Linear Control Systems (036012) lecture no. 1

Leonid Mirkin

Faculty of Mechanical Engineering Technion — IIT

1/30

Course info

Credit points: 3

Prerequisite: Control Theory (035188)

Grading policy: homework 100% (4 best out of 5 assignments)
 Homework solutions must be submitted electronically to c036012@technion.ac.il

Course site: http://leo.technion.ac.il/Courses/LCS/

- Literature:
 - 1. My lecture notes (available at the course site)
 - 2. Skogestad, S. & I. Postlethwaite. *Multivariable Feedback Control: Analysis and Design*, John Wiley & Sons, 1996.
 - 3. Doyle, J. C., B. A. Francis, & A. Tannenbaum. *Feedback Control Theory*, MacMillan, 1992 (available online).
 - 4. Zhou, K., J. C. Doyle, & K. Glover. *Robust and Optimal Control*, Prentice Hall, 1995.

Outline

Course info

Introduction

Review of signals and systems

Review of control principles

Naïve MIMO

2/30

Syllabus

1. Stand-alone systems

- static MIMO systems
- dynamic MIMO systems
 - · basic notions (stability, causality, domain) in time and transformed domains
 - · coprime factorization in H_{∞}
 - · poles and zeros of rational transfer functions
 - · state-space realizations and their structural and computational properties
 - · model order reduction via balanced truncation

2. Interconnected systems

- basic interconnections and their effects on dynamics, LFTs
- stability and stabilization
 - internal stability
 - · general stability results (Small Gain and Passivity)
 - · all stabilizing controllers (Youla–Kučera)
- optimization-based performance
 - · weighted / mixed sensitivity problems, the standard problem
 - balanced sensitivity (H_{∞} loop shaping)

Outline

Course info

Introduction

Review of signals and systems

Review of control principles

Naïve MIMC

5/30

A quiz

What in the order and what are poles and zeros of the transfer matrices:

1.
$$G(s) = \begin{bmatrix} 1/s & 0 \\ 0 & 1/s \end{bmatrix}$$

$$2. \ \ G(s) = \begin{bmatrix} 1/s & 1/s \\ 1/s & 1/s \end{bmatrix}$$

$$3. \ G(s) = \begin{bmatrix} 1 & 1/s \\ 0 & 1 \end{bmatrix}$$

Why and for whom

Course goals

- 1. MIMO literacy (badly lacking, especially in industry)
- 2. Power and limitations of optimization-based design methods

Background needed

- linear algebra (see Appendix A of Lecture Notes)
- SISO systems
- classical SISO control methods

Hazard (or opportunity, depends on preferences)

analytic material (no choice, hand-waving hurts in MIMO more)

6/30

Nomenclature

\mathbb{R}	the set of real numbers, $\mathbb{R} = ($	$(-\infty, \infty)$	
LΓ	the set of real numbers, $\mathbb{K}=0$	$-\infty, \infty$	

$$\mathbb{R}_+$$
 the set of nonnegative real numbers, $\mathbb{R}_+ = [0, \infty)$

$$\mathbb{R}_{-}$$
 the set of nonpositive real numbers, $\mathbb{R}_{-}=\left(\infty,0\right]$

 $j\mathbb{R}$ the set of pure imaginary numbers

 \mathbb{C} the set of complex numbers

 \mathbb{C}_{α} the half plain to the right of $\alpha \in \mathbb{R}$, i.e. $\mathbb{C}_{\alpha} : \{z \in \mathbb{C} \mid \operatorname{Re} z > \alpha\}$

 $\bar{\mathbb{C}}_{\alpha}$ the closure of \mathbb{C}_{α} , i.e. $\bar{\mathbb{C}}_{\alpha}$: $\{z \in \mathbb{C} \mid \operatorname{Re} z \geq \alpha\}$

T the unit circle, $\mathbb{T} := \{z \in \mathbb{C} \mid |z| = 1\}$

 \mathbb{D}_{lpha} the open lpha-disk, $\mathbb{D}:=\{z\in\mathbb{C}\mid |z|<lpha\}$

 $ar{\mathbb{D}}_lpha$ the closed lpha-disk, $ar{\mathbb{D}}:=\{z\in\mathbb{C}\mid |z|\leq lpha\}=\mathbb{D}_lpha\cup(lpha\mathbb{T})$

 \mathbb{F} alias of either \mathbb{R} or \mathbb{C}

 \mathbb{Z} the set of integers

 \mathbb{N} the set of positive integers (natural numbers)

 \mathbb{Z}_+ the set of nonnegative integers

 \mathbb{Z}_{-} the set of nonpositive integers, $\mathbb{Z}_{-} = \mathbb{Z} \setminus \mathbb{N}$

 $\mathbb{Z}_{i_1..i_2}$ the interval $\left\{i_1,i_1+1,\ldots,i_2
ight\}$

Outline

Review of signals and systems

Systems

Constraints imposed on signals:

position x(t) and force f(t)

 $x \mapsto f \text{ or } f \mapsto x$

current i(t) and voltage v(t)

 $v \mapsto i \text{ or } i \mapsto v$

I/O view on systems:

- some signals act (inputs)
- some signals react (outputs)

Signals

Represent evolving information:

Mathematically,

- functions of independent variables, f(t) or f[t]

Mathematical models

(Approximate) description in a mathematical language:

position and force linked as

charge $(\dot{q} = i)$ and voltage linked as

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f(t)$$

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f(t)$$
 $L\ddot{q}(t) + R\dot{q}(t) + \frac{1}{C}q(t) = v(t)$

Abstract form:

$$\ddot{y}(t) + 2\zeta \omega_{\mathsf{n}} \dot{y}(t) + \omega_{\mathsf{n}}^2 y(t) = k_{\mathsf{st}} \omega_{\mathsf{n}}^2 u(t)$$

Outline

Course info

Introduction

Review of signals and systems

Review of control principles

Marica MIMO

13/3

Ultimate methodology: plant inversion

$$y = P(d + u) \land y = r$$

$$\downarrow \downarrow$$

$$r = P(d + u)$$

$$\downarrow \downarrow$$

$$u = P^{-1}r - d$$

where

 $-P^{-1}$ is the inverse system defined via $y=Pu\iff u=P^{-1}y$, with $P^{-1}(s)=\frac{1}{P(s)}$.

Prototype control problem

y: regulated signal

u: control signal (means)

d: load disturbance

P: plant

Goal:

$$u \longrightarrow v = r$$

where

r: reference signal (goal)

Open-loop plant inversion

with

$$R = P^{-1}$$

with

$$R = P^{-1}$$

Limitations of open-loop plant inversion: stability

All signals,

$$\left[\begin{array}{c} y \\ u \end{array}\right] = \left[\begin{array}{cc} PR & P \\ R & 0 \end{array}\right] \left[\begin{array}{c} r \\ d \end{array}\right],$$

bounded (internal stability).

Must have:

- P stable
- R stable, if $R = P^{-1} \implies P$ stably invertible

17/30

Limitations of open-loop plant inversion: other

- unmeasured d
 - unneasured u
- uncertain P

bandwidth limitations

nothing to do

nothing to do

limited u

Approximate open-loop plant inversion

Pragmatic alternative:

$$R \approx P^{-1}r \implies R = P^{-1} \frac{T_{ref}}{r}$$

Reference model:

- $T_{\rm ref}$ stable
- $-P^{-1}T_{ref}$ stable (proper, poles in Re s < 0)
- $T_{\rm ref} \approx 1$

18/3

Closed-loop control

Gang of four:

$$\left[\begin{array}{cc} S(s) & T_{c}(s) \\ T_{d}(s) & T(s) \end{array}\right] := \frac{1}{1 + P(s)R(s)} \left[\begin{array}{cc} 1 & R(s) \\ P(s) & P(s)R(s) \end{array}\right]$$

Signals:

$$\begin{bmatrix} y \\ u \\ e \end{bmatrix} = \begin{bmatrix} T & T_{d} & -T \\ T_{c} & -T & -T_{c} \\ S & -T_{d} & T \end{bmatrix} \begin{bmatrix} r \\ d \\ n \end{bmatrix},$$

where $e := r - y = e_{m} + n$.

10/20

Closed-loop plant inversion

Because

$$T_{\rm c} = rac{1}{1/R+P} \xrightarrow{R o \infty} rac{1}{P} \quad {
m and} \quad -T = -rac{P}{1/R+P} \xrightarrow{R o \infty} -1,$$

we have

Thus,

$$T_{\mathsf{d}} = rac{P}{1 + PR} \xrightarrow{R o \infty} 0 \quad \text{and} \quad S = rac{1}{1 + PR} \xrightarrow{R o \infty} 0,$$

independently of the plant and w/o explicit measurements of d.

21/00

Outline

Course info

Introduction

Review of signals and systems

Review of control principles

Naïve MIMO

Limitations of closed-loop plant inversion

- closed-loop stability
- closed-loop stability
- closed-loop stability
- measurement noise sensitivity
- limited u
- ...

Hence,

nontrivial tradeoffs

Problem

for

$$P(s) = \left[egin{array}{ccc} 1+lpha & 1-lpha \ -1+lpha & -1-lpha \end{array}
ight], \quad lpha \in [0,1]$$

Relations:

$$\begin{bmatrix} u \\ e \end{bmatrix} = \begin{bmatrix} T_{c} & -T_{i} \\ S_{o} & -T_{d} \end{bmatrix} \begin{bmatrix} r \\ d \end{bmatrix},$$

where

$$\begin{bmatrix} T_{\mathsf{c}}(s) & T_{\mathsf{i}}(s) \\ S_{\mathsf{o}}(s) & T_{\mathsf{d}}(s) \end{bmatrix} := \begin{bmatrix} R(s) \\ I \end{bmatrix} (I + P(s)R(s))^{-1} \begin{bmatrix} I & P(s) \end{bmatrix}.$$

 $(S_o \neq I - T_i \text{ in general}).$

Design 1

lf

$$R(s) = k \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

then

$$\left[\begin{array}{ccc} T_{\mathsf{i}} & T_{\mathsf{c}} \end{array} \right] = \frac{k}{2k+1} \left[\begin{array}{cccc} \frac{4\alpha \, k - 1 - \alpha}{2\alpha \, k + 1} & \frac{1 - \alpha}{2\alpha \, k + 1} & \frac{(1 + \alpha) \, k + 1}{2\alpha \, k + 1} & \frac{(1 - \alpha) \, k}{2\alpha \, k + 1} \\ \frac{1 - \alpha}{2\alpha \, k + 1} & \frac{4\alpha \, k + 1 + \alpha}{2\alpha \, k + 1} & -\frac{(1 - \alpha) \, k}{2\alpha \, k + 1} & -\frac{(1 + \alpha) \, k + 1}{2\alpha \, k + 1} \end{array} \right]$$

and

$$\left[\begin{array}{c} T_{\mathsf{d}} \quad S_{\mathsf{o}} \end{array} \right] = \frac{1}{2k+1} \left[\begin{array}{ccc} \frac{4\alpha k - 1 - \alpha}{2\alpha k + 1} & \frac{1 - \alpha}{2\alpha k + 1} \\ -\frac{1 - \alpha}{2\alpha k + 1} & -\frac{4\alpha k + 1 + \alpha}{2\alpha k + 1} \end{array} \right] \underbrace{ \begin{array}{c} (1 + \alpha)k + 1 \\ 2\alpha k + 1 \\ (1 - \alpha)k \\ 2\alpha k + 1 \end{array}}_{2\alpha k + 1} \underbrace{ \begin{array}{c} (1 - \alpha)k \\ 2\alpha k + 1 \\ (1 + \alpha)k + 1 \\ 2\alpha k + 1 \end{array}}_{2\alpha k + 1} \underbrace{ \begin{array}{c} (1 - \alpha)k \\ 2\alpha k + 1 \\ 2\alpha k + 1 \end{array}}_{2\alpha k + 1} \right]$$

25/30

Design 1 (contd)

If $\alpha = 0$ (det P = 0), then

$$\lim_{k \to \infty} -T_{\mathsf{i}} = -\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \lim_{k \to \infty} T_{\mathsf{c}} = \frac{1}{2} \begin{bmatrix} k+1 & k \\ -k & -k-1 \end{bmatrix} \bigg|_{k \to \infty}$$

and

$$u o rac{1}{2} \left[egin{array}{ccc} k+1 & k \ -k & -k-1 \end{array}
ight] \left| egin{array}{ccc} r-rac{1}{2} \left[egin{array}{ccc} 1 & 1 \ 1 & 1 \end{array}
ight] d & ext{and} & e o rac{1}{2} \left[egin{array}{ccc} 1 & 1 \ 1 & 1 \end{array}
ight] r,$$

different from the SISO case.

Design 1 (contd)

If $\alpha \neq 0$, then

$$\lim_{k \to \infty} -T_{\mathsf{i}} = -I \quad \text{and} \quad \lim_{k \to \infty} T_{\mathsf{c}} = \frac{1}{4\alpha} \left[\begin{array}{cc} 1 + \alpha & 1 - \alpha \\ -1 + \alpha & -1 - \alpha \end{array} \right] = P^{-1}$$

and

$$u \to P^{-1}r - d$$
 and $e \to 0$,

exactly as in the SISO case.

26/30

Design 2

lf

$$R(s)=k\begin{bmatrix}1&0\\0&1\end{bmatrix},$$

then

$$\left[\begin{array}{c} T_{\mathsf{i}} \ T_{\mathsf{c}} \end{array} \right] = \frac{k}{4\alpha k^2 - 1} \left[\begin{array}{ccc} 4\alpha k - 1 - \alpha & -1 + \alpha & (1 + \alpha)k - 1 & (1 - \alpha)k \\ 1 - \alpha & 4\alpha k + 1 + \alpha & -(1 - \alpha)k & -(1 + \alpha)k - 1 \end{array} \right]$$

and

$$\left[\begin{array}{c} T_{\mathsf{d}} \ \ \mathcal{S}_{\mathsf{o}} \end{array}\right] = \frac{1}{4\alpha \, k^2 - 1} \left[\begin{array}{cccc} 4\alpha \, k - 1 - \alpha & -1 + \alpha & (1 + \alpha)k - 1 & (1 - \alpha)k \\ 1 - \alpha & 4\alpha \, k + 1 + \alpha & -(1 - \alpha)k & -(1 + \alpha)k - 1 \end{array}\right]$$

27/30

Design 2 (contd)

If $\alpha \neq 0$, then

$$\lim_{k\to\infty} -T_{\rm i} = -I \quad \text{and} \quad \lim_{k\to\infty} T_{\rm c} = \frac{1}{4\alpha} \left[\begin{array}{cc} 1+\alpha & 1-\alpha \\ -1+\alpha & -1-\alpha \end{array} \right] = P^{-1}$$

and

$$u \to P^{-1}r - d$$
 and $e \to 0$,

exactly as in the SISO case.

Design 2 (contd)

If $\alpha = 0$ (det P = 0), then

$$T_{\mathsf{d}} = \left[egin{array}{cc} 1 & 1 \ -1 & -1 \end{array}
ight], \quad S_{\mathsf{o}} = \left[egin{array}{cc} -k+1 & -k \ k & k+1 \end{array}
ight], \quad T_{\mathsf{i}} = kT_{\mathsf{d}}, \quad T_{\mathsf{c}} = kS_{\mathsf{o}}$$

and

$$u o \left(\left[egin{array}{ccc} -k(k-1) & -k^2 \ k^2 & k(k+1) \end{array} \right] r - k \left[egin{array}{ccc} 1 & 1 \ -1 & -1 \end{array} \right] d
ight) \bigg|_{k o \infty} \quad ext{and} \quad e o rac{1}{k} u$$

different from the SISO case.