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Continuous-time signals



Signals

Basics

Signals are mappings from R (time) to F” for n € N, denoted x : R — F".
The value of x at a time instance t is denoted x(t) € F". We say that x is
— scalar-valued if n =1

— vector-valued if n > 1
Set of signals is a vector space, with

addition: x = y + z reads x(t) = y(t) + z(t) for at t
multiplication by scalar: x = ay reads x(t) = ay(t) for all t
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Signals

Basics

Signals are mappings from R (time) to F” for n € N, denoted x : R — F".
The value of x at a time instance t is denoted x(t) € F". We say that x is

— scalar-valued if n=1
— vector-valued if n > 1
Set of signals is a vector space, with
addition: x = y + z reads x(t) = y(t) + z(t) for at t
multiplication by scalar: x = ay reads x(t) = ay(t) for all t

Another important operation is
shift: S¢x reads (S¢x)(t) = x(t + ) for all ¢

The set
supp(x) = {t € R | x(t) # 0}

is called the support of x.



Signals

Normed (Banach) spaces

Admissibility — signal spaces:
L(R) = {x R = F7 | ] += / Ix(t)hdt < oo }
R
L2(R) == {x 1 R = F"| [Ix]loc == sup [x(t) Joc < o0 }
teR
L3(R) = {x: R > " | |||} := / Ix(£)[2dt < oo }

L5, (R):={x e L3(R) | x(t) =0 forall t <0}

L5_(R):={x e L3(R) | x(t) =0 forall t >0}



Signals

Normed (Banach) spaces

Admissibility — signal spaces:
L(R) = {x R = F7 | ] += / Ix(t)hdt < oo }
R
L2(R) == {x 1 R = F"| [Ix]loc == sup [x(t) Joc < o0 }
teR
L3(R) = {x: R > " | |||} := / Ix(£)[2dt < oo }

L5, (R):={x e L3(R) | x(t) =0 forall t <0}

L5_(R):={x e L3(R) | x(t) =0 forall t >0}

L5 is Hilbert, with

(x.y)2 1= / Y (D)x(t)de



Signals

Fourier transform
Defined _
F0) = X(jo) = / x(t)e @tdt,
R

where @ € R called the (angular) frequency and measured in rad/sec. §{x}
is the frequency-domain representation or spectrum of x.

FHX} = x( /X (jw)e!® dw,

i.e. x is a superposition, weighted by X(jw), of harmonic signals expj, with
frequencies w.



Signals

Fourier transform (contd)

Existence:
— well defined (absolute convergence) for x € L

— extendible (weaker convergence) for x € Ly by the Plancherel Theorem

§{-} is a unitary mapping L(R) — L2(jR), i.e. it preserves sizes:

/Hx )| dt—/nxjw 12do

|X||2 ‘X”g

It also preserves angles:

/ b (t)dt = - / X (jeo)] Xa (jeo ) deo
(x1,%0) (X1,X2)2

(Parseval's theorem, in engineering literature).



Signals

Laplace transform

The two-sided (bilateral) Laplace transform:

Sx} = F(s) i /na x(t)e—stdt

atall s € C where the integral converges (region of convergence, aka RoC).
We need xexp_; € L; for absolute convergence.

Normally used for signals supported on semi-axes:

— if supp(x) C Ry, then RoC is typically Co (may be Cy)

— if supp(x) C R_, then RoC is typically C \ Co (may be C\ Cyq)
for some & € R U {—00, o0}.



Signals

Laplace transform: mind RoC

Readily verifiable that

— x(t) = x.(t) == e7"1(t) = l ~ = X(s)

— x(t) = x_(t) := —e"FU(—1t) = ;1 = X(s)

— X alone does not define x unambiguously.




Signals

Laplace transform: mind RoC

Readily verifiable that

—x()=x(t) =)= [~ = X(s)=

— X(£) = x_(t) == —e tU(—t) = % — X(s) =

— X alone does not define x unambiguously.

If the knowledge of X is complemented by its RoC:
1
— X(s) =
() = -

1 and RoC=C_4 = X = X4

1
- X(s):s_i_landRoC:C\C,l = X =x_




Signals

Paley—Wiener and H, space
£{-} is a unitary mapping Lo (R) — H>, where

Hé’::{X:(Doﬁ(E"

X(s) is holomorphic in Cy and

1 [ s 1/2
| X|l2 := sup e | X(o + jo)||* do < 00
o>0 T JR

Important:

the boundary function )N((jNa)) = limg o X(0 + jo) exists for almost all
o and || X]|2 = || X]|l2 (so X € La(jR))

H, functions are identified with boundary functions = H, C L»(jR)
Ha-norm (provided X € Ha):

1 o \12
X2 = (5 [IXG0)IP do)



Systems in TD

Outline

Continuous-time dynamic systems in time domain
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Linear operators
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Systems in TD

Linear systems on L,

Linear operators
G:DcC Ly — L5

for some domain Dg.

Sufficiently general class of G : u +— y satisfies
y(6) = [ ele9u(s)as

where g : R2 — RPX™ s the impulse response (kernel) of G, whose
— gej(t,s) is y(t) under u(t) = ejé(t — s).



Systems in TD

Some systems u — y
Gint (integrator) y(t) = u(t)
Ggint (discrete integrator)

y(t)=y(t—T)+ u(t)

Gfmint (finite-memory integrator)
t
v = [ u(s)as
t—T

D (t-delay operator) y(t) = u(t — 1)

Fiip (ideal low-pass filter)



Systems in TD

Some systems u > y
Gine (integrator) y(t) = u(t) = ginte(t.s) = 1(t —s)
Ggint (discrete integrator)

y(8) = y(t = T)+ u(t)

Gfmint (finite-memory integrator)
t
v = [ u(s)as
t—T

D (t-delay operator) y(t) = u(t — 1)

Fiip (ideal low-pass filter)



Systems in TD

Some systems u > y
Gine (integrator) y(t) = u(t) = ginte(t.s) = 1(t —s)
Ggint (discrete integrator)

y(t) =y(t = T)+u(t) = gam(t.5)=> 8(t—s—(i—1)T)
ieEN
Gfmint (finite-memory integrator)

y(t) = /:T u(s)ds

D (t-delay operator) y(t) = u(t — 1)

Fiip (ideal low-pass filter)



Systems in TD

Some systems u > y
Gine (integrator) y(t) = u(t) = ginte(t.s) = 1(t —s)
Ggint (discrete integrator)

y(t) =y(t = T)+u(t) = gam(t.5)=> 8(t—s—(i—1)T)
ieEN
Gfmint (finite-memory integrator)

0= [ us)ds = gmnlt.9) =1t 5) - e~ T)

D (t-delay operator) y(t) = u(t — 1)

Fiip (ideal low-pass filter)



Systems in TD

Some systems u > y
Gine (integrator) y(t) = u(t) = ginte(t.s) = 1(t —s)
Ggint (discrete integrator)

y(t) =y(t = T)+u(t) = gam(t.5)=> 8(t—s—(i—1)T)
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Systems in TD

Some systems u > y
Gine (integrator) y(t) = u(t) = ginte(t.s) = 1(t —s)
Ggint (discrete integrator)

y(t) =y(t = T)+u(t) = gam(t.5)=> 8(t—s—(i—1)T)
ieEN
Gfmint (finite-memory integrator)

0= [ us)ds = gmnlt.9) =1t 5) - e~ T)

D (t-delay operator) y(t) = u(t — 1) = d(t,s) =6(t —s — 1)
Fiip (ideal low-pass filter)

fip(t,s) = % sinc(wp(t — s))



Systems in TD

Causality

G : uw> y is causal if for every t. € R

— y(t) =0 for all t < t. whenever u(t) =0 for all ¢t < t.
Roughly, it says that

— y(t) may only depend on past and present inputs u for all t.
Consequently,

— causal systems may be thought of as D¢ C L7, — L[5, .
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Systems in TD

Causality

G : uw> y is causal if for every t. € R

— y(t) =0 for all t < t. whenever u(t) =0 for all ¢t < t.
Roughly, it says that

— y(t) may only depend on past and present inputs u for all t.
Consequently,

— causal systems may be thought of as D¢ C L7, — L[5, .

Criterion:
y(t) = / g(t,s)u(s)ds / g(t,s)u(s)ds =0, Vt<t,u€Dg
JR te

whence
G is causal <= g(t,s) =0 for all s > t.

Remark: G is said to be anti-causal if y may only depend on future and present inputs u.
A linear G is anti-causal <= g(t,s) =0 for all s < t.
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Time (shift) invariance

Linear G : ®¢ C LY — L5 is time invariant (shift invariant) if
— GS;=9%;Gforall T €R



Systems in TD
Time (shift) invariance

Linear G : ®¢ C LY — L5 is time invariant (shift invariant) if
— GS;=9%;Gforall T €R

If G LTI, its impulse response g(t,s) = (GS_s8)(t) and then
y(t) = /[R (GS_s8)(t)u(s)ds = /[R (S—sG8)(t)u(s)ds
= /[R(GS)(t — s)u(s)ds,

i.e. only the response of G to § applied at t = 0 matters.



Systems in TD
Time (shift) invariance

Linear G : ®¢ C LY — L5 is time invariant (shift invariant) if
— GS;=9%;Gforall T €R

If G LTI, its impulse response g(t,s) = (GS_s8)(t) and then
y(t) = /[R (GS_s8)(t)u(s)ds = /[R (S—sG8)(t)u(s)ds
= /[R(GS)(t — s)u(s)ds,

i.e. only the response of G to § applied at t = 0 matters. We then treat
— g:R— RP*™ (ie. g(t))

— can write the response as the convolution integral

y(t) = /[R g(t — s)u(s)ds =: g % u



Systems in TD
Adjoint system
L, is Hilbert = G has its adjoint G’, defined via (Gu,v) = (u, G'v). If

(Gu)(r) = / g(t.s)u(s)ds,
then

(Guv) = [ V()G )dt—/ /() [ gt 5)uls)dsd

// dsdt—// (t,s)v s)dtds
:/[R</[Rg(t,s)v(t)dt> u(s)ds:/[k(/mg(s, t)v(s)ds)lu(t)dt

= (u,G'v). (G'v)(2)

Thus, the impulse response of G’ is [g(s, t)]’, or [g(—t)]" if G is LTI

— G is causal = G’ is anti-causal.



Systems in TD
Stability
Linear G : ®¢ C LY — L4 is stable (L,-stable)
— D¢ = L7 and
— |IG]| := supyy|,=1/IGull2 < oo (L2-induced norm)
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Linear G : ®¢ C LY — L4 is stable (L,-stable)
— D¢ = L7 and
— |IG]| := supyy|,=1/IGull2 < oo (L2-induced norm)

It is known (Young's convolution inequality) that
geliucl, = gruclyand|gxulla <l[glful2

Hence, if G is LTI, then it is
— stable whenever g € L;.
But g, u € Ly might not imply that g x u € Ly, so
— g € Ly does not necessarily imply the stability of G.



Systems in TD

Stability
Linear G : ®¢ C LY — L4 is stable (L,-stable)
— D¢ = L7 and
— |IG]| := supyy|,=1/IGull2 < oo (L2-induced norm)

It is known (Young's convolution inequality) that
geli,uel, = gxue€lyand ||g=*ul2 <|gllul2-

Hence, if G is LTI, then it is
— stable whenever g € L;.
But g, u € Ly might not imply that g x u € Ly, so
— g € Ly does not necessarily imply the stability of G.

Unfortunately,

A~ no N&S stability test in terms of the impulse response in general.



Systems in FD

Outline

Continuous-time dynamic LTI systems in transformed domains



Basic property
Because
y=gxu < Ly} =L{gtl{u} = F{y}=3F{g}5{u}

convolution representations become product in transformed domains, i.e. if
G is LTI, then
y=Gu < Y(jw) = G(jo)U(j»)

whenever both g and v are Fourier transformable and
y=Gu <= Y(s) = G(s)U(s)

for all s € RoC(g) N RoC(u). Here
— G(s) = (£{g})(s) is the transfer function of G
— G(jo) = (F{g})(jw) is the frequency response of G



Systems in FD

Beware of frequency response analysis: example

Consider

Then

y(t) = —2/t e () y(s)ds = y(£) = —y(t) — 2u(t).

As u(t) = r(t) — (1),

y(t) = y(t) = 2r(t) <= y(t) = —2/ e’ *u(s)ds,

— 00

so G is causal, with g(t) = —2e'1(t), and unstable.



Systems in FD

Beware of frequency response analysis: example (contd)

In the frequency domain,

T P(jo) ”,Tf — — G(jo)

with Y(jo) = P(jo)(R(jw) — Y (jw)). Hence

.y PGo) 2
Gliw) =17 Pliw)  1—jo
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Beware of frequency response analysis: example (contd)

In the frequency domain,

T P(jo) ”,Tf — — G(jo)

with Y(jo) = P(jo)(R(jw) — Y (jw)). Hence

Glio) = ol =2 = () =261 = — &

This G is anti-causal and stable (for this g € L), which makes no sense.




Systems in FD

Beware of frequency response analysis: example (contd)

In the frequency domain,

T P(jo) ”,Tf — — G(jo)

with Y(jo) = P(jo)(R(jw) — Y (jw)). Hence

Glio) = ol =2 = () =261 = — &

This G is anti-causal and stable (for this g € L), which makes no sense.

Hazards of analyzing systems in the Fourier domain:
A~ hard to cope with exponentially growing signals

A hard to trace causality



Systems in FD

Feedback in Laplace domain: example

In the Laplace domain,

y u r
| P(s) ,T —

for
2

+1

p(t)=—-2e"f1(t) = P(s)= —5
whose RoC = C_; (includes jR). Then, via Y(s) = P(s)(R(s) — Y(s)),

_ P(s) 2 _ J2et1(—t) ifRoC=C\C;
G(s)_l—i—P(s)_l—s = g(t)_{—Zetﬂ(t) if RoC = C;



Systems in FD

Feedback in Laplace domain: example

In the Laplace domain,

u r r
T P(s) ,T = —1 G(s)

for
2

S s+1
whose RoC = C_; (includes jR). Then, via Y(s) = P(s)(R(s) — Y(s)),

p(t)=—-2e"f1(t) = P(s)=

_ P(s) 2 _ J2et1(—t) ifRoC=C\C;
G(s)_l—i—P(s)_l—s = g(t)_{_zefn(r) if RoC = C;

It is not unreasonable to assume that
— causality is preserved under this feedback = RoC must remain a RHP

The correct impulse response can then be obtained immediately.



Systems in FD

Systems in Laplace domain

Typically,

control applications are concerned with causal systems

impulse responses are supported in R
— signals are assumed to have support in R4 too
RoC's are Cqy for some o € R U {—o0, 00}

— causal LTI systems treated as operators G : D¢ C L3, — L5,



Systems in FD

Systems in Laplace domain

Typically,
— control applications are concerned with causal systems
— impulse responses are supported in R
— signals are assumed to have support in R4 too
— RoC'’s are Cy for some @ € RU {—00, 00}

— causal LTI systems treated as operators G : D¢ C L3, — L5,

Outcomes:
- causal LTI systems = transfer functions

Z dynamical systems can be manipulated algebraically



Systems in FD

Transfer function: examples

Systems we already saw:
— &int(t) = 1(t)

— gaine(t) =Y _8(t—iT)
— &mint(t) = Tpo,77(2)

— de(t) =6(t — 1)



Systems in FD

Transfer function: examples

Systems we already saw: )
— glnt(t) = ]](t) — Gint(S) = g

— gaine(t) =Y _8(t—iT)
— &mint(t) = Tpo,77(2)

— de(t) =6(t — 1)



Systems in FD

Transfer function: examples

Systems we already saw: )
— glnt(t) = ]](t) — Gint(S) = g

— gdint(t) = ZS(t —iT) = Ggint(s) = Ze—siT _

— &mint(t) = Tpo,77(2)

— de(t) =6(t — 1)

1— e—sT



Systems in FD

Transfer function: examples

Systems we already saw:

1
— gint(t) = 1(1) = Gint(s) = S
1
RPROED S SRR S
1— efsT
— &mint(t) = Tjo,7)(t) = Gfmint(s) = ———

S

— de(t) =6(t — 1)



Systems in FD

Transfer function: examples

Systems we already saw:

1
— gine(t) = 1(¢) = Gim(s) = S
—siT 1
- gdmt 28 t — IT) - det Ze — e
1— efsT
— &imint(t) = H[OaT](t) = Gfmint(s) = s
- d‘[(t) == 5(t — T) — D‘L’(s) — e_5‘r

whose RoC's are Cg, Cq, C, and C, respectively.



Systems in FD

Causality + stability in Laplace domain
An LTI G is causal and stable iff its transfer function G € HZ™, where
HPX™M = {G : Cg — CP*™| G(s) is holomorphic and bounded in (Eo}

Thus,
— GHJ' C HY <= G € HEX™
— ifp=mand G,G1 € HTX™, then GHY" = HY"



Systems in FD

Causality + stability in Laplace domain

An LTI G is causal and stable iff its transfer function G € HZ™, where

pxm .,
HEXm .

{G : Cg — CP*™| G(s) is holomorphic and bounded in (Eo}

Thus,
— GHJ' C HY <= G € HEX™
— ifp=mand G,G1 € HTX™, then GHY" = HY"

Hso is Banach, with || G|« = supsce, || G(s)]|. Can be associated with its
boundary function from

LEX™(1R) i= { G 1 JR = CP*™| [|G]|oc = esssup|| G(jo) | < o0 }
w€eR
and Hoo C Loo(jR). Then, provided G € H,

|Gllec = esssup||G(jo)]|.
weR



Systems in FD

Examples

Gint ¢ Hs as 1/s is holomorphic but not bounded in Cg



Systems in FD

Examples

Gint ¢ Hx as 1/s is holomorphic but not bounded in Cg
Guint & Hoo as 1/(1 — e~T) is holomorphic but not bounded in Cq



Systems in FD

Examples

Gint ¢ Hx as 1/s is holomorphic but not bounded in Cg

Gdint & Hoo as 1/(1 — e~T) is holomorphic but not bounded in Cq
Gtmint € Hoo as (1 —e7*T)/s is holomorphic and bounded in Cg
for every s = (0 + jw)/ T,

20

1— e (@ti®)i2 72 1—2e%cosw+ e~

o+ jo o 02 4+ w?

o 1—e"7\? , dw’e C Y 1—cosw /0\2
=T ( o ) - T 02(0? + w?) (smh (E) -2 w? (E) )
72 1-e7\2 72 4w*e™% (sinh?(0/2) — (0/2)?)
o 02(0? + w?)

_ a0 2
T2(1 Ue ) < T2

where 2(1 — cosw)/®? < 1 and sinh? x > x? for all x # 0 were used

|G.1’mint(s)|2 = T2

IN

IA



Systems in FD

Examples

— Gint € Hso as 1/s is holomorphic but not bounded in Cgp

— Ggint € Hoo as 1/(1 — e*T) is holomorphic but not bounded in Cy

— Gfmint € Hoo as (1 — e7°T)/s is holomorphic and bounded in Cy
for every s = (0 + jw)/ T,

1—e @@}z 1 2e 7 cosw+e >

o0+ jw 02 + w?

o 1—e"7\? , dw’e C Y 1—cosw /0\2
=T ( o ) - T 02(0? + w?) (smh (E) -2 w? (E) )
72 1-e7\2 72 4w*e™% (sinh?(0/2) — (0/2)?)
o 02(0? + w?)

_ a0 2
T2(1 Ue ) < T2

where 2(1 — cosw)/®? < 1 and sinh? x > x? for all x # 0 were used

|G.1’mint(s)|2 = T2

IN

IA

— D; € Hy, as e~*% is holomorphic and bounded in Cp
for every s = 0 + jw, |e @) =0T <1



Systems in FD

Causality + stability and system poles

Let
1

G = —
(s) 1+s+ses

Its poles are all in the OLHP C \ Cop. To see this, let s =0 + jw be a pole,
then 14+ 0 + jo + (0 + jo)e™?71® = 0 reads

—0 —jo __

e e 1 1 _ 1+ 9 +j @
N o+jo o2 t+w2) T2 7

Hence, 0 must satisfy

> 1.

e = {1+ 2 i— 2 >+ -2
- 02+ w? J02+a)2 - 02+ w?

which is a contradiction for all 0 > 0. If 0 =0, we have 1 =1+ ﬁ which
also holds for none w € R.




Systems in FD

Causality + stability and system poles (contd)

But G ¢ Hs. To see this, let {s,} € C\ Co be a sequence of poles of G(s)
satisfying

Sk + 1+ ske =0, with limg_io|sk| =00: —+——"—%t

(known to exist). Then

1 1

G —_ = =
(=) 1— s, — spesk l—sk—i—s,f/(l—i—sk)

:1—|—Sk.

so there is a sequence {sx} in Cgp such that limy_,|G(—sk)| = oo.



Systems in FD

Causality + stability and system poles (contd)

But G ¢ Hs. To see this, let {s,} € C\ Co be a sequence of poles of G(s)
satisfying

Sk + 1+ ske =0, with limg_io|sk| =00: —+——"—%t

(known to exist). Then

1 1

G —_ = =
(=) 1— s, — spesk l—sk—i—s,f/(l—i—sk)

:1—|—Sk.

so there is a sequence {sx} in Cp such that limy_,o|G(—sk)| = co. Hence,
— G is not Lp-stable, despite having all poles in the OLHP

(curiously, G(s) is an Hy transfer function).

1
s+1



Systems in FD
H, system space

Defined as

HE*m .= {G :Co — Cpxm' G(s) is holomorphic in Cg and

]_ . 5 1/2
1Gll2 = sup /rG(oﬂw)\Fdw <o
o>0 27 R

With the good ol’ boundary function trick, H C L>(jR) and if G € Ha,

1 . 1/2
1612 = (55 [ 166012 do )

and Hy inherits the inner product from Ly (jR).



Systems in FD

Examples

Gint € H> as 1/s is holomorphic in Cqg but

1 / dw 1 o0
~ %« _ s 50
27 Jpo2+w? 20

(simpler, ||T]]2 = o0)
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Examples

Gint € H> as 1/s is holomorphic in Cqg but

1 / dw 1 o0
I B AR y 50
27 Jpo2+w? 20

(simpler, ||T]]2 = o0)

—  Ggint & H> for similar reasons



Systems in FD
Examples

Gint € H> as 1/s is holomorphic in Cqg but

1 / do 1 o0
Y B s 50
27 Jpo2+w? 20

(simpler, ||T]]2 = o0)
—  Ggint &€ H> for similar reasons
Gmint € Ho as (1 — e~*T)/s is holomorphic in Cq and

1 1-2e%Tcos(wT)+e 20T 1—e 20T

P do = <T
27 Jg 02+ w? @ 20

(simpler, [[Tj,77ll2 = VT < 0)



Systems in FD
Examples

Gint € H> as 1/s is holomorphic in Cqg but

1 / do 1 o0
il _ s 00
27 Jpo2+w? 20
(simpler, ||T]]2 = o0)
Ggint & H> for similar reasons
Gmint € Ha as (1 — e~*T)/s is holomorphic in Cq and
1 1-2e%Tcos(wT)+e 20T 1—e 20T

— do = <T
27 Jg 02+ w? @ 20

(simpler, [[Tj,77ll2 = VT < 0)
D; ¢ H> as €T is holomorphic in Cq but

—207
€ /da):oo
2 R




Systems in FD

H, system space (contd)

Is Hilbert, with

(61.Ga)2 = 5 [ w((Galio) Gu(jo))do = [ er(lea(e) gr(e)) .

Usage:
— unrelated to stability (D, ¢ H.. but D, ¢ H>, may be vice versa)
— popular performance measure (LQG, Kalman filtering)

— |IG|13 equals the energy of y = G§
— if uis Gaussian unit-intensity white, ||G||3 equals the variance of y = Gu



Systems in FD

Properness

G(s) is
— proper if Ja > 0 such that sup,cc,, || G(s)]| < o0
— strictly proper if 3o > 0 such that limjs_o0 sec, [|G(s)[| =0



Systems in FD

Properness
G(s) is
— proper if Ja > 0 such that sup,cc,, || G(s)]| < o0
— strictly proper if 3o > 0 such that limjs_o0 sec, [|G(s)[| =0
Examples:

Gint(s) is strictly proper (and thus proper)
Gdint(s) is proper but not strictly proper

1 1 1
1+e 9T — |1l—e (0tio)T| = 10T

—  Gfmint(8) is strictly proper (and thus proper)
— D¢ (s) is proper but not strictly proper

o+jw)T | — e 07

as e~ > 0 for all finite 0 > 0



Systems in FD

Properness
G(s) is
— proper if Ja > 0 such that sup,cc,, || G(s)]| < o0
— strictly proper if 3o > 0 such that limjs_o0 sec, [|G(s)[| =0

Examples:

Gint(s) is strictly proper (and thus proper)
Gdint(s) is proper but not strictly proper

1 < 1 1
1+e 9T — |1l—e (0tio)T| = 10T

—  Gfmint(8) is strictly proper (and thus proper)
— D¢ (s) is proper but not strictly proper
as [e7(@HP)T| = 797 5 0 for all finite 0 > 0
Important:
— G € Hy = G(s) is proper = stable causal G have proper t.f.'s

— G € Hp = G{(s) is strictly proper



Systems in FD

Conjugate transfer function

If G is LTI, its adjoint G’ has impulse response [g(—t)]" and
2{g') = [ le-ol'e e = | g er] = (6(-9).
with RoC in € \ C4. Thus, the transfer function of G is
G™(s) = [G(-9)]"

known as conjugate transfer function and verifying G~ (jo) = [G(jo)]’.



Systems in FD

Conjugate transfer function

If G is LTI, its adjoint G’ has impulse response [g(—t)]" and
2{g') = [ le-ol'e e = | g er] = (6(-9).
with RoC in € \ C4. Thus, the transfer function of G is
G™(s) :==[6(-9),
known as conjugate transfer function and verifying G~ (jw) = [G(jw)]’.
Usage:

— mostly in analysis

— limited to systems operating over the whole R
convolution theorem doesn’t hold for non-causal systems if considered on L>(R;)



Systems in FD

Inner and co-inner transfer functions
G € HEX™ is
— inner if G~(s)G(s) = Im (so p > m)
— co-inner if G(s)G™(s) =1, (so p < m)
If G(s) is inner, the system G is an isometry on Ly(R):

IGullz = [IGUI3 = (GU. GU)2 = (G~ GU, U)2 = (U, U); = ||U|3 = ||ull2

and if G(s) is co-inner, the system G’ is an isometry on Ly(R).



Systems in FD

Inner and co-inner transfer functions
G € HEX™ is
— inner if G~(s)G(s) = Im (so p > m)
— co-inner if G(s)G™(s) =1, (so p < m)
If G(s) is inner, the system G is an isometry on Ly(R):

IGullz = [IGUI3 = (GU. GU)2 = (G~ GU, U)2 = (U, U); = ||U|3 = ||ull2

and if G(s) is co-inner, the system G’ is an isometry on Ly(R).

If Wi(s) and W(s) are inner and co-inner, then
— ||Glloc = || Wi GW,i||so for all G € Huo
— [|G|l2 = |WiGWg||2 for all G € Ha



Coprime factorization

Outline

Coprime factorization of transfer functions over H,



Coprime factorization

Coprimeness over H,

M e HZ*™ and N € HPX™ are (strongly) right coprime over Hy, if there
are Bézout factors X € H2*™ and Y € H*P satisfying

[X(s) Y(s) ] [",\//’((j))] — X(s)M(s) + Y (s)N(s) = I

(Bézout equality). Implies left invertibility of [’X,’] over Hy.

M € HPXP and N € HEX™ are (strongly) left coprime over Ha, if there are
Bézout factors X € HEXP and Y € HZ*P satisfying

L) ) ]| 545) | = 100 (s) + ) ¥19) = 1

(Bézout equality). Implies right invertibility of [ M N ] over Hu.



Coprime factorization

Coprimeness over H,

M e HZ*™ and N € HPX™ are (strongly) right coprime over Hy, if there
are Bézout factors X € H2*™ and Y € H*P satisfying

M(s) | _ _
[X(s) Y(s) ] { N(s) ] = X(s)M(s) + Y(s)N(s) = Inm
(Bézout equality). Implies left invertibility of [’X,’] over Hy.

M € HPXP and N € HEX™ are (strongly) left coprime over Ha, if there are
Bézout factors X € HEXP and Y € HZ*P satisfying

L) ) ]| 545) | = 100 (s) + ) ¥19) = 1

(Bézout equality). Implies right invertibility of [ M N ] over Hu.

If p=m =1, then "left coprime” <= “right coprime” (so simply coprime).



Coprime factorization

Corona theorem

M e HZ*™ and N € H2X™ are (strongly) right coprime over H iff

s (4]

M € HP*P and N € HPX™ are (strongly) left coprime over H., iff

inf o ([F(s) fi(s) ]) > 0.



Coprime factorization

Corona theorem

M e HZ*™ and N € H2X™ are (strongly) right coprime over H iff

s (4]

M € HP*P and N € HPX™ are (strongly) left coprime over H., iff

inf o ([F(s) fi(s) ]) > 0.

—S

se )
1 are not coprime




Coprime factorization

Corona theorem

M e HZ*™ and N € H2X™ are (strongly) right coprime over H iff

s (4]

M € HP*P and N € HPX™ are (strongly) left coprime over H., iff

inf o ([F(s) fi(s) ]) > 0.

Thus,
— M(s) = ! and N(s) = se are not coprime
s+1 s+1
e ® s _
— M(s) = ] and N(s) = S7 2re coprime



Coprime factorization

Coprime factorization

Effectively every stabilizable transfer function can be expressed as
G(s) = N(s)M~*(s) = M~*(s)(s)

for right / left coprime M, N / M, N € H,, and bi-proper M(s) and M(s).



Coprime factorization
Coprime factorization
Effectively every stabilizable transfer function can be expressed as
G(s) = N(s)M~1(s) = M~ L(s)N(s)

for right / left coprime M, N / M, N € Hy, and bi-proper M(s) and M(s).
Examples:

- Gint(s) - %



Coprime factorization

Coprime factorization

Effectively every stabilizable transfer function can be expressed as
G(s) = N(s)M~*(s) = M~*(s)(s)

for right / left coprime M, N / M, N € Hy, and bi-proper M(s) and M(s).
Examples:

-1 .
— Gint(s) = % = sJ%a . (i) ,a>0,with X(s)=1and Y(s)=a



Coprime factorization
Coprime factorization
Effectively every stabilizable transfer function can be expressed as
G(s) = N(s)M~1(s) = M~ L(s)N(s)

for right / left coprime M, N / M, N € H,, and bi-proper M(s) and M(s).
Examples:
— Gm(s)=t=25" (i)_l, a> 0, with X(s) =1and Y(s) =a

Gdint(s) = 1_%57



Coprime factorization
Coprime factorization
Effectively every stabilizable transfer function can be expressed as
G(s) = N(s)M~1(s) = M~ L(s)N(s)

for right / left coprime M, N / M, N € Hy, and bi-proper M(s) and M(s).
Examples:

— Gint(s)=1=25" (i)_l, a>0, with X(s)=1and Y(s)=a

— Ggint(s) = l_e#ﬂ =1-(1—e=T)"! with X(s) =1and Y(s) = e ™"



Coprime factorization

Coprime factorization

Effectively every stabilizable transfer function can be expressed as
G(s) = N(s)M~*(s) = M~*(s)(s)

for right / left coprime M, N / M, N € Hy, and bi-proper M(s) and M(s).
Examples:

— Gm(s)=1=_L. (L)_l

Gdint(s) = l_e%ﬂ =1-(1—e=T)"! with X(s) =1and Y(s) = e ™"

_a—sT
Gfmint(s) =1 es ’

,a>0, with X(s)=1and Y(s)=a




Coprime factorization

Coprime factorization

Effectively every stabilizable transfer function can be expressed as
G(s) = N(s)M~*(s) = M~*(s)(s)

for right / left coprime M, N / M, N € H,, and bi-proper M(s) and M(s).
Examples:
— Gm(s)=1=_-21" (i)_l, a> 0, with X(s)=1and Y(s)=a

— Ggint(s) = l_e#ﬂ =1-(1—e=T)"! with X(s) =1and Y(s) = e ™"

—sT 1_efsT

Grmint(s) = 1=2— = 1= . 171 with X(s) =1 and Y(s) =0




Coprime factorization

Coprime factorization

Effectively every stabilizable transfer function can be expressed as
G(s) = N(s)M~*(s) = M~*(s)(s)

for right / left coprime M, N / M, N € Hy, and bi-proper M(s) and M(s).
Examples:

— Gm(s)=t=25" (i)_l, a> 0, with X(s) =1and Y(s) =a

— Ggint(s) = l_e#ﬂ =1-(1—e=T)"! with X(s) =1and Y(s) = e ™"

—sT 1_efsT

Grmint(s) = 1=2— = 1= . 171 with X(s) =1 and Y(s) =0
— Di(s)=e"°"




Coprime factorization

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

G(s) = N(s)M~1(s) = M~ L(s)N(s)

for right / left coprime M, N / M, N € H,, and bi-proper M(s) and M(s).

Examples:

Gnt(s) =1 =5~ (i)_l, a>0, with X(s)=1and Y(s)=a

— Ggint(s) = l_e#ﬂ =1-(1—e=T)"! with X(s) =1and Y(s) = e ™"

—sT 1_efsT

Grmint(s) = 1=2— = 1= . 171 with X(s) =1 and Y(s) =0

D.(s) =e 5T =e 57171 with X(s) =1and Y(s)=0



Coprime factorization

Coprime factorization

Effectively every stabilizable transfer function can be expressed as

G(s) = N(s)M~1(s) = M~ L(s)N(s)

for right / left coprime M, N / M, N € H,, and bi-proper M(s) and M(s).

Examples:

Gnt(s) =1 =5~ (i)_l, a>0, with X(s)=1and Y(s)=a

— Ggint(s) = l_e#ﬂ =1-(1—e=T)"! with X(s) =1and Y(s) = e ™"

—sT 1_efsT

Grmint(s) = 1=2— = 1= . 171 with X(s) =1 and Y(s) =0

D.(s) =e 5T =e 57171 with X(s) =1and Y(s)=0

Constructing coprime factors:

if G € Ho, then M(s) =1, N(s) = G(s), X(s) =1, and Y(s) =0



Coprime factorization

Two lemmas

Lemma o o
If Nlel = N2I\/12’1 and Mlel = M{lNg are rcf’s and Icf's of some G,
respectively, then

)= []o oo 1) - 01

for some U, U™, U, U1 € Hy.



Coprime factorization

Two lemmas

Lemma o o
If Nlel = N2I\/12’1 and Mlel = M{lNQ are rcf’s and Icf's of some G,
respectively, then
M, My - . e
|:N2:|:|:N1:|U and [M2N2]:U[M1N1]
for some U, U™, U, U1 € Hy.
Implies that

— if det Mi(sp) = 0 for sp € Cp, then det Ma(sp) = 0 for any other rcf
— if det /\7]1(50) =0 for s5 € Cg, then det /\7]2(50) = 0 for any other /cf

Lemma o
If G=NM~1 = M~IN are rcfand Icf, respectively, then

GeHy — M'leH, — M'!eH,.



Coprime factorization

Domain of L, systems

If G:®Dg C LY — L5 is LTl and such that its transfer function admits a
rcf over Hyo, G(s) = N(s)M~(s), then

D =MLy =ImM = {u|3Iv € L such that u = Mv}.



Coprime factorization

Domain of L, systems

If G:®Dg C LY — L5 is LTl and such that its transfer function admits a
rcf over Hyo, G(s) = N(s)M~(s), then

D =MLy =ImM = {u|3Iv € L such that u = Mv}.

Proof (outline).

- MeHyx = MLT CLY



Coprime factorization

Domain of L, systems

If G:®Dg C LY — L5 is LTl and such that its transfer function admits a
rcf over Hyo, G(s) = N(s)M~(s), then

D =MLy =ImM = {u|3Iv € L such that u = Mv}.
Proof (outline).

- MeHyx = MLT CLY
— GMLY = NLT C L =— MLY C D¢



Coprime factorization

Domain of L, systems
If G:®Dg C LY — L5 is LTl and such that its transfer function admits a
rcf over Hyo, G(s) = N(s)M~(s), then
D =MLy =ImM = {u|3Iv € L such that u = Mv}.

Proof (outline).
- MeHyx = MLT CLY
— GMLY = NLY C L§ = ML C D¢
— For any ug € D¢, denote v := M~ Lug. We have:

. / M
s o] =[¢]e=[N]e

Thus,
V0:XU0+Yy0€LT - @GCMLEH



Coprime factorization

Domain of L, systems

If G:®Dg C LY — L5 is LTl and such that its transfer function admits a
rcf over Hyo, G(s) = N(s)M~(s), then

D =MLy =ImM = {u|3Iv € L such that u = Mv}.
Proof (outline).
- MeHyx = MLT CLY

— GMLY = NLY C L = MLT C D¢
— For any ug € D¢, denote v := M~ Lug. We have:

. / M
s o] =[¢]e=[N]e

V0:XU0+Yy0€LT - @(;C/Wl_é77

Thus,



Coprime factorization

Doubly coprime factorization

Coprime factors of G(s) and their Bézout can always be selected so that
2k o) [ =9 1= 15 4]

[N(()) EE%] and {N((; éf}

are invertible in Hy.



Real-rational transfer functions

Outline

Real-rational transfer functions



Real-rational transfer functions
Definition

We say that G(s) is real-rational if

— Gj(s) = ,\A/I,‘IJ((Z)) for finite polynomials Njj(s) and M;;(s) with real coeff’s.



Real-rational transfer functions
Definition
We say that G(s) is real-rational if

— Gjj(s) = ,\A/I,‘IJ((Z)) for finite polynomials Njj(s) and M;;(s) with real coeff’s.

Examples:
- Gint(s) - %

— Gaint(s) = =7

_a—sT
Gfmint(s) =1 es -

— Di(s)=e"""




Real-rational transfer functions
Definition

We say that G(s) is real-rational if

— Gjj(s) = ,\A/I,‘IJJ((Z)) for finite polynomials Njj(s) and M;;(s) with real coeff’s.

Examples:

— Gine(s) = ¥ is real-rational

— Ggint(s) = — _sT is not real-rational

—e—sT . .
Gimint(s) = =5 is not real-rational

— Dy(s) = e °T is not real-rational



Real-rational transfer functions

Implications

Any real-rational G(s)
— is proper iff ||G(o0)|| < 0o, i.e. deg(Nji(s)) < deg(M;i(s)), Vi,j



Real-rational transfer functions

Implications

Any real-rational G(s)
— is proper iff ||G(o0)|| < 0o, i.e. deg(Nji(s)) < deg(M;i(s)), Vi,j

— is strictly proper iff ||G(c0)|| =0, i.e. deg(N;i(s)) < deg(Mj(s)), Vi, j



Real-rational transfer functions

Implications

Any real-rational G(s)
— is proper iff ||G(o0)|| < 0o, i.e. deg(Nji(s)) < deg(M;i(s)), Vi,j

— is strictly proper iff ||G(c0)|| =0, i.e. deg(N;i(s)) < deg(Mj(s)), Vi, j
— G € Hy, iff G(s) is proper & has no poles in Cg called RHx



Real-rational transfer functions

Implications
Any real-rational G(s)
— is proper iff ||G(o0)|| < 0o, i.e. deg(Nji(s)) < deg(M;i(s)), Vi,j
— is strictly proper iff ||G(c0)|| =0, i.e. deg(N;i(s)) < deg(Mj(s)), Vi, j
— G € Hy, iff G(s) is proper & has no poles in Cg called RHx

— G € H, iff G(s) is strictly proper & has no poles in Co  called RH



Real-rational transfer functions

Implications
Any real-rational G(s)
— is proper iff ||G(c0)|| < oo, i.e. deg(Nj(s)) < deg(M;i(s)), Vi,j
— is strictly proper iff ||G(c0)|| =0, i.e. deg(N;i(s)) < deg(Mj(s)), Vi, j
— G € Hy, iff G(s) is proper & has no poles in Cg
— G € H, iff G(s) is strictly proper & has no poles in Cg

— admits doubly coprime factorizations over RH,



Real-rational transfer functions

Implications

Any real-rational G(s)
— is proper iff ||G(o0)|| < 0o, i.e. deg(Nji(s)) < deg(M;i(s)), Vi,j

— is strictly proper iff ||G(c0)|| =0, i.e. deg(N;i(s)) < deg(Mj(s)), Vi, j
— G € Hy, iff G(s) is proper & has no poles in Cg called RH,
— G € H, iff G(s) is strictly proper & has no poles in Co  called RH

— admits doubly coprime factorizations over RH,

By-products:
— stability <= proper + no poles in Cy
— RH> C RHy
— always stabilizable by feedback
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Poles, zeros, & C°



Poles, zeros, & C°

Diagonal case: poles, zeros, and. ..
Every
G(s) = S =: diag{Gi(s)}
0 - Gp(s)

is effectively a union of m independent systems, so that

— poles and zeros of G(s) are unions of poles and zeros of G;(s).



Poles, zeros, & C°

Diagonal case: poles, zeros, and. ..

Every

G(s)=1| : . o | =diag{Gi(s)}
0 - Gu(s)
is effectively a union of m independent systems, so that

— poles and zeros of G(s) are unions of poles and zeros of G;(s).

Consequences:
— may have uncancellable pole(s) and zero(s) at the same point
— det(G(s)) might be a poor indicator of its dynamical properties

— mere location of poles and zeros is not sufficient



Poles, zeros, & C°

Diagonal case: poles, zeros, and ... (contd)
Poles and zeros of
Gi(s) -~ 0
G(s) = Do
0 - Gm(s)

should be

— complemented by their association with subsystems



Poles, zeros, & C°

Diagonal case: poles, zeros, and ... (contd)
Poles and zeros of
Gl(S) 0
G(s) = : - :
0 - Gm(s)

should be
B I || ) . ) I

— complemented by their directions
— if pk (z«) is a pole (zero) of G;(s), its direction is span(e;)

— if pk (z«) is a pole (zero) of Gi(s) and Gj(s), its direction is span(e;, ;)



Poles, zeros, & C°

Diagonal case: poles, zeros, and ... (contd)
Poles and zeros of
Gi(s) -~ 0
G(s) = Do
0 - Gm(s)

should be
B I || ) . ) I

— complemented by their directions
— if pk (z«) is a pole (zero) of G;(s), its direction is span(e;)

— if pk (z«) is a pole (zero) of Gi(s) and Gj(s), its direction is span(e;, ;)
— pole direction of px: L to any v for which G(s)v has no pole at px

— zero direction of z: span of all v for which G(s)v|s—, =0



Poles, zeros, & C°

Poles and zeros of

Diagonal case: poles, zeros, and ... (contd)
Gi(s) -~ 0
Gs)=| + .
0 - Gm(s)

should be
B I || ) . ) I

— complemented by their directions

if pk (zx) is a pole (zero) of G;(s), its direction is span(e;)

if px (z«) is a pole (zero) of G;(s) and Gj(s), its direction is span(e;, &)
pole direction of py: L to any v for which G(s)v has no pole at py
zero direction of z: span of all v for which G(s)v|s_, =0

if pk (zx) is a pole (zero) of 1, subsystems, its geometric multiplicity is
Mok

the multiplicity of pg (zx) in G;(s) is its ith partial multiplicity

the sum of all partial multiplicities of py is its algebraic multiplicity



Poles, zeros, & C°

General case: preliminaries

— normal rank: nrank(G(s)) := maxsec rank(G(s))
if G(s) is proper, then rank(G(s)) = nrank(G(s)) for all but a finitely many s

— unimodular polynomial matrix: square and det(U(s)) = const # 0
U™(s) is also a polynomial matrix

polynomial B(s) divides polynomial «(s) if BE ; is a polynomial



Poles, zeros, & C°

Smith—McMillan form

Given a p x m transfer function G(s) having nrank(G(s)) = r < min{p, m},
there are unimodular polynomial matrices U(s) and V/(s) such that

wE)/bls) 0 0
OSEVEI=| s o]
0 0 0

where «;(s) divides «jy1(s), Bi+1(s) divides Bi(s), and «;(s) and B;(s) are
coprime at every | € Z1_,.



Poles, zeros, & C°

Smith—McMillan form & poles / degree / zeros

Given a p x m transfer function G(s) having nrank(G(s)) = r < min{p, m},
there are unimodular polynomial matrices U(s) and V/(s) such that

a1(s)/Pa(s) -+ 0 0
S| o o]
0 0 0

where «;(s) divides «jy1(s), Bi+1(s) divides Bi(s), and «;(s) and B;(s) are
coprime at every | € Z1_,.

— roots of ¢p(s H,B (s) are the poles of G(s)
i=1

— n:=deg(¢pp(s)) is the McMillan degree (or degree) of G(s)

— roots of ¢,(s Ha, are the transmission zeros (or zeros) of G(s)



Poles, zeros, & C°

Pole directions

Let p; € C be a pole of geometric multiplicity u; of

ai(s)/Bi(s) - 0 0
S RUAC R W
0 0 0

input pole direction, pdir;(G, p;) C C™:

e
. 1 MI.+1 /
pdiri(G, pi)) = (ImV(pi) [euis1 -+ em]) =ker| = |[V(pi)]

€m

output pole direction, pdire(G, p;) C CP:
él/L;—l-l N
pdira(G.py) = ker| i | U(p) = (Im[U(p)] [&us - & 1)
é’/

P



Poles, zeros, & C°

Zero directions

Let z; € C be a pole of geometric multiplicity u; of

ai(s)/Ba(s) - 0 0
| I
0 0 0

input zero direction, zdir(G, p;) C C™:
zdiri(G, z) :==ImV(z) [ e—piv1 -+ €m |
output zero direction, zdiry(G, p;) C CP:

zdiro(G, pi) = Im[U(Z)] [ &—pj41 -+ & |



Poles, zeros, & C°

Example 1

Let us) v
1 0 1 -1] [1/s 0
[1 1]G(s)[0 L ]_[ 0 0}

5= 1 1]

One pole at s =0



Example 1

et us) V()
so=2[11] = [1 e[} 2] =4 ?]
One pole at s = 0, with
pdiri(G,0) = ker [0 1] [V(0)] = Spa“<“ D
pdiro(G,0) = ker [0 1] U(0) = Spa”(“ D



Poles, zeros, & C°

Example 2

Let U(s) V(s)
-] = [ Aot 2

One pole and one transmission zero at s =0



Poles, zeros, & C°

Example 2

L ue) v(s)
s[5 ] = [} 4 ew[S L]-[% 0]
One pole and one transmission zero at s = 0, with
pdiri(G.0) =ker [0 1 ][V(0)] = sPan([(l) D
pdiro(G, 0) = ker [0 1]U(°):Spa”<[é]>



Let

Example 2

U(s) v(s)
2] = [ Aeels 2]

one transmission z at s = 0, with

1/s 0
0

pdiri(G,0) = ker [0 1 ] [V(0)]' = ([OD

pdiro(G.0) = ([ D

zdir(G.0) = Im V/(0) [(1)] - ([H)
zdiro(G. 0) = Im[U(0)] [ﬂ :span<[ﬂ)

|



Let

Example 2

U(s) V(s)
b= {i s Jeely %] -]

one transmission z at s = 0, with

1/s 0
0

pdiri(G,0) = ker [0 1 ] [V(0)]' = <[OD

wescr-1mlo 1100 - [

2diri(G,0) = Im V(0) [‘1)] _ <[(1) D 1 pdin(G,0)
2diro(G, 0) = Im[U(O)] {ﬂ :span<[1 D 1 pdirs(G,0)

]



Poles, zeros, & C°

Example 3

Let

1 0 s—1
G(s) = si . (s+ﬁ+2)
s—1 s42 542

and define unimodular polynomials

3 3
U(s) = 6 [53—52—45—2 53—52—4s+4] ’
2(s—2) —6(s—1) —3(s—1)
4 —-24  —6(s+2)
0 6 3(s+2)

Then

(52—1§(s+2) 0 0
UE)GEV(s) = | T 2 )
s+2

Four poles, at {—2,—2,—1,1}, and one transmission zero at {1}.



Example 3 (contd)

Pole directions:
1
. 01 0
pd|ri(G,1)—ker[0 9 1 () —span<[8]>
pdire(G,1) = ker [0 1] U(1) = span<

pdir;(G,—l):ker[g (1) H [V(—l)]’:span<
|
:
0

and pdir,(G, —2) = C2.



Example 3 (contd)

Zero directions:

00 0 0
zdiri(G,l)ImV(l){l 0]span<[1],[0]>
01 0 1

2diro(G, 1) = Im[U(L)]’ [(1) ] _ span([(l) D



Example 3 (contd)



Example 4

G(s) {1/5 1/s? ] '

Let

0 1/s
Its Smith—McMillan form is

o eeln S
Double pole at s — 0, with
pdiri(G.0) = ker [0 1] [V(0)] = span([cl) D

and

pdire(G.0) = ker [0 1]U(0):span(“D.

Poles, zeros, & C°



Poles, zeros, & C°

Example 4

G(s) {1/5 1/s? ] '

Let

0 1/s

Its Smith—-McMillan form is
10 0 -1] [1/s 0
[—s 1]G(5){1 s }_[ 0 1]'
Double pole at s = 0, with
. / 0
pdiri(G,0) = ker [0 1 ] [V/(0)] —span<[1 D

and

pdire(G.0) = ker [0 1]U(0):span(“D.

Although e; L pdiri(G,0), G(s)e; = 1/s ey, i.e. it still has a pole at s = 0.



Poles, zeros, & C°
Simplifications

Let nrank(G(s)) = r. The following statements hold true:

1. ¢p(s) is the least common denominator of all nonzero minors of G(s)
of all orders provided all common poles and zeros in each of these
minors were canceled.

2. ¢,(s) is the greatest common divisor of all the numerators of all
r-order minors of G(s) provided these minors have been adjusted to
have ¢,(s) as their denominators.



Poles, zeros, & C°

Example 3 (contd)

For
L0 ot
Gls)=| 1 5 U
s—1 s+2 s+2
nonzero minors of order 1 are
1 s—1 1 q
’ ) - ) 5 an
s+1° (s+1)(s+2) s—1" s+2 s+2
and the minors of order 2 are
-1 2 1
> and

C(s+1)(s+2)%

Hence,
¢p(s) = (s +2)*(s +1)(s — 1)

as before.

(s+1)(s+2)

(s+1)(s+2)

= (s +2)%(s> - 1),



Poles, zeros, & C°

Example 3 (contd)

For
1 0 s—1
G(S) — s+il . (s+1)1(s+2)
Ts—1 sf2 s+2
the minors of order 2 are:
s—1 2 q 1
- , , an -
(s+1)(s+2)2 (s+1)(s+2) (s+1)(s+2)

or, equivalently, with ¢(s) = (s +2)2(s + 1)(s — 1)

C(s=12 0 2(s+2)(s-1) and (s+2)(s—1)
$p(s) Pp(s) 7 Pp(s)
Hence,
¢.(s) =s—1,

as before.



Poles, zeros, & C°
Simplifications (contd)

Let G(s) be a p x m real-rational proper transfer function.

1. If z; € C isn't a pole of G(s), then it's a transmission zero of G(s) iff
rank(G(z;)) < nrank(G(s)) and nrank(G(s)) — rank(G(z;)) equals the
geometric multiplicity of the zero at z;, with

zdiri(G, z;) = ker G(z;) and  zdiro(G, z;) = ker[G(z)]'.

2. If p=m = nrank(G(s)) and p; € C isn't a transmission zero of G(s),
it's a pole of G(s) iff det(G~!(p;)) = 0 and m — rank(G(p;)) equals
the geometric multiplicity of the pole at p;, with

pdiri(G, pi) = ker[G ™} (p)]' and  pdire(G, p;) = ker G~ }(py).
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