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Static systems

uy
G

is static (memoryless) if

− y(t1) depends only on u(t) only at t = t1 for all t1

Hence,

− frozen-time analysis (no need in time dependence)
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Signals & systems

uy
G

Signals are vectors:
u ∈ Fm and y ∈ F p:

Systems are mappings:
G : Fm → F p:

If

u =

 u1
...
um

 =
m∑
i=1

uiei and y =

 y1
...
yp

 =

p∑
i=1

yi ẽi

then  y1
...
yp

 =

system matrix (convenient)︷ ︸︸ ︷ g11 · · · g1m
...

...
gp1 · · · gpm

 u1
...
um

 :
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Matrix notation and terminology

By g•j ∈ F p×1 and gi• ∈ F 1×m we denote the jth column and the ith row
of G ∈ F p×m,

G =
[
g•1 : : : g•m

]
=

 g1•
...

gp•

:
We say that G ∈ F p×m is

− square if m = p, tall if p > m, and fat if p < m;

− upper (lower) triangular if its elements gij = 0 whenever i > j (i < j);

− diagonal if gij = 0 whenever i ̸= j .

If G is square, then

− its trace tr(G ) ··=
∑m

i=1 gii ∈ F
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Similarity transformations

If {v1; : : : ; vm} be a (non-standard) basis on Fm, then

x = ˛1v1 + · · ·+ ˛mvm =
[
v1 · · · vm

]  ˛1...
˛m

 =·· Tx˛

and T ∈ Fm×m is invertible. The vector x˛ = T−1x represents the same
signal, just from a different viewpoint. Now, defining ũ ··= T−1

u u and
ỹ ··= T−1

y y , we end up with

y = Gu ⇐⇒ ỹ = T−1
y GTuũ;

where T−1
y GTu is the matrix representation of G in these new coordinates.

If p = m, we may take Tu = Ty = T . Then T−1GT is called similar to G .
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Similarity transformations: example

DFT basis

�i ··=
1

n


1

(ej2�=n)i−1
...

(ej2�(n−1)=n)i−1

 ; i ∈ Z1::n:

Let

G =
1

3

 5 −1 −1
−1 5 −1
−1 −1 5

 :
and consider

T =
1

6

 2 2 2

2 −1 + j
√
3 −1− j

√
3

2 −1− j
√
3 −1 + j

√
3

 (T−1 =
1

2

 2 2 2

2 −1− j
√
3 −1 + j

√
3

2 −1 + j
√
3 −1− j

√
3

)

Then
T−1GT = diag{1; 2; 2}:
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Signals: size matters

Hölder vector norms ∥x∥q, q ≥ 1:

∥x∥1 ··=
n∑

i=1

|xi |; ∥x∥ = ∥x∥2 ··=
( n∑

i=1

|xi |2
)

1=2
; ∥x∥∞ ··= max

1≤i≤n
|xi |:

x is unit vector in q-metric if ∥x∥q = 1.

All vector norms are equivalent, that is

∃
2 > 
1 > 0 such that 
1∥x∥b ≤ ∥x∥a ≤ 
2∥x∥b; ∀x :

e.g. if x ∈ F n, then

− ∥x∥p ≤ ∥x∥q ≤ n 1=q−1=p ∥x∥p whenever q < p



Static MIMO systems SVD Systems as modeling tools

Signals: size matters
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Signals: size matters (contd)

The unit ball:
Bq ··=

{
x : ∥x∥q ≤ 1

}
:

e.g.:

B1: B2: B∞:

x1

x2

−1 1

−1

1

x1

x2

−1 1

−1

1

x1

x2

−1 1

−1

1
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Size of systems

Induced norms (largest gain):

∥A∥q ··= sup
u∈Fm;u ̸=0

∥Au∥q
∥u∥q

= sup
∥u∥q=1

∥Au∥q = sup
∥u∥q∈Bq

∥Au∥q:

e.g.

∥G∥1 = max
1≤j≤m

p∑
i=1

|aij |; ∥G∥ = ∥G∥2 =
√
�(A′A); ∥G∥∞ = max

1≤i≤p

m∑
j=1

|aij |

Frobenius norm (not induced)

∥G∥F
··=
√

tr(G ′G ) =

( m∑
i=1

∥Gei∥2
)

1=2
=

( p∑
i=1

m∑
j=1

|gij |2
)

1=2

All matrix norms are also equivalent. For instance,

∥A∥ ≤ ∥A∥F ≤
√
rank(A) ∥A∥:
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Signals: direction matters too

The direction of x ∈ F n is the

− 1-dimensional subspace span(x) ⊂ F n.

Relative direction may be quantified by the inner product notion,

⟨x ; y⟩ ··=
n∑

i=1

y ixi = y ′x ;

with

cos � =
⟨x ; y⟩
∥x∥∥y∥

x and y are

orthogonal if ⟨x ; y⟩ = 0

co-directed if |⟨x ; y⟩| = ∥x∥∥y∥ (i.e. ∃˛ ∈ F such that x = ˛y)
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System gain(s)

Norms are a rough tool. For example, let

P =

[
1 + ˛ 1− ˛
−1 + ˛ −1− ˛

]
for ˛ ∈ [0; 1]. Then ∥P∥2 = 2, regardless ˛.

If u =
[
u0
u0

]
, then ∥u∥ =

√
2|u0| and

y = P

[
u0
u0

]
=

[
2u0
2u0

]
=⇒ ∥y∥ =

√
8|u0| = 2∥u∥:

But if u =
[

u0−u0

]
, then ∥u∥ =

√
2|u0| and

y = P

[
u0
−u0

]
=

[
2˛u0
2˛u0

]
=⇒ ∥y∥ =

√
8˛|u0| = 2˛∥u∥

might be significantly smaller if |˛| ≪ 1.
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Structural properties

Given a G : Fm → F p, its kernel and image are

kerG ··=
{
u ∈ Fm | Gu = 0

}
& ImG ··=

{
y ∈ F p | ∃u ∈ Fm s.t. y = Gu}

and the rank, defined as rankG ··= dim(ImG ), quantifies the richness of G .

Kernel describes the freedom of choice for the input.

y = Gu ⇐⇒ u = u0 + un for some un ∈ kerG

for any u0 such that y0 = Gu0 and
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Unitary matrices

A matrix (system) G ∈ Fm×m is said to be unitary if

∥Gu∥ = ∥u∥; ∀u ∈ Fm

i.e. unitary systems have unit norm in every direction. It can be shown that

− G is unitary iff G ′G = I or, equivalently, G−1 = G ′.

Examples of unitary matrices on F 2×2:[
1 0
0 1

]
R� =

[
cos � − sin �
sin � cos �

]
︸ ︷︷ ︸

plain rotation

Q� =

[
cos 2� sin 2�
sin 2� − cos 2�

]
︸ ︷︷ ︸

plain reflection

In real case, either rotations (if detG = 1) or reflections (if detG = −1).
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Unitary matrices (contd)

Let
G =

[
g•1 g•2 · · · g•m

]
; g•i ∈ Fm

be unitary. Then

G ′G =

 g ′
•1
...

g ′
•m

 [ g•1 · · · g•m
]
=

 g ′
•1g•1 · · · g ′

•1g•m
...

. . .
...

g ′
•mg•1 · · · g ′

•mg•m

 = I ;

i.e. the columns of unitary matrices are mutually orthogonal and unit. That
means that any unitary matrix defines an orthonormal basis of Fm. E.g.

− the identity matrix I corresponds to the standard basis
{[

1
0

]
;
[
0
1

]}
− plain rotation matrix corresponds to

{[
cos �
sin �

]
;
[− sin �

cos �

]}
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Singular value decomposition

For every G ∈ F p×m there are1 unitary matrices

U =
[
u1 u2 : : : up

]
∈ F p×p and V =

[
v1 v2 : : : vm

]
∈ Fm×m

such that
G = U ΣV ′;

where Σ ∈ Rp×m is of the form

Σ =


[
Σ1 0

]
if p ≤ m[

Σ1

0

]
if p ≥ m

and Σ1 = diag
{
�1; �2; : : : ; �min {p;m}

}
with �1 ≥ �2 ≥ : : : ≥ �min {p;m} ≥ 0.

1Matlab command is svd(G)
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Singular value decomposition (contd)

− real numbers �i are called the singular values of G
(it can be shown that �2

i are the eigenvalues of both G ′G and GG ′)

− vectors ui are called the left singular vectors of G

− vectors vi are called the right singular vectors of G

− alternative expression of SVD:

G =
min {p;m}∑

i=1

�i uiv
′
i
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System action via SVD

Let p = m (for simplicity) and consider G : w 7→ y such that

G =
m∑
i=1

�i uiv
′
i

Let
w =

m∑
i=1

wi vi ; where wi are coordinates of w in {vi}

By orthonormality of {vi},

y =

( m∑
i=1

�i uiv
′
i

)( m∑
i=1

wi vi

)
=

m∑
i=1

(�iwi )ui

meaning

− yi = �iwi are the coordinates of y in the (orthonormal) basis {ui}.
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System gains via SVD

We know that ∥x∥2 =∑m
i=1|xi |2, where xi are the coordinates of x ∈ Fm in

any orthonormal basis of Fm. Thus,

∥Gw∥2 = ∥y∥2 =
m∑
i=1

�2
i |wi |2

Hence,

− ∥y∥ ≤ �1∥w∥
(because ∥y∥2 =

∑m
i=1 �

2
i |wi |2 ≤

∑m
i=1 �

2
1 |wi |2 = �2

1

∑m
i=1|wi |2 = �2

1 ∥w∥2)

− ∥y∥ ≥ �m∥w∥
(because ∥y∥2 =

∑m
i=1 �

2
i |wi |2 ≥

∑m
i=1 �

2
m|wi |2 = �2

m

∑m
i=1|wi |2 = �2

m∥w∥2)

and the singular values show the maximal and minimal amplifications of G .
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Singular vectors

If the input
w = vj ;

then the output

y =

( m∑
i=1

�i uiv
′
i

)
vj = �juj =⇒ ∥y∥ = �j

Hence,

− span(vj) is the input direction corresponding to gain �j

− span(uj) is the output direction corresponding to gain �j

In particular

− span(v1) is the input direction corresponding to the maximal gain

− span(u1) is the output direction corresponding to the maximal gain

− span(vm) is the input direction corresponding to the minimal gain

− span(um) is the output direction corresponding to the minimal gain
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Interpretation

Any system G acts as the cascade of a rotation (reflection), scaling along
“physical” directions, and another rotation (reflection):

ΣU V ′
wy

�
inp

�1

�
2

�out
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Structural properties via SVD

Lemma
If

�1 ≥ · · · ≥ �r > �r+1 = · · · = �min {p;m} = 0

for some r ≤ min{p;m}, then
− ImG = span

(
u1; : : : ; ur

)
,

− rank(G ) = r ,

− kerG = span
(
vr+1; : : : ; vm

)
.

Proof.
Follows from

G =
min {p;m}∑

i=1

�i uiv
′
i =

r∑
i=1

�iuiv
′
i =

[
u1 · · · ur

]  �1 . . .
�r

 v ′1
...
v ′r


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Low-rank approximation

Given a G ∈ F p×m with rankG = r , then for every l ≤ r

min
rank(H)≤l

∥G − H∥ = �l+1 and min
rank(H)≤l

∥G − H∥F =

( r∑
i=l+1

�2
i

)
1=2

and the minimizing

H = Gl ··=
l∑

i=1

�iuiv
′
i

in both cases.
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Rank decomposition

Given a G ∈ F p×m such that rank(G ) = r ≤ min{m; p}, there are full row
rank Ginp ∈ F r×m and full column rank Gout ∈ F p×r such that

G = GoutGinp:

In this case kerG = kerGinp and ImG = ImGout. This follows directly from
the SVD of G (as �i ̸= 0 ⇐⇒ i ≤ r):

G =
r∑

i=1

�iuiv
′
i =

[
u1 · · · ur

]  �1 . . .
�r

 v ′1
...
v ′r

 :
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Example: designs in Lect. 1

remu

d

y

ymn

RP −

If

P =

[
1 + ˛ 1− ˛
−1 + ˛ −1− ˛

]
; with R =

R1︷ ︸︸ ︷
k

[
1 0
0 −1

]
or R =

R2︷ ︸︸ ︷
k

[
1 0
0 1

]
;

then

R1: Td
˛↓0−−→ 1

2k + 1

[
1 1
−1 −1

]
=

1

2k + 1
P

R2: Td
˛↓0−−→

[
1 1
−1 −1

]
= P

− What makes them so different?

− Why R2 doesn’t affect disturbance response?
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Example: plant geometry

Plant’s SVD (0 ≤ ˛ ≤ 1):

P =

(
1√
2

[
1 −1
−1 −1

])[
2 0

0 2˛

](
1√
2

[
1 1

−1 1

])
:

If ˛ = 0, then

− only inputs co-directed with span
([

1
1

])
can affect the response

− only outputs co-directed with span
([

1
−1

])
can be affected

and these directions are orthogonal. In other words,

−

But

− R2 = kI doesn’t change direction of measurements!

Hence, the system effectively works in open loop with this controller.
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Generating subspaces

Lemma
A set S ⊂ F n is a subspace iff either of the following conditions holds:

− ∃ d ≤ n and a full-rank matrix Si ∈ F n×d such that S = ImSi

− ∃ d ≤ n and a full-rank matrix Sk ∈ F (n−d)×n such that S = ker Sk

Moreover, this d is the dimension of S.

Proof.
Because both image and kernel are subspaces, the “if” part in both cases is
immediate as well as the fact that dim(S) = d . To show the “only if” part,
let S be a d-dimensional subspace and {s1; : : : ; sd} be its basis. By the
very definition, S = ImSi for Si =

[
s1 · · · sd

]
. Likewise, if {sd+1; : : : ; sn}

is a basis of the (n− d)-dimensional space S⊥, then Sk =
[
sd+1 · · · sn

]′
is what we need.
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Example: freedom of choice

Let y = Gu for G =
[
3 0 4

]
. Find all u such that y = 1. Remember that

y = Gu ⇐⇒ u = u0 + un for un ∈ kerG . A particular solution is

u0 =
[−1

0
1

]
:

To characterize the kernel, bring in SVD

G = 1 ·
[
5 0 0

]
·

 0:6 0 0:8

−0:8 0 0:6

0 1 0

 ;
so

kerG = span

−0:8
0
0:6

 ;
 0
1
0

 = Im

−0:8 0
0 1
0:6 0


Hence,

u =

−1
0
1

+

−0:8 0
0 1
0:6 0

[ v1
v2

]
for arbitrary v1 and v2.
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u0 =
[−1

0
1

]
:

To characterize the kernel, bring in SVD

G = 1 ·
[
5 0 0

]
·

 0:6 0 0:8

−0:8 0 0:6

0 1 0

 ;
so

kerG = span

−0:8
0
0:6

 ;
 0
1
0

 = Im

−0:8 0
0 1
0:6 0


Hence,

u =

−1
0
1

+

−0:8 0
0 1
0:6 0

[ v1
v2

]
for arbitrary v1 and v2.
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Exotic metrics

There may be reasons to define unorthodox metrics, like a metric in which

− x is “small” if ∥x∥ ≤ 
 for some 
 > 0 (uniform scaling)

− xi is more important than xj (non-uniform scaling)

− important are various linear combinations of xi

Ba: Bb: Bc :

R
=
3

x1

x2

a = 3
b
=

2
x1

x2

a
=
3b

=
2

x1

x2

√(
x1
3

)2
+
(
x2
3

)2 √(
x1
3

)2
+
(
x2
2

)2 √(
x1+x2
3
√
2

)2
+
(
x1−x2
2
√
2

)2
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Exotic metrics modeled via standard metrics

Rather than dreaming up new metrics (unhandy), we can recycle existing.
For example, we can define scaled unit balls as

GBq ··=
{
x | x = Gu; ∥u∥q ≤ 1

}
;

which would result in

Ba = 3B2: Bb =
[
3 0
0 2

]
B2: Bc = 1√

2

[
3 −2
3 2

]
B2:

R
=
3

x1

x2

a = 3

b
=

2

x1

x2

a
=
3b

=
2

x1

x2
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