m \times m}$ and $N \in H_{\infty}^{p \times m}$ are (strongly) right coprime over H_{∞} iff

$$
\inf _{s \in \mathbb{C}_{0}} \underline{\sigma}\left(\left[\begin{array}{l}
M(s) \\
N(s)
\end{array}\right]\right)>0
$$

$\tilde{M} \in H_{\infty}^{p \times p}$ and $\tilde{N} \in H_{\infty}^{p \times m}$ are (strongly) left coprime over H_{∞} iff

$$
\inf _{s \in \mathbb{C}_{0}} \underline{\sigma}([\tilde{M}(s) \tilde{N}(s)])>0
$$

Thus,

- $M(s)=\frac{1}{s+1}$ and $N(s)=\frac{s \mathrm{e}^{-s}}{s+1}$ are not coprime

Corona theorem

$M \in H_{\infty}^{m \times m}$ and $N \in H_{\infty}^{p \times m}$ are (strongly) right coprime over H_{∞} iff

$$
\inf _{s \in \mathbb{C}_{0}} \underline{\sigma}\left(\left[\begin{array}{l}
M(s) \\
N(s)
\end{array}\right]\right)>0
$$

$\tilde{M} \in H_{\infty}^{p \times p}$ and $\tilde{N} \in H_{\infty}^{p \times m}$ are (strongly) left coprime over H_{∞} iff

$$
\inf _{s \in \mathbb{C}_{0}} \underline{\sigma}([\tilde{M}(s) \tilde{N}(s)])>0
$$

Thus,

- $M(s)=\frac{1}{s+1}$ and $N(s)=\frac{s \mathrm{e}^{-s}}{s+1}$ are not coprime
$-M(s)=\frac{\mathrm{e}^{-s}}{s+1}$ and $N(s)=\frac{s}{s+1}$ are coprime

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.
Examples:

- $G_{\text {int }}(s)=\frac{1}{s}$

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.
Examples:
$-G_{\text {int }}(s)=\frac{1}{s}=\frac{1}{s+a} \cdot\left(\frac{s}{s+a}\right)^{-1}, a>0$, with $X(s)=1$ and $Y(s)=a$

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.
Examples:
$-G_{\text {int }}(s)=\frac{1}{s}=\frac{1}{s+a} \cdot\left(\frac{s}{s+a}\right)^{-1}, a>0$, with $X(s)=1$ and $Y(s)=a$
$-G_{\text {dint }}(s)=\frac{1}{1-\mathrm{e}^{-s T}}$

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.
Examples:
$-G_{\text {int }}(s)=\frac{1}{s}=\frac{1}{s+a} \cdot\left(\frac{s}{s+a}\right)^{-1}, a>0$, with $X(s)=1$ and $Y(s)=a$
$-G_{\text {dint }}(s)=\frac{1}{1-\mathrm{e}^{-s T}}=1 \cdot\left(1-\mathrm{e}^{-s T}\right)^{-1}$, with $X(s)=1$ and $Y(s)=\mathrm{e}^{-s T}$

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.
Examples:
$-G_{\text {int }}(s)=\frac{1}{s}=\frac{1}{s+a} \cdot\left(\frac{s}{s+a}\right)^{-1}, a>0$, with $X(s)=1$ and $Y(s)=a$
$-G_{\text {dint }}(s)=\frac{1}{1-\mathrm{e}^{-s T}}=1 \cdot\left(1-\mathrm{e}^{-s T}\right)^{-1}$, with $X(s)=1$ and $Y(s)=\mathrm{e}^{-s T}$
$-G_{f m i n t}(s)=\frac{1-\mathrm{e}^{-s T}}{s}$

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.
Examples:
$-G_{\text {int }}(s)=\frac{1}{s}=\frac{1}{s+a} \cdot\left(\frac{s}{s+a}\right)^{-1}, a>0$, with $X(s)=1$ and $Y(s)=a$
$-G_{\text {dint }}(s)=\frac{1}{1-\mathrm{e}^{-s T}}=1 \cdot\left(1-\mathrm{e}^{-s T}\right)^{-1}$, with $X(s)=1$ and $Y(s)=\mathrm{e}^{-s T}$
$-G_{\text {fmint }}(s)=\frac{1-\mathrm{e}^{-s T}}{s}=\frac{1-\mathrm{e}^{-s T}}{s} \cdot 1^{-1}$, with $X(s)=1$ and $Y(s)=0$

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.
Examples:
$-G_{\text {int }}(s)=\frac{1}{s}=\frac{1}{s+a} \cdot\left(\frac{s}{s+a}\right)^{-1}, a>0$, with $X(s)=1$ and $Y(s)=a$
$-G_{\text {dint }}(s)=\frac{1}{1-\mathrm{e}^{-s T}}=1 \cdot\left(1-\mathrm{e}^{-s T}\right)^{-1}$, with $X(s)=1$ and $Y(s)=\mathrm{e}^{-s T}$
$-G_{\text {fmint }}(s)=\frac{1-\mathrm{e}^{-s T}}{s}=\frac{1-\mathrm{e}^{-s T}}{s} \cdot 1^{-1}$, with $X(s)=1$ and $Y(s)=0$
$-D_{\tau}(s)=\mathrm{e}^{-s \tau}$

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.
Examples:
$-G_{\text {int }}(s)=\frac{1}{s}=\frac{1}{s+a} \cdot\left(\frac{s}{s+a}\right)^{-1}, a>0$, with $X(s)=1$ and $Y(s)=a$
$-G_{\text {dint }}(s)=\frac{1}{1-\mathrm{e}^{-s T}}=1 \cdot\left(1-\mathrm{e}^{-s T}\right)^{-1}$, with $X(s)=1$ and $Y(s)=\mathrm{e}^{-s T}$
$-G_{\text {fmint }}(s)=\frac{1-\mathrm{e}^{-s T}}{s}=\frac{1-\mathrm{e}^{-s T}}{s} \cdot 1^{-1}$, with $X(s)=1$ and $Y(s)=0$
$-D_{\tau}(s)=\mathrm{e}^{-s \tau}=\mathrm{e}^{-s \tau} \cdot 1^{-1}$, with $X(s)=1$ and $Y(s)=0$

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

$$
G(s)=N(s) M^{-1}(s)=\tilde{M}^{-1}(s) \tilde{N}(s)
$$

for right / left coprime $M, N / \tilde{M}, \tilde{N} \in H_{\infty}$ and bi-proper $M(s)$ and $\tilde{M}(s)$.
Examples:

- $G_{\text {int }}(s)=\frac{1}{s}=\frac{1}{s+a} \cdot\left(\frac{s}{s+a}\right)^{-1}, a>0$, with $X(s)=1$ and $Y(s)=a$
$-G_{\text {dint }}(s)=\frac{1}{1-\mathrm{e}^{-s T}}=1 \cdot\left(1-\mathrm{e}^{-s T}\right)^{-1}$, with $X(s)=1$ and $Y(s)=\mathrm{e}^{-s T}$
$-G_{\mathrm{fmint}}(s)=\frac{1-\mathrm{e}^{-s T}}{s}=\frac{1-\mathrm{e}^{-s T}}{s} \cdot 1^{-1}$, with $X(s)=1$ and $Y(s)=0$
$-D_{\tau}(s)=\mathrm{e}^{-s \tau}=\mathrm{e}^{-s \tau} \cdot 1^{-1}$, with $X(s)=1$ and $Y(s)=0$
Constructing coprime factors:
- if $G \in H_{\infty}$, then $M(s)=I, N(s)=G(s), X(s)=I$, and $Y(s)=0$
- if $G \notin H_{\infty}$, wait for state space

Two lemmas

Lemma

If $N_{1} M_{1}^{-1}=N_{2} M_{2}^{-1}$ and $\tilde{M}_{1}^{-1} \tilde{N}_{1}=\tilde{M}_{2}^{-1} \tilde{N}_{2}$ are rcf's and Icf's of some G, respectively, then

$$
\left[\begin{array}{l}
M_{2} \\
N_{2}
\end{array}\right]=\left[\begin{array}{l}
M_{1} \\
N_{1}
\end{array}\right] U \quad \text { and } \quad\left[\tilde{M}_{2} \tilde{N}_{2}\right]=\tilde{U}\left[\begin{array}{ll}
\tilde{M}_{1} & \tilde{N}_{1}
\end{array}\right]
$$

for some $U, U^{-1}, \tilde{U}, \tilde{U}^{-1} \in H_{\infty}$.

Two lemmas

Lemma

If $N_{1} M_{1}^{-1}=N_{2} M_{2}^{-1}$ and $\tilde{M}_{1}^{-1} \tilde{N}_{1}=\tilde{M}_{2}^{-1} \tilde{N}_{2}$ are rcf's and lcf's of some G, respectively, then

$$
\left[\begin{array}{l}
M_{2} \\
N_{2}
\end{array}\right]=\left[\begin{array}{l}
M_{1} \\
N_{1}
\end{array}\right] U \quad \text { and } \quad\left[\tilde{M}_{2} \tilde{N}_{2}\right]=\tilde{U}\left[\begin{array}{ll}
\tilde{M}_{1} & \tilde{N}_{1}
\end{array}\right]
$$

for some $U, U^{-1}, \tilde{U}, \tilde{U}^{-1} \in H_{\infty}$.
Implies that

- if det $M_{1}\left(s_{0}\right)=0$ for $s_{0} \in \mathbb{C}_{0}$, then $\operatorname{det} M_{2}\left(s_{0}\right)=0$ for any other $r c f$
- if $\operatorname{det} \tilde{M}_{1}\left(s_{0}\right)=0$ for $s_{0} \in \mathbb{C}_{0}$, then $\operatorname{det} \tilde{M}_{2}\left(s_{0}\right)=0$ for any other lcf

Lemma
If $G=N M^{-1}=\tilde{M}^{-1} \tilde{N}$ are rcf and Icf, respectively, then

$$
G \in H_{\infty} \Longleftrightarrow M^{-1} \in H_{\infty} \Longleftrightarrow \tilde{M}^{-1} \in H_{\infty}
$$

Domain of L_{2} systems

If $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is LTI and such that its transfer function admits a rcf over $H_{\infty}, G(s)=N(s) M^{-1}(s)$, then

$$
\mathfrak{D}_{G}=M L_{2}^{m}=\operatorname{Im} M=\left\{u \mid \exists v \in L_{2}^{m} \text { such that } u=M v\right\} .
$$

Domain of L_{2} systems

If $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is LTI and such that its transfer function admits a rcf over $H_{\infty}, G(s)=N(s) M^{-1}(s)$, then

$$
\mathfrak{D}_{G}=M L_{2}^{m}=\operatorname{Im} M=\left\{u \mid \exists v \in L_{2}^{m} \text { such that } u=M v\right\} .
$$

Proof (outline).

$$
-M \in H_{\infty} \Longrightarrow M L_{2}^{m} \subset L_{2}^{m}
$$

Domain of L_{2} systems

If $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is LTI and such that its transfer function admits a rcf over $H_{\infty}, G(s)=N(s) M^{-1}(s)$, then

$$
\mathfrak{D}_{G}=M L_{2}^{m}=\operatorname{Im} M=\left\{u \mid \exists v \in L_{2}^{m} \text { such that } u=M v\right\} .
$$

Proof (outline).
$-M \in H_{\infty} \Longrightarrow M L_{2}^{m} \subset L_{2}^{m}$
$-G M L_{2}^{m}=N L_{2}^{m} \subset L_{2}^{p} \Longrightarrow M L_{2}^{m} \subset \mathfrak{D}_{G}$

Domain of L_{2} systems

If $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is LTI and such that its transfer function admits a rcf over $H_{\infty}, G(s)=N(s) M^{-1}(s)$, then

$$
\mathfrak{D}_{G}=M L_{2}^{m}=\operatorname{Im} M=\left\{u \mid \exists v \in L_{2}^{m} \text { such that } u=M v\right\}
$$

Proof (outline).
$-M \in H_{\infty} \Longrightarrow M L_{2}^{m} \subset L_{2}^{m}$
$-G M L_{2}^{m}=N L_{2}^{m} \subset L_{2}^{p} \Longrightarrow M L_{2}^{m} \subset \mathfrak{D}_{G}$

- For any $u_{0} \in \mathfrak{D}_{G}$, denote $v_{0}:=M^{-1} u_{0}$. We have:

$$
L_{2}^{m+p} \ni\left[\begin{array}{l}
u_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
I \\
G
\end{array}\right] u_{0}=\left[\begin{array}{l}
M \\
N
\end{array}\right] v_{0}
$$

Thus,

$$
v_{0}=X u_{0}+Y y_{0} \in L_{2}^{m} \Longrightarrow \mathfrak{D}_{G} \subset M L_{2}^{m}
$$

Domain of L_{2} systems

If $G: \mathfrak{D}_{G} \subset L_{2}^{m} \rightarrow L_{2}^{p}$ is LTI and such that its transfer function admits a rcf over $H_{\infty}, G(s)=N(s) M^{-1}(s)$, then

$$
\mathfrak{D}_{G}=M L_{2}^{m}=\operatorname{Im} M=\left\{u \mid \exists v \in L_{2}^{m} \text { such that } u=M v\right\}
$$

Proof (outline).
$-M \in H_{\infty} \Longrightarrow M L_{2}^{m} \subset L_{2}^{m}$
$-G M L_{2}^{m}=N L_{2}^{m} \subset L_{2}^{p} \Longrightarrow M L_{2}^{m} \subset \mathfrak{D}_{G}$

- For any $u_{0} \in \mathfrak{D}_{G}$, denote $v_{0}:=M^{-1} u_{0}$. We have:

$$
L_{2}^{m+p} \ni\left[\begin{array}{l}
u_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
I \\
G
\end{array}\right] u_{0}=\left[\begin{array}{l}
M \\
N
\end{array}\right] v_{0}
$$

Thus,

$$
v_{0}=X u_{0}+Y y_{0} \in L_{2}^{m} \Longrightarrow \mathfrak{D}_{G} \subset M L_{2}^{m}
$$

Doubly coprime factorization

Coprime factors of $G(s)$ and their Bézout can always be selected so that

$$
\left[\begin{array}{cc}
X(s) & Y(s) \\
-\tilde{N}(s) & \tilde{M}(s)
\end{array}\right]\left[\begin{array}{cc}
M(s) & -\tilde{Y}(s) \\
N(s) & \tilde{X}(s)
\end{array}\right]=\left[\begin{array}{cc}
I_{m} & 0 \\
0 & I_{p}
\end{array}\right]
$$

i.e.

$$
\left[\begin{array}{cc}
X(s) & Y(s) \\
-\tilde{N}(s) & \tilde{M}(s)
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
M(s) & -\tilde{Y}(s) \\
N(s) & \tilde{X}(s)
\end{array}\right]
$$

are invertible in H_{∞}.

Outline

Real-rational transfer functions

Definition

We say that $G(s)$ is real-rational if
$-G_{i j}(s)=\frac{N_{i j}(s)}{M_{i j}(s)}$ for finite polynomials $N_{i j}(s)$ and $M_{i j}(s)$ with real coeff's.

Definition

We say that $G(s)$ is real-rational if
$-G_{i j}(s)=\frac{N_{i j}(s)}{M_{i j}(s)}$ for finite polynomials $N_{i j}(s)$ and $M_{i j}(s)$ with real coeff's.

Examples:

- $G_{\text {int }}(s)=\frac{1}{s}$
$-G_{\text {dint }}(s)=\frac{1}{1-\mathrm{e}^{-s T}}$
$-G_{f m i n t}(s)=\frac{1-\mathrm{e}^{-s T}}{s}$
$-D_{\tau}(s)=\mathrm{e}^{-s \tau}$

Definition

We say that $G(s)$ is real-rational if

- $G_{i j}(s)=\frac{N_{i j}(s)}{M_{i j}(s)}$ for finite polynomials $N_{i j}(s)$ and $M_{i j}(s)$ with real coeff's.

Examples:

- $G_{\text {int }}(s)=\frac{1}{s}$ is real-rational
$-G_{\text {dint }}(s)=\frac{1}{1-\mathrm{e}^{-s T}}$ is not real-rational
$-G_{\text {fmint }}(s)=\frac{1-\mathrm{e}^{-s T}}{s}$ is not real-rational
$-D_{\tau}(s)=\mathrm{e}^{-s \tau}$ is not real-rational

Implications

Any real-rational $G(s)$

- is proper iff $\|G(\infty)\|<\infty$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right) \leq \operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$

Implications

Any real-rational $G(s)$

- is proper iff $\|G(\infty)\|<\infty$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right) \leq \operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$
- is strictly proper iff $\|G(\infty)\|=0$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right)<\operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$

Implications

Any real-rational $G(s)$

- is proper iff $\|G(\infty)\|<\infty$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right) \leq \operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$
- is strictly proper iff $\|G(\infty)\|=0$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right)<\operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$
$-G \in H_{\infty}$ iff $G(s)$ is proper $\&$ has no poles in $\overline{\mathbb{C}}_{0}$

Implications

Any real-rational $G(s)$

- is proper iff $\|G(\infty)\|<\infty$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right) \leq \operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$
- is strictly proper iff $\|G(\infty)\|=0$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right)<\operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$
- $G \in H_{\infty}$ iff $G(s)$ is proper \& has no poles in $\overline{\mathbb{C}}_{0}$
$-G \in H_{2}$ iff $G(s)$ is strictly proper \& has no poles in $\overline{\mathbb{C}}_{0}$

Implications

Any real-rational $G(s)$

- is proper iff $\|G(\infty)\|<\infty$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right) \leq \operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$
- is strictly proper iff $\|G(\infty)\|=0$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right)<\operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$
- $G \in H_{\infty}$ iff $G(s)$ is proper \& has no poles in $\overline{\mathbb{C}}_{0}$
$-G \in H_{2}$ iff $G(s)$ is strictly proper \& has no poles in $\overline{\mathbb{C}}_{0}$ called $R H_{2}$
- admits doubly coprime factorizations over $R H_{\infty}$

Implications

Any real-rational $G(s)$

- is proper iff $\|G(\infty)\|<\infty$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right) \leq \operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$
- is strictly proper iff $\|G(\infty)\|=0$, i.e. $\operatorname{deg}\left(N_{i j}(s)\right)<\operatorname{deg}\left(M_{i j}(s)\right), \forall i, j$
- $G \in H_{\infty}$ iff $G(s)$ is proper \& has no poles in $\overline{\mathbb{C}}_{0}$
$-G \in H_{2}$ iff $G(s)$ is strictly proper \& has no poles in $\overline{\mathbb{C}}_{0}$ called $R H_{2}$
- admits doubly coprime factorizations over $R H_{\infty}$

By-products:

- stability \Longleftrightarrow proper + no poles in $\overline{\mathbb{C}}_{0}$
$-R H_{2} \subset R H_{\infty}$
- always stabilizable by feedback

Outline

Poles, zeros, \& C°

Diagonal case: poles, zeros, and...

Every

$$
G(s)=\left[\begin{array}{ccc}
G_{1}(s) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & G_{m}(s)
\end{array}\right]=: \operatorname{diag}\left\{G_{i}(s)\right\}
$$

is effectively a union of m independent systems, so that

- poles and zeros of $G(s)$ are unions of poles and zeros of $G_{i}(s)$.

Diagonal case: poles, zeros, and...

Every

$$
G(s)=\left[\begin{array}{ccc}
G_{1}(s) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & G_{m}(s)
\end{array}\right]=: \operatorname{diag}\left\{G_{i}(s)\right\}
$$

is effectively a union of m independent systems, so that

- poles and zeros of $G(s)$ are unions of poles and zeros of $G_{i}(s)$.

Consequences:

- may have uncancellable pole(s) and zero(s) at the same point
$-\operatorname{det}(G(s))$ might be a poor indicator of its dynamical properties
- mere location of poles and zeros is not sufficient

Diagonal case: poles, zeros, and... (contd)

Poles and zeros of

$$
G(s)=\left[\begin{array}{ccc}
G_{1}(s) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & G_{m}(s)
\end{array}\right]
$$

should be

- complemented by their association with subsystems

Diagonal case: poles, zeros, and ... (contd)

Poles and zeros of

$$
G(s)=\left[\begin{array}{ccc}
G_{1}(s) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & G_{m}(s)
\end{array}\right]
$$

should be

- complemented by their association with subsystems
- complemented by their directions
- if $p_{k}\left(z_{k}\right)$ is a pole (zero) of $G_{i}(s)$, its direction is $\operatorname{span}\left(e_{i}\right)$
- if $p_{k}\left(z_{k}\right)$ is a pole (zero) of $G_{i}(s)$ and $G_{j}(s)$, its direction is $\operatorname{span}\left(e_{i}, e_{j}\right)$

Diagonal case: poles, zeros, and... (contd)

Poles and zeros of

$$
G(s)=\left[\begin{array}{ccc}
G_{1}(s) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & G_{m}(s)
\end{array}\right]
$$

should be

- complemented by their association with subsystems
- complemented by their directions
- if $p_{k}\left(z_{k}\right)$ is a pole (zero) of $G_{i}(s)$, its direction is $\operatorname{span}\left(e_{i}\right)$
- if $p_{k}\left(z_{k}\right)$ is a pole (zero) of $G_{i}(s)$ and $G_{j}(s)$, its direction is $\operatorname{span}\left(e_{i}, e_{j}\right)$
- pole direction of $p_{k}: \perp$ to any v for which $G(s) v$ has no pole at p_{k}
- zero direction of z_{k} : span of all v for which $\left.G(s) v\right|_{s \rightarrow z_{k}}=0$

Diagonal case: poles, zeros, and... (contd)

Poles and zeros of

$$
G(s)=\left[\begin{array}{ccc}
G_{1}(s) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & G_{m}(s)
\end{array}\right]
$$

should be

- complemented by their association with subsystems
- complemented by their directions
- if $p_{k}\left(z_{k}\right)$ is a pole (zero) of $G_{i}(s)$, its direction is $\operatorname{span}\left(e_{i}\right)$
- if $p_{k}\left(z_{k}\right)$ is a pole (zero) of $G_{i}(s)$ and $G_{j}(s)$, its direction is $\operatorname{span}\left(e_{i}, e_{j}\right)$
- pole direction of $p_{k}: \perp$ to any v for which $G(s) v$ has no pole at p_{k}
- zero direction of z_{k} : span of all v for which $\left.G(s) v\right|_{s \rightarrow z_{k}}=0$
- if $p_{k}\left(z_{k}\right)$ is a pole (zero) of μ_{k} subsystems, its geometric multiplicity is μ_{k}
- the multiplicity of $p_{k}\left(z_{k}\right)$ in $G_{i}(s)$ is its ith partial multiplicity
- the sum of all partial multiplicities of p_{k} is its algebraic multiplicity

General case: preliminaries

- normal rank: $\operatorname{nrank}(G(s)):=\max _{s \in \mathbb{C}} \operatorname{rank}(G(s))$ if $G(s)$ is proper, then $\operatorname{rank}(G(s))=\operatorname{nrank}(G(s))$ for all but a finitely many s
- unimodular polynomial matrix: square and $\operatorname{det}(U(s))=$ const $\neq 0$ $U^{-1}(s)$ is also a polynomial matrix
- polynomial $\beta(s)$ divides polynomial $\alpha(s)$ if $\frac{\alpha(s)}{\beta(s)}$ is a polynomial

Smith-McMillan form

Given a $p \times m$ transfer function $G(s)$ having $\operatorname{nrank}(G(s))=r \leq \min \{p, m\}$, there are unimodular polynomial matrices $U(s)$ and $V(s)$ such that

$$
U(s) G(s) V(s)=\left[\begin{array}{cccc}
\alpha_{1}(s) / \beta_{1}(s) & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \alpha_{r}(s) / \beta_{r}(s) & 0 \\
0 & \cdots & 0 & 0
\end{array}\right]
$$

where $\alpha_{i}(s)$ divides $\alpha_{i+1}(s), \beta_{i+1}(s)$ divides $\beta_{i}(s)$, and $\alpha_{i}(s)$ and $\beta_{i}(s)$ are coprime at every $i \in \mathbb{Z}_{1 . . r}$.

Smith-McMillan form \& poles / degree / zeros

Given a $p \times m$ transfer function $G(s)$ having $\operatorname{nrank}(G(s))=r \leq \min \{p, m\}$, there are unimodular polynomial matrices $U(s)$ and $V(s)$ such that

$$
U(s) G(s) V(s)=\left[\begin{array}{cccc}
\alpha_{1}(s) / \beta_{1}(s) & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \alpha_{r}(s) / \beta_{r}(s) & 0 \\
0 & \cdots & 0 & 0
\end{array}\right]
$$

where $\alpha_{i}(s)$ divides $\alpha_{i+1}(s), \beta_{i+1}(s)$ divides $\beta_{i}(s)$, and $\alpha_{i}(s)$ and $\beta_{i}(s)$ are coprime at every $i \in \mathbb{Z}_{1 . . r}$.

- roots of $\phi_{\mathrm{p}}(s):=\prod_{i=1}^{r} \beta_{i}(s)$ are the poles of $G(s)$
- $n:=\operatorname{deg}\left(\phi_{\mathrm{p}}(s)\right)$ is the McMillan degree (or degree) of $G(s)$
- roots of $\phi_{\mathrm{z}}(s):=\prod_{i=1}^{r} \alpha_{i}(s)$ are the transmission zeros (or zeros) of $G(s)$

Pole directions

Let $p_{i} \in \mathbb{C}$ be a pole of geometric multiplicity μ_{i} of

$$
G(s)=U^{-1}(s)\left[\begin{array}{cccc}
\alpha_{1}(s) / \beta_{1}(s) & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \alpha_{r}(s) / \beta_{r}(s) & 0 \\
0 & \cdots & 0 & 0
\end{array}\right] V^{-1}(s)
$$

input pole direction, $\operatorname{pdir}_{\mathrm{i}}\left(G, p_{i}\right) \subset \mathbb{C}^{m}$:

$$
\operatorname{pdir}_{\mathrm{i}}\left(G, p_{i}\right)=\left(\operatorname{Im} V\left(p_{i}\right)\left[\begin{array}{lll}
e_{\mu_{i}+1} & \cdots & e_{m}
\end{array}\right]\right)^{\perp}=\operatorname{ker}\left[\begin{array}{c}
e_{\mu_{i}+1}^{\prime} \\
\vdots \\
e_{m}^{\prime}
\end{array}\right]\left[V\left(p_{i}\right)\right]^{\prime}
$$

output pole direction, $\operatorname{pdir}_{\mathrm{o}}\left(G, p_{i}\right) \subset \mathbb{C}^{p}$:

$$
\operatorname{pdir}_{\circ}\left(G, p_{i}\right)=\operatorname{ker}\left[\begin{array}{c}
\tilde{e}_{\mu_{i}+1}^{\prime} \\
\vdots \\
\tilde{e}_{p}^{\prime}
\end{array}\right] U\left(p_{i}\right)=\left(\operatorname{lm}\left[U\left(p_{i}\right)\right]^{\prime}\left[\begin{array}{lll}
\tilde{e}_{\mu_{i}+1} & \cdots & \tilde{e}_{p}
\end{array}\right]\right)^{\perp}
$$

Zero directions

Let $z_{i} \in \mathbb{C}$ be a pole of geometric multiplicity μ_{i} of

$$
G(s)=U^{-1}(s)\left[\begin{array}{cccc}
\alpha_{1}(s) / \beta_{1}(s) & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \alpha_{r}(s) / \beta_{r}(s) & 0 \\
0 & \cdots & 0 & 0
\end{array}\right] V^{-1}(s)
$$

input zero direction, $\operatorname{zdir}_{\mathrm{i}}\left(G, p_{i}\right) \subset \mathbb{C}^{m}$:

$$
\operatorname{zdir}_{i}\left(G, z_{i}\right):=\operatorname{Im} V\left(z_{i}\right)\left[\begin{array}{lll}
e_{r-\mu_{i}+1} & \cdots & e_{m}
\end{array}\right]
$$

output zero direction, zdir $_{\circ}\left(G, p_{i}\right) \subset \mathbb{C}^{p}$:

$$
\operatorname{zdir}_{\circ}\left(G, p_{i}\right):=\operatorname{Im}\left[U\left(z_{i}\right)\right]^{\prime}\left[\begin{array}{ccc}
\tilde{e}_{r-\mu_{i}+1} & \cdots & \tilde{e}_{p}
\end{array}\right]
$$

Example 1

Let

$$
G(s)=\frac{1}{s}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \Longrightarrow \overbrace{\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]}^{U(s)} G(s) \overbrace{\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]}^{V(s)}=\left[\begin{array}{cc}
1 / s & 0 \\
0 & 0
\end{array}\right]
$$

One pole at $s=0$

Example 1

Let

$$
G(s)=\frac{1}{s}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] G(s)\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 / s & 0 \\
0 & 0
\end{array}\right]
$$

One pole at $s=0$, with

$$
\begin{gathered}
\operatorname{pdir}_{\mathrm{i}}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right][V(0)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \\
\operatorname{pdir}_{\circ}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right] U(0)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
\end{gathered}
$$

Example 2

Let

$$
G(s)=\left[\begin{array}{cc}
1 & 1 / s \\
0 & 1
\end{array}\right] \Longrightarrow \overbrace{\left[\begin{array}{cc}
1 & 0 \\
s & -1
\end{array}\right]}^{U(s)} G(s) \overbrace{\left[\begin{array}{cc}
0 & 1 \\
1 & -s
\end{array}\right]}^{V(s)}=\left[\begin{array}{cc}
1 / s & 0 \\
0 & s
\end{array}\right]
$$

One pole and one transmission zero at $s=0$

Example 2

Let

$$
G(s)=\left[\begin{array}{cc}
1 & 1 / s \\
0 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
1 & 0 \\
s & -1
\end{array}\right] G(s)\left[\begin{array}{cc}
0 & 1 \\
1 & -s
\end{array}\right]=\left[\begin{array}{cc}
1 / s & 0 \\
0 & s
\end{array}\right]
$$

One pole and one transmission zero at $s=0$, with

$$
\begin{gathered}
\operatorname{pdir}_{\mathrm{i}}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right][V(0)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
\operatorname{pdir}_{\circ}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right] U(0)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
\end{gathered}
$$

Example 2

Let

$$
G(s)=\left[\begin{array}{cc}
1 & 1 / s \\
0 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
1 & 0 \\
s & -1
\end{array}\right] G(s)\left[\begin{array}{cc}
0 & 1 \\
1 & -s
\end{array}\right]=\left[\begin{array}{cc}
1 / s & 0 \\
0 & s
\end{array}\right]
$$

One pole and one transmission zero at $s=0$, with

$$
\begin{gathered}
\operatorname{pdir}_{\mathrm{i}}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right][V(0)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
\operatorname{pdir}_{\circ}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right] U(0)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \\
\operatorname{zdir}_{i}(G, 0)=\operatorname{lm} V(0)\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \\
\operatorname{zdir}_{0}(G, 0)=\operatorname{Im}[U(0)]^{\prime}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\end{gathered}
$$

Example 2

Let

$$
G(s)=\left[\begin{array}{cc}
1 & 1 / s \\
0 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
1 & 0 \\
s & -1
\end{array}\right] G(s)\left[\begin{array}{cc}
0 & 1 \\
1 & -s
\end{array}\right]=\left[\begin{array}{cc}
1 / s & 0 \\
0 & s
\end{array}\right]
$$

One pole and one transmission zero at $s=0$, with

$$
\begin{aligned}
& \operatorname{pdir}_{i}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right][V(0)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& \operatorname{pdir}_{0}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right] U(0)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \\
& \operatorname{zdir}_{i}(G, 0)=\operatorname{Im} V(0)\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \perp \operatorname{pdir}_{i}(G, 0) \\
& \operatorname{zdir}_{0}(G, 0)=\operatorname{Im}[U(0)]^{\prime}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \perp \operatorname{pdir}_{0}(G, 0)
\end{aligned}
$$

Example 3

Let

$$
G(s)=\left[\begin{array}{ccc}
\frac{1}{s+1} & 0 & \frac{s-1}{(s+1)(s+2)} \\
-\frac{1}{s-1} & \frac{1}{s+2} & \frac{1}{s+2}
\end{array}\right]
$$

and define unimodular polynomials

$$
\begin{gathered}
U(s)=\frac{1}{6}\left[\begin{array}{cc}
3 & 3 \\
s^{3}-s^{2}-4 s-2 & s^{3}-s^{2}-4 s+4
\end{array}\right], \\
V(s)=\frac{1}{6}\left[\begin{array}{ccc}
2(s-2) & -6(s-1) & -3(s-1) \\
4 & -24 & -6(s+2) \\
0 & 6 & 3(s+2)
\end{array}\right] .
\end{gathered}
$$

Then

$$
U(s) G(s) V(s)=\left[\begin{array}{ccc}
\frac{1}{\left(s^{2}-1\right)(s+2)} & 0 & 0 \\
0 & \frac{s-1}{s+2} & 0
\end{array}\right] .
$$

Four poles, at $\{-2,-2,-1,1\}$, and one transmission zero at $\{1\}$.

Example 3 (contd)

Pole directions:

$$
\begin{gathered}
\operatorname{pdir}_{\mathrm{i}}(G, 1)=\operatorname{ker}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right][V(1)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right), \\
\operatorname{pdir}_{\circ}(G, 1)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right] U(1)=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right), \\
\operatorname{pdir}_{\mathrm{i}}(G,-1)=\operatorname{ker}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right][V(-1)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right]\right), \\
\operatorname{pdir}_{\circ}(G,-1)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right] U(-1)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right), \\
\operatorname{pdir}_{i}(G,-2)=\operatorname{ker}\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right][V(-2)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right),
\end{gathered}
$$

and $\operatorname{pdir}_{\circ}(G,-2)=\mathbb{C}^{2}$.

Example 3 (contd)

Zero directions:

$$
\begin{gathered}
\operatorname{zdir}_{\mathrm{i}}(G, 1)=\operatorname{lm} V(1)\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) \\
\operatorname{zdir}_{\mathrm{o}}(G, 1)=\operatorname{lm}[U(1)]^{\prime}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
\end{gathered}
$$

Example 3 (contd)

Zero directions:

$$
\begin{gathered}
\operatorname{zdir}_{\mathrm{i}}(G, 1)=\operatorname{lm} V(1)\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) \\
\operatorname{zdir}_{o}(G, 1)=\operatorname{lm}[U(1)]^{\prime}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
\end{gathered}
$$

Again,

$$
\begin{gathered}
\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\operatorname{zdir}_{i}(G, 1) \perp \operatorname{pdir}_{i}(G, 1)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right) \\
\quad \operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\operatorname{zdir}_{\circ}(G, 1) \perp \operatorname{pdir}_{\circ}(G, 1)=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\end{gathered}
$$

Example 4

Let

$$
G(s)=\left[\begin{array}{cc}
1 / s & 1 / s^{2} \\
0 & 1 / s
\end{array}\right] .
$$

Its Smith-McMillan form is

$$
\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right] G(s)\left[\begin{array}{cc}
0 & -1 \\
1 & s
\end{array}\right]=\left[\begin{array}{cc}
1 / s^{2} & 0 \\
0 & 1
\end{array}\right]
$$

Double pole at $s=0$, with

$$
\operatorname{pdir}_{i}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right][V(0)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

and

$$
\operatorname{pdir}_{\circ}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right] U(0)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

Example 4

Let

$$
G(s)=\left[\begin{array}{cc}
1 / s & 1 / s^{2} \\
0 & 1 / s
\end{array}\right] .
$$

Its Smith-McMillan form is

$$
\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right] G(s)\left[\begin{array}{cc}
0 & -1 \\
1 & s
\end{array}\right]=\left[\begin{array}{cc}
1 / s^{2} & 0 \\
0 & 1
\end{array}\right]
$$

Double pole at $s=0$, with

$$
\operatorname{pdir}_{i}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right][V(0)]^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

and

$$
\operatorname{pdir}_{\circ}(G, 0)=\operatorname{ker}\left[\begin{array}{ll}
0 & 1
\end{array}\right] U(0)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

Although $e_{1} \perp \operatorname{pdir}_{\mathrm{i}}(G, 0), G(s) e_{1}=1 / s e_{1}$, i.e. it still has a pole at $s=0$.

Simplifications

Let $\operatorname{nrank}(G(s))=r$. The following statements hold true:

1. $\phi_{\mathrm{p}}(s)$ is the least common denominator of all nonzero minors of $G(s)$ of all orders provided all common poles and zeros in each of these minors were canceled.
2. $\phi_{\mathrm{z}}(s)$ is the greatest common divisor of all the numerators of all r-order minors of $G(s)$ provided these minors have been adjusted to have $\phi_{\mathrm{p}}(s)$ as their denominators.

Example 3 (contd)

For

$$
G(s)=\left[\begin{array}{ccc}
\frac{1}{s+1} & 0 & \frac{s-1}{(s+1)(s+2)} \\
-\frac{1}{s-1} & \frac{1}{s+2} & \frac{1}{s+2}
\end{array}\right]
$$

nonzero minors of order 1 are

$$
\frac{1}{s+1}, \quad \frac{s-1}{(s+1)(s+2)}, \quad-\frac{1}{s-1}, \quad \frac{1}{s+2}, \quad \text { and } \quad \frac{1}{s+2}
$$

and the minors of order 2 are

$$
-\frac{s-1}{(s+1)(s+2)^{2}}, \quad \frac{2}{(s+1)(s+2)}, \quad \text { and } \quad \frac{1}{(s+1)(s+2)} .
$$

Hence,

$$
\phi_{\mathrm{p}}(s)=(s+2)^{2}(s+1)(s-1)=(s+2)^{2}\left(s^{2}-1\right)
$$

as before.

Example 3 (contd)

For

$$
G(s)=\left[\begin{array}{ccc}
\frac{1}{s+1} & 0 & \frac{s-1}{(s+1)(s+2)} \\
-\frac{1}{s-1} & \frac{1}{s+2} & \frac{1}{s+2}
\end{array}\right]
$$

the minors of order 2 are:

$$
-\frac{s-1}{(s+1)(s+2)^{2}}, \quad \frac{2}{(s+1)(s+2)}, \quad \text { and } \quad \frac{1}{(s+1)(s+2)}
$$

or, equivalently, with $\phi_{\mathrm{p}}(s)=(s+2)^{2}(s+1)(s-1)$

$$
-\frac{(s-1)^{2}}{\phi_{\mathrm{p}}(s)}, \quad \frac{2(s+2)(s-1)}{\phi_{\mathrm{p}}(s)}, \quad \text { and } \quad \frac{(s+2)(s-1)}{\phi_{\mathrm{p}}(s)} .
$$

Hence,

$$
\phi_{\mathrm{z}}(s)=s-1,
$$

as before.

Simplifications (contd)

Let $G(s)$ be a $p \times m$ real-rational proper transfer function.

1. If $z_{i} \in \mathbb{C}$ isn't a pole of $G(s)$, then it's a transmission zero of $G(s)$ iff $\operatorname{rank}\left(G\left(z_{i}\right)\right)<\operatorname{nrank}(G(s))$ and $\operatorname{nrank}(G(s))-\operatorname{rank}\left(G\left(z_{i}\right)\right)$ equals the geometric multiplicity of the zero at z_{i}, with

$$
\operatorname{zdir}_{i}\left(G, z_{i}\right)=\operatorname{ker} G\left(z_{i}\right) \quad \text { and } \quad \operatorname{zdir}_{\circ}\left(G, z_{i}\right)=\operatorname{ker}\left[G\left(z_{i}\right)\right]^{\prime}
$$

2. If $p=m=\operatorname{nrank}(G(s))$ and $p_{i} \in \mathbb{C}$ isn't a transmission zero of $G(s)$, it's a pole of $G(s)$ iff $\operatorname{det}\left(G^{-1}\left(p_{i}\right)\right)=0$ and $m-\operatorname{rank}\left(G^{-1}\left(p_{i}\right)\right)$ equals the geometric multiplicity of the pole at p_{i}, with

$$
\operatorname{pdir}_{\mathrm{i}}\left(G, p_{i}\right)=\operatorname{ker}\left[G^{-1}\left(p_{i}\right)\right]^{\prime} \quad \text { and } \quad \operatorname{pdir}_{\circ}\left(G, p_{i}\right)=\operatorname{ker} G^{-1}\left(p_{i}\right)
$$

