Linear Control Systems (036012) chapter 2

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Static systems

is static (memoryless) if

 $- y(t_1)$ depends only on u(t) only at $t = t_1$ for all t_1

Hence,

frozen-time analysis

no need in time dependence)

Static systems

is static (memoryless) if

 $- y(t_1)$ depends only on u(t) only at $t = t_1$ for all t_1

Hence,

- frozen-time analysis

(no need in time dependence)

Outline

Static MIMO systems: basic notions

Singular value decomposition

Systems as modeling tools

Signals & systems

Signals are vectors:

 $u \in \mathbb{F}^m$ and $y \in \mathbb{F}^p$.

Systems are mappings:

 $G: \mathbb{F}^m \to \mathbb{F}^p.$

Signals & systems

Signals are vectors:

$$u \in \mathbb{F}^m$$
 and $y \in \mathbb{F}^p$.

Systems are mappings:

$$G:\mathbb{F}^m\to\mathbb{F}^p.$$

lf

 $u = \begin{bmatrix} u_{1} \\ \vdots \\ u_{m} \end{bmatrix} = \sum_{i=1}^{m} u_{i}e_{i} \text{ and } y = \begin{bmatrix} y_{1} \\ \vdots \\ y_{p} \end{bmatrix} = \sum_{i=1}^{p} y_{i}\tilde{e}_{i}$ then $\begin{bmatrix} y_{1} \\ \vdots \\ y_{p} \end{bmatrix} = \begin{bmatrix} g_{11} \cdots g_{1m} \\ \vdots & \vdots \\ g_{p1} \cdots & g_{pm} \end{bmatrix} \begin{bmatrix} u_{1} \\ \vdots \\ u_{m} \end{bmatrix}.$

Matrix notation and terminology

By $g_{\bullet j} \in \mathbb{F}^{p \times 1}$ and $g_{i \bullet} \in \mathbb{F}^{1 \times m}$ we denote the *j*th column and the *i*th row of $G \in \mathbb{F}^{p \times m}$, $G = \begin{bmatrix} g_{\bullet 1} & \dots & g_{\bullet m} \end{bmatrix} = \begin{bmatrix} g_{1 \bullet} \\ \vdots \\ g_{p \bullet} \end{bmatrix}$.

We say that $G \in \mathbb{F}^{p \times m}$ is

- square if m = p, tall if p > m, and fat if p < m;
- upper (lower) triangular if its elements $g_{ij} = 0$ whenever i > j (i < j);
- diagonal if $g_{ij} = 0$ whenever $i \neq j$.
- If G is square, then
 - its trace $\operatorname{tr}(G) := \sum_{i=1}^m g_{ii} \in \mathbb{F}$

Similarity transformations

If $\{v_1, \ldots, v_m\}$ be a (non-standard) basis on \mathbb{F}^m , then

$$x = \alpha_1 v_1 + \dots + \alpha_m v_m = \begin{bmatrix} v_1 & \dots & v_m \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{bmatrix} =: T x_{\alpha}$$

and $T \in \mathbb{F}^{m \times m}$ is invertible. The vector $x_{\alpha} = T^{-1}x$ represents the same signal, just from a different viewpoint. Now, defining $\tilde{u} := T_u^{-1}u$ and $\tilde{y} := T_v^{-1}y$, we end up with

$$y = Gu \iff \tilde{y} = T_y^{-1} G T_u \tilde{u},$$

where $T_v^{-1}GT_u$ is the matrix representation of G in these new coordinates.

If p = m, we may take $T_u = T_y = T$. Then $T^{-1}GT$ is called similar to G.

Similarity transformations: example

DFT basis

$$\phi_i := rac{1}{n} egin{bmatrix} 1 \ (\mathrm{e}^{\mathrm{j}2\pi/n})^{i-1} \ dots \ (\mathrm{e}^{\mathrm{j}2\pi(n-1)/n})^{i-1} \end{bmatrix}, \quad i \in \mathbb{Z}_{1..n}.$$

Let

$$G = \frac{1}{3} \begin{bmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$

•

and consider

$$T = \frac{1}{6} \begin{bmatrix} 2 & 2 & 2\\ 2 & -1 + j\sqrt{3} & -1 - j\sqrt{3}\\ 2 & -1 - j\sqrt{3} & -1 + j\sqrt{3} \end{bmatrix} \left(T^{-1} = \frac{1}{2} \begin{bmatrix} 2 & 2 & 2\\ 2 & -1 - j\sqrt{3} & -1 + j\sqrt{3}\\ 2 & -1 + j\sqrt{3} & -1 - j\sqrt{3} \end{bmatrix} \right)$$

Then

$$T^{-1}GT = \text{diag}\{1, 2, 2\}.$$

Signals: size matters

Hölder vector norms $||x||_q$, $q \ge 1$:

$$\|x\|_1 := \sum_{i=1}^n |x_i|, \quad \|x\| = \|x\|_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}, \quad \|x\|_\infty := \max_{1 \le i \le n} |x_i|.$$

x is unit vector in q-metric if $||x||_q = 1$.

All vector norms are equivalent, that is

 $\exists \gamma_2 > \gamma_1 > 0 \text{ such that } \gamma_1 \| x \|_b \le \| x \|_a \le \gamma_2 \| x \|_{b^{1/2}} \quad \forall x \in \mathbb{F}^n, \text{ then}$ $= \| \| x \|_p \le \| x \|_q \le n^{1/q - 1/p} \| x \|_p \text{ whenever } q < p$

Signals: size matters

Hölder vector norms $||x||_q$, $q \ge 1$:

$$\|x\|_{1} := \sum_{i=1}^{n} |x_{i}|, \quad \|x\| = \|x\|_{2} := \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2}, \quad \|x\|_{\infty} := \max_{1 \le i \le n} |x_{i}|.$$

x is unit vector in q-metric if $||x||_q = 1$.

All vector norms are equivalent, that is

$$\exists \gamma_2 > \gamma_1 > 0 \text{ such that } \gamma_1 \|x\|_b \leq \|x\|_a \leq \gamma_2 \|x\|_b, \quad \forall x.$$

e.g. if $x \in \mathbb{F}^n$, then $- \|x\|_p \le \|x\|_q \le n^{1/q - 1/p} \|x\|_p \text{ whenever } q < p$ Static MIMO systems

Signals: size matters (contd)

The unit ball:

$$\mathcal{B}_q := \big\{ x : \|x\|_q \leq 1 \big\}.$$

e.g.:

Size of systems

Induced norms (largest gain):

$$||A||_{q} := \sup_{u \in \mathbb{F}^{m}, u \neq 0} \frac{||Au||_{q}}{||u||_{q}} = \sup_{\|u\|_{q}=1} ||Au||_{q} = \sup_{\|u\|_{q} \in \mathcal{B}_{q}} ||Au||_{q}.$$

e.g.

$$\|G\|_{1} = \max_{1 \le j \le m} \sum_{i=1}^{p} |a_{ij}|, \quad \|G\| = \|G\|_{2} = \sqrt{\rho(A'A)}, \quad \|G\|_{\infty} = \max_{1 \le i \le p} \sum_{j=1}^{m} |a_{ij}|$$

Frobenius norm (not induced)

$$\|G\|_{\mathsf{F}} := \sqrt{\mathsf{tr}(G'G)} = \left(\sum_{i=1}^{m} \|Ge_i\|^2\right)^{1/2} = \left(\sum_{i=1}^{p} \sum_{j=1}^{m} |g_{ij}|^2\right)^{1/2}$$

All matrix norms are also equivalent. For instance,

$$\|A\| \leq \|A\|_{\mathsf{F}} \leq \sqrt{\mathsf{rank}(A)} \|A\|_{\mathsf{F}}$$

Signals: direction matters too

The direction of $x \in \mathbb{F}^n$ is the

- 1-dimensional subspace span $(x) \subset \mathbb{F}^n$.

Relative direction may be quantified by the inner product notion,

$$\langle x, y \rangle := \sum_{i=1}^{n} \overline{y}_i x_i = y' x,$$

with

$$\cos \theta = \frac{\langle x, y \rangle}{\|x\| \|y\|}$$

x and y are

orthogonal if $\langle x, y \rangle = 0$ co-directed if $|\langle x, y \rangle| = ||x|| ||y||$

(i.e. $\exists \alpha \in \mathbb{F}$ such that $x = \alpha y$)

System gain(s)

Norms are a rough tool. For example, let

$${{\mathcal{P}}} = \left[egin{array}{ccc} 1+lpha & 1-lpha \ -1+lpha & -1-lpha \end{array}
ight]$$

for $\alpha \in [0,1]$. Then $\|P\|_2 = 2$, regardless α .

$y = P \begin{bmatrix} u_0 \\ u_0 \end{bmatrix} = \begin{bmatrix} 2u_0 \\ 2u_0 \end{bmatrix} \implies \|y\| = \sqrt{8}|u_0| = 2\|u\|.$

But if $u = \left[egin{array}{c} u_0 \ -u_0 \end{array}
ight]$, then $\|u\| = \sqrt{2} |u_0|$ and

 $y = P \begin{bmatrix} u_0 \\ -u_0 \end{bmatrix} = \begin{bmatrix} 2\alpha u_0 \\ 2\alpha u_0 \end{bmatrix} \implies ||y|| = \sqrt{8\alpha} ||u_0| = 2\alpha ||u||$

might be significantly smaller if $|lpha|\ll 1$.

System gain(s)

Norms are a rough tool. For example, let

$${{P}} = \left[egin{array}{ccc} 1+lpha & 1-lpha \ -1+lpha & -1-lpha \end{array}
ight]$$

for $\alpha \in [0,1]$. Then $\|P\|_2 = 2$, regardless α .

If $u = \begin{bmatrix} u_0 \\ u_0 \end{bmatrix}$, then $\|u\| = \sqrt{2}|u_0|$ and

$$y = P \begin{bmatrix} u_0 \\ u_0 \end{bmatrix} = \begin{bmatrix} 2u_0 \\ 2u_0 \end{bmatrix} \implies ||y|| = \sqrt{8}|u_0| = 2||u||.$$

But if $u = \left[egin{array}{c} u_0 \ - eta_0 \end{array}
ight]$, then $\| u \| = \sqrt{2} |u_0|$ and

 $\mathbf{y} = P \begin{bmatrix} u_0 \\ -u_0 \end{bmatrix} = \begin{bmatrix} 2\alpha u_0 \\ 2\alpha u_0 \end{bmatrix} \implies ||\mathbf{y}|| = \sqrt{8\alpha} ||\mathbf{u}_0| = 2\alpha ||\mathbf{u}||$

might be significantly smaller if $|\alpha| \ll 1$.

System gain(s)

Norms are a rough tool. For example, let

$${{\it P}} = \left[egin{array}{ccc} 1+lpha & 1-lpha \ -1+lpha & -1-lpha \end{array}
ight]$$

for $\alpha \in [0,1]$. Then $\|P\|_2 = 2$, regardless α .

If
$$u = \left[egin{array}{c} u_0 \ u_0 \end{array}
ight]$$
, then $\| u \| = \sqrt{2} |u_0|$ and

$$y = P \begin{bmatrix} u_0 \\ u_0 \end{bmatrix} = \begin{bmatrix} 2u_0 \\ 2u_0 \end{bmatrix} \implies ||y|| = \sqrt{8}|u_0| = 2||u||.$$

But if $u = \left[\begin{smallmatrix} u_0 \\ -u_0 \end{smallmatrix}
ight]$, then $\| u \| = \sqrt{2} |u_0|$ and

$$y = P \begin{bmatrix} u_0 \\ -u_0 \end{bmatrix} = \begin{bmatrix} 2\alpha u_0 \\ 2\alpha u_0 \end{bmatrix} \implies ||y|| = \sqrt{8\alpha} |u_0| = 2\alpha ||u||$$

might be significantly smaller if $|\alpha| \ll 1$.

Structural properties

Given a $G : \mathbb{F}^m \to \mathbb{F}^p$, its kernel and image are

$$\ker G := \left\{ u \in \mathbb{F}^m \mid Gu = 0 \right\} \& \operatorname{Im} G := \left\{ y \in \mathbb{F}^p \mid \exists u \in \mathbb{F}^m \text{ s.t. } y = Gu \right\}$$

and the rank, defined as rank $G := \dim(\operatorname{Im} G)$, quantifies the richness of G.

Kernel describes the freedom of choice for the input.

 $y = Gu \iff u = u_0 + u_n$ for some $u_n \in \ker G$

for any u_0 such that $y_0 = Gu_0$ and

Structural properties

Given a $G : \mathbb{F}^m \to \mathbb{F}^p$, its kernel and image are

$$\ker G := \left\{ u \in \mathbb{F}^m \mid Gu = 0 \right\} \& \operatorname{Im} G := \left\{ y \in \mathbb{F}^p \mid \exists u \in \mathbb{F}^m \text{ s.t. } y = Gu \right\}$$

and the rank, defined as rank $G := \dim(\operatorname{Im} G)$, quantifies the richness of G.

Kernel describes the freedom of choice for the input.

$$y = Gu \iff u = u_0 + u_n$$
 for some $u_n \in \ker G$

for any u_0 such that $y_0 = Gu_0$ and

Outline

Static MIMO systems: basic notions

Singular value decomposition

Systems as modeling tools

Unitary matrices

A matrix (system) $G \in \mathbb{F}^{m \times m}$ is said to be unitary if

$$\|Gu\| = \|u\|, \quad \forall u \in \mathbb{F}^m$$

i.e. unitary systems have unit norm in every direction. It can be shown that

- G is unitary iff G'G = I or, equivalently, $G^{-1} = G'$.

Examples of unitary matrices on $\mathbb{F}^{2 \times 2}$:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \underbrace{\mathcal{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}}_{\text{plain rotation}} \qquad \underbrace{\mathcal{Q}_{\theta} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}}_{\text{plain reflection}}$$

In real case, either rotations (if det G = 1) or reflections (if det G = -1).

Unitary matrices (contd)

Let

$$G = \left[\begin{array}{ccc} g_{\bullet 1} & g_{\bullet 2} & \cdots & g_{\bullet m} \end{array} \right], \quad g_{\bullet i} \in \mathbb{F}^{m}$$

be unitary. Then

$$G'G = \begin{bmatrix} g'_{\bullet 1} \\ \vdots \\ g'_{\bullet m} \end{bmatrix} \begin{bmatrix} g_{\bullet 1} & \cdots & g_{\bullet m} \end{bmatrix} = \begin{bmatrix} g'_{\bullet 1}g_{\bullet 1} & \cdots & g'_{\bullet 1}g_{\bullet m} \\ \vdots & \ddots & \vdots \\ g'_{\bullet m}g_{\bullet 1} & \cdots & g'_{\bullet m}g_{\bullet m} \end{bmatrix} = I,$$

i.e. the columns of unitary matrices are mutually orthogonal and unit. That means that any unitary matrix defines an orthonormal basis of \mathbb{F}^m . E.g.

- the identity matrix I corresponds to the standard basis $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$
- plain rotation matrix corresponds to $\left\{ \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \right\}$

Singular value decomposition

For every $G \in \mathbb{F}^{p \times m}$ there are¹ unitary matrices

$$U = \begin{bmatrix} u_1 & u_2 & \dots & u_p \end{bmatrix} \in \mathbb{F}^{p imes p}$$
 and $V = \begin{bmatrix} v_1 & v_2 & \dots & v_m \end{bmatrix} \in \mathbb{F}^{m imes m}$

such that

$$G = U \Sigma V',$$

where $\Sigma \in \mathbb{R}^{p \times m}$ is of the form

$$\Sigma = \begin{cases} \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} & \text{if } p \le m \\ \begin{bmatrix} \Sigma_1 \\ 0 \end{bmatrix} & \text{if } p \ge m \end{cases}$$

and $\Sigma_1 = \text{diag}\{\sigma_1, \sigma_2, \dots, \sigma_{\min\{p,m\}}\}\ \text{with } \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_{\min\{p,m\}} \ge 0.$

¹Matlab command is svd(G)

Singular value decomposition (contd)

- real numbers σ_i are called the singular values of *G* (it can be shown that σ_i^2 are the eigenvalues of both *G'G* and *GG'*)
- vectors u_i are called the left singular vectors of G
- vectors v_i are called the right singular vectors of G
- alternative expression of SVD:

$$G = \sum_{i=1}^{\min\{p,m\}} \sigma_i \, u_i v_i'$$

System action via SVD

Let p = m (for simplicity) and consider $G: w \mapsto y$ such that

$$G=\sum_{i=1}^m \sigma_i \, u_i v_i'$$

Let $w = \sum_{i=1}^{m} w_i v_i$, where w_i are coordinates of w in $\{v_i\}$

By orthonormality of $\{v_i\}$,

$$y = \left(\sum_{i=1}^{m} \sigma_i \, u_i v_i'\right) \left(\sum_{i=1}^{m} w_i \, v_i\right) = \sum_{i=1}^{m} (\sigma_i w_i) u_i$$

meaning

- $y_i = \sigma_i w_i$ are the coordinates of y in the (orthonormal) basis $\{u_i\}$.

System gains via SVD

We know that $||x||^2 = \sum_{i=1}^{m} |x_i|^2$, where x_i are the coordinates of $x \in \mathbb{F}^m$ in any orthonormal basis of \mathbb{F}^m . Thus,

$$\|Gw\|^2 = \|y\|^2 = \sum_{i=1}^m \sigma_i^2 |w_i|^2$$

Hence,

$$- ||y|| \le \sigma_1 ||w||$$

(because $||y||^2 = \sum_{i=1}^m \sigma_i^2 |w_i|^2 \le \sum_{i=1}^m \sigma_1^2 |w_i|^2 = \sigma_1^2 \sum_{i=1}^m |w_i|^2 = \sigma_1^2 ||w||^2$)

 $- ||y|| \ge \sigma_m ||w||$ $(\text{because } ||y||^2 = \sum_{i=1}^m \sigma_i^2 |w_i|^2 \ge \sum_{i=1}^m \sigma_m^2 |w_i|^2 = \sigma_m^2 \sum_{i=1}^m |w_i|^2 = \sigma_m^2 ||w||^2)$

and the singular values show the maximal and minimal amplifications of G.

Singular vectors

If the input

$$w = v_j$$
,

then the output

$$y = \left(\sum_{i=1}^{m} \sigma_i \, u_i v_i'\right) v_j = \sigma_j u_j \quad \Longrightarrow \quad \|y\| = \sigma_j$$

Hence,

- span(v_j) is the input direction corresponding to gain σ_j
- span (u_j) is the output direction corresponding to gain σ_j

In particular

- span(v_1) is the input direction corresponding to the maximal gain
- span (u_1) is the output direction corresponding to the maximal gain
- span (v_m) is the input direction corresponding to the minimal gain
- span (u_m) is the output direction corresponding to the minimal gain

Interpretation

Any system G acts as the cascade of a rotation (reflection), scaling along "physical" directions, and another rotation (reflection):

Structural properties via SVD

Lemma

lf

$$\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_{\min\{p,m\}} = 0$$

for some $r \leq \min\{p, m\}$, then

- $\operatorname{Im} G = \operatorname{span}(u_1, \ldots, u_r),$
- $\operatorname{rank}(G) = r$,

$$- \operatorname{ker} G = \operatorname{span}(v_{r+1},\ldots,v_m).$$

Proof.

Follows from

$$G = \sum_{i=1}^{\min\{p,m\}} \sigma_i \, u_i v_i' = \sum_{i=1}^r \sigma_i u_i v_i' = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1' \\ \vdots \\ v_r' \end{bmatrix}$$

Low-rank approximation

Given a $G \in \mathbb{F}^{p \times m}$ with rank G = r, then for every $l \leq r$

$$\min_{\operatorname{rank}(H) \le l} \|G - H\| = \sigma_{l+1} \text{ and } \min_{\operatorname{rank}(H) \le l} \|G - H\|_{\mathsf{F}} = \left(\sum_{i=l+1}^{r} \sigma_{i}^{2}\right)^{1/2}$$

and the minimizing

$$H = G_l := \sum_{i=1}^l \sigma_i u_i v_i'$$

in both cases.

Rank decomposition

Given a $G \in \mathbb{F}^{p \times m}$ such that rank $(G) = r \leq \min\{m, p\}$, there are full row rank $G_{inp} \in \mathbb{F}^{r \times m}$ and full column rank $G_{out} \in \mathbb{F}^{p \times r}$ such that

$$G = G_{\rm out} G_{\rm inp}$$

In this case ker $G = \ker G_{inp}$ and Im $G = \operatorname{Im} G_{out}$. This follows directly from the SVD of G (as $\sigma_i \neq 0 \iff i \leq r$):

$$G = \sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}' = \begin{bmatrix} u_{1} & \cdots & u_{r} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{r} \end{bmatrix} \begin{bmatrix} v_{1}' \\ \vdots \\ v_{r}' \end{bmatrix}$$

Example: designs in Lect. 1

If

$$P = \begin{bmatrix} 1+\alpha & 1-\alpha \\ -1+\alpha & -1-\alpha \end{bmatrix}, \quad \text{with } R = \overbrace{k \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}^{R_1} \text{ or } R = \overbrace{k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}^{R_2},$$

then

$$R_{1}: T_{d} \xrightarrow{\alpha \downarrow 0} \frac{1}{2k+1} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \frac{1}{2k+1} P$$
$$R_{2}: T_{d} \xrightarrow{\alpha \downarrow 0} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = P$$

- What makes them so different?
- Why R_2 doesn't affect disturbance response?

Example: plant geometry

Plant's SVD ($0 \le \alpha \le 1$):

$$P = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}\right) \begin{bmatrix} 2 & 0 \\ 0 & 2\alpha \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}\right).$$

If $\alpha = 0$, then

- only inputs co-directed with span $\left(\begin{bmatrix} 1\\1 \end{bmatrix} \right)$ can affect the response
- only outputs co-directed with span($\begin{bmatrix} 1\\-1 \end{bmatrix}$) can be affected

and these directions are orthogonal. In other words,

But

 $-R_2 = kl$ doesn't change direction of measurements!

Hence, the system effectively works in open loop with this controller.

Example: plant geometry

Plant's SVD ($0 \le \alpha \le 1$):

$$P = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}\right) \begin{bmatrix} 2 & 0 \\ 0 & 2\alpha \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}\right).$$

If $\alpha = 0$, then

- only inputs co-directed with span $\left(\begin{bmatrix} 1\\1 \end{bmatrix} \right)$ can affect the response
- only outputs co-directed with span($\begin{bmatrix} 1\\-1 \end{bmatrix}$) can be affected

and these directions are orthogonal. In other words,

But

 $-R_2 = kI$ doesn't change direction of measurements! Hence, the system effectively works in open loop with this controller.

Outline

Static MIMO systems: basic notions

Singular value decomposition

Systems as modeling tools

Generating subspaces

Lemma

A set $S \subset \mathbb{F}^n$ is a subspace iff either of the following conditions holds:

 $- \exists d \leq n \text{ and a full-rank matrix } S_i \in \mathbb{F}^{n \times d} \text{ such that } S = \operatorname{Im} S_i$

 $- \exists d \leq n \text{ and a full-rank matrix } S_k \in \mathbb{F}^{(n-d) \times n} \text{ such that } S = \ker S_k$

Moreover, this d is the dimension of S.

Proof.

Because both image and kernel are subspaces, the "if" part in both cases is immediate as well as the fact that dim(S) = d. To show the "only if" part, let S be a d-dimensional subspace and $\{s_1, \ldots, s_d\}$ be its basis. By the very definition, $S = \text{Im } S_i$ for $S_i = [s_1 \cdots s_d]$. Likewise, if $\{s_{d+1}, \ldots, s_n\}$ is a basis of the (n - d)-dimensional space S^{\perp} , then $S_k = [s_{d+1} \cdots s_n]'$ is what we need.

Let y = Gu for $G = \begin{bmatrix} 3 & 0 & 4 \end{bmatrix}$. Find all u such that y = 1. Remember that

To characterize the kernel, bring in SVD

SO

$$\ker \mathbf{G} = \operatorname{span}\left(\begin{bmatrix} -0.8\\0\\0.6\end{bmatrix}, \begin{bmatrix} 0\\1\\0\end{bmatrix} \right) = \operatorname{Im} \begin{bmatrix} -0.8&0\\0&1\\0.6&0 \end{bmatrix}$$

Hence,

$$u = \begin{bmatrix} -1\\0\\1 \end{bmatrix} + \begin{bmatrix} -0.8&0\\0&1\\0.6&0 \end{bmatrix} \begin{bmatrix} v_1\\v_2 \end{bmatrix}$$

for arbitrary value and va

Let y = Gu for $G = \begin{bmatrix} 3 & 0 & 4 \end{bmatrix}$. Find all u such that y = 1. Remember that $y = Gu \iff u = u_0 + u_n$ for $u_n \in \ker G$. A particular solution is

$$u_0 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
.

To characterize the kernel, bring in SVD

SO

$$\ker G = \operatorname{span}\left(\left[\begin{array}{c} -0.8\\0\\0.6 \end{array} \right], \left[\begin{array}{c} 0\\1\\0 \end{array} \right] \right) = \operatorname{Im} \left[\begin{array}{c} -0.8&0\\0&1\\0.6&0 \end{array} \right]$$

Hence,

$$u = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -0.8 & 0 \\ 0 & 1 \\ 0.6 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

for arbitrary we and we

Let y = Gu for $G = \begin{bmatrix} 3 & 0 & 4 \end{bmatrix}$. Find all u such that y = 1. Remember that $y = Gu \iff u = u_0 + u_n$ for $u_n \in \ker G$. A particular solution is

$$u_0 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

To characterize the kernel, bring in SVD

$$G = 1 \cdot \begin{bmatrix} 5 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0.6 & 0 & 0.8 \\ -0.8 & 0 & 0.6 \\ 0 & 1 & 0 \end{bmatrix},$$

SO

 $\ker G = \operatorname{span} \left(\begin{bmatrix} -0.8\\0\\0.6 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right) = \operatorname{Im} \begin{bmatrix} -0.8&0\\0&1\\0.6&0 \end{bmatrix}$

Hence,

$$u = \begin{bmatrix} -1\\0\\1\end{bmatrix} + \begin{bmatrix} -0.8&0\\0&1\\0.6&0\end{bmatrix} \begin{bmatrix} v_1\\v_2\end{bmatrix}$$

for arbitrary ve and ve

SVD

Let y = Gu for $G = \begin{bmatrix} 3 & 0 & 4 \end{bmatrix}$. Find all u such that y = 1. Remember that $y = Gu \iff u = u_0 + u_n$ for $u_n \in \ker G$. A particular solution is

$$u_0 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

To characterize the kernel, bring in SVD

$$G = 1 \cdot \begin{bmatrix} 5 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0.6 & 0 & 0.8 \\ -0.8 & 0 & 0.6 \\ 0 & 1 & 0 \end{bmatrix},$$

SO

ker
$$G = \operatorname{span} \left(\begin{bmatrix} -0.8 \\ 0 \\ 0.6 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) = \operatorname{Im} \begin{bmatrix} -0.8 & 0 \\ 0 & 1 \\ 0.6 & 0 \end{bmatrix}$$

Hence,

$$u = \begin{bmatrix} -1\\0\\1 \end{bmatrix} + \begin{bmatrix} -0.8 & 0\\0 & 1\\0.6 & 0 \end{bmatrix} \begin{bmatrix} v_1\\v_2 \end{bmatrix}$$

for arbitrary v1 and va

Exotic metrics

There may be reasons to define unorthodox metrics, like a metric in which

- -x is "small" if $||x|| \leq \gamma$ for some $\gamma > 0$
- $-x_i$ is more important than x_j

(uniform scaling) (non-uniform scaling)

- important are various linear combinations of x_i

Rather than dreaming up new metrics (unhandy), we can recycle existing. For example, we can define scaled unit balls as

$$G\mathcal{B}_q := \big\{ x \mid x = Gu, \|u\|_q \le 1 \big\},$$

which would result in

