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Course info

− Credit points: 3

− Prerequisite: Control Theory (035188)

− Grading policy: homework 100% (4 best out of 5 assignments)
Homework solutions must be submitted electronically to c036012@technion.ac.il

− Course site: http://leo.technion.ac.il/Courses/LCS/

− Literature:

1. My lecture notes (available at the course site)

2. Skogestad, S. & I. Postlethwaite. Multivariable Feedback Control:
Analysis and Design, John Wiley & Sons, 1996.

3. Doyle, J. C., B. A. Francis, & A. Tannenbaum. Feedback Control
Theory, MacMillan, 1992 (available online).

4. Zhou, K., J. C. Doyle, & K. Glover. Robust and Optimal Control,
Prentice Hall, 1995.
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Syllabus

1. Stand-alone systems

− static MIMO systems

− dynamic MIMO systems

· basic notions (stability, causality, domain) in time and transformed domains
· coprime factorization in H∞
· poles and zeros of rational transfer functions
· state-space realizations and their structural and computational properties
· model order reduction via balanced truncation

2. Interconnected systems

− basic interconnections and their effects on dynamics, LFTs

− stability and stabilization

· internal stability
· general stability results (Small Gain and Passivity)
· all stabilizing controllers (Youla–Kučera)

− optimization-based performance

· weighted / mixed sensitivity problems, the standard problem
· balanced sensitivity (H∞ loop shaping)
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Why and for whom

Course goals

1. MIMO literacy (badly lacking, especially in industry)

2. Power and limitations of optimization-based design methods

Background needed

− linear algebra (see Appendix A of Lecture Notes)

− SISO systems

− classical SISO control methods

Hazard (or opportunity, depends on preferences)

− analytic material (no choice, hand-waving hurts in MIMO more)
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A quiz

What in the order and what are poles and zeros of the transfer matrices:

1. G (s) =

[
1=s 0
0 1=s

]

(n = 2, poles: {0; 0}, zeros: ∅)

2. G (s) =

[
1=s 1=s
1=s 1=s

]

(n = 1, pole: {0}, zeros: ∅)

3. G (s) =

[
1 1=s
0 1

]

(n = 1, pole: {0}, zero: {0})
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Nomenclature
R the set of real numbers, R = (−∞;∞)
R+ the set of nonnegative real numbers, R+ = [0;∞)
R− the set of nonpositive real numbers, R− = (∞; 0]
jR the set of pure imaginary numbers
C the set of complex numbers
C˛ the half plain to the right of ˛ ∈ R, i.e. C˛ : {z ∈ C | Re z > ˛}
C̄˛ the closure of C˛, i.e. C̄˛ : {z ∈ C | Re z ≥ ˛}
T the unit circle, T ··= {z ∈ C | |z | = 1}
D˛ the open ˛-disk, D ··= {z ∈ C | |z | < ˛}
D̄˛ the closed ˛-disk, D̄ ··= {z ∈ C | |z | ≤ ˛} = D˛ ∪ (˛T )
F alias of either R or C
Z the set of integers
N the set of positive integers (natural numbers)
Z+ the set of nonnegative integers
Z− the set of nonpositive integers, Z− = Z \ N
Zi1::i2 the interval

{
i1; i1 + 1; : : : ; i2

}
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Signals

Represent evolving information:

0
380ms

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
19

19.54

Mathematically,

− functions of independent variables, f (t) or f [t]
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Systems

Constraints imposed on signals:

m

k

c
x(t)

f (t)

position x(t) and force f (t)

x 7→ f or f 7→ x

v (t) +
–

R

L

C

i(t)

current i(t) and voltage v(t)

v 7→ i or i 7→ v

I/O view on systems:

− some signals act (inputs)

− some signals react (outputs)
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Mathematical models

(Approximate) description in a mathematical language:

m

k

c
x(t)

f (t)

position and force linked as

mẍ(t) + cẋ(t) + kx(t) = f (t)

v (t) +
–

R

L

C

i(t)

charge (q̇ = i) and voltage linked as

Lq̈(t) + Rq̇(t) +
1

C
q(t) = v(t)

Abstract form:

ÿ(t) + 2�!nẏ(t) + !
2
ny(t) = kst!

2
nu(t)
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Näıve MIMO



Course info Introduction Review of signals and systems Review of control principles Näıve MIMO

Prototype control problem

u

d

y
P

y : regulated signal

u: control signal (means)

d : load disturbance

P: plant

Goal:
u −→ y = r

where

r : reference signal (goal)
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Ultimate methodology: plant inversion

u

d

y
P

y = P(d + u) ∧ y = r

⇓

r = P(d + u)

⇓

u = P−1r − d

where

− P−1 is the inverse system

defined via y = Pu ⇐⇒ u = P−1y , with P−1(s) =
1

P(s)
.
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Open-loop plant inversion

ruy

d

P R

with
R = P−1

ruy

d

P R
−

with
R = P−1
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Limitations of open-loop plant inversion: stability

ruy

d

P R

All signals, [
y
u

]
=

[
PR P
R 0

] [
r
d

]
;

bounded (internal stability).

Must have:

− P stable

− R stable, if R = P−1 =⇒ P stably invertible
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Approximate open-loop plant inversion

ruy

d

P R

Pragmatic alternative:

R ≈ P−1r =⇒ R = P−1Tref r

Reference model:

− Tref stable

− P−1Tref stable (proper, poles in Re s < 0)

− Tref ≈ 1
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Limitations of open-loop plant inversion: other

ruy

d

P R

− unmeasured d nothing to do

− uncertain P nothing to do

− limited u bandwidth limitations
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Closed-loop control

remu

d

y

ymn

RP −

Gang of four:[
S(s) Tc(s)
Td(s) T (s)

]
··=

1

1 + P(s)R(s)

[
1 R(s)

P(s) P(s)R(s)

]
Signals:  y

u
e

 =

 T Td −T
Tc −T −Tc

S −Td T

 r
d
n

 ;
where e ··= r − y = em + n.
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Closed-loop plant inversion

Because

Tc =
1

1=R + P
R→∞−−−−→ 1

P
and − T = − P

1=R + P
R→∞−−−−→ −1;

we have

reu

d

y ∞P − =⇒ ruy

d

P P−1
−

Thus,

Td =
P

1 + PR
R→∞−−−−→ 0 and S =

1

1 + PR
R→∞−−−−→ 0;

independently of the plant and w/o explicit measurements of d .
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Limitations of closed-loop plant inversion

remu

d

y

ymn

RP −

− closed-loop stability

− closed-loop stability

− closed-loop stability

− measurement noise sensitivity

− limited u

− . . .

Hence,

− nontrivial tradeoffs
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Problem

remu

d

y

ymn

RP −

for

P(s) =

[
1 + ˛ 1− ˛
−1 + ˛ −1− ˛

]
; ˛ ∈ [0; 1]

Relations: [
u
e

]
=

[
Tc −Ti

So −Td

] [
r
d

]
;

where [
Tc(s) Ti(s)
So(s) Td(s)

]
··=

[
R(s)
I

]
(I + P(s)R(s))−1

[
I P(s)

]
:

(So ̸= I − Ti in general).
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Design 1

remu

d

y

ymn

RP −

If

R(s) = k

[
1 0
0 −1

]
;

then

[
Ti Tc

]
=

k

2k + 1

[
4˛k−1−˛
2˛k+1

1−˛
2˛k+1

(1+˛)k+1
2˛k+1

(1−˛)k
2˛k+1

1−˛
2˛k+1

4˛k+1+˛
2˛k+1 − (1−˛)k

2˛k+1 − (1+˛)k+1
2˛k+1

]
and [

Td So
]
=

1

2k + 1

[
4˛k−1−˛
2˛k+1

1−˛
2˛k+1

(1+˛)k+1
2˛k+1

(1−˛)k
2˛k+1

− 1−˛
2˛k+1 −4˛k+1+˛

2˛k+1
(1−˛)k
2˛k+1

(1+˛)k+1
2˛k+1

]
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Design 1 (contd)

If ˛ ̸= 0, then

lim
k→∞

−Ti = −I and lim
k→∞

Tc =
1

4˛

[
1 + ˛ 1− ˛
−1 + ˛ −1− ˛

]
= P−1

and
u → P−1r − d and e → 0;

exactly as in the SISO case.
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Design 1 (contd)

If ˛ = 0 (detP = 0), then

lim
k→∞

−Ti = −1

2

[
1 1
1 1

]
and lim

k→∞
Tc =

1

2

[
k + 1 k
−k −k − 1

] ∣∣∣∣
k→∞

and

u → 1

2

[
k + 1 k
−k −k − 1

] ∣∣∣∣
k→∞

r − 1

2

[
1 1
1 1

]
d and e → 1

2

[
1 1
1 1

]
r ;

different from the SISO case.



Course info Introduction Review of signals and systems Review of control principles Näıve MIMO

Design 2

remu

d

y

ymn

RP −

If

R(s) = k

[
1 0
0 1

]
;

then[
Ti Tc

]
=

k

4˛k2 − 1

[
4˛k − 1− ˛ −1 + ˛ (1 + ˛)k − 1 (1− ˛)k

1− ˛ 4˛k + 1 + ˛ −(1− ˛)k −(1 + ˛)k − 1

]
and[
Td So

]
=

1

4˛k2 − 1

[
4˛k − 1− ˛ −1 + ˛ (1 + ˛)k − 1 (1− ˛)k

1− ˛ 4˛k + 1 + ˛ −(1− ˛)k −(1 + ˛)k − 1

]
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Design 2 (contd)
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k→∞
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1

4˛
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−1 + ˛ −1− ˛
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and
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Design 2 (contd)

If ˛ = 0 (detP = 0), then

Td =

[
1 1
−1 −1

]
; So =

[
−k + 1 −k

k k + 1

]
; Ti = kTd; Tc = kSo

and

u →
([

−k(k − 1) −k2

k2 k(k + 1)

]
r − k

[
1 1
−1 −1

]
d

)∣∣∣∣
k→∞

and e → 1

k
u

different from the SISO case.
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