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Preface

I
ntroductory control courses are traditionally devoted to single-input, single-output (aka SISO) sys-
tems. Properties of these systems are well understood and can be characterized in terms of their impulse

responses, poles and zeros of their transfer functions, frequency-response gain and phase, etc. Extending
these notions to multiple-input, multiple-output (MIMO) systems might not be straightforward though. For
example, it is not obvious, perhaps even somewhat counterintuitive, to induce from our SISO insight that
the first-order transfer function

�
1 1=s
0 1

�

has not only a pole, but also a zero at the origin. Or that the cascade
P.s/R.s/ for P.s/ D

�
1=s 0
0 1=s

�

and R.s/ D
� �1 1

1 �1

�

, which is a typical interconnection in the diffusively-
coupled consensus protocol, has an unstable cancellation.

This text aims primarily at being an introduction to the world of MIMO linear time-invariant systems.
The main emphasis is placed on the frequency-domain analysis, which merely reflects my personal prefer-
ences. The exposition presumes familiarity with basic classical control notions (such as transfer functions,
poles, zeros, time and frequency responses, et cetera) and principles (reviewed in Chapter 1), as well as with
some fundamental calculus, complex analysis, and linear algebra. Although linear algebra is reviewed in
Chapter 2, the objective of this review is to introduce a number of system-theoretic notions used throughout
the text rather than to cover the required background material.

Another goal of these notes is to pave the way for the use of optimization-based analysis and design
methods, again, mainly in the frequency domain. To this end, the exposition focuses on problem formula-
tion aspects, such as motivations, the meaning of being optimal from the control engineering viewpoint,
and understanding a role played by tuning parameters (weighting functions). The optimization techniques
themselves are practically not covered as such issues go well beyond the scope of this text. I am convinced
that it is more important to realize, before being acquainted with optimization methods, that “optimal” is
not necessarily a synonym of “good,” whatever meaning we put on the last term. And that optimization is
a tool of control engineering rather than its goal. This tool, if used consciously, may indeed be a power-
ful instrument of producing meaningful results and understanding intrinsic limitations in achieving sought
goals. However, its mechanical use could produce senseless optimal control systems.

The text was developed as the lecture notes for the graduate-level course “Linear Control Systems”
(036012) taught in the Faculty of Mechanical Engineering at the Technion. The first version was written
during the Spring 2000 semester. A major revision was carried out in Spring 2006. The second revision,
which is again substantially different from the previous one, was conceived while I was escaping daily
routine in a remote location by Lake Issyk-Kul in September 2018. It remains a mystery for myself why
the robust stability chapter is unfinished in all these versions, so perhaps it is a feature, rather than a bug,
after all . . .

Lake Issyk-Kul (42.6597,77.5461) Leonid Mirkin
September, 2018
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Chapter 1

Preliminary: SISO Control in a Nutshell

T
his chapter revises some basic notions and ideas of classical control methods for SISO (single-input,
single-output) LTI (linear time-invariant) systems. It is not aimed at presenting a comprehensive

overview, but rather at introducing key notions used throughout these notes and providing a motivation
for studying theoretical foundations of MIMO (multiple-input, multiple output) systems. The main em-
phasis is placed on the plant inversion ideas and frequency-domain analysis and design philosophy.

1.1 Signals and systems

In numerous situations we may be concerned with quantities, whose values change as some independent

variables, like time, evolve. Two such examples are presented in Fig. 1.1. The audio waveform of a short

0
380ms

(a) Audio waveform of the word “ot” (Hebrew for “signal”)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

19

19:54

(b) ILS to KGS exchange rates in September 2018

Fig. 1.1: Examples of signals

word is depicted in Fig. 1.1(a). This very waveform makes the voice recognizable (and reproducible, as
a matter of fact). The independent variable here is the analog time, a subset of R. Fig. 1.1(b) shows the
exchange rates of Israeli new shekel to Kyrgyzstani som during one month. In this case, the independent
variable is the discrete time, a subset of Z. These quantities can be described as functions of independent
variables, say f .t/ if t 2 R or f Œt � if t 2 Z. When associated with some physical process, such functions are
called signals. Thus, signals are functions conveying information about the behavior of some phenomenon.

Remark 1.1. The independent variable need be neither time nor scalar. For example, we may be interested
in the steady-state temperature profile of a heated body as a function of the distance from the heating
element or, in image processing, in the RGB values of pixels as a function of their two spatial coordinates.
Nonetheless, time is by far the most prevalent independent variable in control applications, so we frequently
interchange these terms in the sequel. O

Signals are not “in a vacuum” (although they do exist in a vacuum, thanks Per-Olof). They are related
via laws of nature, economics, society, and so on. In some cases these relations, and their applicability
scopes, are well understood. For example, we know that applied forces and the mass position are coupled
via Newton’s law; that the electromotive force around a closed path depends on the magnetic flux enclosed
by it (by Faraday’s law); that the angles of incidence and refraction of light passing through a boundary

1
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Fig. 1.2: Two simple systems

between two different isotropic media are related via Snell’s law; et cetera. In other cases, mostly in life
sciences, humanities, sociology, economics, and the like, relations between signals may be empirical and
vague. For example, it may be accepted that unemployment is linked with losses in a country’s production
(by Okun’s law); the utility of social networks can scale exponentially with the size of the network (by
Reed’s law); the metabolic rate of animals is related to their mass (by Kleiber’s law); passion is inversely
proportional to the amount of real information available (by Benford’s law of controversy); the bitterness
of discussions in academia is in inverse proportion to the importance of issues at stake (by Sayre’s law); et
cetera. But even then the very fact that signals of interest are interrelated is beyond doubt.

By systems we may then understand constraints imposed on interdependent signals. Consider e.g. a
mechanical system comprising a mass point with mass m connected to a fixed base via a spring with spring
constant k and a damper (dashpot) with damping coefficient c, see Fig. 1.2(a). It can be seen as a constraint
on mutual relation between the force f and the mass position x. If the system is in its equilibrium and we
change the force, then the position can be uniquely determined via Newton’s law. It is worth emphasizing
that it also works the other way around. Namely, if somehow we can change the mass position, it applies
a unique force (think of a door closer, which works this way). Thus, two involved signals, f and x, are
constrained by properties of this system. Another example of a system is the RLC electrical circuit in
Fig. 1.2(b), with a resistor having resistance R, a solenoid having inductance L, and a capacitor having
capacitance C . Such a system constraints mutual relations between the voltage v and the current i , which
can be derived by Kirchhoff’s voltage law.

Although all involved signals are “born equal,” two groups of signals associated with a given system
are often distinguished in control applications. One group is assumed to be an action (input) and another
one is then a reaction (output), see the block-diagram in Fig. 1.3, which represents a system P with an input

P
uy

Fig. 1.3: Block-diagram of an I/O system P W u 7! y

u and an output y. This relation is conventionally written as y D P u, where P should be understood as an
operator acting on u. This philosophy is referred to as the input / output approach1 and the corresponding
systems as I/O systems. It treats systems as signal processors, in a sense that systems are understood
as mappings “7!” from input signals to output signals, like P W u 7! y in Fig. 1.3, where this relation
is reflected in the arrows added to the signal lines. This way of thinking is more restrictive, because the
separation between inputs and outputs might impose artificial causality relations. Nevertheless, it is widely
acceptable and is sufficiently rich in many situations.

A system G W u 7! y is said to be SISO (single-input, single-output) if both its input and output signals
are scalar-valued, normally, taking values in R. Otherwise, it is MIMO (multiple-input, multiple-output).
It is called linear if it satisfies the property of superposition, i.e. if

G.˛1u1 C ˛2u2/ D ˛1.Gu1/ C ˛2.Gu2/ for all admissible signals u1; u2 and all scalars ˛1; ˛2:

1A more general viewpoint, with which we started, is known as the behavioral approach of Jan C. Willems [31].
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https://en.wikipedia.org/wiki/Gregory_Benford#Benford's_law_of_controversy
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A system is referred to as time-invariant (or shift-invariant) if any constant time shift of its input results in
the same time shift of its output. Linear time-invariant systems are often abbreviated to LTI.

1.2 Models

Let us return to the systems in Fig. 1.2 and be more concrete about their behavior. When considered as a
mapping f 7! x, the mechanical system in Fig. 1.2(a) can be described by the differential equation

m Rx.t/ C c Px.t/ C kx.t/ D f .t/: (1.1)

This relation follows from Newton’s and Hooke’s laws and by assuming that the dashpot produces a resistive
force proportional to the velocity of its end. The electrical circuit in Fig. 1.2(b) can be viewed as a mapping
v 7! q, where q is the charge across the capacitor, with i D Pq. This mapping satisfies

L Rq.t/ C R Pq.t/ C 1

C
q.t/ D v.t/ (1.2)

and follows by Kirchhoff’s, Faraday’s, Ohm’s, and Gauss’s laws. It is readily seen that (1.2) is essentially
the same as (1.1), modulo the replacements m ! L, c ! R, and k ! 1=C . It may then be convenient
to present both (1.1) and (1.2) as an abstract mapping u 7! y described by the following non-physical
second-order differential equation:

Ry.t/ C 2�!n Py.t/ C !2
ny.t/ D kst!

2
nu.t/; (1.3)

where the parameters !n, �, and kst represent the natural frequency, the damping factor, and the static gain,
respectively. Their values have one to one correspondence with physical parameters of the respective sys-
tems and determine qualitative and quantitative system properties, like oscillations / decay profiles, speed
of transients, steady-state response to various harmonic signals, et cetera. Thus, properties of mechanical
and electrical systems in Fig. 1.2 can be studied in a uniform fashion via their abstract models.

This is a momentous observation. Once we abstract from the physical nature of signals and systems,
be they mechanical, electrical, biological, social, etc, we can analyze them from unified points of view by
universal theories. This is a key idea behind the notion of mathematical model, which is a description of
systems in a mathematical language. In control applications we most frequently encounter mathematical
language based on differential or difference equations. Yet there are many other ways to describe systems,
like logical models used in computer sciences, heuristic models used in psychology, an so on. Model-
based way of thinking is ubiquitous in engineering applications, even in methods claiming to be model-free
(perhaps the only difference is that some model-based approaches are explicit and others are implicit).

An important aspect of mathematical models, which should always be remembered, is that they are
never perfect. Any mathematical model is merely a (more or less accurate) approximation of the actual
physical process, capturing its properties only to a certain degree. For example, in modeling the mechanical
system in Fig. 1.2(a) we assumed that the mass movements are perfectly one-dimensional, the dashpot and
the the spring are linear, massless, and do not change their properties when heated up, that there is no
friction at the mass base and with the air, and so on and so forth. Likewise, the model (1.2) of the RLC
circuit in Fig. 1.2(b) is true only under unrealistic assumptions that the resistor, solenoid, and capacitor are
linear and their properties do not depend on working conditions, that the whole circuit is perfectly isolated
from its environment, both electrically and thermally, and suchlike, not to mention that the picture becomes
substantially more complicated on the atomic level. Still, models (1.1) and (1.2) are useful if deviations
from linear regimes and changes in components properties are relatively small. These considerations are
true in general as well. It may be safe to claim that there are no linear systems in nature and that no physical
system can be exhaustively described by a finite number of ordinary differential / difference equations or
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Fig. 1.4: Basic control setups

are time invariant. Yet we do use rather simple LTI models in many situations. In general, the required
accuracy and model granularity level depend on applications and a model, sufficiently accurate in one
application, might not be adequate in another. Occam’s razor may be a good principle for deciding on the
type of model in every situation. Finally, note that with a certain abuse of terminology, we frequently say
“system” meaning its model, this is a common practice.

1.3 A prototype control problem

Control is about affecting systems so that they behave in a desired manner. Systems can be affected in
various ways, up to rebuilding their physical structure. Control theory normally addresses situations, when
systems are fixed and affected via some of their input signals, naturally called control inputs, that can be
freely shaped by a controller.

A heavily simplified—yet sufficiently representative as a starting point—control setup can be described
in terms of the system presented in Fig. 1.4(a). Here the studied LTI system P , dubbed the plant, is affected
via its control input u to generate a desired output y, aka the controlled output, at the end. The signal d ,
which also has an effect on y, is called the disturbance (sometimes, the load disturbance). Its role is to
account for impacts of exogenous phenomena, like impacts of the environment, which are uncertain or too
complicated to model. The disturbance signal is often supposed to be unmeasurable (although in some
situations it can be) and uncorrelated with control goals. Throughout this and the next section we assume
that all involved signals are scalar valued, so that P is SISO.

Requirements to the controlled output may be conveniently expressed in terms of a reference signal yr.
The rationale behind its choice varies from task to task. In some problems, called tracking problems, this is
a physical signal, which should be tracked by the plant output. Its generation might then be an independent
task, like recovering yr from on-line measurements of a target, e.g. in video tracking problems. In other
situations, like in set-point regulation, the reference signal is calculated analytically from knowing the
initial and required steady-state positions of y. Although this is not frequently highlighted, the reference
signal in such situations should reflect not only requirements to the behavior of y, but also limitations of
the plant, see the discussion in §1.A.2. In any case, given a reference signal yr, a basic control problem

can be formulated as selecting the control signal u rendering (at least, approaching)

y.t/ D yr.t /; 8t (1.4)

despite the presence of unmeasured exogenous signals and modeling uncertainties.
There are essentially two control configurations for meeting this requirement. An open-loop control

scheme is shown in Fig. 1.4(b). In this case the controller (regulator) R generates the control signal u as a
function of the reference signal yr only (it may also depend on d if the latter is measurable). In closed-loop

control, whose simplest unity-feedback configuration is depicted in Fig. 1.4(c), the controller R generates
the control input using both the reference signal and measurements of the controlled signal y (or signals
correlated with y, if it is not directly measurable). Measurements of y require separate sensors, which are
never perfect. These imperfections can be accounted for by introducing an additive measurement noise
signal, like n in Fig. 1.4(c). In both these configurations, the designed element is the controller R.

https://en.wikipedia.org/wiki/Occam's_razor
https://en.wikipedia.org/wiki/Video_tracking
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1.4 Ultimate control methodology: plant inversion and its limitations

There are many ways to think of designing R. Arguably, they all have the idea of plant inversion under the
hood. It is conceptually simple and intuitive, although (practically) never implementable literally, which
is why control engineering is such a nontrivial discipline.

The idea can be grasped by considering the idealized version of the system in Fig. 1.4(a) under d D 0

and a perfectly known P . Rewriting (1.4) as yr D P u yields the following control signal meeting this
requirement:

u D P�1yr; (1.5)

where P�1 should be understood as the system producing the unity system when placed in series with P

(its transfer function is the reciprocal of the transfer function of the plant, 1=P.s/). The control law (1.5)
is called the plant inversion.

1.4.1 Open-loop plant inversion

The control law (1.5) appears to be a perfect fit for the open-loop system in Fig. 1.4(b). It corresponds to
the choice

R.s/ D 1

P0.s/
; (1.6)

where P0 is our model of the plant P . However, the use of this controller has its pitfalls, some of which
severely limit its applicability scope.

The first of these pitfalls is associated with the notion of stability, which we have not discussed yet.
Loosely speaking, an I/O system is said to be stable if its output remains bounded for all bounded inputs.
It is then well known that a finite-dimensional LTI system is stable iff its transfer function is proper (i.e.
bounded in s 2 C˛ for a sufficiently large ˛ > 0) and has no poles in the closed right half-plane. Consider
now the relation between all exogenous and internal signals in the system in Fig. 1.4(b)

�

y

u

�

D
�

PR P

R 0

��

yr

d

�

: (1.7)

We obviously need the boundedness of both y and u. We also cannot ignore the effects of either yr or d

(even if d is insignificant, its effect on unstable systems might be destructive). We thus must guarantee
that all three nonzero systems in (1.7) are stable. This is known as the internal stability of interconnected
systems. Internal stability is equivalent to the stability of both P and R. If this is the case, then the
third system, PR, is always stable. Consequently, the open-loop setup in Fig. 1.4(b) cannot be used if the

plant is unstable, no matter what control algorithm is considered. Another outcome of the internal stability
requirement is that controller (1.6) cannot be used if P0.s/ is nonminimum-phase or strictly proper. Indeed,
the former property would add unstable poles to the controller and the latter would render R.s/ non-proper.

Remark 1.2 (properness). Non-proper controllers may be accepted in some situations, viz. if they always
act on analytically known reference signals with sufficiently many bounded derivatives, see the discussion
in §1.A.3. Still, properness might be a safe property to impose as a standard requirement. O

There is a workaround for problems with nonminimum-phase or strictly proper plant models. Instead
of (1.6) we may use

R.s/ D Tref.s/

P0.s/
(1.8)

for some stable system Tref . Technically, the only constraint on Tref , apart from its own stability, is that the
resulting controller is stable. This boils down to the following two conditions:

1. Tref.s/ must have all nonminimum-phase zeros of P0.s/ as its own zeros (multiplicities counted),
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Fig. 1.5: Open-loop control with disturbance feedforward

2. the pole excess of Tref.s/ must be greater than or equal to the pole excess of P0.s/.

While the second of these conditions is effectively non-restrictive, the first one might be, depending on the
location of unstable zeros of P0.s/.

Conceptually, the introduction of Tref renders the controlled output (still assuming that P0 D P )

y.t/ D .Trefyr/.t /; 8t: (1.9)

In other words, we may only expect to match yr processed by Tref . This motivates the term reference model

for this system, it may be thought of as representing a “best” pragmatic response of the controlled system to
yr. Unless Tref.s/ D 1, (1.9) is no longer the same as our original goal (1.4). But the latter can be met only
if the plant has a bi-proper transfer function (i.e. has infinite bandwidth), which is not realistic. It thus does
make sense to switch to a more pragmatic (1.9). This is especially so if we know that yr is not arbitrary, but
rather belongs to a more narrow class of signals. For example, we often need to track band-limited signals
only. In such situations it may be reasonable to require Tref.j!/ � 1 only within the frequency range of the
spectrum of yr. This normally produces a low-pass Tref.s/ and does not impose any restrictive constraints
on the pole excess of Tref.s/.

Now it is time to address the effect of other idealizations. Specifically, consider the behavior of the
controlled output under a nonzero disturbance d and not perfectly known plant, with P0 ¤ P . Define
e ´ Trefyr � y as the error signal representing the deviation from required behavior. It is readily seen that
(1.8) renders

e D
�

1 � PP�1
0

�

Trefyr � Pd µ eyr � ed : (1.10)

Because yr and d are independent, we cannot cause eyr and ed to cancel each other or alleviate their effect.
Thus, these two terms should be considered individually.

An important observation is that we are left with no tools to affect the mismatch terms in (1.10). This
would also be true for any other choice of R in Fig. 1.4(b). Equation (1.10) would then remain unchanged
modulo the replacement of Tref with the model P0R of the attained system yr 7! y. The effect of modeling
uncertainty, eyr , is entirely determined by the relative modeling error system, 1�PP�1

0 . Hence, open-loop
control can only be effective in frequency ranges where this error is small. The effect of the exogenous
disturbance, ed , is also independent of the controller choice. In fact, a controller acting in open loop can
affect the disturbance response only if it can measure d or at least a signal correlated with it.

Remark 1.3 (disturbance feedforward). If d is measurable, the control configuration in Fig. 1.5 can be used
instead, with the very same rationale behind the design of R, just now with yr D Pd C P u to satisfy (1.4).
For this scheme we obviously have ed D 0. Even if d is not measured perfectly, such measurements can
still be useful to reduce the impact of d on the controlled variables, at least to some extent. O

Finally, it should be mentioned that the two conditions on p. 5 are not the only limiting factors in
the choice of Tref . Another limitation, a soft one, is the control effort. Actuating resources are always
limited, so we would be interested in attaining control goals with “affordable” u. It may be convenient
to normalize control signals, so that juj D 1 is the borderline between “high” and “low” control efforts.
The condition jR.j!/j 6� 1 may be then viewed as an indication of “affordable” control. In addition, we
may be interested in attaining jR.j!/j � 1 at high frequencies, to avoid amplifying parasitic components
in yr. These considerations, viewed in the context of (1.8), can be translated to the rule of thumb that
the bandwidth of Tref should not considerably exceed that of P . Control problems tend to become more
complicated if this suggestion is not followed.
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1.4.2 Closed-loop plant inversion

Relationships between (1.4) and the setup in Fig. 1.4(c) are less evident than those between (1.4) and the
setup in Fig. 1.4(b). Yet they exist in an unexpected and fascinating way.

To start with, consider relations between all exogenous and internal signals for the system in Fig. 1.4(c).
It is not hard to see that

2

4

y

u

e

3

5 D

2

4

T Td �T

Tc �T �Tc

S �Td T

3
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4
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d

n

3

5 ; (1.11)

where e ´ r � y D em C n and

�

S.s/ Tc.s/

Td.s/ T .s/

�

´ 1

1 C P.s/R.s/

�

1 R.s/

P.s/ P.s/R.s/

�

D 1

1 C P.s/R.s/

�

1

P.s/

�
�

1 R.s/
�

(1.12)

are four fundamental closed-loop transfer functions, termed the sensitivity (S ), complementary sensitivity

(as T D 1�S ), control sensitivity (Tc D TP�1), and disturbance sensitivity (Td D PS ) transfer functions.
They are also known as the Gang of Four (the term coined by Karl Johan Åström back in 2000).

In line with its definition for open-loop systems, the internal stability of the system in Fig. 1.4(c) is
defined as the stability of all possible closed-loop systems, i.e. the four systems whose transfer functions
are defined in (1.12). The internal stability requirement rules out unstable pole / zero cancellations between
P.s/ and R.s/. Indeed, if unstable poles of P.s/ are canceled by the controller, then they are still poles
of Td.s/. Likewise, if unstable zeros of P.s/ are canceled by R.s/, these zeros show up as poles of Tc.s/.
Internal stability also rules out non-proper R.s/’s, because then Tc.s/ is not proper either. But if there
are no unstable pole / zero cancellations between P.s/ and R.s/ and the latter transfer function is proper,
internal stability is equivalent to the stability of either one of the four transfer functions in (1.12).

Consider now the control signal. Assuming for the moment that measurements of y are perfect, i.e.
that n D 0, we have:

u D Tc r � T d D R

1 C PR
yr � PR

1 C PR
d D 1

1=R C P
yr � P

1=R C P
d: (1.13)

It is worth emphasizing that the mechanical inversion of the plant by the controller, as in (1.6), is futile
here. Indeed, even if admissible, the choice R D P�1 would result in u D 0:5P�1yr � 0:5d and then in
y D 0:5yr C 0:5P�1d , which makes little sense. A proper “plant inversion” choice can be seen by noticing
that the terms 1=R on the right-hand side of (1.13) become less significant as the controller gain grows. In
the limit (ignore mathematical meaning of this for now), as R ! 1, the control signal

u ! u1 ´ P�1yr � d (1.14)

and the controlled output meets (1.4) despite the presence of d . This u1 is the very control signal generated
by the open-loop control system with disturbance feedforward in Fig. 1.5 under the plant-inversion choice
of the controller, as in (1.5). But unlike its open-loop version, the closed-loop plant inversion requires
neither the knowledge of the plant model nor direct measurements of d (although measuring y can be
thought of as an indirect measurement of the disturbance). This sounds like a miracle and should naturally
arouse suspicions of being too simple to be true.

These suspicions would be well founded. The situation in the closed-loop case is even more com-
plicated than that in the open-loop case. Stability is again a primary concern. It can be shown, e.g. by
root-locus asymptotes arguments, that closed-loop systems can be stable under controllers with uniformly
high gains only for a handful of plants. Namely, these are minimum-phase systems with a pole excess of

https://en.wikipedia.org/wiki/Karl_Johan_Astrom
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at most two. And even for these plants the use of such controllers is not practical. First, no measurements
are perfect. If the measurement noise is taken into account, the control signal in (1.14) turns

u1 D P�1.yr � n/ � d; (1.15)

resulting in y D yr � n. Tracking measurement noise, especially its high-frequency components, is not
what we need. Moreover, P�1 is typically a high-pass system, so fast components of n would be amplified
by (1.15), producing large high-frequency oscillations in the control signal, which is not healthy either.
Second, uniformly high-gain feedback frequently produces lightly damped modes in closed-loop systems.
This, in turn, yields poor transients, with fast but slowly decaying oscillations. Third, feedback systems
with high loop gains at high frequencies are normally quite sensitive to modeling uncertainty, loop delays,
digital implementation with sampling and roundoff errors, et cetera, i.e. they are not robust. This lack of
robustness is deemed unacceptable in applications.

Still, the underlying idea behind (1.14)—that a high loop gain effectively inverts the plant and measures
disturbances—is insightful and can be recognized as the guiding principle behind many control design
methods. For example, adding an integral action to the controller renders the loop gain infinite at the
zero frequency. This is why controllers with integral action can guarantee zero steady-state errors under
reference signals converging to a constant value despite the presence of constant disturbances and without
the need to know the static gain of the plant. The loop-shaping method, which manipulates the loop gain
ideas explicitly, is discussed in more details below.

1.4.3 Loop shaping

Consider again the relation (1.11). Our goal is to render e “small” and u “not too large,” in whatever
senses. Similarly to treating the open-loop problem in §1.4.1, we assume that the exogenous signals are
not correlated and cannot be used to cancel the effect of each other. The requirements above might then
be loosely expressed as requirements to reduce gains of S , Td, and T , while keeping gains of Tc and T not
too large. The problem is that these requirements are intrinsically conflicting, because S C T D 1, so S

and T cannot be made small simultaneously.
An elegant way to circumvent this obstacle can be found via treating the system in Fig. 1.4(c) in the

frequency domain. The underlying assumptions are that (i) spectra of yr and n are well separated and
(ii) only low-frequency components of d are harmful and should be compensated by the controller. Indeed,
it is the case in many applications that yr is relatively slow, sensors are less reliable at high frequencies, and
P is low-pass, so high-frequency components of d do not affect y anyway. Adopting these assumptions,
we may reformulate the requirements as rendering jS.j!/j and jTd.j!/j small at low frequencies, jT .j!/j
small at high frequencies, and keeping jTc.j!/j and jT .j!/j not too large at all frequencies. From the
transient performance point of view, it is beneficial to avoid high resonance peaks in jT .j!/j (smoother
transients) and to have a sufficiently high bandwidth of T .s/ (faster transients). At the same time, aiming
at too high bandwidth of T .s/, especially that exceeding the bandwidth of P.s/, would result in high peaks
in jTc.j!/j (cf. the discussion at the end of §1.4.1) and poor robustness. This set of requirements is rather
simplified, but still provides a flavor of the ideas behind frequency-domain design methods and complexity
of goals involved. The complexity is manifested in both the number of transfer functions involved and the
fact that they all are nonlinear functions of the design parameter, R.s/.

A workaround is to translate requirements on closed-loop transfer functions to those on the loop transfer
function

L.s/ D P.s/R.s/;

which is a linear function of R.s/. It is readily seen that S D .1CL/�1 and T D L.1CL/�1. Hence, if the
loop gain is high, i.e. if jL.j!/j � 1, we have small jS.j!/j and, in many cases, jTd.j!/j. If the loop gain is
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low, i.e. if jL.j!/j � 1, we have a small jT .j!/j. These relations are intuitive. Indeed, at frequencies where
the loop gain is high, we effectively invert the plant and have good tracking and disturbance attenuation.
But this comes at a price of an increased sensitivity to measurement noise. At frequencies where the loop
gain is low we effectively disconnect the sensor with its noise, thus rendering measurement noise irrelevant.
Less intuitive is that the other requirements can also be expressed in terms of L.j!/. This is true for the
peaks of jT .j!/j (L.j!/ should be sufficiently far from the critical point .�1; 0/ on the Nyquist complex
plane to avoid them), its bandwidth (connected with the crossover frequency !c, at which jL.j!c/j D 1),
and even the closed-loop stability (the Nyquist criterion).

A representative loop-shaping cascade design involves the following steps.

1. Pick the required crossover frequency !c around which the whole procedure is carried out. Too high
!c would complicate the design and might render the closed-loop bandwidth too high, while an overly
low !c would produce a too slow closed-loop system. Arguably, this is the most important choice in
the whole procedure. The right choice is normally reached via trial-and-error iterations.

2. Add a low-pass filter, whose bandwidth exceeds !c, to provide a required high-frequency roll-off.

3. Add a static gain to render the actual crossover frequency equal to the chosen !c.

4. If the closed-loop system is unstable in this stage (check via the Nyquist criterion), or if stability
margins are insufficient, add phase lead element(s). A properly parametrized lead does not alter !c.

5. If the low-frequency gain is not sufficiently high, add a phase lag element (includes a PI as a special
case). A properly parametrized lag almost does not alter !c.

6. Simulate the resulted closed-loop system. If some of its properties are unsatisfactory, return to Step 1,
change !c, and repeat all steps. Sometimes, it might be possible to return to some later steps, keeping
!c intact and tuning loop gains, roll-off, stability margins, etc.

In some situations one may use skewed notch filters as a subtler lead element. It is more localized, yet comes
at a lower price. Loop-shaping procedure for systems with lightly damped modes might require different
tools. For instance, a phase lag might be required there to increase the distance from the critical point,
which might not appear intuitive at first sight. A (not overly detailed) example of the use of loop-shaping
ideas can be found in §1.A.4.

Although loop-shaping design guidelines are to a large extent ad hoc, there are analytic results shedding
light on their potential limitations. One of them is Bode’s gain-phase relation, which quantifies the fact that
the magnitude and the phase of the loop frequency response L.j!/ cannot be manipulated independent of
each other. For example, if L.s/ is stable, its phase at every frequency !0 must satisfy

arg L.j!0/ D 1

�

Z

R

d lnjL.j!0e�/j
d�

ln
�

coth
j�j
2

�

d� � 2

nnmpzX

iD1

arctan
!0 C Im ´i

Re ´i

; (1.16)

where � ´ ln.!=!0/, nnmpz 2 ZC is the number of nonminimum-phase zeros of L.s/, and ´i , with
Re ´i � 0, are these zeros. The function

ln
�

coth
j�j
2

�

D
��1 0 1

D ln
ˇ
ˇ
ˇ
! C !0

! � !0

ˇ
ˇ
ˇ

may be thought of as an approximate Dirac delta. The first term on the right-hand side of (1.16) indicates
then that the phase depends on the slope of the Bode magnitude plot,

d lnjL.j!0e�/j
d�

D d lnjL.j!/j
d ln !

D d logjL.j!/j
d log !

;

around ! D !0. The faster we need to reduce jL.j!/j, the more phase lag we have to tolerate. Because
the Nyquist stability criterion normally requires the phase lag of L.j!/ to be limited around the crossover

https://en.wikipedia.org/wiki/Harry_Nyquist
https://en.wikipedia.org/wiki/Hendrik_Wade_Bode
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frequency, the first term on the right-hand side of (1.16) effectively necessitates the crossover region to
be sufficiently wide, so that the negative slope of the gain is not too steep. The second terms on the
right-hand side of (1.16) imply that every nonminimum-phase zero aggravates this situation, especially at
frequencies exceeding j´i j. This effectively imposes limitations on the attainable crossover frequency for
nonminimum-phase systems.

Another classical quantitative relation is Bode’s sensitivity integral. If the loop transfer function L.s/

is real-rational and strictly proper, then the following relation holds whenever S.s/ is stable:

Z 1

0

lnjS.j!/jd! D �

�nrhppX

iD1

Re pi � 1

2
lim

s!1
sL.s/

�

; (1.17)

where nrhpp 2 ZC is the number of poles of L.s/ in the open right half-plane C0 and pi , with Re pi > 0,
are these poles. Relation (1.17) is known [32] as generalized2 Bode’s sensitivity integral. The integrand on
the left-hand side of (1.17) is negative if jS.j!/j < 1 and nonnegative otherwise. Thus, (1.17) effectively
says that any feedback design with a strictly proper sL.s/ is an art of tradeoffs, where a reduction of
jS.j!/j at some frequencies inevitably leads to its increase at others. This phenomenon is known as the
waterbed effect. Bode’s sensitivity integral itself does not indicate that jS.j!/j necessarily grows outside
the frequency range where the jS.j!/j is pushed down as this range widens. But this kind of results can be
derived if some additional information on the decay of jL.j!/j at high frequencies is available.

1.5 Naïve MIMO extensions

Classical controller design methods in the frequency domain are rather well understood for SISO systems.
However, their extensibility to MIMO processes might not be natural. The goal of this section is to demon-
strate that via a simple academic example.

Consider the closed-loop system in Fig. 1.4(c). To avoid potential complications in the stability analy-
sis, the plant and controller are both static. The plant in all examples is taken as the 2�2 family of constant
matrices

P.s/ D
�

1 C ˛ 1 � ˛

�1 C ˛ �1 � ˛

�

; (1.18)

parametrized by ˛ 2 Œ0; 1�. Also, assume that measurements are perfect, i.e. that n D 0.
In general, the relation between the signals of interest in the MIMO case is slightly different from that

defined by (1.11), mainly because MIMO systems do not necessarily commute. Specifically, we have that

�
u

e

�

D
�

Tc �Ti

So �Td

� �
yr

d

�

;

where �
Tc.s/ Ti.s/

So.s/ Td.s/

�

´
�

R.s/

I

�

.I C P.s/R.s//�1
�

I P.s/
�

: (1.19)

Note that So ¤ I �Ti in general, which explains adding indices to them, “i” for the “input” complementary
sensitivity and “o” for the “output” sensitivity.

Example 1.1. First, consider the P (proportional) controller of the form

R.s/ D k

�

1 0

0 �1

�

2Bode’s original formula is for a stable L.s/ with a pole excess of at least 2, for which the right-hand side of (1.17) is zero.

https://en.wikipedia.org/wiki/Hendrik_Wade_Bode
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for some k 2 R. With this choice,

Ti.s/ D k

2k C 1

"
4˛k�1�˛

2˛kC1
1�˛

2˛kC1

1�˛
2˛kC1

4˛kC1C˛
2˛kC1

#

; Tc.s/ D k

2k C 1

"
.1C˛/kC1

2˛kC1
.1�˛/k
2˛kC1

� .1�˛/k
2˛kC1

� .1C˛/kC1
2˛kC1

#

;

Td.s/ D 1

2k C 1

"
4˛k�1�˛

2˛kC1
1�˛

2˛kC1

� 1�˛
2˛kC1

�4˛kC1C˛
2˛kC1

#

; So.s/ D 1

2k C 1

"
.1C˛/kC1

2˛kC1
.1�˛/k
2˛kC1

.1�˛/k
2˛kC1

.1C˛/kC1
2˛kC1

#

:

If ˛ ¤ 0, the limit as k ! 1 yields the following closed-loop transfer functions:

Ti.s/ ! I; Tc.s/ ! 1

4˛

�

1 C ˛ 1 � ˛

�1 C ˛ �1 � ˛

�

; So.s/ D Td.s/ ! 0;

from which

u ! u1 D 1

4

�
1

˛

�

1 1

�1 �1

�

C
�

1 �1

1 �1

��

yr � d D P�1yr � d and e ! e1 D 0; (1.20)

similarly to what happens in the SISO case (cf. (1.14)). If ˛ D 1, the plant is diagonal, P D
�

2 0
0 �2

�

, and
the control signal decouples, in a sense that each component of u depends exclusively on the corresponding
components of yr and d . Otherwise, there is a cross-coupling in the control signal. The output y D yr is
decoupled for all ˛ > 0.

If ˛ D 0, the situation is different. In that case the plant P D
�

1 1
�1 �1

�

and

Ti.s/ D k

2k C 1

�

1 1

1 1

�

; Tc.s/ D k

2k C 1

�

k C 1 k

�k �k � 1

�

;

Td.s/ D 1

2k C 1

�

1 1

�1 �1

�

; So.s/ D k

2k C 1

�

1 C 1=k 1

1 1 C 1=k

�

for all k. In the limit, as k ! 1, we have:

Ti.s/ D So.s/ ! 1

2

�
1 1

1 1

�

; Tc.s/ ! 1

2

�
k C 1 k

�k �k � 1

� ˇ
ˇ
ˇ
ˇ
k!1

; Td.s/ ! 0;

and then

u ! u1 D 1

2

�

k C 1 k

�k �k � 1

� ˇ
ˇ
ˇ
ˇ
k!1

yr � 1

2

�

1 1

1 1

�

d and e ! e1 D 1

2

�

1 1

1 1

�

yr:

This is not what we could have expected. The error signal

�

e1

e2

�

D 1

2

�

yr1 C yr2

yr1 C yr2

�

vanishes only if yr1 D �yr2. If it happens that yr1 D yr2, then the errors e D yr. This signal actually equals
the error signal attained with the choice R.s/ D 0, i.e. using no controller at all, if d D 0. The control
signal

�

u1

u2

�

D 1

2

�

k.yr1 C yr2/ C yr1

�k.yr1 C yr2/ � yr2

�

� 1

2

�

d1 C d2

d1 C d2

�

is bounded also only if yr1 D �yr2. Moreover, if this condition does not hold, two components of u diverge
synchronously, approaching u1 D �u2 no matter what yr we have (except yr1 D �yr2). ˙
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Example 1.2. Now, let

R.s/ D kI D k

�

1 0

0 1

�

:

In this case we end up with

Ti.s/ D k

4˛k2 � 1

�

4˛k � 1 � ˛ �1 C ˛

1 � ˛ 4˛k C 1 C ˛

�

; Tc.s/ D k

4˛k2 � 1

�

.1 C ˛/k � 1 .1 � ˛/k

�.1 � ˛/k �.1 C ˛/k � 1

�

;

Td.s/ D 1

4˛k2 � 1

�

4˛k � 1 � ˛ �1 C ˛

1 � ˛ 4˛k C 1 C ˛

�

; So.s/ D 1

4˛k2 � 1

�

.1 C ˛/k � 1 .1 � ˛/k

�.1 � ˛/k �.1 C ˛/k � 1

�

:

If ˛ ¤ 0, we end up with the very same closed-loop properties as in Example 1.1. So consider only
the case of ˛ D 0, for which

Td.s/ D
�

1 1

�1 �1

�

; So.s/ D
�

�k C 1 �k

k k C 1

�

; Ti.s/ D kTd.s/; and Tc.s/ D kSo.s/:

Because R.s/ is a scaled identity matrix, it commutes with the plant and hence So D I � Ti. Thus,

u ! u1 D
��

�k.k � 1/ �k2

k2 k.k C 1/

�

yr � k

�

1 1

�1 �1

�

d

�ˇ
ˇ
ˇ
ˇ
k!1

and e ! e1 D 1

k
u1:

Now the error signal
�

e1

e2

�

D
�

�k2.yr1 C yr2/ C yr1

k.yr1 C yr2/ C yr2

�

C
�

�.d1 C d2/

d1 C d2

�

can be zero only if yr D 0 and d1 D �d2, as det.So.s// D 1. Moreover, it actually blows up as k ! 1
unless, again, yr1 D �yr2. This looks more related to instability, although the system is stable. The
situation with u is similar, as u D ke. The only difference is that u grows even faster as k increases. ˙

The moral of the examples above is that MIMO systems are qualitatively different from and way richer
than their “poor SISO cousins.” Intuitively, discrepancies between SISO and MIMO systems may be con-
nected to differences in processing vectors with various mutual relations between their components. This
is indeed the case and the notion is known as the (spatial) direction of MIMO systems. We shall study it
later on and explain what happened in Examples 1.1 and 1.2, see Examples 2.4 and 2.5.

1.A Case study: set-point control of a DC motor

To illustrate the ideas discussed in this chapter, consider the problem of controlling the shaft angle � of a
armature-controlled DC motor connected to a rigid mechanical load.

1.A.1 Model

A basic property of armature-controller DC motors is that the generated torque, � , is proportional to the
armature current, i , i.e.

�.t/ D Kmi.t /;

where Km is called the torque constant of the motor. The torque is then applied to the load (which includes
the rotor itself), whose angular velocity ! D P� is assumed to satisfy

J d
dt

!.t/ C f !.t/ D �.t/ C �e.t /;

https://en.wikipedia.org/wiki/Armature_Controlled_DC_Motor
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Parameter Ka Km [N m/A] Ra [�] La [H] J [kg m2] f [N m s/rad] �max [N m]
Value 12 0.126 2.08 0.000264 0.008 0.005 0.235

Table 1.1: Numerical values of motor and load parameters

where J and f are the moment of inertia and the viscous friction coefficient of the load, respectively, and
�e is an external torque representing possible interactions with the environment. The armature electric
circuit satisfies

La
d
dt

i.t / C Rai.t / D v.t/ � vb.t /;

where La and Ra are the inductance and the resistance of the motor armature, respectively, v is the external
voltage supplied to the armature and vb is the back emf (electromotive force), which by Lenz’s law is
proportional to the rotor angular velocity, i.e.

vb.t / D Kb !.t/;

where Kb is the back emf constant (or speed constant) of the motor. Normally, it satisfies Kb D Km, if
expressed in compatible units. Finally, we assume that the armature voltage is generated by an amplifier as

v.t/ D Kau.t/;

where Ka is its gain and u is a normalized control signal, which is assumed to be limited as ju.t/j � 1 for
all t . Numerical values of all parameters above, which will be used throughout this example, are presented
in Table 1.1.

uvi�

�e

!

vb

y D �
Ka

1

Las C Ra
Km

1

Js C f

1

s

Kb

-

Fig. 1.6: Armature-controlled DC motor connected to a rigid mechanical load

The equations above can be combined in the block-diagram in Fig. 1.6, with the control input u and the
controlled output y D � . This corresponds to the system in Fig. 1.4(a), with P D PL under

PL.s/ ´ KmKa

s..Las C Ra/.Js C f / C KmKb/
and D.s/ D Las C Ra

KmKa
Te.s/: (1.21)

This plant PL is unstable, because of a pole at the origin. The disturbance might be unbounded in its
high frequency range because �e passes through a system with a non-proper transfer function. Yet this
should not be a problem as those high-frequency components are filtered out by the plant, which has a pole
excess of two and natural low-pass properties. In many situations the time constant of the electrical part is
substantially smaller than that of the mechanical load, i.e. La=Ra � J=f . In this case we may take L D 0

without substantial loss of accuracy. This yields the simplified transfer function of the plant

P0.s/ D KmKa

s.RaJs C .Raf C KbKm//
; (1.22)

which is still unstable. In what follows, this P0 will be used as the plant model in controller design because
of its simplicity.

In any case, both PL and P0 above are approximations of a real, possibly nonlinear, DC motor P .
Moreover, physical parameters of the motor might change in course of its operation. For example, the

https://en.wikipedia.org/wiki/Lenz's_law
https://en.wikipedia.org/wiki/Motor_constants
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(a) QRa 2 Œ1:87; 2:29�, dashed line corresponds to QRa D Ra (b) QRa 2 Œ1:87; 2:29�; QJ 2 Œ7:2; 8:8� �10�3; Qf 2 Œ4:5; 5:5� �10�3

Fig. 1.7: Modeling errors � for various uncertainty sources

resistance increases as the armature circuit heats up and the load changes frequently. On top of this, there
are complex high-frequency (like flexible structural modes of the load) and nonlinear (like dry friction)
phenomena, which are not taken into account in deriving (1.21). All this implies that we have to account
for modeling errors. Such errors are convenient to express in terms of multiplicative modeling uncertainty

� ´ 1 � P

P0

; (1.23)

where P0 is a nominal plant, that in (1.22) for some chosen values of its parameters, cf. (1.10). If P D PL

from (1.21) under La ¤ 0 and known other parameters, then the relative modeling error is LTI with the
transfer function

�.s/ D Las.Js C f /

.Las C Ra/.Js C f / C KmKb
: (1.24)

This is a stable high-pass system with the zero DC gain, �.0/ D 0, and a monotonically increasing magni-
tude of it frequency-response, approaching 1 at high frequencies (the magnitude of its frequency response
is shown by the black dashed line in Fig. 1.7(a)). If P D PL under a mismatched resistance, say QRa ¤ Ra,
then

�.s/ D .Las C QRa � Ra/.Js C f /

.Las C QRa/.Js C f / C KmKb
; (1.25)

which is also stable, but now �.0/ D . QRa�Ra/f =. QRaf CKmKb/ ¤ 0, indicating that modeling error exists
also at low frequencies. Thin lines in Fig. 1.7(a) represent j�.j!/j for various values of QRa 2 Œ1:87; 2:29�,
which is about 10% deviation from the nominal QRa D Ra.

If the value of QRa is not known a priori, or drifts during the motor operation, then � is not a fixed given
LTI system, but rather a family of systems. There are many approaches to handle such situations, some of
which are discussed in Chapter 8. Conceptually, it may be the simplest to treat modeling mismatch as an
arbitrary stable system, whose norm (size) is bounded by corresponding bounds on the actual �. Such a
treatment significantly simplifies the analysis, rendering it suitable for small-gain arguments [6, Sec. III.2].
However, it introduces conservatism, in the sense that the class of modeling errors is enlarged and a negative
result for the whole norm-bounded class does not necessarily imply that for the original class of modeling
errors. Still, simplicity is a great asset and below we analyze the system via such an upper bound. Obtaining
it is relatively simple for constant QRa’s, in which case it is merely the frequency-wise upper bound on
j�.j!/j over all admissible QRa, see the thick line in Fig. 1.7(a). This approach readily extends to modeling
errors arising from uncertainty in other constant parameters, see for example Fig. 1.7(b), which represents
combined uncertainty in Ra, J , and f , each is again about 10% deviation from nominal values. Obtaining
an upper-bound � in the time-varying or nonlinear case might be more involved.
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1.A.2 Reference signal

The control goal here is to rotate the motor shaft to a specific destination angle �d as fast as possible and
stay there. To simplify the formulae and without loss of generality we may assume that the initial steady
state is at y.0/ D 0 and that �d > 0. This kind of problems arise in numerous applications and are dubbed
the set-point regulation.

In a constraint-free world, this kind of problems would prompt a step reference signal, like

yr.t / D �d1.t / D
t0

�d

;

which is obviously the fastest move to any �d. Yet this signal would not be realistic. No motor can generate
an infinite torque or admit an infinite input voltage required for a shaft jump. Of course, we may still use the
step reference, or its filtered version, essentially as a declaration of intent. This will not render y matching
yr closely in its initial stage anyway. But this will put the control system into saturation modes if �d is “too
large” and might cause unnecessary, and definitely unwanted, spikes / oscillations in y and u.

A far better approach is to incorporate practical constraints into the choice of yr. The rationale be-
hind this is twofold. First, it is always healthier to demand from a system something that it can supply
than something unachievable anyway. This is a good recipe to avoid complications, like saturation and
overloads, which might then be way harder to correct by a controller. Second, the fastest trajectory in a
constrained world is almost certainly a nonlinear function of the destination point and system parameters.
It is then always beneficial, analysis-wise, to pull nonlinear parts of a control algorithm outside feedback
loops, i.e. to yr.

Apparently, the most restrictive constraint for our problem is that on the torque generated by the motor
(equivalently, on the current in its armature circuit). In many cases, at least if f is not too small, the voltage
constraint is inactive while the current constraint is satisfied. A possible choice of the reference trajectory
then is to rotate the shaft to its target position in minimum time tf under given load dynamics and the
constraint that j�.t/j � �max for all t and a given �max > 0 dependent on the concrete motor. This trajectory
can be derived by minimum-time optimization techniques [4, Ch. 7] for the second-order 1=.Js2 C f s/.
The optimal torque should be of a bang-bang type, with exactly one switch point ts in .0; tf/, because both
poles of the plant are real. The Laplace transform of the resulting yr, which is a nonlinear function of J ,
f , �d, and �max, is

Yr.s/ D 1

s.Js C f /

1 � 2e�tss C e�tfs

s
�max; (1.26)

where the time instances

ts D f �d

�max
C J

f
ln
�

1 C
p

1 � e�f 2�d=.J�max/

�

and tf D f �d

�max
C 2

J

f
ln
�

1 C
p

1 � e�f 2�d=.J�max/

�

are derived from the conditions

lim
s!0

sYr.s/ D �d and lim
J s!�f

.Js C f /Yr.s/ D 0 (1.27)

(require f > 0, which is naturally assumed to hold true). This reference signal has the form

yr.t / D
t0 ts tf

�d
�

attained by the bang-bang �.t/ D
t0 ts

tf

�max

��max

�

: (1.28)

The numerical values here and in what follows are taken from Table 1.1 and with �d D 6� [rad], resulting
in ts D 1:017 [s] and tf D 1:634 [s].
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(a) Response of PL from (1.21) (b) Responses of P ’s in Fig. 1.7(b)

Fig. 1.8: Open-loop controlled command responses y, the disturbance �e satisfies �e.t / D 0:11.t � 2:5/

It should be mentioned that in some applications there might be additional constraints, like limited load
velocity, acceleration, or jerk (e.g. if the load is the cabin of an elevator), accounting for which would result
in more complicated reference profiles. Still, handling such constraints on the level of yr is way easier than
on the level of a controller.

1.A.3 Open-loop control

First, consider the design of an open-loop controller in the configuration presented in Fig. 1.4(b). Let us
use the plain plant inversion strategy (1.6) here, namely select

R.s/ D 1

P0.s/
D RaJ

KmKa
s2 C Raf C KmKb

KmKa
s

Although this transfer function is non-proper, and hence unstable, it acts only on yr known analytically.
We just need to calculate two first derivatives of yr above and verify that they are bounded. This is indeed
the case and the control trajectory corresponding to the optimal yr is

u.t/ D RaJ

KmKa
Ryr.t / C Raf C KmKb

KmKa
Pyr.t /

D
t0 ts

tf C
t0 ts tf

D

uopt.t/
‚ …„ ƒ

t0 ts

tf

0:56

(1.29)

Note that the peak value of the input signal, 0.56, is still far from its maximal allowable value of 1. In
fact, even when �d grows, the peak voltage never exceeds .Kb=f C Ra=Km/�max D 0:818Ka < Ka, which
justifies ignoring the voltage constraint in the choice of yr in our case.

As discussed in §1.4.1, the controller above attains (1.4) only under the condition that P D P0, which
is not the case. If we consider P as in (1.21), still with d D 0, the deviation from the ideal response in the
Laplace domain, according to (1.10) and (1.24), is

E.s/ D Yr.s/ � Y.s/ D �.s/Yr.s/ D La

.Las C Ra/.Js C f / C KmKb

1 � 2e�tss C e�tfs

s
�max:

This corresponds to an exponentially decaying e, which is proportional to L. If L is very small, as assumed
in justifying the use of P0, the error is also insignificant, as can be seen from the thick line in Fig. 1.8(a)
for t 2 Œ0; 2:5�, which is virtually indistinguishable from the ideal response shown by the dotted gray line.
Moreover, the steady-state value is still �d for every L, as lim t!1 e.t/ D lims!0 sE.s/ D 0. This is
because L does not affect properties of P.s/ at low frequencies.
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yr

uopt

u
d

y

n

P.s/ R.s/

1=P0.s/

-

Fig. 1.9: 2DOF closed-loop control aiming at y D yr under P D P0 and d D n D 0

The resistance and load friction do affect low-frequency properties of P , so the open-loop control is
less successful if either of them changes. Thin lines in Fig. 1.8(b) for t 2 Œ0; 2:5� represent responses of
the system to the control signal (1.29) for plants from the family depicted in Fig. 1.7(b). It is readily seen
that those up to 10% deviations from nominal values of Ra, J , and f produce rather diverse responses,
with steady-state errors up to 8% of the value of �d. The responses are also visually different from the
expected response represented by the thick line in transient phases, demonstrating that open-loop control
has no ability to cope with modeling mismatches.

Expectably, the shaft angle � starts to diverge if a constant external torque �e, even a very small one,
is applied to the system as shown in Fig. 1.6. After all, the plant is unstable. This is seen from the plots
in Fig. 1.8, which represent, after t D 2:5 [sec], responses to a step torque of �0:1 [N m] applied at that
time instance. This external torque causes the angle to diverge for every P , decaying linearly after short
transients. This is a typical problem with controlling unstable processes in open loop, where no mechanism
for compensating the effect of unmeasurable disturbances exist.

1.A.4 Closed-loop control

Because the transfer function of the plant in (1.21) has a pole excess of 3, no proper R.s/ with uniformly
high gain will stabilize it. We thus cannot use the arguments of the beginning of §1.4.2. Rather, consider
designing R via loop-shaping techniques. The design is simplified by the use of the 2-degrees-of-freedom
(2DOF) controller architecture, a simplified version of which is depicted in Fig. 1.9. This scheme assumes
that the signal .P�1

0 /yr can be implemented, which is indeed the case for our choice of the reference signal
in (1.28) as is evident from (1.29).

It can be verified that the tracking error signal e D yr � y in this case is of the form

e D S.�yr � Pd/ C T n µ eyr � ed C en; (1.30)

where S D .1 C PR/�1 is the actual sensitivity function, T D 1 � S is the complementary sensitivity
function, the modeling error � is as defined in (1.23), and the components in the right-hand side are
counterparts of what we had in the open-loop case in (1.10). An important property of this closed-loop
relation is that in the nominal case, with P D P0 and � D 0, the effect of the reference signal on the
tracking error eyr D 0, exactly as in the open-loop control case, regardless the choice of R (as long as it
stabilizes the system, of course). This is an advantage of the 2DOF architecture over the unity-feedback
one in Fig. 1.4(c). The latter, by (1.11), has eyr D Syr, which can be zero only in the infeasible uniformly
high-gain case. Moreover, the choice of R does not need to take nominal tracking considerations into
account, which simplifies the design procedure.

By the logic of the discussion on p. 6, consider each of the components in the right-hand side of (1.30)
separately.

eyr : The only source of problems here is the modeling error. Unlike the open-loop case, where eyr D �yr,
the closed-loop sensitivity S is also a factor now. We thus can affect eyr via a choice of the feedback
controller R. A natural approach to reduce eyr is to decrease jS.j!/j at dominant frequencies of
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possible �yr. To estimate this dominant part, observe that by (1.26)

jYr.j!/j D j1 � 2e�j!ts C e�j!tf j�max

!2
p

f 2 C J 2!2
� 4�max

!2
p

f 2 C J 2!2
; 8! 2 R (1.31)

which follows by the triangle inequality (see §A.1.2) and can be arbitrarily tight at every ! under some
�d. Remarkably, the bound above is independent of �d, so that requirements on S can be formulated
independently of the destination point. For example, for uncertainty as in Fig. 1.7(b) we have that an
upper bound on the frequency response of �Yr is monotonically decreasing function of ! such that
j�.j!/Yr.j!/j � 0:1 for all ! > 6:44. In any case, we should aim at increasing the frequency range in
which the sensitivity magnitude is small. This is, in turn, equivalent to increasing the target crossover
as much as possible while preserving stability and reasonable stability margins under every possible
incarnation of P . It is also worth emphasizing that S.0/ D 0 under any stabilizing R, because of the
integral action in the plant. Hence, lim t!1 eyr.t / D 0 for every yr converging to a constant, despite
modeling uncertainty.

ed : The change with respect to the open-loop ed D Pd is again the addition of the sensitivity function.
Hence, reducing jS.j!/j at low frequencies reduces the effect of the load disturbance. But because
the plant itself has an unbounded static gain, zero steady-state error requires an integral action in the
controller as well. Thus, a policy to reduce ed would be similar to that for reducing eyr , with the
additional requirement to have an integral action in the controller.

en: This component of the error signal is an artefact of closing the feedback loop, it does not exist in
open-loop control. In many situations, the spectrum of the measurement noise is dominated by high
frequencies. This implies upper bounds on the choice of the crossover frequency and requirements
on the high-frequency roll-off of the controller. Although the effect of n is not studied below, some
specifications are inspired by its presence.

With these considerations in mind, consider the design of the feedback part of the controller, R, for the
system in Fig. 1.9 with the following specifications in terms of the nominal plant P0 from (1.22):

1. an integral action in R.s/,

2. a high-frequency roll-off of at least 1 for R.s/,

3. a modulus margin3 of above 0:5, i.e. jS.j!/j < 2 for all !,

4. the control sensitivity magnitude jTc.j!/j < 1 for all !,

5. as large crossover frequency !c of the nominal loop P0R as possible under the requirements above.

Attaining the first requirement is trivial. The second requirement is motivated by the need to render the
magnitude of the complementary and control sensitivity frequency responses small at high frequencies to
reduce the effect of the measurement noise. Its fulfillment is also technically simple, we just need to end up
with a strictly proper R.s/. The third one requires the nominal loop to be sufficiently far from the critical
point, which will be pursued via adding enough phase margin by the lead component. The specification on
jTc.j!/j aims at avoiding high control effort and is the main source of conflict with the crossover require-
ment in the last item above. So the design is a sequence of iterations, in which we increase or decrease the
target crossover frequency and see whether the resulting control sensitivity is strictly contractive.

Although specifications are formulated for the design model P0, we need to take into account modeling
uncertainty. To this end, design steps will be verified for a family of plants, those under the conditions of
Fig. 1.7(b), both during checking frequency-domain properties of the designed loops and in time-domain

3The modulus margin �m is the shortest Euclidean distance of the frequency response from the critical point on the Nyquist
plane, see §7.3.1 for more details.
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(a) P.j!/ and P0.j!/Rint.j!/ (dashed) (b) L.j!/ for !c D 6 (c) L.j!/ for !c D 12

Fig. 1.10: Nichols charts of the plant and designed loops (dash-dotted line is the 6 dB inverse M -circle)

simulations. The Nichols plots of those plants are depicted by thin solid lines in Fig. 1.10(a). Hollow dots
represent two selected frequencies, both of them will be eventually our crossover choices. It can be seen
that the frequency responses from the studied class are relatively dense, not far from the nominal one shown
by the thick line in Fig. 1.10. As such, nominal margins and crossover are expected to be close to those for
all these plants.

Technically, the controller design is done in the following steps. First, the first two requirements above
can be guaranteed by augmenting a strictly proper integrator of the form Rint.s/ D k=s to the plant and
then designing a proper remaining part of the controller. In doing so, we choose the gain k so that the
crossover frequency of the resulted augmented plant P0Rint is exactly the chosen !c. This yields

Rint.s/ D !c=jP0.j!c/j
s

:

But the integrator in this controller adds additional 90ı of phase lag, leading to loops like that shown by
the dashed line in Fig. 1.10(a) for all crossover candidates in Œ1; 20�, which can safely be considered the
required range with the uncertain �yr negligible above ! D 6:44 [rad/sec] and the plant bandwidth below
! D 12:54 [rad/sec]. By the Nyquist arguments, we now need then at least 75ı of phase lead at ! D !c to
render the closed-loop system stable. In fact we need more to have a reasonable phase margin. This implies
that a single lead controller, whose phase lead is below 90ı, would not be enough. A general4 second-order
lead tuned for a given crossover frequency !c can be written in the form

Rlead.s/ D ˛s2 C 2�
p

˛!cs C !2
c

s2 C 2�
p

˛!cs C ˛!2
c

for some ˛ > 1 and � 2
h 1p

2
;
p

2
i

: (1.32)

Its maximal phase lead, always at ! D !c, is 180 � 2 arctan.2�
p

˛=.˛ � 1// [deg]. It grows as � decreases
and as ˛ increases. An increase of ˛ also implies a decrease of the static gain of Rlead and an increase of
its high-frequency gain. In other words, ˛ may be thought of as the cost of phase lead in this controller.
A small damping factor � implies that the phase lead is concentrated in a more narrow frequency band. In
our system, because of modeling uncertainty, we would prefer to keep this frequency band wide enough.

The procedure described above is technically simple, although the need to tune three parameters, !c,
˛, and �, could make it time consuming. The design may be simplified by limiting the consideration to
damping factors slightly above one and aiming at a phase margin of about 40ı. After some trial and error
process, the choice !c D 6 [rad/sec] was found suitable, accompanied by ˛ D 20 and � D 3=

p
5 � 1:342.

After rounding coefficients, the overall controller

R.s/ D Rint.s/Rlead.s/ D 50.s C 3/.s C 0:6/

s.s C 60/.s C 12/
:

4A yet more general form would take different damping factors in the numerator and denominator, resulting in skew notches.
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(a) Design with !c D 6 (b) Design with !c D 12

Fig. 1.11: Closed-loop controlled command responses y, disturbance �e satisfies �e.t / D 0:11.t � 2:5/

The frequency responses of the resulting loops are shown in Fig. 1.10(b), where the nominal loop is rep-
resented by the thick line and loops for other possible plants from the considered set are depicted by thin
lines. We can see that the closed-loop system is always stable, with the phase margin about 40ı for every
plant from the set, which is reasonably large. Checking the closed-loop control sensitivity magnitudes
separately, we could see that the bound jTc.j!/j < 1 holds for all frequencies, as requited. Likewise, plot-
ting the sensitivity functions for all plants from the studied class would reveal that they are all high-pass
filters with the cutoff frequencies5 above ! D 3:2 [rad/sec] and jS.j!/j < 1:767 < 2. In fact, the latter
could be seen already from the inverse M -circles on the open-loop Nichols chart. The dash-dotted line
in Fig. 1.10(b) represents one such inverse circle for the 6 dB level, which evidently does not touch loop
frequency responses. The closed-loop sensitivity cutoff bound suggests that the effect of modeling un-
certainty on the command response is suppressed at dominant frequencies of yr. This suppression shows
up clearly in the closed-loop command responses in Fig. 1.11(a), where the thick line again represents the
nominal case and thin lines represent all others, all in the time interval Œ0; 2:5�. These responses are consid-
erably closer to the nominal response than in the open-loop case, which demonstrates clearly advantages
of feedback in reducing effects of modeling uncertainty.

Another advantage of feedback can be seen in responses to a step torque disturbance applied at t D 2:5.
Comparing closed-loop responses in Fig. 1.11(a) with those in Fig. 1.8(b) under open-loop control, we can
see that the effect of �e on the former is substantially smaller. Moreover, the presence of an integral action
in R guarantees that y converges to yr in steady state, which is a qualitative difference from the diverging
open-loop results.

At the end, note that if the requirement on the control sensitivity is relaxed, then even tighter closed-
loop results can be obtained. For example, let us double the crossover frequency, to !c D 12 [rad/sec].
Keeping the design logic and the parameters ˛ and � in (1.32) untouched, we end up with the loop in
Fig. 1.10(c) for the controller

R.s/ D 380.s C 6/.s C 1:2/

s.s C 120/.s C 24/
;

for which max!jTc.j!/j D 3:5. Although stability margins of this design are smaller than those for !c D 6,
we still have that jS.j!/j < 2 for all frequencies, which is seen via the inverse M -circle, depicted by the
dash-dotted line in Fig. 1.10(c). As a result of the increase in !c we have a wider suppression region of
the sensitivity functions, whose cutoff frequencies are now above ! D 6:1 [rad/sec]. And then the time
responses of all plants from the family in Fig. 1.7(b) are almost indistinguishable, see Fig. 1.11(b). The
sensitivity to torque disturbances is also lower than in the less aggressive design in Fig. 1.11(a).

5By the cutoff frequency of a high-pass F.s/ we understand the largest !coff such that jF.j!/j � �3 dB, 8j!j � !coff.



Part I

Stand-Alone Systems

21





Chapter 2

Static Systems

S
tatic systems are systems in which the relation between input and output signals (more precisely,
between external signals) is memoryless. Loosely speaking, this means that the output of the system at

any time instance depends on its input at the same time instance only and does not depend on past or future
inputs. As such, the time dependence can be dropped in studying static systems and they can be viewed
from a pure algebraic (frozen time) perspective. The goal of this chapter is to introduce basic properties
of static MIMO systems, those related to processing sizes and spatial directions of involved signals.

2.1 Frozen-time signals and static systems

Throughout this chapter signals are viewed as elements of a finite-dimensional vector space F n for n 2 N.
The notation F is just a placeholder for either R or C, the result apply to both unless specifically mentioned.
Linear I/O systems are then linear operators from F m to F p, denoted F m ! F p, for suitable dimensions.
It is convenient to think of such signals and systems as vectors and matrices, respectively, i.e. as tables,
accompanied by corresponding manipulation rules.

Specifically, a signal x 2 F n can always be presented in the vector form

x D

2

6
4

x1

:::

xn

3

7
5 D

n
X

iD1

xi ei ;

where ei stands for the i th standard basis in F n and xi are the corresponding coordinates. Such a represen-
tation usually reflects the nature behind components of multi-dimensional signals, with each coordinate
representing some specific physical quantity (position, voltage, pressure, etc) of different parts of signals.

Consider now a linear system G W F m ! F p. Denoting by ei and Oej the i th standard basis in F m and
the j th standard basis in F p, respectively, and by gij the i th coordinate of Gej 2 F p in f Oe1; : : : ; Oepg, the
relation y D Gu reads

y D G.u1e1 C � � � C umem/ D u1.Ge1/ C � � � C um.Gem/ (by linearity)

D u1.g11 Oe1 C � � � C gp1 Oep/ C � � � C um.g1m Oe1 C � � � C gpm Oep/

D .g11u1 C � � � C g1mum/ Oe1 C � � � C .gp1u1 C � � � C gpmum/ Oep D y1 Oe1 C � � � C yp Oep:

This implies that the action of G can be presented in the following table (matrix) form:
2

6
4

y1

:::

yp

3

7
5 D

2

6
4

g11u1 C � � � C g1mum

:::

gp1u1 C � � � C gpmum

3

7
5 µ

2

6
4

g11 � � � g1m

:::
:::

gp1 � � � gpm

3

7
5

2

6
4

u1

:::

um

3

7
5 : (2.1)
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The matrix in the right-hand side of (2.1) is the matrix representation (or the system matrix) of G in the
standard bases of F m and F p (see §A.2.4).

Strictly speaking, vector representations of signals and matrix representations of systems are not signals
and systems themselves. For example, these representations change with the change of bases, see §2.1.1
below for details. Nonetheless, we henceforth use the same notation to denote signals / systems and their
vector / matrix representations and frequently interchange these notions. In particular, in many cases static
systems F m ! F p will be treated as p � m matrices and the expression y D Gu, which is meant to denote
that y is the output of the system G under the input u, will be understood as the matrix multiplication like
that in (2.1). This ambiguity normally does not give rise to any problem. At the same time, vectors and
matrices may be easier to grasp than abstract elements of vector spaces and mappings.

It follows from (2.1) that the .i; j /th element of a matrix G, gij , can be interpreted as the transmission
between the j th element of the input and the i th element of the output of the corresponding system G.
Denote by g�j 2 F p�1 and gi� 2 F 1�m the j th column and the i th row of G, respectively, so that

G D
�

g�1 � � � g�m
�

D

2

6
4

g1�
:::

gp�

3

7
5 :

To interpret the columns of G, note that y D Gu can be written as

y D g�1u1 C � � � C g�mum;

so that g�j represents the actuation of the j th element of the input vector by G, hence the actuator inter-

pretation. Similarly, the rows of G can be interpreted via the relation

y D

2

6
4

g1�u
:::

gp�u

3

7
5 :

Thus, gi� can be thought of as the sensor for the i th measurement channel.

Remark 2.1 (matrix terminology). The following definitions and special matrices are used throughout these
notes. A matrix G 2 F p�m is said to be square if m D p, tall if p > m, and fat if p < m. A matrix G is
called upper (lower) triangular if its elements gij D 0 whenever i > j (i < j ) and diagonal if gij D 0

whenever i ¤ j . The matrix trace of a square matrix G 2 F m�m is defined as tr.G/ ´
Pm

iD1 gi i 2 F . O

2.1.1 Basis change and similarity transformations

The visualization of signals via their coordinates in the standard basis in F n is merely a matter of convention
(and convenience). We may consider any other basis in F n if it suits us and think of signal components as
coordinates in this basis (after all, coordinates in any basis completely determine a signal). This change of
viewpoint is done via the coordinate change procedure described below.

Let fv1; : : : ; vng be a (non-standard) basis on F n. Any x is uniquely decomposed as

x D Qx1v1 C � � � C Qxnvn D
�

v1 � � � vn

�

2

6
4

Qx1

:::

Qxn

3

7
5 µ T Qx; (2.2)

where Qxi , i 2 Z1::n, are the coordinates of x in this basis. Since all vectors vi are linearly independent, the
matrix T 2 F n�n is invertible and therefore Qx D T �1x is unique. We thus ended up with a new vector,
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Qx, whose elements are the coordinates of x in fv1; : : : ; vng. It is important to realize that x and Qx are
different vectors (tables), their elements are in general different. However, they represent the same signal,
the difference is in the viewpoint.

Example 2.1. A frequently used basis on Cn is f�1; �2; : : : ; �ng, where

�i ´ 1

n

2

6
6
4

1

.ej2�=n/i�1

:::

.ej2�.n�1/=n/i�1

3

7
7
5

; i 2 Z1::n:

If x 2 F n and xi are its coordinates in the standard basis, then the coordinates Qxi 2 C of x in f�1; : : : ; �ng
are the discrete Fourier transform (DFT) coefficients of the sequence fxigi2Z1::n

. In effect, this is a de-
composition of a sequence into elementary n-periodic harmonics. Viewing a signal in terms of its DFT
coefficients is informative in various applications, for example, in spectral analysis. ˙

To see the effect of a coordinate change on a system matrix G 2 F p�m, let us change the input and output
bases as u ! Qu ´ T �1

u u and y ! Qy ´ T �1
y y for some nonsingular matrices Tu 2 F m�m and Ty 2 F p�p,

whose columns form new bases in the input and output spaces of G. In this case the corresponding matrix
relation reads

Qy D T �1
y y D T �1

y Gu D T �1
y GTu Qu

and the matrix T �1
y GTu 2 F p�m is the matrix representation of G in these new coordinates. If G is

square and both input and output coordinates are transformed to the same basis formed by the columns of
a nonsingular matrix T , the resulting matrix in the transformed coordinates, T �1GT , is called similar to
G. This similarity transformation is again just a change of viewpoint and preserves many properties of G.

Example 2.2. Consider a system G W R3 ! R3, whose matrix representation in the standard bases is

G D 1

3

2

4

5 �1 �1

�1 5 �1

�1 �1 5

3

5 :

Let us now view both its input and its output signals via their DTF coefficients, i.e. via the coordinates in
the basis f�1; : : : ; �ng considered in Example 2.1. The corresponding matrices

T D 1

2

2

4

2 2 2

2 �1 C j
p

3 �1 � j
p

3

2 �1 � j
p

3 �1 C j
p

3

3

5 and T �1 D 1

6

2

4

2 2 2

2 �1 � j
p

3 �1 C j
p

3

2 �1 C j
p

3 �1 � j
p

3

3

5 ;

so that

T �1GT D

2

4

1 0 0

0 2 0

0 0 2

3

5 :

The diagonal structure of this matrix representation means that the processing of DFT coefficients by G is
decoupled. Such a decoupling simplifies the understanding of properties of G and plays an important role
in the analysis later on. ˙

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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1
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Fig. 2.1: Unit balls in R2

2.2 Size matters

As discussed in Section 1.4, control is essentially about making errors small under admissibly-sized control
effort. It is obviously important to quantify the meanings of “small” and “admissibly-sized” here. In other
words, we have to define metrics by which a small error can be distinguished from a large one and the
admissibility of a control effort can be measured. This task is straightforward in the SISO case, where the
absolute value of the signal is an ultimate measure of its size and the absolute value of the 1 � 1 matrix
representation of systems of interest is an ultimate measure of their gains. But extending these definitions
to MIMO systems is no longer unambiguous and might not even be sufficient.

2.2.1 Signal (vector) norms

By the size of a signal x 2 F n we naturally understand its norm, see §A.1.2. But there are many non-
trivially different norms if n > 1. The Hölder vector norms, or q-norms, on F n are defined as

kxkq ´
� n
X

iD1

jxi jq
�

1=q

(1 � q � 1). (2.3)

Some frequently used special cases are kxk1 D
Pn

iD1jxi j, kxk1 D max1�i�njxi j, and, especially,

kxk2 D
� n
X

iD1

jxi j2
�

1=2

: (2.4)

The latter, known as the Euclidean norm, is the best known and particularly important because F n endowed
by it is an inner product space (see below). For this reason, we often omit the subscript “2” from the notation
of the Euclidean norm, so that k�k stands for k�k2 when applied to elements of F n hereafter. Note that the
quantity kxkq as in (2.3) are sometimes referred to as a norm of x also for q 2 Œ0; 1/. But this is not
accurate, because such a kxkq does not satisfy the triangle inequality and thus does not qualify as a norm.

It may be useful to define the set of all vectors the norm (size) of which is “small” in some sense. To
this end the notion of the unit ball may be used. The unit ball Bq associated with the q-norm on F n is
defined as

Bq ´
˚

x j kxkq � 1
	

:

This Bq is not a subspace of F n, e.g. it is not closed under the scalar multiplication. The shadowed areas
in Fig. 2.1 show unit balls in R2 determined by some Hölder norms. The boundary of each of these areas
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comprises all unit vectors in the given metric, i.e. all vectors whose norms equal one. The areas in Fig. 2.1
show clearly that the notion of “smallness” depends on the choice of the metric. For example, the area
covered by B1 is twice as large as the area covered by B1. The choice of a suitable metric depends thus
on the concrete application.

Although vector norms are different, they are all comparable. Specifically, all norms on finite-dimen-
sional spaces are equivalent, in the sense that given any two vector norms, say k�ka and k�kb, there are
constants 2 � 1 > 0, which are independent of x, such that

1kxkb � kxka � 2kxkb: (2.5)

For example, it is known that kxkr � kxkq � n1=q�1=rkxkr whenever q < r for all x 2 F n. Among other
things, the equivalence of norms means that a bounded vector in one norm remains bounded in any other.

2.2.2 System (matrix) norms

The size of a system can be defined via the maximal amplification that it can provide over all possible input
signals. This is the logic of the notion of the induced norm of matrices. Specifically, the norm induced by
the q vector norm is (see also §A.2)

kGkq ´ sup
u2F m;u¤0

kGukq

kukq

D sup
kukqD1

kGukq D sup
kukq2Bq

kGukq:

In other words, the induced norm is the largest, in terms of its q-norm, vector contained in GBq (by linearity,
such a vector should lie on the boundary of GBq). Induced norms for some particular Hölder norms can
be calculated explicitly, like

kGk1 D max
1�j�m

p
X

iD1

jgij j; (column sum) (2.6a)

kGk2 D
p

�max.G0G/; (spectral norm) (2.6b)

kGk1 D max
1�i�p

m
X

jD1

jgij j; (row sum) (2.6c)

where �max stands for the maximal eigenvalue (see §2.3.3). It follows from the definition of the induced
norm that kG2G1ukq � kG2kqkG1ukq � kG2kqkG1kqkukq for all u. Hence,

kG2G1kq � kG2kqkG1kq ; (2.7)

which is known as the sub-multiplicative property of norms. Among q-norms, the spectral norm will be
most frequently used throughout these notes. Hence, the subscript “2” will be frequently omitted from its
notation and k�k should be understood as k�k2 when applied to elements from F p�m.

There may be matrix norms that are not induced. For example,

kGkf ´
p

tr.G0G/ D
� m
X

iD1

kGeik2

�
1=2

D
� p
X

iD1

m
X

jD1

jgij j2
�

1=2

(Frobenius norm); (2.8)

which is the matrix version of the Hilbert-Schmidt operator norm, also satisfies all norm conditions on
p. 182 and can thus be used as a measure of the size of G. Although this norm is not induced in any signal
metric on F m and F q (the proof of this is not quite trivial), it still can be interpreted in terms of inputs
and outputs of the corresponding system. Namely, the Frobenius norm can be thought of as the average,
modulo the scaling factor 1=m, of the Euclidean norms of the responses to standard basis inputs ei .
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Similarly to vector norms, all matrix norms are equivalent in the sense (2.5). For example, it can be
shown that

kGk � kGkf �
p

rank.G/ kGk;

where rank.G/ is its rank, defined at the end of §2.3.1.
It may appear natural to think of a norm of G as its gain. This is indeed the ultimate measure of the

smallness of G, for the size of no its output can exceed kGkqkukq . However, norms no longer capture the
whole picture in the MIMO case, as illustrated by the example below.

Example 2.3. Let

P D
�

1 C ˛ 1 � ˛

�1 C ˛ �1 � ˛

�

for some ˛ 2 Œ0; 1�, which is the plant in (1.18). It can be verified that kP k D 2, independently of ˛ as long
as j˛j � 1. Thus, this system can amplify input signals up to a factor of 2, provided the size of signals is
measured by their Euclidean norm. This observation can be illustrated by considering inputs of the form
u D

�
u0
u0

�

, whose kuk D
p

2ju0j. In this case

y D
�

1 C ˛ 1 � ˛

�1 C ˛ �1 � ˛

��

1

1

�

u0 D
�

2

2

�

u0 H) kyk D
p

8ju0j D 2kuk:

In other words, the gain of P is indeed 2 for this class of inputs. But this is not the case for some other
inputs. Take for instance u D

�
u0�u0

�

, whose kuk D
p

2ju0j as well. In this case

y D
�

1 C ˛ 1 � ˛

�1 C ˛ �1 � ˛

� �

1

�1

�

u0 D
�

2˛

2˛

�

u0 H) kyk D
p

8˛ju0j D 2˛kuk:

If ˛ � 1, then kyk � 2kuk, meaning that the gain of P might be substantially smaller than 2. Moreover,
if ˛ D 0, then no u D

�
u0�u0

�

passes the system at all. This implies that the induced norm notion is too
limited to characterize amplification / alleviation properties of systems comprehensively. ˙

2.3 Direction matters as well

In light of the discussion in Example 2.3, it is important to identify the property of input signals that deter-
mines the amplification of a system. This property, which has no counterpart for scalar-valued signals, is
the notion of signal (spatial) direction. By the direction of a signal x 2 F n we understand the 1-dimensional
subspace span.x/ � F n. We say that x and y are co-directed if their directions coincide, i.e. if y D ˛x

for some nonzero ˛ 2 F . All input signals of the form
�

u0
u0

�

in Example 2.3, for which the gain of the
system was equivalent to kP k, are co-directed, with the direction span

��
1
1

��

. Likewise, all inputs of the
form

�
u0�u0

�

amplified by 2˛ are also co-directed, now with the direction span
��

1
�1

��

. This observation is
general. By linearity, the amplification along the same direction scales linearly with the size of inputs.

Directions can be compared using the notion of the inner product, see §A.1.2. A possible inner product
on F n is

hx; yi2 ´
n
X

iD1

yixi : (2.9)

As a matter of fact, the Euclidean vector norm (2.4) is induced by this inner product, viz. kxk2 D hx; xi2.
To have it consistent with the notation used for the Euclidean norm, the subscript is normally dropped when
the inner product (2.9) is used. A mismatch between the directions of signals x and y can be characterized
by their normalized inner product ~xy D hx; yi=.kxkkyk/ 2 Œ�1; 1�, see (A.2) on p. 183 for a precise
definition. It is readily seen that for co-directed signals j~xyj D 1. Also, ~xy D 0 iff the signals x and y
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are orthogonal, denoted x ? y, i.e. hx; yi D 0. This may justify the interpretation of ~xy as the cosine of
the angle between the directions of x and y, which is the standard cosine for signals on R2.

Remark 2.2 (adjoint system). With the help of the inner product notion, the adjoint of a p � m matrix G

is the m � p matrix G0 such that hGu; yi D hu; G0yi for all u 2 F m and y 2 F p. By (2.9) and (2.1),

hGu; yi D y1.g11u1 C � � � C g1mum/ C � � � C yp.gp1u1 C � � � C gpmum/

D .g11y1 C � � � C gp1yp/u1 C � � � C .g1my1 C � � � C gpmyp/um

D

�
u;

2

6
4

g11 � � � gp1

:::
:::

g1m � � � gpm

3

7
5 y

�
;

so that the .i; j /th element of G0 is gj i . If the elements of G are real, G0 is merely its transpose. The
columns (rows) of G are now the rows (columns) of G0 modulo the complex conjugation of their elements.
Thus, the rows of G can now be thought as actuators of G0 and the columns of G—as sensors of G0. O

Remark 2.3 (more matrix terminology). A matrix satisfying G0 D G is said to be Hermitian (or symmetric,
if it is real). A matrix satisfying G0 D �G is called skew-Hermitian (or skew-symmetric, if it is real).
Skew-Hermitian matrices must have pure imaginary diagonal elements (zero, if the matrix is real). A
square matrix G is said to be normal if G0G D GG0. Hermitian matrices are obviously normal, but there
are also non-Hermitian normal matrices, like

�
˛ ˇ
�ˇ ˛

�

. O

In the remainder of this section direction-related structural properties of MIMO systems are discussed.

2.3.1 Kernel and image spaces

Basic structural notions of linear systems are their kernel and image spaces (see §A.2). Given a matrix
(system) G 2 F p�m, its kernel (null space) is defined as ker G ´ fu 2 F m j Gu D 0g and image (range)
as Im G ´ fy 2 F p j y D Gu for some u 2 F mg. Thus, ker G can be viewed as the space of all directions
of input signals that do not pass G and Im G is can be viewed as the space of all possible directions of output
signals. It is readily seen that the image of a matrix is the span of its columns, Im G D span.g�1; : : : ; g�m/.
We say that the kernel of G is trivial if ker G D f0g, i.e. if all columns of G are linearly independent.

The kernel of a system has interesting interpretations from the actuation and sensing viewpoints dis-
cussed in Section 2.1. Specifically, from the actuation point of view the kernel can be thought of as char-
acterizing the freedom of choice for the input u to produce a desired output. Namely, Gu1 D Gu2 iff
u1 � u2 2 ker G. Indeed, by linearity we have that Gu1 D Gu2 ” G.u1 � u2/ D 0, whence the
claim follows immediately. This property can be reformulated as follows: let u0 be any vector such that the
desired output yd D Gu0, then the set of all inputs reaching the same yd is given by u D u0 C un, where
un 2 ker G but otherwise arbitrary. The term “set of all inputs” is understood here in the “iff” sense, i.e.

. H) / yd D G.u0 C un/ for every un 2 ker G and

.(H / every u for which yd D Gu can be presented in the form u D u0 C un for some un 2 ker G.

It is clear now that an input reaching a given output from Im G is unique iff ker G is trivial. Taking the
sensor viewpoint, ker G can be viewed as the characterization of the ambiguity in u for a given measurement
ym D Gu. Indeed, ym can be produced by every input of the form u0 C un, where un 2 ker G. Thus,
an input signal can be unambiguously reconstructed from a measurement iff ker G D f0g. As a matter
of fact, because outputs of Gu necessarily lie in Im G, the latter space characterizes the set of consistent

measurements, i.e. the measurements that can be “explained” by some input.

Proposition 2.1. .ker G/? D Im G0 and .Im G/? D ker G0 for all G 2 F p�m.
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Proof. We know that u 2 ker G ” Gu D 0 ” 0 D hGu; yi D hu; G0yi for all y 2 F p. Thus,
u 2 ker G iff it is orthogonal to all vectors from Im G0, which proves the first statement. The proof of the
second statement goes similarly.

The first statement above actually implies that F m D ker G ˚ Im G0, i.e. any input signal can be de-
composed into a part belonging to ker G (which does not show up in the output) and an orthogonal part
belonging to Im G0 (which fully passes to the output). Similarly, the second statement of Proposition 2.1
implies that F p D Im G ˚ ker G0, i.e. that signals, which cannot be reached by via u, are those annihilated
by the adjoint system.

Proposition 2.1 can be used to connect dimensions of the kernel and image spaces.

Proposition 2.2. If G 2 F p�m, then dim.Im G/ C dim.ker G/ D m.

Because dim.Im G/ is the dimension of the subspace reachable by inputs and dim.ker G/ is the di-
mension of the input subspace “filtered out” by G, Proposition 2.2 can be thought of as the principle of
conservation of dimensions. Namely, each dimension is either crushed to zero or ends up in the output.

The dimension of the image space is called the rank of G. Obviously, rank.G/ is the number of linearly
independent columns of G. Less obvious, yet still true, is the fact that rank.G/ also equals the number of
linearly independent rows of G. This implies that rank.G/ D rank.G0/ and that rank.G/ � minfp; mg. If
the equality holds in the latter expression, then G is said to have full rank. A square matrix is nonsingular
iff it has full rank.

2.3.2 Diagonal matrices

The kernel and image spaces shed some light on how various input signal directions are processed by
systems and what output signal directions are attainable. But they do not explain much about how systems
amplify signals. To gain more insight, let us consider a very special class of systems, known as diagonal.

Arguably, diagonal matrices defined in Remark 2.1 constitute the next simplest class of matrices after
scaled identity matrices. Considered as a system, a matrix G 2 F m�m is diagonal if

Gei D giei ; 8i 2 Z1::m; (2.10)

for some scalars gi 2 F . In other words, systems described by diagonal matrices do not change directions
for inputs co-directed with the standard basis. It is easy to see that the elements of diagonal matrices
indeed satisfy gij D 0 whenever i ¤ j . We denote diagonal matrices as G D diagfg1; : : : ; gmg or even
as the shorter form G D diagfgi g. It is readily seen that I D diagf1; : : : ; 1g. Operations on diagonal
matrices can be carried out in terms of individual diagonal elements. For example, it is easy to see that
diagfgig0 D diagfgig and diagfgig is invertible iff gi ¤ 0 for all i 2 Z1::m, with diagfgig�1 D diagf1=gi g.
Also, it can be shown that induced norms of a diagonal matrix are kdiagfgigkq D maxi jgi j for all q � 1.

A diagonal m � m system can be seen as a collection of m independent (decoupled) SISO systems. All
inputs, whose direction is span.ei/, are amplified by jgi j then. Moreover, the response to a general input
in this case is y D G.�1e1 C � � � C �mem/ D �1g1e1 C � � � C �mgmem, from which, by the orthonormal
property of the standard basis,

kyk2 D
m
X

iD1

jgi j2j�i j2:

Therefore, jgi j is the gain of G for the i th standard basis coordinate with respect to all inputs. Thus, the
knowledge of gains and their indices lets us know in what input directions we can expect larger amplifica-
tions and in what directions the amplification is lower. We also know in what output directions shall we
expect amplified / attenuated signals. This completes the picture in the diagonal case.
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2.3.3 Eigenvalues and eigenvectors

It is worth remembering at this point that the diagonal structure is basis dependent. In other words, a
similarity transformation might destroy the decoupling structure of diagonal matrices. At the same time,
one may expect that the reverse path, i.e. changing bases to convert an arbitrary system to diagonal, can be
exploited (see Example 2.2).

Taking into account (2.2), finding a basis in which a system G is diagonal can be carried out via finding
a nonzero u 2 F m such that

Gu D �u (2.11)

for some � 2 F . This equality can be rewritten as .�I � G/u D 0, whence the existence of the required u

is equivalent to the existence of a scalar � 2 F such that the matrix �I � G is singular. The latter question
always has an affirmative answer. In fact, there are exactly m such scalars, �i , i 2 Z1::m, which are called
eigenvalues of G. Any u ¤ 0 for which (2.11) holds for a given � is called the eigenvector associated with
this eigenvalue.

Eigenvalues are the solutions of the characteristic equation

det.�I � G/ µ �G.�/ D 0:

The set of all eigenvalues of G is called its spectrum and denoted spec.G/. Matrices whose spectrum is
located in the open left half-plane C n xC0 are called Hurwitz and those with the spectrum in the open
unit disk D are called Schur. It is easy to see that similarity transformations do not affect the spectrum, i.e.
spec.G/ D spec.T �1GT / for all nonsingular T . The maximal modulus of eigenvalues is called the spectral

radius, denoted �.G/ ´ max1�i�mj�i j � 0. If all eigenvalues of G are real, we denote the largest and the
smallest of them as �max.G/ and �min.G/, respectively. Eigenvalues of real matrices are not necessarily
real. Still, it can be shown that the eigenvalues of Hermitian matrices are real, so that the definition of
the matrix spectral norm on p. 27 always makes sense. As a matter of fact, eigenvalues of skew-Hermitian
matrices are always located on the imaginary axis. If �i is a root of multiplicity �i of �G.�/, we say that
�i is an eigenvalue of G of algebraic multiplicity �i . If �i D 1, we say that the eigenvalue �i is simple,
otherwise we say that �i is a repeated eigenvalue of G. The geometric multiplicity, �i , of �i is defined
as the dimension of ker.�iI � G/ or, equivalently (cf. Proposition 2.2), as m � rank.�iI � G/. Algebraic
and geometric multiplicities need not to be the same (in fact, the latter is always smaller than or equal to
the former). For example, both I2 and

�
1 1
0 1

�

have an eigenvalue � D 1 of an algebraic multiplicity 2, as
the characteristic polynomial is .� � 1/2 in both cases, whereas the geometric multiplicity is 2 for I2 and 1
for

�
1 1
0 1

�

, because ker
�

0 �1
0 0

�

D span.e1/. The smallest �i 2 N such that the dimension of ker.�iI � G/�i

equals its algebraic multiplicity �i is called the index of the eigenvalue �i . This index equals the dimension
of the largest Jordan block associated with �i and does not exceed the geometric multiplicity of �i , i.e. we
have that �i � �i � �i .

Returning to (2.11), eigenvectors show the directions that are not altered by G and the corresponding
eigenvalues can be thought of as the (scalar) gains of G along these directions. If G has m linearly indepen-
dent eigenvectors ui , they form a basis in F m (known as the eigenbasis). The matrix representation of G in
the eigenbasis, T �1GT for T D

�

u1 � � � um

�

, is diagonal. However, the utility of such a diagonalization
is quite limited for the following two reasons.

1. Not every matrix can be diagonalized this way. First, the procedure does not apply to non-square
matrices. Second, not every square matrix has m linearly independent eigenvectors. For example,
�

1 1
0 1

�

has only one eigenvector corresponding to its double eigenvalue at � D 1, u D e1, and is thus
not diagonalizable. In general, there are m independent eigenvectors iff the geometric multiplicity of
each eigenvalue equals its algebraic multiplicity.
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2. Even if a matrix is diagonalizable, the corresponding basis is not necessarily orthogonal. As such,
we can know what is the gain for inputs in the direction of a single eigenvector, but not necessarily
how a general input is amplified. Indeed, consider a general input signal u D �1u1 C � � � C �mum,
decomposed with respect to an eigenbasis fu1; : : : ; umg. The output is y D �1�1u1 C � � � C �m�mum,
but now kyk2 ¤

P

i jgi j2j�i j2. In other words, j�i j are not necessarily gains of G in whatever sense.
This is easy to see from the system

�
1 ˛
0 0

�

, whose eigenvalues at � D 0 and � D 1 may be arbitrarily
smaller than its spectral norm (worst-case gain), which equals

p

1 C j˛j2.

Thus, eigenvectors do not offer an informative basis for the analysis of system gains, unless the eigenbasis
of the system matrix is orthonormal. The latter happens iff the matrix is normal, see the definition in
Remark 2.3.

There is still an unexploited degree of freedom in the quest for having a diagonalization, suitable for
the analysis of system gains. Namely, we may have different bases changes for input and output signals.
This direction will eventually lead to the required result, see §2.3.5 below. But before some preliminary
definitions are needed.

2.3.4 Unitary matrices

Signals do not preserve their size in all directions when pass through system (equivalently, when their
coordinates are changed) in general. However, some systems do preserve input size in all directions. A
matrix (system) G 2 F m�m such that kGuk D kuk for all u 2 F m is said to be unitary (or norm preserving).
Clearly, unitary matrices transform any element from the unit ball B2 in the Euclidean norm into another
element from B2.

With the help of the polarization identity (see p. 183), it can be seen that a matrix G is unitary iff
hu; vi D hGu; Gvi for all u; v 2 F m. In other words, G is unitary iff hu; vi D hu; G0Gvi or, equivalently,
iff hu; .I � G0G/vi D 0 for all u; v 2 F m. This, in turn, implies G is unitary iff G0G D I . It follows by
similar arguments that a matrix G is unitary iff GG0 D I . These facts imply that both rows and columns of
an m � m unitary matrix constitute orthonormal bases in F m. Moreover, unitary matrices can be defined
via the equality G�1 D G0.

Examples of unitary matrices are the plain rotation and reflection matrices

R� D
�

cos � � sin �

sin � cos �

�

and Q� D
�

cos 2� sin 2�

sin 2� � cos 2�

�

; (2.12)

respectively. The former rotates every vector from R2 by the angle � counterclockwise (cf. the equality
hR�u; ui D cos �.u2

1 C u2
2/ D kuk2 cos �). The latter reflects every such vector about the line passing

through the origin at the angle � with respect to the abscissa. In general, a unitary matrix G is said to be
a rotation matrix if det.G/ D 1 and every unitary matrix on Rm�m can be presented as a combination of
rotation and reflection matrices.

2.3.5 Singular value decomposition

The result below, presented without the proof, establishes that all matrices can be diagonalized by orthonor-
mal basis changes of their input and output spaces.

Theorem 2.3 (The Singular Value Decomposition). Given any G 2 F p�m, there are unitary

U D
�

u1 u2 � � � up

�

2 F
p�p and V D

�

v1 v2 � � � vm

�

2 F
m�m
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˙U V 0

wy

�
inp

�1

�
2

�out

Fig. 2.2: SVD in R2 for rotation U and V matrices (�inp D �2�=5, �1 D
p

2, �2 D 1=
p

2, and �out D �=5)

and a diagonal (with either the last row, or the last column, or both empty)

˙ D

2

6
6
4

�1 0 0
: : :

:::
0 �min fp;mg 0

0 � � � 0 0

3

7
7
5

2 R
p�m
C ; with �1 � �2 � � � � � �min fp;mg � 0;

such that

G D U˙V 0 D
min fp;mg
X

iD1

�i ui v
0
i : (2.13)

The scalars �i � 0 defined in Theorem 2.3 are called the singular values of G (if the affiliation might
be ambiguous, we write �i.G/) and the vectors ui and vi are called the left and right singular vectors of G,
respectively. Singular values and vectors are associated with certain eigensystem problems. To see these
relations, observe that (2.13) implies that Gvi D �iui for all i D 1; : : : ; minfp; mg and, likewise, that
G0ui D �i vi . Hence,

G0Gvi D �2
i vi and GG0ui D �2

i ui ;

so that �2
i is an eigenvalue of both G0G and GG0, ui is the corresponding eigenvector of GG0, and vi is the

corresponding eigenvector of G0G. Clearly, left and right singular vectors coincide iff G is normal.

Remark 2.4 (plane geometry of SVD). When considered on R2, SVD has a neat geometrical interpretation.
To see this, consider SVD for

G D
�

cos �out � sin �out

sin �out cos �out

��

�1 0

0 �2

� �

cos �inp sin �inp

� sin �inp cos �inp

�

:

This G maps the unit ball B2 into the interior of the ellipse with semi-axes of �1 and �2 rotated by the angle
�out, see Fig. 2.2. On its way of doing this, G effectively performs the following transformations:

1. V 0 rotates the unit ball by ��inp, then

2. ˙ scales the rotated unit ball to an ellipse, and finally

3. U rotates the resulting ellipse once again by �out.

We may thus always think of U and V as rotations (or reflections) and of ˙ as scaling. O

SVD can help to understand the structure of the response of G W w 7! y to a general input w. To see
that, let by wi D v0iw be the i th coordinate of w in the input basis fv1; : : : ; vmg. By the second equality of
(2.13) and the orthonormality of fv1; : : : ; vpg,

y D Gw D
min fp;mg
X

iD1

�iui v
0
iw D

min fp;mg
X

iD1

�iwiui :
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Thus, the scalars �iwi are the coordinates of y in the output basis fu1; : : : ; upg. In other words, when the
input and output bases are changed to those of the right and left singular vectors, respectively, the system
becomes a collection of minfp; mg independent (decoupled) SISO systems, whose gains are the singular
values. This analogy with diagonal systems discussed in §2.3.2 can be continued via the relation

kyk2 D
min fp;mg
X

iD1

�2
i jwi j2; (2.14)

which uses the fact that the basis fu1; : : : ; upg is orthonormal. Unlike diagonal matrices, inputs co-directed
with the input basis vector vi change their direction to ui in the output of the system.

The maximal and minimal singular values, denoted by x�.G/ and �.G/, respectively, determine then
the largest and smallest gains of a matrix G. This is established by the following result.

Proposition 2.4. Given a matrix G 2 F p�m,

x�.G/ D max
kwkD1

kGwk

(i.e. x�.G/ D kGk) with a maximizing w D v1. If, in addition, G is tall, i.e. p � m, then

�.G/ D min
kwkD1

kGwk

with a minimizing w D vm. Moreover, if p D m and det.G/ ¤ 0, then �.G/ D 1=kG�1k.

Proof. The condition kwk D 1 in terms of the coordinates wi of the input w in the orthonormal basis
fv1; : : : ; vmg reads jw1j2 C � � � C jwmj2 D 1. It then follows from (2.14) that

kGwk � x�.G/
p

jw1j2 C � � � C jwmin fp;mgj2 � x�.G/
p

jw1j2 C � � � C jwmj2 D x�.G/

and the equality is obviously achieved if w1 D 1 and w2 D � � � D wmin fp;mg D 0, i.e. if w D v1. This
proves the first statement. Note that the maximizing w is not unique. Obviously, the same bound is attained
with w D �v1. Moreover, if �1 D � � � D �k for some k 2 Z2::m, then w D w1v1 C � � � C wkvk also yields
kGwk D x�.G/ for all coefficients wi such that jw1j2 C � � � C jwk j2 D 1.

Now, if G is tall, then p � m and (2.14) yields

kGwk � �.G/
p

jw1j2 C � � � C jwmj2 D �.G/:

The equality is achieved here if w1 D � � � D wm�1 D 0 and wm D 1, i.e. if w D vm. Similarly to the
maximizing input case, this choice is not unique.

The last statement follows by the fact that x�.G�1/ D x�.V ˙�1U 0/ D 1=�.G/.

With the insight offered by SVD, we may better understand the MIMO examples of Section 1.5.

Example 2.4. Return to Example 1.1 on p. 10. The SVD of plant (1.18) for any ˛ 2 Œ0; 1� is

P D
�

1p
2

�

1 �1

�1 �1

���

2 0

0 2˛

��
1p
2

�

1 �1

1 1

��0
: (2.15)

The parameter ˛ thus affects one of its gains without altering gain directions. If ˛ D 0, one gain vanishes.
Hence, the output in the direction span.u2/ D span

��
1
1

��

is always zero, no matter what input signals are
applied. An implication of this is that only references yr 2 R2 	 span.u2/ D span.u1/ D span

�� �1
1

��

can be tracked, which agrees with the conclusion of Example 1.1. At the same time, disturbance signals d

directed as span.v2/ D span
�� �1

1

��

cannot affect the controlled output, which is also what we saw.
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If ˛ > 0, we have that u D P�1r . Consider then the gains and their direction in P�1. We have that

P�1 D V ˙�1U 0 D
�

1p
2

�

1 �1

1 1

���

1=2 0

0 1=.2˛/

��
1p
2

�

1 �1

�1 �1

��0

D
�

1p
2

�

�1 1

1 1

���

1=.2˛/ 0

0 1=2

��
1p
2

�

�1 1

�1 �1

��0
;

which implies that as ˛ decreases, one gain increases. The output direction of this increase is span.v2/ D
span

�� �1
1

��

, which is exactly what we can see in (1.20). From the latter equation we can also see that if
yr is in the direction of span

�� �1
1

��

, the parameter ˛ does not affect the control signal. This could have
been seen without calculating the control input explicitly, just by noticing that the input direction of the
gain 1=2˛, which is span.u1/ D span

��
1
1

��

, is perpendicular to span
�� �1

1

��

. ˙

Example 2.5. Consider now Example 1.2 on p. 12 for ˛ D 0. What makes it so special are the facts
that (i) the input and output directions corresponding to the only nonzero plant gain in (2.15) happen to
be perpendicular and (ii) the controller, R D kI , does not alter directions of its input signals. Thus, the
resulting plant input is k.r � y/ C d and its feedback component is always in span.u1/ D span

�� �1
1

��

, no
matter what are yr and d . But this direction is filtered out by the plant, because v01u1 D 0. In other words,
the system effectively acts in open loop. The control input can then be calculated as

k
�

r � P.k.r � y/ C d/
�

D k
�

r � P.kr C d/
�

D k.I � kP /r � kPd;

agreeing with that in Example 1.2 and explaining it. These explanations suggest that the knowledge of
directional properties of the plant can be important in designing feedback controllers. ˙

The Frobenius matrix norm of G can also be expressed in terms of its singular values,

kGk2
f ´ tr.G0G/ D tr.V ˙ 0U 0U˙V 0/ D tr.V ˙2V 0/ D tr.˙2V 0V / D tr.˙2/;

where the facts that ˙ 0 D ˙ and tr.G1G2/ D tr.G2G1/ are used. Thus, we end up with

kGk2
f D

minfp;mg
X

iD1

�2
i : (2.16)

The singular value decomposition is a numerically reliable1 tool of concretizing structural properties
of matrices. The following result can be used towards this end.

Proposition 2.5. If singular values of G 2 F p�m satisfy �1 � � � � � �r > �rC1 D � � � D �min fp;mg D 0 for

some r � minfp; mg, then

� Im G D span
�

u1; : : : ; ur

�

;

� rank.G/ D r;

� ker G D span
�

vrC1; : : : ; vm

�

.

Proof. Bring in full column rank matrices Ur ´
�

u1 � � � ur

�

and Vr ´
�

v1 � � � vr

�

and a nonsingular
matrix ˙r ´ diagf�1; : : : ; �rg. The SVD of G can then be rewritten as

G D Ur˙rV 0r :

Since the rows of V 0 are independent and ˙r is nonsingular, Im V 0r D Im ˙r D F r . Hence, Im G D
Im Ur D span

�

u1; : : : ; ur

�

and dim.Im G/ D r . This proves the first two statements.
Now, since columns of Ur are independent and ˙r is nonsingular, ker Ur D ker Ur˙r D f0g. Hence,

ker G D ker V 0r D .Im Vr/? (the latter follows by Proposition 2.1). Yet the orthogonality of Vr implies that
.Im Vr/? D span

�

vrC1; : : : ; vm

�

. This proves the last statement.

1There are numerically efficient and stable algorithms of calculating the SVD.
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It follows from the proof of Proposition 2.5 that any p � m matrix G having rank r can be factorized as

G D FH; where F 2 F
p�r and H 2 F

r�m are some full rank matrices: (2.17)

We just may pick F D Ur˙r and H D V 0r , although this choice is obviously not unique (it is unique up to
multiplications by r � r nonsingular matrices, G D FMM�1H ). A factorization of form (2.17) is called
the full rank factorization (or full rank decomposition) of A.

We conclude this section with another application of the singular value decomposition. Suppose we
want to approximate some G it with a “simpler” matrix. One way to quantize the notion “simple” is via
the rank of the approximation. Indeed, the rank, which is the dimension of the image, can be thought of as
a measure of richness of the corresponding mapping. Moreover, low rank approximations might require
less memory to be stored. For example, applying a low rank factorization, like that in (2.17), we end up
with .p C m/r elements, which is less that mp elements required to store G if r < 0:5 minfp; mg. The
following result presents a complete solution to the problems of approximating a matrix by a lower rank
matrix for both spectral and Frobenius norms used to measure the the approximation performance.

Theorem 2.6. Given G 2 F p�m and its SVD in form (2.13). For every 1 � l < minfp; mg we have:

� min rank.H/�lkG � Hk D �lC1

� min rank.H/�lkG � Hkf D
q
Pminfp;mg

iDlC1
�2

i

with the minimizing H D Gl ´
Pl

iD1 �iui v
0
i in both cases.

Proof. It follows from Proposition 2.5 that Gl is indeed a rank l matrix. Define

QG ´ G � Gl D
minfp;mg
X

iDlC1

�iui v
0
i ;

where the last equality follows from (2.13). It is readily seen that the last expression above is the SVD of
QG and therefore

k QGk D �lC1 and k QGk2
f D

minfp;mg
X

iDlC1

�2
i

(the former follows from Proposition 2.4 and the latter follows from (2.16)). Thus, we only need to prove
that kG � Hlk � k QGk and kG � Hlkf � k QGkf for all Hl such that rank.Hl/ � l .

Spectral norm: Following the definitions in the proof of Proposition 2.5, introduce partial matrices UlC1,
VlC1, and ˙lC1 and define

MlC1 ´ U 0lC1.G � Hl/VlC1 D ˙lC1 � U 0lC1Hl VlC1 µ ˙lC1 � QHl 2 F
.lC1/�.lC1/:

Clearly, rank. QHl/ � l too and kMlC1k � kUlC1kkG � HlkkVlC1k D kG � Hl k. Because QHl has
reduced rank, there always exists 0 ¤ � 2 ker QHl � F lC1. In this case we have:

kMlC1�k D k˙lC1�k � �lC1k�k (by Proposition 2.4):

Thus, kG � Hl k � kMlC1k � �lC1 D k QGk for every Hl such that rank.Hl / � l .

Frobenius norm: Consider the matrix

M ´ U 0.G � Hl/V D ˙ � U 0HlV µ ˙ � QHl ;
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where rank. QHl / � l . Let f Qv1; : : : ; Qvm�lg be a set of orthonormal linearly independent elements of
ker QHl (if rank. QHl / D l , then this is an orthonormal basis of ker QHl ). The matrix

QV ´
�

Qv1 � � � Qvm�l

�

2 F
m�.m�l/

satisfies QV 0 QV D Im�l (so that k QV k2
f D m � l and also each its row, Qvi�, satisfies Qvi� Qv0i� � 1) and

QHl
QV D 0 and we have:

kG � Hl k2
f D kMk2

f � kM QV k2
f D k˙ QV k2

f D
m
X

iD1

�2
i ˛i

(with some abuse of notation we assume that �i D 0 even if minfp; mg < i � m), where ˛i ´
kQvi�k2 2 Œ0; 1�. Because k QV k2

f D m � l , we have that

m
X

iD1

˛i D m � l or, equivalently,
l
X

iD1

˛i D
m
X

iDlC1

.1 � ˛i / µ
m
X

iDlC1

ˇi

with ˇi 2 Œ0; 1� too. Thus,

k˙ QV k2
f D

l
X

iD1

�2
i ˛i C

m
X

iDlC1

�2
i ˛i

� �2
l

l
X

iD1

˛i C
m
X

iDlC1

�2
i ˛i D

m
X

iDlC1

.�2
l � �2

i /ˇi C
m
X

iDlC1

�2
i �

m
X

iDlC1

�2
i

and we just showed that kG � Hlk2
f � k QGk2

f .

This completes the proof.

2.4 Systems as a modeling tool

Hitherto, we saw that some properties of a static system (matrix) G can be characterized by two subspaces
associated with it, ker G and Im G. The purpose of this section is to exploit the reverse direction, namely,
the use of systems to generate subspaces. We shall also see that static systems can be used to shape

metrics in F n. These aspects of linear systems are extensively used in control applications to concretize the
otherwise somewhat abstract notion of the “subspace” and to form metrics more suitable for our purposes
than the standard (e.g. Hölder) norms.

The following Proposition, which is technically quite trivial, is an important conceptual result.

Proposition 2.7. A set S � F n is a subspace iff either of the following conditions holds:

� there are an integer d � n and a full-rank matrix Si 2 F n�d such that S D Im Si

� there are an integer d � n and a full-rank matrix Sk 2 F .n�d/�n such that S D ker Sk

Moreover, this d is the dimension of S .

Proof. As both image and kernel are subspaces, the “if” part in both cases is immediate, as well as the fact
that dim.S / D d . To show the “only if” part, let S be a d -dimensional subspace and fs1; : : : ; sd g be its
basis. By the very definition of the span, S D Im Si for Si D

�

s1 : : : sd

�

. Likewise, if fsdC1; : : : ; sng is

a basis of the .n � d/-dimensional space S?, a required Sk is Sk D
�

sdC1 : : : sn

�0
.
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Fig. 2.3: Unit balls for exotic norms in R2

Proposition 2.7, at least from the viewpoint of an engineer, renders subspaces a concrete notion. Once
a matrix Si (or Sk) is chosen, we no longer need to keep in mind constraints imposed by S , the model of S
(i.e. Si or Sk) takes care of it. For example, consider the “freedom of choice” characterization of the system
kernel discussed in §2.3.1. Remember, that if we know one particular input, say u0, producing a desired
output yd D Gu0 for a given system G W F m ! F p, then all inputs producing yd are given by u0 C un

for any un 2 ker G. Let now Gn 2 F m�rank.G/ be a matrix such that ker G D Im Gn (it can be constructed
from singular vectors of G using Proposition 2.5). In this case, u satisfies yd D Gu iff u D u0 C Gnv,
where v 2 F rank.G/ is arbitrary. The advantage of this characterization is that the free parameter, which is
now v, is unconstrained. All constraints are accounted for by the model of ker G, i.e. the matrix Gn.

Another use of matrices as a modeling tool is in shaping metrics. The standard Hölder metrics from
§2.2.1 might not be sufficiently rich for all situations. For example, it might be appropriate to define the
set of all “small” signals not as fx j kxkq � 1g, but rather as fx j kxkq � g for some  > 0. This is just
a matter of scaling, so we in principle may redefine norms via an appropriate scaling of x. The norm k�ka

for q D 2 and  D 3 and the corresponding unit ball are shown in Fig. 2.3(a). In other applications it might
happen that we need to scale different components of x differently to reflect their relative importance. This
requires introducing another norm, like k�kb, whose unit ball has an elliptic shape, see Fig. 2.3(b). Such
a unit ball effectively declares that the direction of e2 is more “important” that the direction of e1. Yet
another possibility is different scaling along to some other basis, for example k�kc , shown in Fig. 2.3(c),
reflects scaling along with the orthonormal basis

˚
1p
2

�
1
1

�

; 1p
2

�
1
�1

�	

and results in a rotated elliptic disc.
The introduction of different metrics for different needs is an unwieldy solution. A more elegant way,

which facilitates a unified treatment, is to generate signals with required metric by a signal with a standard
and easily treatable metric. To this end, define the weighted unit ball

GBq ´
˚

x j x D Gu; kukq � 1
	

for some matrix G. With this notation, it is readily seen that the unit ball in the “a” metric in Fig. 2.3(a) is
merely 3B2, the unit ball in the “b” metric in Fig. 2.3(b) is

�
3 0
0 2

�

B2, and the unit ball in the “c” metric in
Fig. 2.3(c) is 1p

2

�
3 �2
3 2

�

B2. Thus, in all three cases presented in Fig. 2.3 we may use the same B2 to generate
the regions of “small” signals.

Remark 2.5. It is readily verified that
B1 D

p
2R�=4B1;

where R�=4 is the plain rotation matrix defined in (2.12) for the angle � D �=4. This suggests that the F n

norms k�k1 and k�k1 are, in a sense, transposable. O



Chapter 3

Dynamic Systems

D
ynamic systems are systems that are not static. This means that relations between external signals
must involve some memory effects. In other words, outputs of a dynamical system at a time instance

tc may depend not only on system inputs at tc, but also on the inputs at other time instances, preceding or
following tc. This implies that the time evolution or the frequency dependence play crucial roles in the
analysis of dynamical systems, which can no longer be analyzed in frozen time.

In this chapter some basic facts on continuous-time signals and analog dynamic systems are collected.
Both time- and transformed-domain perspectives are presented. Although the notes are mainly concerned
with finite-dimensional systems, wider perspectives are given in some cases.

3.1 Continuous-time signals

Time-dependent signals were introduced in Section 1.1 on a conceptual level. In this section we present
them from a more formal perspective. Mathematically, a signal is a function assigning to each element
from its domain one element from its codomain. Throughout these notes domains are normally assumed
to be the whole real axis R, interpreted as continuous time, and codomains are the n-dimensional real
space Rn for some n 2 N. As such, a signal x is viewed as a mapping between R and Rn, denoted
x W R ! Rn. This choice reflects analog signals frequently encountered in control applications. Still,
different domains and / or codomains may be considered, often under only minor alterations. The value of
x at a given time instance t 2 R is denoted as x.t/. This x.t/ 2 Rn, i.e. is a finite-dimensional vector like
those studied in Chapter 2, and thus shall not be confused with the signal x itself. We say that a signal
is scalar-valued if n D 1 and vector-valued otherwise. Similarly to frozen-time signals, time-dependent
signals are convenient to visualize in terms of coordinates in the standard basis of Rn. With this logic, xi

stands for its i th component in the standard basis, which is a scalar-valued signal.
The set of signals R ! Rn constitute a vector space, with obvious, frozen-time, definitions of the

addition and multiplication by scalar, operations. Namely, x D y C ´ implies that x.t/ D y.t/ C ´.t/

for all t and, given ˛ 2 R, x D ˛y implies that x.t/ D ˛y.t/, also for all t . Another operation on
continuous-time signals that we need is the time shift S� , acting on a signal x as

.S�x/.t/ D x.t C �/; 8t 2 R (3.1)

for a given � 2 R. This operation is important in the analysis of dynamic systems.

3.1.1 Normed time-domain signal spaces

Admissible signals in each specific situation are convenient to formalize via belonging them to normed
spaces, where the notion of the size of a signal is quantified. This is of primary importance in quantifying
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specifications to control systems, like what is meant by the requirements that errors are “small,” control
signals are “affordable,” etc. Commonly used normed spaces on signals R ! Rn are the Lebesgue spaces

Ln
q.R/ ´

�

x W R ! R
n
ˇ
ˇ
ˇ kf kq ´

�Z

R

kx.t/kq
q dt

�
1=q

< 1
�

(3.2)

under q � 1, where kx.t/kq is the Hölder vector norm on Rn introduced in (2.3). These spaces are Banach,
i.e. complete. We often drop the signal domain and use the notation Ln

q , or even Lq when the dimension of
the signal domain is irrelevant of clear from the context. The domain of the signal is specified for spaces
when it is different from R. The quantity kxkq defined in (3.2) is a norm and referred to as the Lq-norm
of a signal x. Frequently used special cases are those for q D 1; 2; 1. The latter corresponds to

Ln
1.R/ ´

˚

x W R ! R
n j kxk1 ´ supt2R

kf .t/k1 < 1
	

(3.3)

and comprises all uniformly bounded signals. We thus say that x is bounded if x 2 L1.
Spaces Lq are infinite dimensional, i.e. there is no finite basis on them. Therefore, Lq-norms are not

equivalent, in the sense of definition (2.5). This implies that a signal belonging to one space does not
necessarily belong to another. For example, the step function 1 is clearly bounded, so 1 2 L1. Yet it is
neither absolutely nor square integrable on R, meaning that 1 62 L1 and 1 62 L2. Another example is the
sine cardinal, defined as sinc.t / ´ sin.t /=t , with sinc.0/ D 1. It is bounded, ksinck1 D 1, so belongs to
L1, and ksinck2 D

p
� , so belongs to L2 as well. However,

Z

R

jsinc.t /jdt D
X

i2Z

Z i�

.i�1/�

ˇ
ˇ
ˇ
ˇ

sin.t /

t

ˇ
ˇ
ˇ
ˇ
dt D 2

X

i2N

Z i�

.i�1/�

jsin.t /j
t

dt

> 2
X

i2N

Z i�

.i�1/�

jsin.t /j
i�

dt D 2
X

i2N

1

i�

Z i�

.i�1/�

jsin.t /jdt D 4

�

X

i2N

1

i
D 1; (3.4)

so that sinc 62 L1.
The space

Ln
2 .R/ ´

�

x W R ! R
n
ˇ
ˇ
ˇ kxk2 ´

�Z

R

kx.t/k2dt

�
1=2

< 1
�

; (3.5)

or simply L2, is of special importance. It comprises finite-energy signals (understood as kxk2
2) and its

prevalence is perhaps mainly motivated by favorable mathematical properties. Belonging to L2 requires
either a sufficiently fast (but not as fast as belonging to L1, we saw that in the sinc example above) decay
of the signal at t ! ˙1 or sufficiently small support of its non-decaying parts, e.g.

x.t/

t0

or
x.t/

t0

:

In fact, L2-signals need not be even bounded. For example, the unbounded x such that x.t/ D e�jt j= 4
p

jt j
has kxk2 D 4

p
2� and therefore belongs to L2. Two more spaces that we shall need later on are

Ln
2C ´

˚

x 2 Ln
2 .R/ j x.t/ D 0 if t < 0

	

and Ln
2� ´

˚

x 2 Ln
2 .R/ j x.t/ D 0 if t > 0

	

;

which are subspaces of L2. The space L2 is a Hilbert space, i.e. in addition to sizes we can talk about
angles between signals via the notion of the inner product,

hx; yi2 ´
Z

R

Œy.t/�0x.t/dt;

which can be thought of as the cosine of the angle between x and y, scaled by kxk2kyk2 (cf. (A.2)). The
inner product is particularly important in relation to the notion of orthogonality, which, in turn, plays a key
role in various optimization procedures. We say that two signals x and y are orthogonal, denoted x ? y,
if hx; yi2 D 0. For example, every x 2 L2C and y 2 L2� are orthogonal, just because their supports are
disjoint. Hence the relation L2 D L2C ˚ L2�, saying that all x 2 L2 can be decomposed as x D xC C x�
into two orthogonal signals xC 2 L2C and x� 2 L2�.
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3.1.2 Laplace and Fourier transforms

Signals are naturally perceived as time-domain phenomena, this is how we are accustomed to sense them
in many situations. However, it may be useful to look at signals from other viewpoints as well, in various
transformed domains. In the control literature the Laplace- and Fourier-domain analyses are prevalent in
the analysis of signals supported on infinite (or semi-infinite) time intervals.

The two-sided (bilateral) Laplace transform X D Lfxg of a continuous-time signal x W R ! Rn is the
signal X W RoC � C ! Cn such that

X.s/ D
Z

R

x.t/e�st dt: (3.6)

The region of convergence (RoC) of the Laplace transform is a subset of the complex plane at which
the integral in (3.6) is convergent. To guarantee the absolute convergence for a given s 2 C, the signal
exp�Re sx must belong to L1. If Re s > 0 (Re s < 0), this effectively requires that x does not grow “too
fast” as t ! C1 (t ! �1) and decays “sufficiently fast” as t ! �1 (t ! C1). These conditions
are rather draconian for signals supported in the whole R. However, signals of interest frequently have
their support only on semi-axes, RC or R�. For signals with support in RC, the RoC is typically the right
half-plane C˛ ´ fs 2 C j Re s > ˛g for some ˛ 2 R [ f˙1g. For example, .Lf1g/.s/ D 1=s and its
RoC is C0. The case of ˛ D �1 corresponds to RoC D C, which happens, for example, when x is a
bounded function with a finite support. The case of ˛ D C1 corresponds to RoC D ¿, which happens,
for example, for the signal x such that x.t/ D et2

1.t /. RoCs for signals supported in the negative semi-axis
are left half-planes. Distributions (generalized functions) can also be transformed, for instance the Laplace
transform of the Dirac delta .Lfıg/.s/ D 1, with RoC D C.

The Fourier transform X D Ffxg of a continuous-time signal x W R ! Rn is the signal X W jR ! Cn

such that

X.j!/ D
Z

R

x.t/e�j!t dt; (3.7)

where ! 2 R is called the (angular) frequency and measured in radians per time unit (e.g. per second). We
may be inclined to see this transform as a special case of the Laplace transform, in which s is only allowed
to be on the imaginary axis jR. This is indeed the case if jR � RoC, but might be more delicate otherwise.
The Fourier transform is well defined for signals from L1 (plus some mild technical assumptions, effectively
nonrestrictive “in the wild”). In that case the inverse Fourier transform,

x.t/ D 1

2�

Z

R

X.j!/ej!t d!; (3.8)

yields the original x. By the Plancherel theorem, the transform may be extended to functions from L2,
with a weaker convergence, where the right-hand side of (3.8) converges to x only in the L2-norm. A
wider class of functions can be treated by allowing the distribution formalism and taking some liberties
with convergence. For example, .Ffıg/.j!/ D 1 and .Ff1g/.j!/ D 1=.j!/ C �ı.!/. Note that the latter
is not Lf1g at s D j!, because the RoC of the Laplace transform does not include the imaginary axis.

The Fourier transform is defined on a substantially narrower class of signals than the Laplace transform.
However, unlike the latter, the former is more tangible. Indeed, the inverse Fourier transform (3.8) shows
that x is a superposition of harmonic signals expj! with frequencies ! and the value of the Fourier transform
at a frequency !, X.j!/, is the weight of the harmonic expj! in x. This is why Ffxg is called the frequency-

domain representation of x or its spectrum. The spectrum thus offers a valuable insight into properties of
signals. If the spectrum is dominated by low frequencies, we may expect the signal to vary slowly in the
time domain. Fast signals may be expected to have their spectra concentrated in high frequencies. This
insight is vital for classical control methods, as well as in many other fields, to separate the treatment of
signals that act simultaneously but have different spectral properties, see §1.4.3 for an example.

https://en.wikipedia.org/wiki/Distribution_(mathematics)
https://en.wikipedia.org/wiki/Dirac_delta_function
https://en.wikipedia.org/wiki/Plancherel_theorem
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A remarkable, and useful, property of the Fourier and Laplace transforms is that they preserve (ap-
propriately defined) angles and sizes. Namely, let L2.jR/ denote the space of square integrable functions
jR ! Cn, similarly to (3.5). The Fourier transform is a unitary mapping L2.R/ ! L2.jR/ such that

hx; yi2 D hX; Y i2 ´ 1

2�

Z

R

ŒY.j!/�0X.j!/d! (3.9)

and, consequently, kxk2 D kXk2 ´
p

hX; Xi2 (the scaling is introduced to render it unitary). This result
is known as the Parseval’s theorem in the engineering literature. Likewise, by the Paley–Wiener theorem,
the Laplace transform is a unitary mapping L2C ! H2 preserving the inner product, where

H n
2 ´

�

X W C0 ! C
n
ˇ
ˇ
ˇX.s/ is holomorphic

in C0 and kXk2 ´
�

sup
�>0

1

2�

Z

R

kX.� C j!/k2d!

�
1=2

< 1
�

: (3.10)

The Hardy space H n
2 , or simply H2, defined by (3.10) plays an important role in frequency-domain

analyses, so some clarifications are in order. Although the imaginary axis is not in the domain of functions
in it, the boundary function QX such that QX.j!/ ´ lim�#0 X.� C j!/ exists for almost all ! 2 R and is
such that k QXk2 D kXk2 (hence, QX 2 L2.jR/). It is then customary to identify functions from H2 with
their boundary functions in L2.jR/ and regard H2 as a closed subspace of L2.jR/ that inherits the inner
product defined in (3.9) and, consequently, the L2.jR/ norm. Thus, by the H2-norm of X 2 H n

2 we shall
understand

kXk2 D
�

1

2�

Z

R

kX.j!/k2d!

�
1=2

:

The orthogonal complement of H2 in L2.jR/, denoted by H?2 , consists then of functions holomorphic in
C n xC0 and square integrable over all vertical lines in it. The Laplace transform is then a unitary mapping
L2� ! H?2 . Moreover, we have that L2.jR/ D H2 ˚ H?2 , which is the transformed domain counterpart
of the time-domain relation L2.R/ D L2C ˚ L2�.

3.2 Linear systems in time domains

Like signals, the notions of systems and their mathematical models were already introduced in Section 1.1
on a conceptual level. The purpose of this and next sections is to elaborate on more analytical notions
related to I/O systems, like the impulse response, transfer functions, and so on. We consider only systems
on L2, which somewhat dominate the literature because of their Hilbert space relations, although systems
on general Lq spaces, as well as on an interval I � R, can be considered as well. The exposition is
attempted to be not overly technical, concentrating rather on underlying ideas. For that reason, the issues
of convergence, continuity, and the like are left beyond the scope.

From the mathematical point of view, linear continuous-time systems with m-dimensional inputs and
p-dimensional outputs are understood as linear operators G W DG � Lm

2 ! Lp
2 for some domain DG .

The linearity means that the superposition property holds, see (A.4) on p. 186. A general class of linear
systems G W u 7! y may be described by their kernel representation

y.t/ D
Z

R

g.t; s/u.s/ds; (3.11)

where the impulse response (or kernel) g W R2 ! Rp�m of G. The j th column of g.t; s/ is the response at
the time instance t of G to the input signal ej S�sı, i.e. the Dirac delta applied at the time instance s in the
direction of ej 2 Rm. To explain relation (3.11), assume for simplicity that m D 1 and note that

u D
Z

R

.S�sı/u.s/ds H) u.t/ D
Z

R

ı.t � s/u.s/ds

https://en.wikipedia.org/wiki/Parseval's_theorem
https://en.wikipedia.org/wiki/Paley-Wiener_theorem
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for all continuous signals u. Hence, the relation y D Gu reads

y.t/ D
�

G
�Z

R

.S�sı/u.s/ds
��

.t / D
Z

R

�

G
�

.S�sı/u.s/
��

.t /ds D
Z

R

�

G.S�sı/
�

.t /u.s/ds; (3.12)

which yields (3.11) because g ´ G.S�sı/. The last two equalities in (3.12) use the linearity property
of G, viz. its additivity and homogeneity parts, respectively. If m > 1, then the same arguments apply
to the decomposition u D

Pm
iD1 eiui . It is worth emphasized that (3.12) is not a formal proof, for it

implicitly considers only continuous inputs and assumes that all involved integrals converge. Yet the level
of technicalities required to derive (3.11) rigorously goes beyond the scope of these notes. Zealots of
mathematical rigor are referred to [34] for details.

The impulse response in (3.11) is not necessarily a function. It may involve Dirac deltas even for simple
systems. For example, if G is the unit gain, i.e. such that Gu D u, then g.t; s/ D ı.t � s/. A sufficiently
general class of impulse responses is

g.t; s/ D Qg.t; s/ C
X

i2Z

gi .t /ı.t � s � �i .t // (3.13)

for a locally bounded (i.e. bounded on any bounded subset of R2) function Qg W R2 ! Rp�m, locally bounded
gi W R ! Rp�m, and the increasing, at each t 2 R, sequence f�i.t /gi2Z, such that �0.t / � 0 and there is a
constant � > 0, independent of i and t , such that �i .t / � �i�1.t / � � for all i 2 Z.

Several examples of continuous-time systems u 7! y on L2 are presented below.

� The integrator Gint acts as Py.t/ D u.t/ assuming lim t!�1 y.t/ D 0. The term integrator stems from
the relation y.t/ D

R t

�1 u.s/ds. Its impulse response gint has gint.t; s/ D 1.t � s/.

� Another system accumulating the past without forgetting is Gdint;�, acting as y.t/ D y.t � �/ C u.t/

for some � > 0. Its impulse response gdint;� has gdint;�.t; s/ D
P

i2N
ı.t � s � .i � 1/�/.

� The finite-memory integrator Gfmint;� acts according to y.t/ D
R t

t��
u.s/ds for some � > 0 and has

the impulse response gfmint;� such that gfmint;�.t; s/ D 1.t � s/ � 1.t � s � �/.

� The �-delay operator D� is defined as y.t/ D u.t � �/ for � > 0. In other words, this is exactly the
reciprocal shift operator, D� D S�� . Its impulse response d� has d� .t; s/ D ı.t � s � �/.

� The ideal low-pass filter Filp with bandwidth !b has filp.t; s/ D .!b=�/ sinc.!b.t � s//.

A system G is said to be stable if DG D Lm
2 and kGk ´ supkuk2D1kGuk2 < 1. Otherwise, G is

referred to as unstable. The quantity kGk defined above is called the L2-induced norm of G. Both Gint and
Gdint;� are unstable. To see this, apply u D 1Œ0;T � 2 L2, which results in .Gintu/.t/ D t1Œ0;T �.t /CT 1.t �T /

and Gdint;�u D 1, neither of which belongs to L2. Thus, not every L2 signal is in the domains of Gint and
Gdint;� (we shall discuss domains of such systems later on). The finite-memory integrator Gfmint;� is stable
as an operator L2 ! L2. Indeed, in this case

kyk2
2 D

Z

R





Z t

t��

u.s/ds




2

dt

� �

Z

R

Z t

t��

ku.s/k2dsdt D �

Z

R

Z �

0

ku.t � s/k2dsdt D �

Z �

0

Z

R

ku.t/k2dt ds D �2kuk2
2;

where the inequality follows by the Cauchy–Schwarz inequality (A.1) on p. 182 (it becomes the equality
if u is piecewise-constant and does not change its sign) and the second equality in the bottom line follows
by Tonelli’s theorem. Therefore, y 2 L2 for all u 2 L2 and kGfmint;�k D � < 1. The �-delay operator
D� is also stable, which follows from the fact that kD� uk2 D kuk2 for every u 2 L2. It is not obvious, but
nevertheless true, that Filp is stable as an operator on L2.

https://en.wikipedia.org/wiki/Fubini's_theorem#Tonelli's_theorem_for_non-negative_measurable_functions
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A system G W DG � Lm
2 ! Lp

2 is called left invertible if there is G+ W DG+ � Lp
2 ! Lm

2 such
that G+Gu D u for all u 2 DG such that Gu 2 DG+ . A system is said to be right invertible if there is
G+ W DG+ � Lp

2 ! Lm
2 such that GG+u D u for all u 2 DG+ such that G+u 2 DG . Left / right inverses

are not unique in general. If there is a stable right (left) inverse G+, the system is said to be stably right

(left) invertible. If p D m, a system is left invertible iff it is right invertible and left and right inverses are
unique and coincide, they are denoted G�1 then. A stable square system G such that G�1 is also stable is
dubbed bi-stable.

Another important property of I/O systems is causality. Loosely speaking, a system is called causal if
its output at every time instance tc can only depend on the past and present inputs, up to and including the
very same time instance tc. Formally, we say that G is causal if for every tc 2 R we have that y.t/ D 0 for
all t � tc whenever u.t/ D 0 for all t � tc. Such a requirement can be expressed as

Z

R

g.t; s/u.s/ds D
Z 1

tc

g.t; s/u.s/ds D 0; 8t < tc

and all admissible u. This condition, in turn, reads

g.t; s/ D 0 whenever s > t i.e. g.t; s/ W

s

t

tc

tc (3.14)

and requires that gi D 0 for all i < 0 in (3.13). All examples considered above except Filp are causal.
The delay operator D� becomes non-causal if redefined for � < 0. In fact, D� is anti-causal in this case,
meaning that its output at each time instance can only depend on the future inputs. The ideal low-pass filter
Filp is non-causal.

The adjoint G0 W Lp
2 ! Lm

2 of a stable G W Lm
2 ! Lp

2 is defined the standard way, via the inner product
relation hGu; yi2 D hu; G0yi2. We then have:

Z

R

Œy.t/�0.Gu/.t/dt D
Z

R

Œy.t/�0
Z

R

g.t; s/u.s/dsdt D
Z

R

Z

R

�

Œg.t; s/�0y.t/
�0

u.s/dsdt

D
Z

R

Z

R

�

Œg.s; t /�0y.s/
�0

dsu.t/dt:

Thus, the adjoint of G is the system, whose impulse response at .t; s/ equals Œg.s; t /�0, i.e. it takes both
transposing g and interchanging its arguments. This result can be extended to unstable systems as well. It
follows from (3.14) that the adjoint of a causal system is anti-causal.

A linear system G is called time invariant (abbreviated LTI) if

GS� D S�G; 8� 2 R: (3.15)

This definition effectively says that a delayed input produces a delayed, but otherwise unchanged, output.
Otherwise, G is said to be time varying. If (3.15) holds for � D T > 0 but not for � 2 .0; T /, then G is
dubbed T -periodic. If G is LTI, then (3.12) can be continued as

y.t/ D
Z

R

�

G.S�sı/
�

.t /u.s/ds D
Z

R

�

S�s.Gı/
�

.t /u.s/ds D
Z

R

.Gı/.t � s/u.s/ds;

meaning that only the response of G to the Dirac delta applied at t D 0 matters. The same conclusion can
be drawn from (3.11), in terms of which the time invariance property reads
Z

R

g.t; s/u.s � �/ds D .GS�u/.t/ D .S�Gu/.t/ D
Z

R

g.t � �; s/u.s/ds D
Z

R

g.t � �; s � �/u.s � �/ds
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and implies that a system is LTI iff g.t; s/ D g.t � �; s � �/ for all t; s; � 2 R, so that g.t; s/ D g.t � s; 0/.
We thus do not need the impulse response of an LTI G to be a function of two independent variables and
treat it as g W R ! Rp�m with g.t/ D g.t; 0/. In that case (3.11) can be rewritten as

y.t/ D
Z

R

g.t � s/u.s/ds; (3.16)

which is known as the convolution integral, denoted y D g � u. An LTI system G is causal iff g.t/ D 0

whenever t < 0, in which case the upper integration limit in (3.16) can be taken as t .

Remark 3.1. The equality g.t; s/ D g.t � �; s � �/ is sometimes used as the definition of time invariance.
The notion of time invariance is then readily extendible to systems defined on finite time intervals, where
the shift operator struggles and LTI systems defined that way do not satisfy the relation GS� D S�G. O

Remark 3.2 (L1 stability). It may be hard to evaluate the L2-stability of an LTI G in terms of properties
of its impulse response g. The Laplace-domain representation of G are more useful toward that end, as
will be discussed in the next section. Curiously, the L1-stability, defined similarly, but for the L1 signal
norms, has a direct connection with g. Namely, a system is L1-stable iff g 2 Lp�m

1 , where the matrix
version of L1 is defined exactly as (3.2) modulo replacing the vector 1-norm with the matrix one from
(2.6a). Here we assume, sloppily, that ı 2 L1. The quantity kGkA ´ kgk1, known as the A-norm of G, is
then the L1-induced norm of G. It is readily seen that Gint and Gdint;� are L1-unstable, while Gfmint;� and
D� are L1-stable, exactly like in the L2 case. Remarkably, the ideal low-pass filter Filp is L1-unstable, cf.
(3.4), even though it is L2-stable. This is actually a general result that L1 stability implies L2 stability, but
not vice versa. Hence, the L2 instability of LTI systems can be verified via their impulse responses. O

3.3 LTI systems in transformed domains

The convolution representation of linear time-invariant systems is particularly appealing from the Laplace
and Fourier transforms viewpoints. A key is the property of these transforms to turn convolution integrals
into plain products, namely,

y D g � u ” Lfyg D LfggLfug ” Ffyg D FfggFfug (3.17)

whenever involved signals have overlapping RoCs of their Laplace transforms or are Fourier transformable.
The relations above are advantageous, for multiplication operators are easier to analyze than integral ones.
This section introduces the main characteristics of LTI systems in transformed domains.

3.3.1 Frequency response

To start with, consider an LTI system G whose impulse response g 2 Lp�m
1 , i.e. that the matrix 1-norm of

g.t/ is integrable. This necessarily implies that g�j 2 Lp
1 for every j 2 Z1::m, so that g has a well-defined

Fourier transform. In this case every Fourier transformable input u results in a Fourier transformable
y D Gu such that

Y.j!/ D G.j!/U.j!/ (3.18)

for all !, which is the last equality of (3.17).
The Fourier transform G.j!/ of the impulse response of G is called its frequency response. It can be

interpreted in terms of the response of the system to harmonic inputs, like u D u!expj! , in which case

y.t/ D
Z

R

g.t � �/u!ej!� d� D
Z

R

g.�/u!ej!.t��/d� D
Z

R

g.�/e�j!� d�u!ej!t D ŒG.j!/u!�ej!t :
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Thus, the response to a harmonic input is also a harmonic signal with the same frequency, whose amplitude,
phase, and direction are shaped by G.j!/. This result may be used to identify frequency responses of stable
systems from the response of stable LTI systems to harmonic excitation. The frequency response is also
useful in analyzing performance of LTI systems. It follows from (3.18) that G.j!/ determines the way in
which a system alters the spectrum of its input. We may then aim at shaping the frequency response of
systems of interest to attenuate or amplify required frequencies in their outputs. For example, the ideal low-
pass filter introduced in the previous section has the frequency response Filp.j!/ D 1.! C!b/�1.! �!b/,
which is the unit height rectangular pulse. This implies that any harmonic signal expj! passes it unaltered
if ! 2 Œ�!b; !b� and does not pass at all otherwise (hence, the term).

Although relation (3.18) is purely algebraic, one should be careful in manipulating systems via their
frequency responses. Apparent hazards lie in difficulties to handle exponentially growing signals (common
in unstable phenomena) and to trace causality in the Fourier domain. To illustrate these difficulties, consider
the unity feedback closed-loop system in Fig. 1.4(c) with d D n D 0. Let the plant P be LTI with the
impulse response satisfying p.t/ D �2 e�t1.t / and the controller R be static with r D ı. This plant is
causal and stable and acts in the time domain as

y.t/ D �2

Z t

�1
e�.t�s/u.s/ds ” Py.t/ D �y.t/ � 2u.t/:

The controller acts in the time domain as u D yr � y, so the closed-loop system G W yr 7! y satisfies

Py.t/ D �y.t/ � 2
�

yr.t / � y.t/
�

D y.t/ � 2yr.t / ” y.t/ D �2

Z t

�1
et�su.s/ds:

This is a causal (the closed-loop system should remain causal by the very nature of this feedback intercon-
nection) and unstable system. The latter can be seen by the fact that the impulse response of the closed-loop
system, which satisfies g.t/ D �2et1.t /, is not in L1 (cf. Remark 3.2). At the same time, the frequency
responses of P and R are �2=.1 C j!/ and 1, respectively, so the closed-loop system in the frequency
domain acts as

Y.j!/ D P.j!/U.j!/ D P.j!/
�

R.j!/ � Y.j!/
�

H) G.j!/ D P.j!/

1 C P.j!/
D 2

1 � j!
:

The inverse Fourier transform of G.j!/ above satisfies g.t/ D 2 et 1.�t /, which corresponds to a stable

and anti-causal system. But this would be an erroneous conclusion.

3.3.2 Transfer functions

Analyzing LTI systems in the Laplace transform domain is a more reliable means to deal with system
interconnections, provided we keep track of regions of convergence. The Laplace transform also turns
convolutions into algebraic relations. By the second relation of (3.17),

Y.s/ D G.s/U.s/ (3.19)

for any s in the RoC of both U.s/ and G.s/, where the p � m function G.s/ is the Laplace transform of the
impulse response g.t/ of G. This G.s/ is called the transfer function of the LTI system G. As the Laplace
transform is applicable to a wider class of signals, relation (3.19) holds for unstable systems as well, with
a “dirty” analytic continuation trick to define G.s/ beyond its RoC. The transfer functions of the examples
considered in Section 3.2 are

Gint.s/ D 1

s
; Gdint;�.s/ D

X

i2N

e�s.i�1/T D 1

1 � e�sT
; Gfmint;�.s/ D 1 � e�s�

s
; and D� .s/ D e�s� ;

https://en.wikipedia.org/wiki/Analytic_continuation
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whose RoCs are C0, C0 (think of geometric series), C, and C, respectively. The transfer function of the
ideal low-pass filter is a shaky business though. Its impulse response can be split as

filp.t / D filp,c.t / C filp,c̄.t / ´ !b

�
sinc.!bt /1.t / C !b

�
sinc.!bt /1.�t /:

While Lffilp,cg has C0 as its RoC, Lffilp,c̄g has it in C n xC0 (as neither of them belongs to L1). These two
regions are not intersecting.

Returning to the example considered in §3.3.1, the transfer functions of the plant and the controller
there are P.s/ D �2=.s C 1/ and R.s/ D 1, with RoCs in C�1 and C, respectively. The closed-loop
transfer function

G.s/ D P.s/

1 C P.s/
D 2

�s C 1
:

If considered out of context, this transfer function is ambiguous in defining the impulse response of G.
Specifically, it may correspond to g satisfying either g.t/ D �2 et1.t /, if the RoC is the right half-plane
C1, or g.t/ D 2 e�t1.�t /, if the RoC is the left half-plane C n xC1. But in the current context, with the RoC
of P.s/ in a right half-plane, only the former option is possible. Thus, the closed-loop system is a causal
unstable system with the impulse response g D �2 exp11, which is the right conclusion.

The line of reasoning above is common in feedback control applications, which consider almost exclu-
sively causal systems. Thus, possible RoCs are some right half-planes (sometimes, the whole C). To keep
consistency among regions of convergence, signals are then also assumed to have support in RC. And once
regions of convergence are agreed, LTI systems can be represented by their transfer functions and manipu-
lated algebraically. For example, the parallel and cascade interconnections of two compatibly dimensioned
systems G1 and G2 have the transfer functions G1.s/CG2.s/ and G2.s/G1.s/, respectively, and the inverse
of G has G�1.s/ as its transfer function. We even use the same notation for systems and their transfer
functions, especially if the Laplace variable is dropped, and frequently interchange these notions.

The L2-stability can also be analyzed in terms of transfer functions. Namely, it is a known, albeit
nontrivial, result that an LTI G is causal and L2-stable iff its transfer function is holomorphic and bounded
in C0, i.e. iff G 2 H p�m

1 , where

H p�m
1 ´

˚

G W C0 ! C
p�m j G is holomorphic in C0 and kGk1 ´ sups2C0

kG.s/k < 1
	

; (3.20)

and kG.s/k is the matrix spectral norm on Cp�m defined by (2.6b). In other words, given a transfer function
G.s/, then GH m

2 � H p
2 iff G 2 H p�m

1 . If p D m and not only G.s/, but also its inverse G�1 2 H1, then
we have that GH m

2 D H m
2 , i.e. any output y 2 L2C has an input u 2 L2C producing it. Regarding the

examples from Section 3.2,

� Gint 62 H1: 1=s is holomorphic in C0 (remember, the imaginary axis is not a part of this region), but
it is not bounded there, because no upper bound on 1=jsj exist as s ! 0 along any path in C0;

� Gdint;� 62 H1 for the same reasons;

� Gfmint;� 2 H1: .1 � e�s�/=s is holomorphic in C0 and bounded there, because
ˇ
ˇ
ˇ
ˇ
Gfmint;�

�
� C j!

�

�ˇ
ˇ
ˇ
ˇ

2

D �2

ˇ
ˇ
ˇ
ˇ

1 � e�.�Cj!/

� C j!

ˇ
ˇ
ˇ
ˇ

2

D �2 1 � 2e�� cos ! C e�2�

�2 C !2

D �2

�
1 � e��

�

�
2

� �2 4!2e��

�2.�2 C !2/

�

sinh2
��

2

�

� 2
1 � cos !

!2

��

2

�2
�

� �2

�
1 � e��

�

�
2

� �2 4!2e��.sinh2.�=2/ � .�=2/2/

�2.�2 C !2/
� �2

�
1 � e��

�

�
2

< �2

for all � > 0, where the inequalities 2.1 � cos !/=!2 � 1 and sinh2 x > x2 for all x ¤ 0 were used;

https://en.wikipedia.org/wiki/Holomorphic_function
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� D� 2 H1: e�s� is holomorphic in C0 (in fact, entire) and bounded there, je�.�Cj!/� j D je��� j < 1.

Of these transfer functions only Gdint;�.s/ is stably invertible, as G�1
dint;�.s/ D 1 � e�s� does belong to H1.

The transfer function of the closed-loop system in the example from the beginning of this section is also
not in H1, because 2=.�s C 1/ is not holomorphic at s D 1.

The H1 space is a Banach (complete normed) space. Yet its norm in the form defined by (3.20) is
not frequently used because it is neither readily calculable (cf. the calculations for Gfmint;� above) nor
intuitively interpretable. There is a more tangible form though. Like in the case of the H2 signal space
defined by (3.10), it can be shown that every G 2 H1 has a unique boundary function QG 2 L1.jR/ such
that QG.j!/ D lim�#0 G.� C j!/ for almost all !, where

Lp�m
1 .jR/ ´

˚ QG W jR ! C
p�m j k QGk1 ´ ess sup!2R k QG.j!/k < 1

	

; (3.21)

and k QGk1 D kGk1. It is customary to identify G with QG and regard H1 as a closed subspace of L1.jR/,
in which case

kGk1 D ess sup
!2R

kG.j!/k: (3.22)

It should be emphasized that this equality holds only for functions G 2 H1 as defined by (3.20). For
example, the quantity on the right-hand side of (3.22) for G.s/ D 1=.s � 1/ equals 1. But this G 62 H1, so
(3.22) makes no sense for it. In the SISO case kGk1 equals the peak of the magnitude frequency response
of G.j!/, which is the maximal gain of the stable G for all possible single-harmonic inputs. Moreover,
the H1-norm of the transfer function G.s/ is the L2-induced norm of the system G, i.e. its square is the
energetic gain of G in the sense that it equals the upper limit on the output energy attainable by all possible
unit-energy inputs.

Remark 3.3 (Poisson integral). An interesting, and sometimes useful, mathematical fact is that the bound-
ary function QG 2 L1.jR/ of G 2 H1 completely determines G. Namely, at each s 2 C0 we have that

G.s/ D 1

�

Z

R

QG.j!/
Re s

.Re s/2 C .Im s � !/2
d!: (3.23)

This relation is known as the Poisson integral formula. O

Remark 3.4 (stability and system poles). The exhaustive characterization of stable and causal systems as
those having transfer functions in H1 is a powerful property. Among other things, it can lead to the
conclusion that the sheer absence of poles in the closed right half-plane xC0 is not always an indicator of
stability. To see that, consider an LTI system G with the transfer function

G.s/ D 1

s C 1 C se�s
: (3.24)

The characteristic equation of G.s/ is s C 1 C se�s D 0 or, equivalently, e�s D �.s C 1/=s. Assuming that
s D � C j! is its root, the magnitude equality yields that

e�� D
ˇ
ˇ
ˇ
ˇ
1 C 1

� C j!

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

�

1 C �

�2 C !2

�

� j
!

�2 C !2

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
1 C �

�2 C !2

ˇ
ˇ
ˇ
ˇ
:

First, consider the case � D 0. The first equality above reads then 1 D 1 C 1=j!j, which holds for none
! 2 R. Now, let � > 0. The inequality above yields then that e�� > 1, which is again impossible. Thus,
G.s/ has no poles in the closed RHP. Nevertheless, this G 62 H1. To see this, note that s C 1 C se�s is an
entire function with an infinite number of roots. As such [24, Thm. 10.18], these roots do not accumulate
and there must exist a sequence fsig 2 C n xC0 such that

si C 1 C si e�si D 0 and lim
i!1

jsi j D 1:
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Define then yet another sequence, fQsig 2 C0 with Qsi D �si . The values of G.s/ at each Qsi satisfy

G.Qsi/ D 1

1 � si � si esi
D 1

1 � si C s2
i =.1 C si /

D 1 C si :

Thus, we have a sequence in C0 at which limi!1jG.Qsi/j D 1. Hence, G 62 H1 indeed. This, in turn,
implies that the system G is L2-unstable. O

Another important system space that can be expressed in terms of transfer functions is

H p�m
2 ´

�

G W C0 ! C
p�m

ˇ
ˇ
ˇG.s/ is holomorphic in C0

and kGk2 ´
�

sup
�>0

1

2�

Z

R

kG.� C j!/k2
f d!

�
1=2

< 1
�

; (3.25)

which is effectively a version of the H2 signal space defined by (3.10) for matrix-valued signals. Like in
the vector-valued case, every G 2 H2 has a unique boundary function QG 2 L2.jR/, where

Lp�m
2 .jR/ ´

�

QG W jR ! C
p�m

ˇ
ˇ
ˇ k QGk2 ´

�
1

2�

Z

R

k QG.j!/k2
f d!

�
1=2

< 1
�

;

such that kGk2 D k QGk2. The space H2 is regarded then as a closed subspace of L2.jR/. By Parseval’s
theorem G 2 L2.jR/ iff the impulse response of the corresponding system g 2 L2.R/ and by the Paley–
Wiener theorem G 2 H2 iff its impulse response g 2 L2C, i.e. G is also causal. Thus, H2 is the space
of transfer functions of causal systems, whose impulse responses have finite energy, i.e. kgk2

2 < 1. A
consequence of this is that a system G has an L2.jR/ frequency response or an H2 transfer function only
if gi D 0 for all i 2 Z in (3.13). For the examples from Section 3.2,

� Gint 62 H2: 1=s is holomorphic in C0, but

1

2�

Z

R

jGint.� C j!/j2d! D 1

2�

Z

R

d!

�2 C !2
D 1

2�

has no bound over � > 0 (alternatively, and simpler, its impulse response 1 62 L2C);

� Gdint;� 62 H2 for similar reasons (the integral actually diverges for every � then);

� Gfmint;� 2 H2: .1 � e�s�/=s is holomorphic in C0 and

1

2�

Z

R

jGfmint;�.� C j!/j2d! D 1

2�

Z

R

1 � 2e��� cos.!�/ C e�2��

�2 C !2
d! D 1 � e�2��

2�
< �

for all � > 0 (alternatively, and simpler, k1Œ0;��k2 D p
� < 1);

� D� 62 H2: e�s� is holomorphic in C0 (in fact, entire), but

1

2�

Z

R

jD� .� C j!/j2d! D e�2��

2�

Z

R

d! D 1

for all � > 0 and all � � 0 (alternatively, it follows from the fact that D�ı 62 L2C for all � � 0).

Stability is not necessarily related to H2. We already saw an example, D�.s/, of a transfer function, which
belongs to H1, but not to H2. An opposite situation is also possible. For instance, consider a causal LTI
system G having the impulse response g D sinc 1. This is a truncated and scaled version of the ideal
low-pass filter. It can be verified that kGk2 D kgk2 D

p

�=2 < 1 in this case, so G 2 H2. But its transfer
function G.s/ D arctan.1=s/ does not belong to H1 as it is unbounded on any path in C0 approaching
s D ˙j. Hence, this G 62 H1 and thus the system is unstable.
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The H2 space finds its use mainly in measuring performance. The H2-norm of error systems is the
cost function of choice in many optimal control and estimation problems, like LQG and Wiener / Kalman
filtering. The reason for this is twofold. First, L2.jR/ and H2 are a Hilbert space, with the inner product

hG1; G2i2 ´ 1

2�

Z

R

tr
�

ŒG2.j!/�0G1.j!/
�

d! D
Z

R

tr
�

Œg2.t /�0g1.t /
�

dt: (3.26)

This renders treatments of corresponding optimization problems simpler, with the neat Projection Theorem
as a key tool. Second, the H2-norm has transparent deterministic and stochastic time-domain interpreta-
tions. The former we already saw, it is the energy of the impulse response. From the stochastic point of
view, the squared H2-norm of a system equals the steady-state variance of its response to a unit-intensity
white Gaussian input.

A p � m transfer function G.s/ is said to be proper if

9˛ � 0 such that sup
s2C˛

kG.s/k < 1: (3.27)

Clearly, any H1 transfer function is proper, so causal and stable systems must have proper transfer func-
tions. All examples considered above are proper. Examples of non-proper transfer functions are s2=.s C1/

and D� .s/ for � < 0. The former corresponds to an unstable systems, because its domain includes only dif-
ferentiable functions from L2, and the latter corresponds to a non-causal system. Properness is sometimes
confused with the boundedness of the frequency responses at high frequencies. Namely, some references
call G.s/ proper if there is a frequency !a such that sup!>!a

kG.j!/k < 1. This is not always the same
as (3.27). Indeed, Gdint;�.s/ D 1=.1 � e�sT / would not be regarded proper by the definition based on the
frequency response, although it is proper by (3.27). A transfer function is called strictly proper if there is
˛ � 0 such that

lim
jsj!1;s2C˛

kG.s/k D 0: (3.28)

It can be shown that any H2 transfer function is strictly proper. Of the examples above, only D� .s/ is not
strictly proper. The transfer function G.s/ defined by (3.24) is also strictly proper. Strictly proper transfer
functions might not correspond to finite-bandwidth frequency responses. The same G.s/ from (3.24) is an
example of that.

The transfer function of the anti-causal adjoint G0 of a causal LTI system G can be derived from the
property of the impulse response of G0 discussed on p. 44. Namely, let g be the impulse response, having
support in RC, of G. The impulse response of G0 satisfies then Œg.�t /�0. It has support in R� and its
Laplace transform

Lfg0g D
Z

R

Œg.�t /�0e�st dt D
hZ

R

g.t/e�.�s/t dt
i0

D ŒG.�s/�0

with its RoC expected to be in Cn xC˛ for some ˛ 2 R. The transfer function above, known as the conjugate

transfer function of G.s/, is denoted as

G�.s/ ´ ŒG.�s/�0: (3.29)

If coefficients of G.s/ are real, with some abuse of notation we may think of the conjugate transfer function
as G�.s/ D ŒG.�s/�0, effectively treating the Œ��0 notation as the mere transpose. The conjugate transfer
function becomes the standard adjoint when considered on the imaginary axis, i.e. G�.j!/ D ŒG.j!/�0.

A transfer functions G 2 H p�m
1 is called inner (co-inner) if G�.s/G.s/ D Im (G.s/G�.s/ D Ip).

Clearly, a transfer function can be inner (co-inner) only if p � m (p � m). Of the examples considered
above, only the delay system D� has an inner, and co-inner, transfer function, .e�s�/�e�s� D es�e�s� D 1.

https://en.wikipedia.org/wiki/Hilbert_projection_theorem
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Another example of a co-inner transfer function is 0:5
�

e�s� .�s C a/=.s C a/
�

for any a > 0. Every
system with an inner transfer function is an isometry on L2, in a sense that it is a (causal) operator L2 ! L2

such that kGuk D kuk for all u 2 L2. This can be seen via the relation

kGuk2
2 D kGU k2

2 D hGU; GU i2 D hG�GU; U i2 D hU; U i2
2 D kU k2

2 D kuk2
2;

where the time-domain norm is on L2.R/ and the frequency-domain norm is on L2.jR/. Likewise, if G has
a co-inner transfer function, its (anti-causal) adjoint G0 is an isometry on L2. In the square case (p D m)
systems with inner / co-inner transfer functions can be thought of as a dynamic counterpart of unitary
matrices introduced in §2.3.4. The following result is important in numerous problems.

Proposition 3.1. Let Wi.s/ and Wci.s/ be an inner and a co-inner transfer functions, respectively. The

following statements hold true:

1. kGk1 D kWiGWcik1 for all G 2 H1,

2. kGk2 D kWiGWcik2 for all G 2 H2.

Proof. Follows from the definitions of the corresponding norms and the facts that the spectral (used in the
H1 case) and Frobenius (used in the H2 case) norms of a matrix M can be expressed in terms of both
M 0M and MM 0.

3.3.3 Coprime factorization of transfer functions over H1

Two integers n and m are said to be coprime if their greatest common divisor is 1. Alternatively, it follows
from the Euclidean algorithm that n and m are coprime iff there exist integers x and y such that xmCyn D
1. This criterion can be generalized to polynomials, polynomial matrices and, further, to stable transfer
functions. It is also handy to use the criterion above as the definition of coprimeness.

Functions M 2 H m�m
1 and N 2 Hp�m

1 of s 2 C having the same number of columns are said to be
(strongly) right coprime over H1 if there are functions X 2 H m�m

1 and Y 2 H m�p
1 such that

�

X.s/ Y.s/
�
�

M.s/

N.s/

�

D X.s/M.s/ C Y.s/N.s/ D Im: (3.30)

The equality above is sometimes called the Bézout equality and the transfer matrices X.s/ and Y.s/ are
called the left Bézout coefficients for M.s/ and N.s/. Similarly, functions QM 2 H p�p

1 and QN 2 H p�m
1 of

s 2 C having the same number of rows are said to be (strongly) left coprime over H1 if there are functions
QX 2 H p�p

1 and QY 2 H m�p
1 , called the right Bézout coefficients for QM.s/ and QN .s/, such that

� QM .s/ QN .s/
�
� QX.s/

QY .s/

�

D QM.s/ QX.s/ C QN .s/ QY .s/ D Ip: (3.31)

It should be clear that if m D p D 1, then M and N are right coprime iff they are left coprime, with the
same left and right Bézout coefficients. Conditions (3.30) and (3.31) effectively say that

�

M

N

�

2 H .pCm/�m
1 and

� QM QN
�

2 H p�.pCm/
1

are left and right invertible, respectively, in H1. We may expect that this requires the non-singularity of
the values of those functions over their whole domain C0. Indeed, an outcome of the celebrated, and highly
nontrivial, corona theorem is that M and N are right coprime and QM and QN are left coprime iff

inf
s2C0

�

��
M.s/

N.s/

��

> 0 and inf
s2C0

�
�� QM .s/ QN .s/

��

> 0; (3.32)

https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Corona_theorem
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respectively. Thus, we may conclude that M.s/ D 1=.s C 1/ and N.s/ D se�s=.s C 1/ are not coprime,
because both vanish in C˛ as ˛ ! 1, whereas M.s/ D s=.s C 1/ and N.s/ D e�s=.s C 1/ are coprime,
because

�

��

M.s/

N.s/

��

D
p

e�2 Re s C jsj2
j1 C sj �

p

e�2 Re s C .Re s/2

1 C Re s
D

Re s0 0:6837

1

0:5047
>

1

2
; 8s 2 C0

in this case (the first inequality follows by the fact that 1 C Re s >
p

e�2 Re s C .Re s/2 whenever Re s > 0).
As a matter of fact, the Bézout coefficients for the last example are X.s/ D 1C.1�e�s/=s D 1CGfmint;1.s/

and Y.s/ D 1.
There is a wide class1 of systems G, whose transfer functions G.s/ can be represented as

G.s/ D N.s/M�1.s/ D QM�1.s/ QN .s/ (3.33)

for right coprime M; N 2 H1 and left coprime QM ; QN 2 H1 such that M�1.s/ and QM�1.s/ are proper.
These representations are called a right coprime factorization (rcf ) and a left coprime factorization (lcf ) of
G.s/ over H1, respectively. Hereafter, we refer to the factors M and QM as denominators of corresponding
coprime factorizations and to N and QN as their numerators. Possible coprime factors of the first four
examples introduced in Section 3.2 are as follows (rcf ’s are assumed below, they are the same as lcf ’s in
the SISO case):

� Gint.s/ D 1=.s Ca/ �.s=.s Ca//�1 for any a > 0, with the Bézout coefficients X.s/ D 1 and Y.s/ D a;

� Gdint;�.s/ D 1 � .1 � e�s�/�1, with the Bézout coefficients X.s/ D 1 and Y.s/ D e�s�;

� Gfmint;�.s/ D .1 � e�s�/=s � 1�1, with the Bézout coefficients X.s/ D 1 and Y.s/ D 0;

� D� .s/ D e�s� � 1�1, with the Bézout coefficients X.s/ D 1 and Y.s/ D 0.

The construction of coprime factors and the corresponding Bézout coefficients is particularly simple for
stable systems, as could be seen above. Indeed, if G 2 H1, we can always choose M.s/ D I and N.s/ D
G.s/, which are coprime because X.s/ D I and Y.s/ D 0 are left Bézout coefficients for them. The
situation in the unstable case is less straightforward though.

The notion of the coprime factorization plays an important role in the stability analysis of feedback
systems and designing stabilizing controllers. It is also useful in analyzing properties of MIMO systems.
These issues will be studied in Chapters 6 and 7. In the remainder of this section we concentrate on general
properties of the coprime factors and their use in characterizing domains of unstable systems, which was
promised on p. 43.

Coprime factorizations are not unique, as could be seen in the construction of coprime factors of Gint.s/

above. Yet a simple connection between different right (left) coprime factorizations of the same transfer
function exists, as shown in the result below.

Proposition 3.2. If N1.s/M�1
1 .s/ D N2.s/M�1

2 .s/ and QM�1
1 .s/ QN1.s/ D QM�1

2 .s/ QN2.s/ are rcf’s and lcf’s,

respectively, then

�

M2.s/

N2.s/

�

D
�

M1.s/

N1.s/

�

U.s/ and
� QM2.s/ QN2.s/

�

D QU .s/
� QM1.s/ QN1.s/

�

for some bi-stable U.s/ and QU .s/, i.e. square and such that that U; U�1; QU ; QU�1 2 H1.

1This class effectively covers all systems of interest in feedback control, because plants not belonging to it are not stabilizable
by feedback [26]. An example of unstabilizable plants is se�s , which indeed does not have strongly coprime factors.
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Proof. Only the rcf case will be proved. The lcf case follows by similar arguments.
Define Ua ´ M�1

1 M2. It can be verified that

�

M1

N1

�

Ua D
�

M2

N1M�1
1 M2

�

D
�

M2

N2M�1
2 M2

�

D
�

M2

N2

�

:

Let now the transfer functions X1 2 H1 and Y1 2 H1 be left Bézout coefficients for M1 and N1 (they
exist by the coprimeness of M1 and N1). Pre-multiplying the expression above by

�

X1 Y1

�

we obtain that
Ua D X1M2 C Y1N2 2 H1. Similarly, .X2M1 C Y2N1/Ua D I for any left Bézout coefficients X2 and
Y2 for M2 and N2. Hence, U�1

a D X2M1 C Y2N1 2 H1 and U D Ua does satisfy the conditions of the
Proposition.

If U is bi-stable, then U.s/ is bounded and nonsingular at every s 2 C0. Hence, if the denominator
M of a rcf of a system G has a singular M.s0/ at some s0 2 C0, then Proposition 3.2 implies that so do
denominators of all other rcf ’s of G. Similar arguments apply to the denominators of lcf ’s. Yet singular
points of denominators may be associated with the instability of G. The arguments above suggest then that
the (in)stability of a system may be concluded from the (in)stability of the inverse of denominators of its
coprime factorizations. The following result proves that intuition formally and is quite useful.

Proposition 3.3. If G.s/ D N.s/M�1.s/ D QM�1.s/ QN .s/ are rcf and lcf, respectively, then

G 2 H1 ” M�1 2 H1 ” QM�1 2 H1:

Proof. It is obvious that the stability of M�1 implies that of G. To show the other direction, assume that
G 2 H1. In this case, XM C YN D I implies that M�1 D X C YG 2 H1. This shows that the first
equivalence holds true. The equivalence for the denominator in the lcf follows by similar arguments.

The denominator of a rcf of G completely determines domains of LTI systems.

Proposition 3.4. If G W DG � Lm
2 ! Lp

2 is LTI and such that its transfer function admits a rcf over H1
of the form G.s/ D N.s/M�1.s/, then DG D MLm

2 ´ fu j u D Mv for some v 2 Lm
2 g D Im M .

Proof. Denote V ´ MLm
2 . Because M 2 H1, the space V � Lm

2 . Because GV D NLm
2 and N 2 H1,

we have that V � DG . Now, pick an arbitrary u0 2 DG , i.e. consider u0 2 Lm
2 such that y0 D Gu0 2 Lp

2 .
To prove that DG � V we need to show that v0 ´ M�1u0 2 Lm

2 . But we know that

�

u0

y0

�

D
�

M

N

�

v0 2 LmCp
2 H) Xu0 C Yy0 D v0 2 Lm

2

because X; Y 2 H1. Thus, DG D V .

If G 2 H1, it follows from Proposition 3.2 that M is bi-stable, so MLm
2 D Lm

2 , as expected. Otherwise,
MLm

2 is a proper subspace of Lm
2 . For example, DGint D s=.s C 1/ L2 contains only signals, whose Fourier

transforms vanish at ! D 0, and DGdint;� D .1 � e�s�/ L2 contains only signals, whose Fourier transforms
vanish at ! D 2k�=T for all k 2 Z.

Now, note that
�

X Y

� QN QM

� �

M � QY
N QX

�

D
�

Im Y QX � X QY
0 Ip

�

or, equivalently (remember (B.16a)),

ImCp D
�

X Y

� QN QM

� �

M � QY
N QX

� �

Im �Y QX C X QY
0 Ip

�

D
�

X Y

� QN QM

� �

M � QY C M.X QY � Y QX/

N QX C N.X QY � Y QX/

�

:
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Therefore, if QX and QY are right Bézout coefficients for QM and QN , then so are QY � M.X QY � Y QX/ and
QX C N.X QY � Y QX/. The latter, in turn, means that the Bézout coefficients can always be chosen so that

�

X.s/ Y.s/

� QN .s/ QM.s/

� �

M.s/ � QY .s/

N.s/ QX.s/

�

D
�

Im 0

0 Ip

�

: (3.34)

Such transfer functions are called the doubly coprime factorization of G in H p�m
1 and they exists whenever

so do some rcf and lcf of G. It should be clear from (3.34) that doubly coprime factors are such that

�

X.s/ Y.s/

� QN .s/ QM.s/

�

and
�

M.s/ � QY .s/

N.s/ QX.s/

�

are invertible in H1, i.e. they are bi-stable.

3.4 Real-rational transfer functions and their properties

Up to this point we did not dig into the MIMO nature of studied systems. Apart from superficial aspects,
like marking input and output dimensions explicitly at times, using the identity matrices instead of the
scalar identity and norms instead of absolute values, or writing inverses as M�1 rather than 1=M , the
arguments were “gender-neutral.” It is time to scrutinize properties of MIMO transfer functions.

Throughout this section, and mostly throughout the rest of the notes, we consider the class of real-

rational transfer functions, which are p � m transfer functions G.s/ each element of which, Gij .s/, is the
quotient of two finite polynomials of s with real coefficients. Such transfer functions correspond to systems
described by ordinary differential equations. The impulse responses of systems with real-rational transfer
functions are a superposition of a finite number of exponential and polynomial functions of t and at most
one weighted Dirac delta, which follows by applying the inverse Laplace transform to a real-rational G.s/.

Properties of LTI systems are noticeably simplified when their transfer functions are real rational. A
real-rational transfer function G.s/ is then proper iff kG.1/k < 1 or, equivalently, iff the degree of the
numerator of each element Gij .s/ does not exceed that of its denominator. A transfer function is strictly
proper iff G.1/ D 0 or, equivalently, iff the degree of the numerator of each elements Gij .s/ is less than
that of its denominator. We also say that a square G.s/ is bi-proper if det.G.1// ¤ 0. Subsets of the
H1 and H2 spaces introduced in §3.3.2 consisting of real-rational functions are denoted RH1 and RH2,
respectively. It can be shown that RH1 (RH2) comprises all proper (strictly proper) transfer functions,
whose elements have no poles in the closed right half-plane xC0, thus, RH2 � RH1. Consequently, an
LTI system with a real-rational transfer function is stable iff its transfer function is proper and has no poles
in the closed right half-plane, which is a familiar criterion. Also, the L1 and L2 stability notions are
equivalent for such systems. Finally, it can be shown (a constructive proof is presented in §4.3.1) that
proper real-rational systems always admit lcf and rcf over H1 or, more precisely, over RH1 then.

3.4.1 Poles, zeros, and degree: diagonal case

The concepts of poles and zeros of transfer functions play an important role in classical control. The pur-
pose of this and the next subsections is to extend these classical notions to MIMO systems. The extension
is not trivial and evinces some qualitative differences between SISO and MIMO systems.

Similarly to the discussion in §2.3.2, we start studying MIMO transfer functions with the diagonal case.
This class of transfer functions is relatively simple and intuitive, yet already captures important differences
from SISO systems. Like in the static case, a square m � m transfer function G.s/ is called diagonal if
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G.s/ei D eiGi .s/ for all i 2 Z1::m, for some SISO transfer functions Gi.s/. In other words, diagonal

G.s/ D

2

6
4

G1.s/ � � � 0
:::

: : :
:::

0 � � � Gm.s/

3

7
5 :

Diagonal transfer functions may be thought of as merely a collection of m independent SISO systems
(called subsystems). As such, properties of diagonal systems are readily deducible from those of each of
their subsystems. In particular, poles (zeros) of G.s/ can be defined as the union of poles (zeros) of each
Gi.s/, where i D 1; : : : ; m. With these definitions, poles of diagonal MIMO systems are still points in C

where G.s/ is not defined and zeros are the points at which G.s/ becomes singular.
It is worth emphasizing that each diagonal element of G.s/ is an independent system. Hence, even if

Gi.s/ and Gj .s/ have poles (zeros) at the very same point of the complex plane, these are different poles
(zeros). For example, G.s/ D diag

˚

1=s; 1=s
	

has two poles at the origin because these poles belong to
independent subsystems. Accordingly, the degree of G.s/ must be defined as the sum of the degrees of each
of its subsystems Gi .s/ (provided, of course, that the transfer function of each subsystem is irreducible). An
important consequence of this discussion is that diagonal systems may have uncancellable poles and zeros
at the same point. Indeed, nothing prevents one subsystem to have a pole at a zero of another subsystem.
For example, G.s/ D diag

˚

.s � 1/=s; s=.s � 1/
	

has both poles and zeros at s D 0 and s D 1. Yet these
poles and zeros cannot be canceled because they belong to independent subsystems. The last example also
shows clearly that det.G.s// might not be a good means for determining poles and zeros of G.s/ in the
MIMO case. Indeed, det

�

diag
˚

.s � 1/=s; s=.s � 1/
	�

D 1, which does not contain any information about
poles and zeros of this G.s/.

The discussion in the previous paragraph suggests that the location of system poles and zeros alone
does not provide sufficient information about properties of these poles and zeros. In the diagonal case,
the location information can be complemented by associating each pole and zero with the corresponding
subsystem(s). This should identify poles and zeros exhaustively. However, the mere association with
subsystems is not extendible to more general, not necessarily diagonal, systems.

A more suitable alternative in this respect is the introduction of the notion of poles and zeros directions

(or spatial directions). We may say that a pole pk of the i th subsystem Gi .s/ is a pole of G.s/ with the
pole direction span.ei/. If pk is also a pole of the j th subsystem Gj .s/, we say that it is a pole of G.s/

with the direction span.ei ; ej /. This definition can be routinely extended to the case where pk is a pole
of �k subsystems. We then say that pk is a pole of G.s/ with a geometric multiplicity of �k. Note that
the geometric multiplicity notion does not account for the multiplicity of poles in each subsystem, which
might also be important. By analogy with the corresponding definitions for matrix eigenvalues, we may
then call the multiplicity of a pole in the i th subsystem its i th partial multiplicity and then the sum of partial
multiplicities—the algebraic multiplicity of this pole. To complete the picture, the notions of directions
and multiplicities can be associated with zeros in a similar fashion. If there is a pole and a zero at the same
point s0 2 C, a pole-zero cancellation between them takes place iff the intersection of their directions is
non-empty, i.e. iff their directions are not orthogonal. Returning to G.s/ D diag

˚

.s � 1/=s; s=.s � 1/
	

, we
can see that it has a single pole at the origin, whose direction is span.e1/, and a single zero at the origin,
whose direction is span.e2/. Because span.e1/ ? span.e2/, there is no cancellation between them, which
we already saw. Similar arguments obviously apply to the pole and zero of that G.s/ at s D 1.

3.4.2 Poles, zeros, and degree: general case

To extend the definitions of the previous subsection to the general (not necessarily diagonal) case, some
preliminaries are required. The notion of the normal rank is a generalization of the matrix rank notion to
transfer functions. Given a transfer matrix G.s/, its normal rank is nrank.G.s// ´ maxs2C rank.G.s//. It
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can be shown that if G.s/ is proper, then rank.G.s// D nrank.G.s// for all but a finitely many s. A square
polynomial matrix U.s/ is said to be unimodular if det.U.s// D const ¤ 0. In other words, the inverse of
a unimodular polynomial matrix exists and is a polynomial matrix too. Unimodular polynomial matrices
can be thought of as polynomial matrices having no zeros. Finally, we say that a polynomial ˇ.s/ divides

a polynomial ˛.s/ if ˛.s/=ˇ.s/ is polynomial as well.
We are now in the position to state the following important result, showing that any transfer function

can be diagonalized by unimodular basis changes.

Theorem 3.5 (Smith–McMillan form). Given a p � m transfer function G.s/ having nrank.G.s// D r for

some r � minfp; mg, there are unimodular polynomial matrices U.s/ and V.s/ such that

U.s/G.s/V .s/ D

2

6
6
6
4

˛1.s/=ˇ1.s/ � � � 0 0
:::

: : :
:::

:::

0 � � � ˛r .s/=ˇr .s/ 0

0 � � � 0 0

3

7
7
7
5

; (3.35)

where ˛i .s/ divides ˛iC1.s/, ˇiC1.s/ divides ˇi .s/, and ˛i .s/ and ˇi.s/ are coprime at every i 2 Z1::r .

Since polynomial matrices U.s/ and V.s/ are unimodular, they affect neither the singularities of G.s/

nor its rank. Poles and zeros of G.s/ can then be defined in terms of the polynomials ˛i .s/ and ˇi.s/.
Namely, the roots of the polynomials

�p.s/ ´
r
Y

iD1

ˇi.s/ and �z.s/ ´
r
Y

iD1

˛i.s/ (3.36)

are called the poles and the transmission zeros (or simply zeros) of G.s/, respectively. It can be seen from
(3.35) that pi 2 C is a pole of G.s/ iff it is a singularity of G.s/, i.e. a point which is a pole of at least
one entry of G.s/. If pi 2 C is a root of ˇ�i

.s/ and not a root of ˇ�iC1.s/ for some �i � r , then we say
that the pole pi has a geometric multiplicity of �i . The multiplicity of pi in each ǰ .s/ is said to be its j th
partial multiplicity and the multiplicity of pi in �p.s/ is said to be its algebraic multiplicity. Similarly, if
´i 2 C is a root of ˛r��iC1.s/ and not a root of ˛r��i

.s/ for some �i � r , then we say that the transmission
zero ´i has a geometric multiplicity of �i . The multiplicity of ´i in each j̨ .s/ is said to be its j th partial

multiplicity and the multiplicity of ´i in �z.s/ is said to be its algebraic multiplicity. Finally,

n ´
r
X

iD1

deg.ˇi .s// D deg.�p.s// (3.37)

is called the McMillan degree (or degree) of G.s/.
Let pi 2 C be a pole of G.s/, whose geometric multiplicity is �i . Motivated by the decomposition in

(3.35), by the input direction of pi we understand the subspace

pdiri.G; pi/ D
�

Im V.pi/
�

e�iC1 � � � em

��? D ker

2

6
4

e0�iC1
:::

e0m

3

7
5 ŒV .pi/�

0 � C
m; (3.38a)

where ei is the i th standard basis in Cm. By the output direction of pi we then understand the subspace

pdiro.G; pi/ D ker

2

6
4

Qe0�iC1
:::

Qe0p

3

7
5U.pi/ D

�

ImŒU.pi /�
0 � Qe�iC1 � � � Qep

��? � C
p; (3.38b)

https://en.wikipedia.org/wiki/Henry_John_Stephen_Smith
https://en.wikipedia.org/wiki/Brockway_McMillan
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where Qei stands for the i th standard basis in Cp. The dimension of both the input and the output pole
directions equals the geometric multiplicity of the pole, �i .

By analogy with (3.38), define the input and output directions of a transmission zero ´i 2 C of G.s/

with the geometric multiplicity �i as

zdiri.G; ´i / ´ Im V.´i/
�

er��iC1 � � � em

�

� C
m (3.39a)

and

zdiro.G; ´i/ ´ ImŒU.´i /�
0 � Qer��iC1 � � � Qep

�

� C
p ; (3.39b)

respectively. The dimensions of the input and output zero directions are �i Cm�r � �i and �i Cp�r � �i ,
respectively. Thus, the dimension of the input direction of ´i exceeds its multiplicity whenever r < m.
The latter might happen if G.s/ is “fat,” i.e. p < m, or has a defective normal rank. If either of these
conditions holds, G.s/ has a nontrivial null space at every s at which it is defined and zdiri.G; ´i/ contains
“artifacts” not directly related to ´i . This part can, in principle, be separated from the “zero-related” null
space, although this direction is not pursued below, see [14, Sec. A.4] for details. The same applies to the
output zero direction if r < p.

If s0 is both a pole and a zero of G.s/ having geometric multiplicities �p and �z, respectively, then
�p C �z � r and (3.38) and (3.39) yield that pdiri.G; s0/ ? zdiri.G; s0/ and pdiro.G; s0/ ? zdiro.G; s0/.
This is why these pole and zero do not cancel each other.

Example 3.1. Consider the 2 � 2 transfer function

G.s/ D 1

s

�

1 1

1 1

�

:

The nonsingular constant matrices

U.s/ D
�

1 0

�1 1

�

and V.s/ D
�

1 �1

0 1

�

are obviously unimodular and

U.s/G.s/V .s/ D
�

1=s 0

0 0

�

is in the form of Theorem 3.5. Thus, the McMillan degree of G.s/ is 1 and it has a single pole at s D 0

and no transmission zeros. The directions of this pole are

pdiri.G; 0/ D ker
�

0 1
�

ŒV .0/�0 D span
��

1

1

��

and pdiro.G; 0/ D ker
�

0 1
�

U.0/ D span
��

1

1

��

:

As a matter of fact, these directions coincide with the directions defined by the first right and left singular
vectors of Res.G.s/; 0/. ˙

Example 3.2. Consider the 2 � 2 transfer function

G.s/ D
�

1 1=s

0 1

�

:

The polynomial matrices

U.s/ D
�

1 0

s �1

�

and V.s/ D
�

0 1

1 �s

�
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are unimodular and

U.s/G.s/V .s/ D
�

1=s 0

0 s

�

is in the form of Theorem 3.5. Hence, the McMillan degree of G.s/ is 1 and it has a single pole at s D 0

and a single transmission zero at s D 0 too. The directions of the pole are

pdiri.G; 0/ D ker
�

0 1
�

ŒV .0/�0 D span
��

0

1

��

and pdiro.G; 0/ D ker
�

0 1
�

U.0/ D span
��

1

0

��

and of the zero are

zdiri.G; 0/ D Im V.0/

�

0

1

�

D span
��

1

0

��

and zdiro.G; 0/ D ImŒU.0/�0
�

0

1

�

D span
��

0

1

��

:

As expected, corresponding pole and zero directions are orthogonal. ˙

Example 3.3. Consider the 2 � 3 transfer function

G.s/ D
�

1=.s C 1/ 0 .s � 1/=..s C 1/.s C 2//

�1=.s � 1/ 1=.s C 2/ 1=.s C 2/

�

:

Let

U.s/ D 1

6

�

3 3

s3 � s2 � 4s � 2 s3 � s2 � 4s C 4

�

and V.s/ D 1

6

2

4

2.s � 2/ �6.s � 1/ �3.s � 1/

4 �24 �6.s C 2/

0 6 3.s C 2/

3

5 ;

which are unimodular because det.U.s// D 1=2 and det.V .s// D 1. It can be verified that

U.s/G.s/V .s/ D
�

1=..s2 � 1/.s C 2// 0 0

0 .s � 1/=.s C 2/ 0

�

;

which is thus the Smith–McMillan form of G.s/. It is thus clear that G.s/ has the McMillan degree n D 4,
poles at f�2; �2; �1; 1g and a transmission zero at f1g. All poles and zeros except the pole at s D �2 have
multiplicity 1. The pole at s D �2 has a geometric multiplicity of 2 and each of its partial multiplicities
equals 1. The directions of the poles are

pdiri.G; 1/ D ker
�

0 1 0

0 0 1

�

ŒV .1/�0 D span

 "
1
0
0

#!

; pdiro.G; 1/ D ker
�

0 1
�

U.1/ D span
��

0

1

��

;

pdiri.G; �1/ D ker
�

0 1 0

0 0 1

�

ŒV .�1/�0 D span

 " �1
0
2

#!

;

pdiro.G; �1/ D ker
�

0 1
�

U.�1/ D span
��

1

0

��

;

pdiri.G; �2/ D ker
�

0 0 1
�

ŒV .�2/�0 D span

 "
0
1
0

#

;

"
0
0
1

#!

; and pdiro.G; �2/ D C
2:

The directions of the zero, skipping details, are

zdiri.G; 1/ D span

 "
0
1
0

#

;

"
0
0
1

#!

and zdiro.G; 1/ D span
��

1

0

��

:

Again, corresponding directions of the pole and the zero at s D 1 are orthogonal. ˙
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Intuitively, we may expect that an input, whose spatial direction is orthogonal to the input direction of
a pole of G.s/ at s D si , does not excite that pole. In other words, that if u ? pdiri.G; pi/, then the transfer
function G.s/u has no poles at s D pi . Examples above seem to confirm that. For instance, u D e1 is
orthogonal to pdiri.G; �2/ for the transfer function G.s/ in Example 3.3. And indeed,

G.s/u D
�

1=.s C 1/

�1=.s � 1/

�

has no poles at s D �2 in this case. However, this conclusion is only true if all partial multiplicities of pi

are 1. Otherwise, the situation is more involved, as can be seen from the example below.

Example 3.4. Consider the 2 � 2 transfer function

G.s/ D
�

1=s 1=s2

0 1=s

�

;

whose Smith–McMillan form is
�

1 0

�s 1

�

G.s/

�
0 �1

1 s

�

D
�

1=s2 0

0 1

�

:

Thus, it has a pole at the origin, whose geometric multiplicity is 1 and partial multiplicity is 2, and no
transmission zeros. The directions of the pole, according to (3.38), are

pdiri.G; 0/ D ker
�

0 1
�

ŒV .0/�0 D span
��

0

1

��

and pdiro.G; 0/ D ker
�

0 1
�

U.0/ D span
��

1

0

��

:

Now, e1 ? pdiri.G; 0/, but

G.s/e1 D
�

1=s

0

�

still has a pole at the origin. However, this pole is single now, meaning that u does cancel one pole. This
never happens if u 62 span.e1/, i.e. u is not orthogonal to pdiri.G; 0/. Indeed, all such vectors, modulo the
multiplication by a scalar, are of the form

�
˛
1

�

for some ˛ ¤ 0. In this case,

G.s/u D
�

.˛s C 1/=s2

1=s

�

D
�

1 �˛

�s ˛s C 1

��1 �
1=s2

0

�

D
�

˛s C 1 ˛

s 1

��

1=s2

0

�

always has a double pole at the origin. ˙

A problem with definitions expressed in terms of the Smith–McMillan form is that this form might be
hard to compute, especially for high-dimensional transfer functions. Alternative approaches to compute
the quantities above may thus be preferable. The use of the state-space representation of G.s/ studied in
the next chapter yields numerically efficient and conceptually clear way to characterize poles, zeros, and
degree of MIMO transfer functions, see Section 4.3.2. Still, simpler algorithms are available directly in
terms of transfer functions, as well as when mild simplifying assumptions on poles and zeros are imposed.
Below some of these results, which might help in hand calculations, are presented.

Proposition 3.6. Let G.s/ be a transfer function with nrank.G.s// D r . The following statements hold

true.

1. The polynomial �p.s/ in (3.36) is the least common denominator of all nonzero minors of G.s/ of all

orders provided that all common poles and zeros in each of these minors were canceled.
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2. The polynomial �z.s/ in (3.36) is the greatest common divisor of all the numerators of all r-order

minors of G.s/ provided that these minors have been adjusted to have �p.s/ as their denominators.

Example 3.5. Consider again the transfer function from Example 3.3. Its nonzero minors of order 1 are:

1

s C 1
;

s � 1

.s C 1/.s C 2/
; � 1

s � 1
;

1

s C 2
; and

1

s C 2

and the minors of order 2 are:

� s � 1

.s C 1/.s C 2/2
;

2

.s C 1/.s C 2/
; and

1

.s C 1/.s C 2/
:

The least common denominator of all these transfer functions is then

�p.s/ D .s C 2/2.s C 1/.s � 1/ D .s C 2/2.s2 � 1/;

which corresponds to the McMillan degree 4 with the poles f�2; �2; �1; 1g, exactly as in Example 3.3.
Now, to find the system zeros, rewrite the three minors of order 2 above in the form:

� .s � 1/2

�p.s/
;

2.s C 2/.s � 1/

�p.s/
; and

.s C 2/.s � 1/

�p.s/
:

The common factor of their numerators is the zero polynomial

�z.s/ D s � 1

corresponding to a single zero at s D 1, again in complete agreement with Example 3.3. ˙

The analysis of singular points of MIMO transfer functions is substantially simplified, both conceptu-
ally and computationally, if they are either poles or zeros, but not both. The following result can be derived
directly from (3.38) and (3.39).

Proposition 3.7. Let G.s/ be a p � m real-rational proper transfer function.

1. If ´i 2 C is not a pole of G.s/, then it is a transmission zero of G.s/ iff rank
�

G.´i/
�

< nrank
�

G.s/
�

.

Furthermore, nrank.G.s// � rank.G.´i// equals then the geometric multiplicity of the zero at ´i and

zdiri.G; ´i / D ker G.´i/ and zdiro.G; ´i/ D kerŒG.´i/�
0.

2. If p D m D nrank.G.s// and pi 2 C is not a transmission zero of G.s/, it is a pole of G.s/ iff

det
�

G�1.pi/
�

D 0. Furthermore, m � rank.G�1.pi// equals then the geometric multiplicity of the

pole at pi and pdiri.G; pi/ D kerŒG�1.pi/�
0 and pdiro.G; pi/ D ker G�1.pi/.

The results of Proposition 3.7 might no longer be true in the case when s0 2 C is both a pole and a
zero of G.s/. For example, the transfer function in Example 3.2 is square and invertible, with

G�1.s/ D
�

1 �1=s

0 1

�

:

But det.G�1.s// D 1, i.e. is nonzero at the pole of G.s/ at s D 0, which also its transmission zero.

Remark 3.5 (poles of non-square systems). The result of the second item of Proposition 3.7 may be relevant
in the analysis of general systems, not only square ones. For example, Proposition 3.3 effectively says
that all unstable poles of a real-rational system are those of the inverse of a denominator of its coprime
factorization. Denominators, in both lcf ’s and rcf ’s, are always square, always stable, and always of a full
normal rank. Hence, it follows from Proposition 3.7 that all unstable poles of G.s/ are zeros of any of its
denominators. O
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3.A Discrete-time signals and systems

Although these notes are mostly devoted to continuous-time control systems, their discrete-time counter-
parts are simpler mathematically and more tangible in some respects. This appendix aims at shedding light
on the underlying ideas behind the kernel and state-space representations of linear systems via systems op-
erating on discrete signals. Because of the above-mentioned purpose, the exposition skips many aspects
of discrete systems that do not help to understand corresponding properties of continuous-time systems.

3.A.1 Discrete-time signals in time domain

An n-dimensional discrete-time signal f is understood as

f W Z ! F
n or f W I ! F

n for some I � Z:

Its value at a time instance t is denoted as f Œt �, where square brackets aim at distinguishing discrete-time
signals from their continuous-time counterparts (where parentheses are used for independent variables).
Discrete counterparts of Lq signal spaces are

`n
q.I/ ´

n

f W I ! F
n
ˇ
ˇ
ˇ kf kq ´

�X

t2I

kf Œt �kq
q

�
1=q

< 1
o

(3.40)

(or simply `q.I/ / `q), where kf kq is called the `q-norm of a signal f . Important particular cases are `1,
`1, and

`n
2.I/ ´

n

f W I ! F
n
ˇ
ˇ
ˇ kf k2 ´

�X

t2I

kf Œt �k2
�

1=2
< 1

o

: (3.41)

Also, we may need

`n
2C.Z/ ´

˚

f 2 `n
2.Z/ j f Œt � D 0 if t < 0

	

and `n
2�.Z/ ´

˚

f 2 `n
2.Z/ j f Œt � D 0 if t � 0

	

:

They are Hilbert spaces with the inner product

hf1; f2i2 D
X

t2I

.f2Œt �/0f1Œt �:

The orthogonality notion and the relation `2.Z/ D `2C.Z/ ˚ `2�.Z/ are the same as in continuous time.
Unlike continuous-time signal spaces, the spaces `q.I/ may be finite dimensional. This happens if

jIj < 1, where jIj stands for the cardinality (the number of elements) of the set I. A possible orthonormal
basis on such spaces is the sequence of Kronecker delta functions, fıŒt �gt2I. If I is infinite, the space `q.I/

is infinite dimensional. Norms are then not equivalent, similarly to the continuous-time case.

3.A.2 Discrete-time systems, their kernel representation and system matrices

We first address discrete systems operating over finite time intervals, because the underlying signal spaces
are finite dimensional. So let I � Z be such that jIj < 1. Consider a bounded linear system (operator)
G W `m

2 .I/ ! `p
2 .I/ and denote its input signal by u. It is readily seen that any u 2 `m

2 .I/ can be presented
in the form

uŒt � D
X

s2I

ıŒt � s�uŒs�;

where ı is the Kronecker delta. This is effectively the decomposition of u on the basis of fıŒt �g, cf. (A.3),
albeit coordinates are vectors in Rm here. By linearity, the action of G on this superposition of pulses can
be written as

yŒt � D .Gu/Œt � D
�

G
X

s2I

ıŒ� � s�uŒs�

�

Œt � D
X

s2I

.GıŒ� � s�/Œt �uŒs� D
X

s2I

gŒt; s�uŒs�; (3.42)

https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Kronecker_delta
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where the function
gŒt; s� ´ .GıŒ� � s�/Œt � W I

2 ! R
p�m;

called the impulse response of G, is the response of G, at the time instance t , to the unit pulse2 applied at
the time instance s. Form (3.42) is known as the kernel representation of G. For example, let Gint W u 7! y

be defined via yŒt � D yŒk �1�CuŒt �. This system is known as the integrator. Its kernel gintŒt; s� D 1Œt � s�,
where 1Œt � is the discrete step and the kernel representation is yŒt � D

Pt
sDt0

uŒs�, where t0 denotes the first
element of I.

Extending the arguments above to the case when the interval I is unbounded, like Z or ZC might be
delicate. First, the class of operators `2.I/ ! `2.I/ is then more restrictive. For example, the integrator
Gint does not belong to that class, which can be seen by applying the input u D ı 2 `2.Z/, resulting in the
output y D 1 62 `2.Z/. Thus, we have to define linear systems as operators G W DG � `m

2 .I/ ! `p
2 .I/

for some domain DG . Returning to the integrator example, its domain is an (open) subspace of `2.I/

comprising of functions u, which can be presented as uŒt � D vŒt � � vŒt � 1� for an arbitrary v 2 `2.Z/. It
follows from the triangle inequality that any such u 2 `2.Z/ and then yŒt � D vŒt � is obviously an `2.Z/

function. Second, even if defined over proper subspaces, the use of superposition arguments for infinite
sums in (3.42) requires certain care with the convergence. Still, the class of systems that can be described
by the kernel representation (3.42) is sufficient for all practical purposes3

A linear system G is said to be stable if DG D `m
2 .I/ and kGk ´ supkukD1kGuk < 1. The norm

defined by the last expression is called the `2-induced norm of G. The integrator is clearly unstable by
this definition, which is intuitive. We say that a system G W u 7! y is causal (strictly causal) if yŒt � may
depend only on uŒs� for s � t (s < t ). In terms of the kernel representation causality is equivalent to the
condition that gŒt; s� D 0 whenever s > t . Strict causality requires in addition that the feedthrough terms

gŒt; t � D 0 for all t 2 I. The integrator Gint is clearly causal, but not strictly causal.
Assuming I D Zt0::th

, equation (3.42) can be equivalently presented in the matrix form

2

6
6
6
4

yŒt0�

yŒt0 C 1�
:::

yŒt1�

3

7
7
7
5

„ ƒ‚ …

ŒŒy��

D

2

6
6
6
4

gŒt0; t0� gŒt0; t0 C 1� � � � gŒt0; t1�

gŒt0 C 1; t0� gŒt0 C 1; t0 C 1� � � � gŒt0 C 1; t1�
:::

:::
:::

gŒt1; t0� gŒt1; t0 C 1� � � � gŒt1; t1�

3

7
7
7
5

„ ƒ‚ …

ŒŒG��

2

6
6
6
4

uŒt0�

uŒt0 C 1�
:::

uŒt1�

3

7
7
7
5

„ ƒ‚ …

ŒŒu��

: (3.43)

The matrix ŒŒG�� built on the impulse responses as in (3.43) is called the system matrix of G and is the
matrix representation of G in the orthonormal basis fıŒt �g of `2.I/, see §A.2.4. Note that we use the same
notation for stacked vectors and system matrices; the meaning, as well as the interval, are normally clear
from the context. Causal systems have block lower-triangular system matrices, with zero gray blocks.

System matrices and stacked signals for systems acting on infinite horizons are infinite. For example,
if I D Z, the relation ŒŒy�� D ŒŒG��ŒŒu�� reads

2

6
6
6
6
6
6
6
6
4

:::

yŒ�2�

yŒ�1�

yŒ0�

yŒ1�
:::

3

7
7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
6
4

:::
:::

:::
:::

� � � gŒ�2; �2� gŒ�2; �1� gŒ�2; 0� gŒ�2; 1� � � �
� � � gŒ�1; �2� gŒ�1; �1� gŒ�1; 0� gŒ�1; 1� � � �
� � � gŒ0; �2� gŒ0; �1� gŒ0; 0� gŒ0; 1� � � �
� � � gŒ1; �2� gŒ1; �1� gŒ1; 0� gŒ1; 1� � � �

:::
:::

:::
:::

3

7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
4

:::

uŒ�2�

uŒ�1�

uŒ0�

uŒ1�
:::

3

7
7
7
7
7
7
7
7
5

: (3.44)

2More precisely, the j th column of gŒt; s� is the response of G, at the time instance t , to the input ej ı applied at the time
instance s, where ej is the j th standard basis on Rm.

3See [25] for a more general representation and more detailed explanations.
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It is worth emphasizing that doubly-infinite matrices as above are qualitatively different from their finite
(and even semi-infinite) counterparts. To demonstrate that, consider the backward (right) shift operator
S W `m

2 .I/ ! `m
2 .I/, which is defined as .Su/Œt � D uŒt � 1�, for all t 2 I (if I is left-bounded, by say t0,

then it is assumed that .Su/Œt0� D 0). Its impulse response is sŒt; r � D ıŒt � r � 1�Im. If I D Zt0::t1
, the

system matrix of the backward shift operator,

ŒŒS�� D

2

6
6
6
4

0 � � � 0 0

I � � � 0 0
:::

: : :
:::

:::

0 � � � I 0

3

7
7
7
5

;

is singular. At the same time, if considered as an operator on `2.Z/, the system matrix of S is unitary,

ŒŒS���1 D

2

6
6
6
6
6
6
6
6
4

:::
:::

:::
:::

� � � 0 0 0 0 � � �
� � � I 0 0 0 � � �
� � � 0 I 0 0 � � �
� � � 0 0 I 0 � � �

:::
:::

:::
:::

3

7
7
7
7
7
7
7
7
5

�1

D

2

6
6
6
6
6
6
6
6
4

:::
:::

:::
:::

� � � 0 I 0 0 � � �
� � � 0 0 I 0 � � �
� � � 0 0 0 I � � �
� � � 0 0 0 0 � � �

:::
:::

:::
:::

3

7
7
7
7
7
7
7
7
5

D ŒŒS��0 D ŒŒ QS��;

where QS is the forward (left) shift operator acting as . QSu/Œt � D uŒt C 1� (if I is right-bounded, by say t1,
then it is assumed that . QSu/Œt1� D 0). In fact, ŒŒS�� is singular even if considered on I D ZC, in which case
it is injective (i.e. ker S D f0g), but not surjective (i.e. Im S ¤ `2.ZC/).

Manipulations with discrete-time systems can be carried out in terms of their system matrices. For
example, it follows directly from (3.43) (or from (3.44)) that the cascade parallel interconnections of com-
patibly dimensioned systems G1 and G2 satisfy ŒŒG2G1�� D ŒŒG2��ŒŒG1�� and ŒŒG1 C G2�� D ŒŒG1�� C ŒŒG2��.
Likewise, ŒŒG�1�� D ŒŒG���1. It should also be clear from the definition that kxk D kŒŒx��k, i.e. the `2-norm
of a signal x equals the Euclidean norm of its stacked vector. As such, kGk D kŒŒG��k, i.e. the `2-induced
norm of a system equals the spectral norm of its system matrix.

A linear discrete system G on `2.Z/ is called shift invariant (abbreviated LSI) if GS D SG. Similarly
to the continuous-time time invariance, this definition effectively says that a delayed input produces a
delayed, but otherwise unchanged, output. In terms of the kernel representation (3.42), this reads as

.GS/Œt � D
X

s2Z

gŒt; s�uŒs � 1� D
X

s2Z

gŒt; s C 1�uŒs� D
X

s2Z

gŒt � 1; s�uŒs� D .SG/Œt �:

Hence, shift invariance is equivalent to the kernel constraint gŒt; s� D gŒt � 1; s � 1�, which should hold for
all t; s 2 Z. This, in turn, implies that the impulse response of an LSI system satisfies

gŒt; s� D gŒt � 1; s � 1� D gŒt � 2; s � 2� D � � � D gŒt � s; 0�:

Thus, LSI systems are completely characterized by their response to the input impulse applied at the time
instance s D 0, denoted gŒt � ´ gŒt; 0�. The matrices gŒt � 2 Rp�m are also known as the Markov parameters

of G. With this convention, (3.42) can be presented as the convolution sum

yŒt � D
X

s2Z

gŒt � s�uŒs�: (3.45)

The backward shift operator S is obviously shift invariant, by the very definition, which can also be seen
via the fact that its impulse response has sŒt; r � D ıŒt � r � 1�, i.e. is a function of t � r . The integrator Gint
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defined above, whose impulse response satisfies gintŒt; s� D 1Œt � s�, is clearly shift invariant too. System
matrices of LSI systems have the block Toeplitz structure, like

2

6
6
6
6
6
6
6
6
4

:::

yŒ�2�

yŒ�1�

yŒ0�

yŒ1�
:::

3

7
7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
6
4

:::
:::

:::
:::

� � � gŒ0� gŒ�1� gŒ�2� gŒ�3� � � �
� � � gŒ1� gŒ0� gŒ�1� gŒ�2� � � �
� � � gŒ2� gŒ1� gŒ0� gŒ�1� � � �
� � � gŒ3� gŒ2� gŒ1� gŒ0� � � �

:::
:::

:::
:::

3

7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
4

:::

uŒ�2�

uŒ�1�

uŒ0�

uŒ1�
:::

3

7
7
7
7
7
7
7
7
5

; (3.46)

where elements along each block diagonal are equivalent. An LSI system G is causal iff gŒt � D 0 whenever
t < 0 and strictly causal iff gŒt � D 0 whenever t � 0. Causal systems have upper block-triangular system
matrices.

3.A.3 State space representation of finite-dimensional LSI systems

The notion of state plays an important role in systems theory, facilitating an economical representation
of dynamical systems, their efficient implementation, elegant solutions to many control design problems,
et cetera. The state variable appears naturally in many applications, like the “position-velocity” pair for
the mechanical system in Fig. 1.2(a) or the “charge-current” pair for the RLC circuit in Fig. 1.2(b), and is
conventionally introduced as such. Still, in many situations a state might have no tangible physical meaning.
The goal of this section is to introduce the notion on an abstract, system-theoretic, level from scratch.

A key, and highly nontrivial, property of many systems of interest is that the relation between the past
and the future has relatively low complexity. Specifically, consider a causal shift-invariant system4 G on
`2.Z/ and fix some time instance tc. It follows from (3.46) that the outputs yŒt � for t � tc satisfy

2

6
6
6
4

yŒtc�

yŒtc C 1�

yŒtc C 2�
:::

3

7
7
7
5

D

2

6
6
6
4

gŒ1� gŒ2� gŒ3� � � �
gŒ2� gŒ3� gŒ4� � � �
gŒ3� gŒ4� gŒ5� � � �

:::
:::

:::

3

7
7
7
5

„ ƒ‚ …

ŒŒHG ��

2

6
6
6
4

uŒtc � 1�

uŒtc � 2�

uŒtc � 3�
:::

3

7
7
7
5

C

2

6
6
6
4

gŒ0� 0 0 � � �
gŒ1� gŒ0� 0 � � �
gŒ2� gŒ1� gŒ0� � � �

:::
:::

:::
: : :

3

7
7
7
5

„ ƒ‚ …

ŒŒTG ��

2

6
6
6
4

uŒtc�

uŒtc C 1�

uŒtc C 2�
:::

3

7
7
7
5

: (3.47)

The Hankel operator HG associated with G connects the past inputs with the present and future inputs at
each time instance. It turns out that there is a large class of systems (perhaps, all systems whose response
can be calculated) for which the rank of HG , and therefore the rank of the infinite-dimensional matrix ŒŒHG ��,
are finite. This class is called finite-dimensional systems and the rank of the Hankel operator, say n, is called
the state dimension or the order of the system G. In this case the system matrix of the corresponding Hankel
operator can be factorized as

ŒŒHG �� D

2

6
6
6
4

O1

O2

O3

:::

3

7
7
7
5

�

R1 R2 R3 � � �
�

µ OGRG (3.48)

(Oi 2 Rp�n and Ri 2 Rn�m for each i 2 N), where OG and RG are rank-n matrices having n columns and
n rows, respectively, cf. the full rank decomposition in (2.17). Matrices Oi and Ri are unique up to the
post-multiplication by a nonsingular matrix M 2 Rn�n and the pre-multiplication by M�1, respectively.

4The arguments can be extended to non-causal and time-varying systems, but this would render the notation bulky, see [7].
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Example 3.6. Consider an LTI causal system G having the impulse response gŒt � D ˛t�11Œt � 1� for some
˛ 2 R. Using the convention that ˛0 D 1 for all ˛ 2 R, the case ˛ D 0 corresponds to G D S . The case
˛ D 1 then yields the delayed integrator, G D GintS . Whatever ˛ is, the corresponding Hankel matrix,

ŒŒHG �� D

2

6
6
6
4

1 ˛ ˛2 � � �
˛ ˛2 ˛3 � � �
˛2 ˛3 ˛4 � � �
:::

:::
:::

3

7
7
7
5

D

2

6
6
6
4

1

˛

˛2

:::

3

7
7
7
5

�

1 ˛ ˛2 � � �
�

;

has rank 1 and is indeed in form (3.48). ˙

The n-dimensional vector

xŒtc� ´ RG

2

6
6
6
4

uŒtc � 1�

uŒtc � 2�

uŒtc � 3�
:::

3

7
7
7
5

D
tc�1
X

sD�1
Rtc�suŒs� (3.49)

is then called the state vector of G at the time instance tc and is unique up to the multiplication by a
nonsingular matrix M 2 Rn�n. The state vector may be thought of as a history accumulator. Indeed, by
(3.47)–(3.49),

2

6
6
6
4

yŒtc�

yŒtc C 1�

yŒtc C 2�
:::

3

7
7
7
5

D OGxŒtc� C ŒŒTG ��

2

6
6
6
4

uŒtc�

uŒtc C 1�

uŒtc C 2�
:::

3

7
7
7
5

;

so the knowledge of xŒtc� is sufficient to account for the effect of the whole input history up to tc on future
outputs. This suggests that causal systems can be treated as operators on `2.ZC/, rather than on `2.Z/,
with the initial condition xŒ0� explaining the effect of prehistoric inputs (t D 0 is chosen as a starting point
merely by convenience). Having a starting point may be intuitive in control applications, this is the time
moment where the control law is applied.

It can be shown5 that (3.48) and the Hankel structure of ŒŒHG �� guarantee the existence of matrices
A 2 Rn�n, B 2 Rn�m, and C 2 Rp�n such that

OG D

2

6
6
6
4

C

CA

CA2

:::

3

7
7
7
5

and RG D
�

B AB A2B � � �
�

(infinite observability and reachability matrices). A consequence of this structure is that the state vector
can be propagated recursively. To see this, consider

xŒt C 1� D
�

B AB A2B � � �
�

2

6
6
6
4

uŒt �

uŒt � 1�

uŒt � 2�
:::

3

7
7
7
5

D A
�

B AB A2B � � �
�

2

6
6
6
4

uŒt � 1�

uŒt � 2�

uŒt � 3�
:::

3

7
7
7
5

C BuŒt �

D AxŒt � C BuŒt �:

5See [3, Sec.4.4] for details on the realization theory.
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Furthermore, the output at every time instance is a linear function of the current state and input. Indeed,
because gŒt � D CAt�1B for all t 2 N, equality (3.45) reads

yŒt � D C

t�1
X

sD�1
At�s�1BuŒs� C gŒ0�uŒt � D CxŒt � C gŒ0�uŒt �:

Thus, if only the response at nonnegative time instances is of interest, any linear causal shift-invariant n-
order `2.Z/ system G can be viewed as an operator G W DG � Rn � `m

2 .ZC/ ! `p
2 .ZC/ and described

in terms of four matrices A, B , C , and D ´ gŒ0� 2 Rp�m and an initial condition vector x0 2 Rn by the
following recursion:

(

xŒt C 1� D AxŒt � C BuŒt �; xŒ0� D x0

yŒt � D CxŒt � C DuŒt �:
(3.50)

Description (3.50) is called the state representation of G and the quadruple .A; B; C; D/ is called the
state-space realization of G. We frequently assume that the initial condition is zero, i.e. that xŒ0� D 0,
which may take place in many situations when the system starts from an equilibrium and the linear model
is written in terms of deviation variables. In this case we may consider causal LSI systems as operators
G W DG � `2.ZC/ ! `2.ZC/.



Chapter 4

State-Space Techniques for LTI Systems

T
he state-space description is a conceptually convenient and well-suited for numerical manipulations
way to represent finite-dimensional systems. It leads to elegant structural properties (like the separation

principle) of controllers and equally suited for description of both SISO and MIMO systems. This chapter
studies basic properties of state-space realizations for LTI continuous-time systems.

4.1 Basic definitions and properties

Like in the discrete-time case introduced in §3.A.3, the notion of state for continuous-time systems is
associated with the Hankel operator HG W DHG

� L2.�1; tc/ ! L2.tc; 1/, which connects past (with
respect to any given tc) inputs of a causal G and its future outputs as follows:

y.t/ D
Z tc

�1
g.t � s/u.s/ds; 8t > tc:

If the rank of the infinite-dimensional Hankel operator is finite, say n, the system is said to be finite dimen-

sional and n is its dimension (order). Note that HG might have a finite rank only if gi D 0 for all i > 0

in (3.13). As causality requires that gi D 0 for i < 0 as well, we may only have g0 ¤ 0 for causal finite-
dimensional systems. But the g0ı.t/ term, which is responsible for the instantaneous connection between
u.t/ and y.t/, is not a part of the Hankel operator. If the Hankel operator has rank n, its kernel can be
factorized [8, Ch. IX] as Qg.t � s/ D Qgo.t / Qgr.�s/ for some Qgo W R ! Rp�n and Qgr W R ! Rn�m. The output
of HG can then be rewritten as

y.t/ D Qgo.t � tc/

Z tc

�1
Qgr.tc � s/u.s/ds C g0u.t/ D Qgo.t � tc/x.tc/ C g0u.t/; 8t > tc

where the n-dimensional vector
x.t/ ´

Z t

�1
Qgr.t � s/u.s/ds (4.1)

is called the state vector of G at time t . The state vector may be interpreted as the history accumulator.
The latter can be seen by rewriting the mapping G W u 7! y given by (3.16) for t � tc as

y.t/ D
Z

R

Qg.t � s/u.s/ds C g0u.t/ D Qgo.t � tc/x.tc/ C
Z t

tc

Qg.t � s/u.s/ds C g0u.t/ (4.2)

which shows that the only information about the input history up to the “starting point” t D tc that we
need is the state vector x.tc/. This fact facilitates the treatment of causal LTI systems as operators on the
non-negative semi-axis RC.

67
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The kernel of any rank-n Hankel operator associated with an LTI system at a time instance t is of the
form Qg.t/ D C eAt B for some matrices A 2 Rn�n, B 2 Rn�m, and C 2 Rp�n. In this case, we can choose
Qgo.t / D C eAt and Qgr.s/ D eAsB and then

Px.t/ D d
dt

Z t

�1
eA.t�s/Bu.s/ds D A

Z t

�1
eA.t�s/Bu.s/ds C eA.t�s/Bu.s/

ˇ
ˇ
sDt

D Ax.t/ C Bu.t/:

Moreover, it then follows from (4.2) that y.t/ D Cx.t/ C Du.t/, where D ´ g0 2 Rp�m. Thus, any
finite-dimensional causal LTI G can be described as an operator DG � Rn � Lm

2 .RC/ ! Lp
2.RC/ by the

following set of equations:
(

Px.t/ D Ax.t/ C Bu.t/; x.0/ D x0

y.t/ D Cx.t/ C Du.t/:
(4.3)

Description (4.3) is called the state representation of G and the quadruple .A; B; C; D/ is called its state-

space realization. We frequently assume that the initial condition is zero, i.e. that x.0/ D 0, which may
take place in many situations when the system starts from an equilibrium and the linear model is written
in terms of deviation variables. We may then consider systems as operators DG � Lm

2C ! Lp
2C. The

variable Qx D T x for any nonsingular matrix T 2 Rn�n is also a legitimate state vector, whose realization
.TAT �1; TB; C T �1; D/ is dubbed similar to .A; B; C; D/, with Qx.0/ D T x0.

It follows from the arguments preceding (4.3) that the impulse response of a finite-dimensional LTI G

in terms of its state-space realization has

g.t/ D Dı.t/ C C eAtB1.t /; (4.4)

which can also be derived from the solution of (4.3). By the time-differentiation property of the Laplace
transform, or transforming g.t/ in (4.4) directly, the transfer function of an LTI G in terms of its state space
realization is

G.s/ D D C C.sI � A/�1B µ
�

A B

C D

� �

meaning
sx 
y 

�

x
#
A

u
#
B

C D

��

(4.5)

and it is real-rational and proper. Both the impulse response and the transfer function are invariant under
similarity transformation, i.e. for every nonsingular T

Dı.t/ C C T �1eTAT �1t TB1.t / D Dı.t/ C C eAt B1.t / and
�

TAT �1 TB

C T �1 D

�

D
�

A B

C D

�

:

It is readily seen that G.1/ D D, so that G.s/ is strictly proper iff D D 0 and a square G.s/ is bi-proper
iff det.D/ ¤ 0.

4.1.1 Operations on transfer functions in terms of state-space realizations

One of advantages of the analyzing LTI dynamical systems in the Laplace domain is that algebraic manip-
ulations over transfer functions are performed in the same manner as corresponding manipulations over
static matrices. Addition, multiplication, inverse, et cetera are carried out s-wise, whereas corresponding
manipulations in terms of the impulse responses are substantially less transparent. In this subsection we
shall see that manipulations over transfer functions can be efficiently and transparently performed in terms
of their state-space realizations. Toward this end, we make use of the time-domain equations in (4.3) and
signal flow relations between operands. Below, some expressions are derived for transfer functions

G1.s/ D
�

A1 B1

C1 D1

�

and G2.s/ D
�

A2 B2

C2 D2

�

https://en.wikipedia.org/wiki/Laplace_transform#Properties_and_theorems
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of systems G1 W u1 7! y1 and G2 W u2 7! y2, which can be equivalently be described as

G1 W
(

Px1.t / D A1x1.t / C B1u1.t /

y1.t / D C1x1.t / C D1u1.t /
and G2 W

(

Px2.t / D A2x2.t / C B2u2.t /

y2.t / D C2x2.t / C D2u2.t /

in terms of their input, output, and state vectors (below zero initial conditions are assumed, because this is
how transfer functions are defined).

Addition (parallel interconnection) The sum G.s/ D G1.s/ C G2.s/ can be interpreted as the transfer
function of the parallel interconnection G W u 7! y of G1 and G2. This reads u1 D u2 D u and y D y1Cy2.
The state-space equations then can be united to result in

G1 C G2 W

„�
Px1.t /

Px2.t /

�

D
�

A1 0

0 A2

� �

x1.t /

x2.t /

�

C
�

B1

B2

�

u.t/

y.t/ D
�

C1 C2

�
�

x1.t /

x2.t /

�

C .D1 C D2/u.t/

or, equivalently, in the formula

�
A1 B1

C1 D1

�

C
�

A2 B2

C2 D2

�

D

2

4

A1 0 B1

0 A2 B2

C1 C2 D1 C D2

3

5 : (4.6)

Multiplication (cascade interconnection) The product G.s/ D G2.s/G1.s/ can be seen as the transfer
function of the cascade interconnection of G1 and G2. In other words, u1 D u, u2 D y1, and y D y2. This
defines the state-space equation

G2G1 W

„�
Px1.t /

Px2.t /

�

D
�

A1 0

B2C1 A2

� �

x1.t /

x2.t /

�

C
�

B1

B2D1

�

u.t/

y.t/ D
�

D2C1 C2

�
�

x1.t /

x2.t /

�

C D2D1u.t/

or, equivalently, the formula

�
A2 B2

C2 D2

� �
A1 B1

C1 D1

�

D

2

4

A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

3

5 D

2

4

A2 B2C1 B2D1

0 A1 B1

C2 D2C1 D2D1

3

5 ; (4.7)

where the last expression is obtained by merely swapping x1 and x2.

Inverse If G defines the relation y D Gu, its inverse should define the relation u D G�1y. Clearly,
G�1.s/ is proper iff G.s/ is bi-proper, i.e. iff det.D/ ¤ 0. In this case, the output equation in (4.3) rewrites
as u.t/ D D�1y.t/ � D�1Cx.t/. Substituting this equality into the state equation yields

G�1 W
(

Px.t/ D Ax.t/ C BD�1y.t/ � BD�1Cx.t/ D .A � BD�1C /x.t/ C BD�1y.t/

u.t/ D �D�1Cx.t/ C D�1y.t/:

In other words,
�

A B

C D

��1

D
�

A � BD�1C BD�1

�D�1C D�1

�

(4.8)

and it exists iff det.D/ ¤ 0.
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Partial fraction expansion The problem of splitting G2.s/G1.s/ D H1.s/ C H2.s/ for some H1.s/

and H2.s/ such that the “A” matrices of Hi match those of Gi , i D 1; 2, can be thought of as one step
in the MIMO version of the partial fraction expansion procedure. Taking into account (4.7) and (4.6),
this problem boils down to transforming a block-triangular matrix to a block-diagonal one. To this end
the Roth’s removal rule (see Proposition B.1) can be used. Namely, there is a similarity transformation
between the “A” matrices in (4.7) and (4.6) iff the Sylvester equation

XA1 � A2X C B2C1 D 0

is solvable in X . A sufficient condition for the latter (cf. Section B.1, p. 189) is spec.A1/ \ spec.A2/ D ¿,
which could be expected from the theory of partial fraction decomposition. Anyhow, if a required X exists,
the similarity transformation applied to the last realization in (4.7) is T D

�
I X
0 I

�

and it yields

2

4

A2 B2C1 B2D1

0 A1 B1

C2 D2C1 D2D1

3

5 D

2

4

A2 0 B2D1 C XB1

0 A1 B1

C2 D2C1 � C2X D2D1

3

5 ;

so �
A2 B2

C2 D2

� �
A1 B1

C1 D1

�

D
�

A1 B1

D2C1 � C2X 0

�

C
�

A2 B2D1 C XB1

C2 0

�

C D2D1 (4.9)

(the feedthrough term D2D1 can be a part of either of the dynamic terms on the right-hand side).

4.2 Structural properties

In this section the controllability, observability and some other relevant state-space concepts will be re-
viewed. These notions play a central role in the state-space control theory. Because the notes are con-
cerned mainly with frequency-domain methods, the state-space formalism is essentially exploited as a tool
(analytical and computational) for dealing with transfer functions. For this reason, controllability and ob-
servability are studied here as structural properties of state-space realizations of transfer functions rather
than the ability to steer the state to an arbitrary position by the input or to reconstruct the whole state vector
via measuring the output.

4.2.1 Controllability and stabilizability

We say that the matrix pair .A; B/ 2 Rn�n � Rn�m is controllable if the eigenvalues of A C BK can be
freely assigned by a suitable choice of K 2 Rm�n, with the obvious restriction that complex eigenvalues
of A C BK are in conjugate pairs (‘K’ is for Kalman here). Otherwise .A; B/ is said to be uncontrollable.
Controllability can be analyzed by numerous methods, some of them are presented in the following result.

Theorem 4.1. The following statements are equivalent:

1. The pair .A; B/ is controllable.

2. The matrix
�

A � sI B
�

has full rank 8s 2 C (the PBH [Popov–Belevich–Hautus] test).

3. The matrix

Wc.t / ´
Z t

0

eAsBB 0eA0s ds

is positive definite for all t > 0 (the Gramian-based test).

4. The controllability matrix

Mc ´
�

B AB : : : An�1B
�

has full rank (i.e. rank.Mc/ D n).

https://en.wikipedia.org/wiki/Partial_fraction_decomposition
https://en.wikipedia.org/wiki/Rudolf_E._Kalman
https://en.wikipedia.org/wiki/Vasile_M._Popov
https://en.wikipedia.org/wiki/Vitold_Belevitch
https://www.win.tue.nl/~wscomalo/
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To prove this theorem, we need a couple of technical results, which are important in their own right.

Lemma 4.2. Im Wc.t / D Im Mc for every t > 0.

Proof. By Proposition 2.1 on p. 29 and the fact that Wc.t / is symmetric, the statement of the lemma is
equivalent to the condition that ker Wc.t / D ker M 0

c. It is readily seen that Wc.t / � 0 for all t . Hence,

Wc.t /� D 0 ” �0Wc.t /� D 0 ”
Z t

0

k�0eAsBk2ds D 0 ” �0eAsB D 0; 8s 2 Œ0; t �:

Because eAs is analytic, the latter condition is equivalent to �0.eAs/.i/BjsD0 D 0 for all i 2 ZC. Thus,
� 2 ker Wc.t / for some t 2 R iff �0

�

B AB A2B � � �
�

D 0.
Now, it follows by the Cayley–Hamilton theorem that AnCj is a linear combination of Ai , i 2 Z0::n�1,

for all j 2 ZC. Hence, ker
�

B AB A2B � � �
� 0 D ker M 0

c. This completes the proof.

Lemma 4.3. If rank Wc.t / D r < n, then there is a unitary matrix Uc such that1

.UcAU 0c; UcB/ D
��

Ac �
0 Ac̄

�

;

�

Bc

0

��

;

where the pair .Ac; Bc/ 2 Rr�r � Rr�m is such that
R t

0
eAcsBcB

0
ce

A0
cs ds > 0.

Proof. Suppose that A is Hurwitz. It follows from the proof of Lemma 4.2 that ker Wc.t / is independent
of t . Thus, it is sufficient to prove the result for P ´ Wc.1/ � 0, which satisfies the Lyapunov equation

AP C PA0 C BB 0 D 0 (4.10)

(see Section B.1) and referred to as the controllability Gramian of .A; B/. If rank P D r < m, there is a
unitary Uc such that UcP U 0c D

�
Pc 0
0 0

�

for some r � r matrix Pc > 0. Now,

.UcAU 0c; UcB/ D
��

Ac A12

A21 Ac̄

�

;

�

Bc

B2

��

;

where the partition is compatible to that of UcP U 0c. The Lyapunov equation (4.10) reads then
�

AcPc C PcA
0
c C BcB

0
c PcA

0
21 C BcB

0
2

A21Pc C B2B 0c B2B 02

�

D 0:

Its .2; 2/ entry yields B2 D 0, the off-diagonal entries yield A21 D 0 (Pc is nonsingular), which implies
that A is block-triangular, so Ac is Hurwitz. Hence, the Lyapunov equation in the .1; 1/ entry is solved by
Pc D lim t!1

R t

0
eAcsBcB

0
ce

A0
cs ds > 0 and then the integral under the limit is nonsingular for all t > 0.

If A is not Hurwitz, there is a sufficiently large ˛ > 0 such that A � ˛I is Hurwitz. It follows from
the proof of Lemma 4.2 that the kernel of Wc.t / does not change under the replacement A ! A � ˛I .
Moreover, such a replacement does not change the triangular structure of the matrix in the statement of the
lemma either. Hence, the result remains valid for a general A.

Proof of Theorem 4.1. We start with showing the equivalence of conditions 2–4.

2 ” 3 W First, prove that 2 (H 3. Assume, on the contrary, that rank
�

A � sI B
�

D n, 8s 2 C, but
rank Wc.t / D r < n. By Lemma 4.3, there is a unitary Uc such that

Uc
�

A � sI B
�
�

U 0c 0

0 I

�

D
�

Ac � sIr � Bc

0 Ac̄ � sIn�r 0

�

:

It is readily seen that the rank of this matrix drops at every eigenvalue of Ac̄, which is a contradiction.

1The notation “�” is used hereafter to denote irrelevant blocks.

https://en.wikipedia.org/wiki/Analytic_function
https://en.wikipedia.org/wiki/Cayley-Hamilton_theorem
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Now, prove that 2 H) 3. Again on the contrary, let rank Wc.t / D n, but rank
�

A � s0I B
�

< n

at some s0 2 C. There is then �0 ¤ 0 such that �00
�

A � s0I B
�

D 0. Hence, �00A D s0�00 and
�00B D 0. This implies that �00eAt B D es0t�00B D 0 for all t , so �0Wc.t / D 0, which is a contradiction.

3 ” 4 W Follows by Lemma 4.2.

Next, show that 1 implies 2 (which, in turn, yields that 1 also implies 3 and 4):

1 H) 2 W Assume, on the contrary, that .A; B/ is controllable, but rank
�

A � s0I B
�

< n at some
s0 2 C. There is then �0 ¤ 0 such that �00A D s0�00 and �00B D 0. Therefore, �00.A C BK/ D s0�00,
implying that s0 2 spec.A C BK/ regardless of K. Hence, .A; B/ is not controllable, which is a
contradiction.

The final step is to show that 4 (and, therefore, 2 and 3) implies 1:

4 H) 1 W The proof is only outlined below, details are somewhat bulky, but otherwise unenlightening.
If m D 1, then Mc 2 Rn�n is nonsingular and Ackermann’s formula,

K D �e0nM�1
c �ACBK .A/;

yields K, for which det.sI � A � BK/ D �ACBK .s/ for any monic polynomial �ACBK .s/ of degree n.
If m > 1, then for any nonzero vector b0 2 Im B we can construct K0 2 Rm�n such that .ACBK0; b0/

is controllable, see [10], and we can again apply Ackermann’s formula and then shift the result by K0.

This completes the proof.

Remark 4.1 (controllability and similarity transformations). The controllability property is invariant under
similarity transformations. Indeed, if . QA; QB/ ´ .TAT �1; TB/ for some nonsingular T , then

A C BK D T �1 QAT C T �1 QBK D T �1. QA C QB QK/T;

where QK ´ KT �1 is bijective to K. Furthermore, QWc.t / and the controllability matrix QMc associate with
. QA; QB/ are

QWc.t / D T Wc.t /T
0 and QMc D TMc; (4.11)

where Wc.t / and Mc are their counterparts associated with .A; B/. O

Several intermediate results used in course of proving Theorem 4.1 are of independent interest. First,
we saw that the PBH test can fail only at s 2 spec.A/. Eigenvalues of A at which this happens are called
uncontrollable modes of .A; B/. This is because these modes remain the eigenvalues of A C BK for every
K, see the “1 H) 2” part of the proof of Theorem 4.1. In other words, uncontrollable modes of A

cannot be affected via B . Unstable uncontrollable modes are particularly important, as their presence
implies that the matrix A C BK cannot be made Hurwitz. Such eigenvalues are thus called unstabilizable

modes. A pair .A; B/ is then called stabilizable if there is K such that A C BK is Hurwitz. Obviously,
any controllable pair .A; B/ is stabilizable as well. The inverse is not necessarily true, a stabilizable pair
may have uncontrollable modes provided that these modes all lie in xC0. This is formalized in the following
result, which is an immediate consequence of Theorem 4.1.

Proposition 4.4. The following statements are equivalent:

1. The pair .A; B/ is stabilizable.

2. The matrix
�

A � sI B
�

has full row rank 8s 2 xC0.

Second, the transformation in Lemma 4.3 is convenient to visualize the fact that uncontrollable modes
cannot be affected through B . The proposition below slightly reformulates Lemma 4.3.

https://en.wikipedia.org/wiki/Ackermann's_formula


4.2. Structural properties 73

Proposition 4.5 (controllable decomposition). There is a nonsingular matrix Tc such that

.TcAT �1
c ; TcB/ D

��

Ac �
0 Ac̄

�

;

�

Bc

0

��

; (4.12)

where the pair .Ac; Bc/ is controllable and spec.Ac̄/ comprises all uncontrollable modes of .A; B/. More-

over, the similarity transformation matrix Tc brings .A; B/ to form (4.12) iff

TcWc.t /T
0
c D

� QWc.t / 0

0 0

�

for some QWc.t / > 0 and all t > 0.

Proof. The first part was constructively proved in Lemma 4.3. It also proves the “if” part of the second
statement. The “only if” part can be shown by explicitly constructing Wc.t / for a realization as that in the
right-hand side of (4.12).

The special form of .A; B/ in (4.12) is called the controllable decomposition. It is clear that .A; B/ is
stabilizable iff Ac̄ is Hurwitz. Proposition 4.5 also suggests an algorithm for constructing a controllable
decomposition. Namely, all we need is to find a transformation that block-diagonalizes Wc.t / at any t > 0.

4.2.2 Observability and detectability

The notions of observability and detectability are dual to the controllability and stabilizability, respectively.
We say that the matrix pair .C; A/ 2 Rp�n �Rn�n is observable if the eigenvalues of A C LC can be freely
assigned by a suitable choice of L 2 Rn�p and that the pair .C; A/ is detectable if there exists an L such
that the matrix A C LC is Hurwitz (‘L’ is for Luenberger here). Some observability tests are presented
below.

Proposition 4.6. The following statements are equivalent:

1. The pair .C; A/ is observable.

2. The matrix

�

A � sI

C

�

has full column rank 8s 2 C.

3. The matrix

Wo.t / ´
Z t

0

eA0�C 0C eA� d�

is positive definite for any t > 0.

4. The observability matrix

Mo ´

2

6
6
6
4

C

CA
:::

CAn�1

3

7
7
7
5

has full rank (i.e. rank.Mo/ D n).

5. The pair .A0; C 0/ is controllable.

Proof. The equivalence 1: ” 5: follows from the very fact that .A C LC /0 D A0 C C 0L0 has the same
spectrum as A C LC . The rest follows from Theorem 4.1.

https://en.wikipedia.org/wiki/David_Luenberger
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The notion of unobservable modes can be introduced on the basis of the PBH condition of Proposi-
tion 4.6, much in parallel to the stabilizability notion in the previous subsection. Namely, an eigenvalue of
A whose eigenvector v satisfies C v D 0 is called its unobservable mode. The pair .C; A/ is detectable iff
it has no unobservable modes in xC0.

Remark 4.2 (observability and similarity transformations). Like the controllability case discussed in Re-
mark 4.1, observability is invariant under similarity transformations. Moreover, the observability-related
matrices for . QC; QA/ ´ .C T �1; TAT �1/ are

QWo.t / D T �0Wo.t /T �1 and QMo D MoT �1; (4.13)

where Wo.t / and Mo are their counterparts associated with .C; A/. O

Similarity transformation can be used to visualize unobservable modes. The following counterpart of
Proposition 4.5 introduces the observable decomposition.

Proposition 4.7 (observable decomposition). There is a nonsingular matrix To such that

.C T �1
o ; ToAT �1

o / D
�
�

Co 0
�

;

�

Ao 0

� Aō

��

; (4.14)

where the pair .Co; Ao/ is observable and spec.Aō/ comprises all unobservable modes of .C; A/. More-

over, the similarity transformation matrix To brings .C; A/ to form (4.14) iff

T �0o Wo.t /T �1
o D

� QWo.t / 0

0 0

�

for some QWo.t / > 0 and all t > 0.

Like in the controllability analysis, the form of Proposition 4.7 in the stable case is shown up through
the matrix Q ´ Wo.1/ � 0, which is called the observability Gramian of .C; A/. The observability
Gramian is the unique solution of the Lyapunov equation

A0Q C QA C C 0C D 0: (4.15)

4.2.3 Kalman canonical decomposition and minimality

Consider now the transfer function G.s/ D D C C.sI � A/�1B and assume that the pair .A; B/ is not
controllable. By Propositions 4.5, there is a similarity transformation bringing G.s/ to the form

G.s/ D

2

4

Ac � Bc

0 Ac̄ 0

Cc � D

3

5

where the pair .Ac; Bc/ is controllable. Now, making use of (B.16a), we have

G.s/ D D C
�

Cc �
�
�

sI �
�

Ac �
0 Ac̄

���1 �
Bc

0

�

D D C
�

Cc �
�
�

.sI � Ac/
�1 �

0 .sI � Ac̄/
�1

��

Bc

0

�

D D C Cc.sI � Ac/
�1Bc:

In other words, uncontrollable modes of state-space realizations do not affect the transfer function. Similar
arguments, based on Propositions 4.7 and equality (B.16b), yield that unobservable modes of state-space
realizations do not affect the transfer function either. These two cases can be united to end up with the
following fundamental result.
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Theorem 4.8 (Kalman canonical decomposition). There is a nonsingular matrix T such that

G.s/ D
�

TAT �1 TB

C T �1 D

�

D

2

6
6
6
6
4

Acō � � � Bcō

0 Aco 0 � Bco

0 0 Ac̄ō � 0

0 0 0 Ac̄o 0

0 Cco 0 Cc̄o D

3

7
7
7
7
5

D
�

Aco Bco

Cco D

�

; (4.16)

where the pair .Aco; Bco/ is controllable and the pair .Cco; Aco/ is observable, so that the modes of Aco,

Acō, Ac̄o, and Ac̄ō are controllable-and-observable, controllable-but-unobservable, observable-but-un-

controllable, and uncontrollable-and-unobservable modes of the triple .C; A; B/, respectively.

Proof. First, carry out the controllable decomposition with a transformation matrix T1. Second, apply the
observable decomposition to the controllable part and swap the blocks in (4.14) to end up with an upper
triangular controllable “A” matrix, which shall give another transformation matrix, say T2, and

G.s/ D

2

6
6
4

Acō � � Bcō

0 Aco � Bco

0 0 Ac̄ 0

0 Cco � D

3

7
7
5

: (4.17)

Without loss of generality (see arguments in the proof of Lemma 4.3), assume that Aco and Ac̄ are Hurwitz
and consider the pair

�
�

Cco �
�

;

�

Aco �
0 Ac̄

��

: (4.18)

The Lyapunov equation for the corresponding observability Gramian is

�

A0co 0

� A0c̄

� �

Qco Q12

Q012 Q22

�

C
�

Qco Q12

Q012 Q22

��

Aco �
0 Ac̄

�

C
�

C 0co
�

�
�

Cco �
�

D 0:

Because .Cco; Aco/ is observable, by construction, Qco > 0 and the similarity transformation

T3 D

2

4

I 0 0

0 I Q�1
co Q12

0 0 I

3

5

keeps all “named” blocks in (4.17) intact and at the same time renders the observability Gramian of the
transformed version of (4.18) block-diagonal (cf. (B.14a)), i.e.

�

A0co 0

A023 A0c̄

��

Qco 0

0 Q3

�

C
�

Qco 0

0 Q3

��

Aco A23

0 Ac̄

�

C
�

C 0co
C 0c̄

�
�

Cco Cc̄
�

D 0

for some A23 and Cc̄. It is readily seen that Q3 is the observability Gramian of .Cc̄; Ac̄/. Carrying out yet
another observable decomposition (and the permutation as above) on it, we obtain the fourth transformation
matrix, say T4, and bring .Cc̄; Ac̄/ to the form of the last two blocks in (4.16). The very same transformation
renders the first block of A23, the one having the same number of columns as Ac̄ō, zero. This follows from
the last Lyapunov equation above, with Cc̄ D

�

0 Cc̄o
�

. Thus, T D T4T3T2T1 is what we need.
Finally, the controllability and observability properties of the eigenvalues of each diagonal block of

TAT �1 and the last equality in (4.16) follow by straightforward algebra.

https://en.wikipedia.org/wiki/Rudolf_E._Kalman
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Motivated by this result, uncontrollable and unobservable modes of state-space realizations are called
their hidden modes. It follows from Theorem 4.8 that hidden modes of the state-space realization indeed do
not affect the transfer function. This means that any realization that contains hidden modes is non-minimal
in the sense that there exists another realization of the same transfer function with lower-dimensional “A”
matrix. Motivated by this, a state-space realization .A; B; C; D/ is said to be minimal if the dimension
of A is smallest possible among all realizations of a given system. We shall see in §4.3.2 that this notion
is a key in expressing “external” properties of transfer functions in terms of “internal” properties of their
realizations. Meanwhile, the following result characterizes minimality in terms of verifiable properties.

Theorem 4.9. A realization .A; B; C; D/ is minimal iff .A; B/ is controllable and .C; A/ is observable.

Proof. The “only if” part follows directly from Theorem 4.8. So it suffice to prove the “if” part only.
Assume, on the contrary, that the dimension of A is n, .A; B/ is controllable, .C; A/ is observable, but the
realization is not minimal. In other words, there exist matrices Ar, Br, and Cr so that

�
A B

C D

�

D
�

Ar Br

Cr D

�

and the dimension of Ar is nr < n. It follows from the equality above that C eAt B D CreArt Br for all t .
Therefore,

C eA�eA� B D CreAr�eAr�Br

for all � and � . Pre-multiplying both sides of this equality by eA0�C 0 and post-multiplying by B 0eA0� yield:

eA0�C 0C eA�eA� BB 0eA0� D eA0�C 0CreAr�eAr� BrB
0eA0� :

After integrating both sides from 0 to t over both � and � we get:

Wo.t /Wc.t / D
Z t

0

eA0� C 0CreAr� d�

Z t

0

eAr�BrB
0eA0� d� µ Wr1.t /Wr2.t /:

Since .A; B/ is controllable and .C; A/ is observable, rank.WoWc/ D n. On the other hand, Wr1.t / 2 Rn�nr

and Wr2.t / 2 Rnr�n. Hence, rank.Wr1Wr2/ � nr < n, which is a contradiction.

Although a minimal realization is not unique, any two minimal realizations are tightly connected, as is
shown by the following result.

Theorem 4.10. Any two minimal realizations of a finite-dimensional LTI system are similar.

Proof. Consider two minimal realizations .A; B; C; D/ and . QA; QB; QC; D/ of an LTI system G. Our goal
is to shown that there is a nonsingular matrix T such that . QA; QB; QC; D/ D .TAT �1; TB; C T�1; D/. By
minimality, the controllability matrices associated with the realizations above, Mc and QMc, have full row
ranks and the observability matrices Mo and QMo have full column ranks. If both realizations represent the
same system, then C eAt B D QC e QAt QB for all t , which is equivalent to the condition CAiB D QC QAi QB for all
i 2 ZC (see the proof of Lemma 4.2). This, in turn, implies that the Hankel matrices

MoMc D QMo QMc and MoAMc D QMo QA QMc; (4.19)

which are key equalities to proceed. Introduce T ´ . QM 0
o

QMo/�1 QM 0
oMo and S ´ Mc QM 0

c.
QMc QM 0

c/
�1, which

are well defined by the minimality of . QA; QB; QC; D/. The first equality in (4.19) yields that TS D I , so
T D S�1, and also that TMc D QMc and MoS D MoT �1 D QMo. It then follows from structures of the
controllability and observability matrices that TB D QB and C T �1 D QC . Finally, the second equality of
(4.19) yields that TAS D TAT �1 D QA. Hence, T is the required similarity transformation matrix.
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4.2.4 Constructing minimal realizations: Gilbert’s realization

One can frequently face with the need to build a minimal state-space realization for a given transfer func-
tion. Of course, there always exists a possibility to transform a given non-minimal realization to the Kalman
canonical form and then to extract hidden modes by elimination. This option, however, might be compu-
tationally consuming and introduce additional numerical errors. Moreover, the resulting system would
almost certainly loose any structure of the original transfer function. In the SISO case, there are numerous
algorithms for constructing minimal realizations directly from transfer functions. For example, any canon-
ical realization, like companion and observer forms, is minimal provided the transfer function contains no
pole / zero cancellations. The situation is more complicated in the MIMO case, where the construction of
a minimal state-space realization might not be trivial.

Below, we consider a relatively simple algorithm, which is applicable only to systems having simple
poles. Let G.s/ be a p � m proper transfer function. It can always be presented as

G.s/ D 1

d.s/
NG.s/;

where NG.s/ is a polynomial matrix and d.s/ is a monic scalar polynomial, which is the least common
denominator of the entries Gij .s/ of G.s/. The following result can then be formulated.

Theorem 4.11 (Gilbert’s realization). Let d.s/ D .s � a1/ � � � .s � ar/ with aj ¤ ai whenever i ¤ j and

Gi ´ Res.G.s/; ai/ ´ lims!ai
.s � ai/G.s/ have rank ni � minfp; mg. The .

Pr
iD1 ni /-order realization

2

6
6
6
4

a1In1
0 B1

: : :
:::

0 arInr
Br

C1 � � � Cr G.1/

3

7
7
7
5

; (4.20)

where Bi 2 Rni�m and Ci 2 Rp�ni are full rank matrices such that Gi D CiBi , is a minimal realization of

G.s/.

Proof. Because G.s/ is proper, it can be decomposed as

G.s/ D G.1/ C
r
X

iD1

1

s � ai

Gi D G.1/ C
r
X

iD1

1

s � ai

CiBi :

It is then an immediate consequence of (4.5) that (4.20) is a realization of G.s/. To prove its minimality, we
need to prove that realization (4.20) is both controllable and observable. Let us start with controllability.
Suppose, on the contrary, that ai is an uncontrollable mode of (4.20). Therefore, applying the PBH test,
there should exist a nonzero � 2 C

Pr
iD1 ni such that

0 D
�

�01 � � � �0i � � � �0r
�

2

6
6
6
6
6
6
4

.a1 � ai/In1
B1

: : :
:::

0 � Ini
Bi

: : :
:::

.ar � ai /Inr
Br

3

7
7
7
7
7
7
5

D
�

.a1 � ai/�
0
1 � � � 0 � � � .ar � ai/�

0
r

Pr
jD1 �j Bj

�

:

Since aj � ai ¤ 0 for all j ¤ i , the condition above reads �j D 0 for all j ¤ i and then �0iBi D 0. Yet the
latter condition, together with the fact that Bi is a full rank matrix, implies that �i D 0 as well. Therefore,
� D 0, which is a contradiction. Thus (4.20) is controllable. The proof of the observability is similar.

https://en.wikipedia.org/wiki/Elmer_G._Gilbert
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4.3 Properties of transfer functions via state-space realizations

Various properties of transfer functions can be expressed in terms of their state-space realizations. Sev-
eral examples of that are provided below. In particular, we study how to construct coprime factorizations
(§4.3.1), characterize poles and zeros of transfer functions (§4.3.2), and compute their H2 and H1 norms
(§4.3.4). The section also briefly discusses the celebrated KYP lemma in §4.3.5.

4.3.1 Coprime factorizations

The notion of the coprime factorization over H1 was introduced in §3.3.3. It was mentioned there that
constructing coprime factors might not be trivial if G.s/ is unstable. The result below shows that the task
is simplified if G.s/ is real-rational and given in terms of its state-space realization .A; B; C; D/. Namely,
the problem is effectively reduced to those of designing a stabilizing state feedback and a stable observer.

Proposition 4.12. Let .A; B; C; D/ be stabilizable and detectable. The transfer functions

�

X.s/ Y.s/

� QN .s/ QM.s/

�

D

2

4

A C LC B C LD �L

�K I 0

�C �D I

3

5 (4.21a)

and

�

M.s/ � QY .s/

N.s/ QX.s/

�

D

2

4

A C BK B �L

K I 0

C C DK D I

3

5 ; (4.21b)

for arbitrary K and L such that ACBK and ACLC are Hurwitz, constitute a double coprime factorization,

as in (3.34), of G.s/ D D C C.sI � A/�1B .

Proof. It follows from (4.5) that poles of a transfer function are contained in the spectrum of the “A” matrix
of any of its state-space realizations. Hence, the transfer functions in (4.21) may have poles only in Cn xC0.
Because these transfer functions are also proper, they all belong to RH1. Now, it follows directly from
(4.8) that

�
X.s/ Y.s/

� QN .s/ QM .s/

��1

D
�

M.s/ � QY .s/

N.s/ QX.s/

�

;

which agrees with (3.34) and (a) proves that N.s/ and M.s/ are right coprime over RH1, (b) proves that
QN .s/ and QM .s/ are left coprime over RH1, and (c) gives an explicit construction of the corresponding

Bézout coefficients. To prove that N.s/ and M.s/ constitute a rcf of G.s/, use (4.8) and (4.7) to get

N.s/M�1.s/ D
�

A C BK B

C C DK D

��
A C BK B

K I

��1

D
�

A C BK B

C C DK D

� �
A B

�K I

�

D

2

4

A 0 B

�BK A C BK B

�DK C C DK D

3

5 D

2

4

A 0 B

0 A C BK 0

C C C DK D

3

5 D
�

A B

C D

�

D G.s/;

where the second equality in the second line follows by applying the similarity transformation
�

I 0
�I I

�

and the third equality there follows by the fact that the eigenvalues of A C BK are uncontrollable (cf.
the discussion at the beginning of §4.2.3). Finally, QN .s/ and QM.s/ constitute a lcf of G.s/ because
QN .s/M.s/ D QM .s/N.s/, which, in turn, follows from the “.2; 1/” part of (3.34).
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Remark 4.3 (signal-based inversion). The algebraic way to prove that NM�1 D G is straightforward, but
somewhat boring. A more elegant approach would be to manipulate input and output signals. To see how
it works, note that

�

u

y

�

D
�

M

N

�

v H)
�

v

y

�

D
�

M�1

NM�1

�

u

whenever M is invertible. In other words, the system NM�1 can be obtained by swapping the input v with
the first output u (as a byproduct, we also have M�1). This action, performed via state-space equations,
reads

�

M

N

�

W

�
Px.t/ D .A C BK/x.t/ C Bv.t/

u.t/ D Kx.t/ C v.t/

y.t/ D .C C DK/x.t/ C Dv.t/

H)
�

M�1

NM�1

�

W

�
Px.t/ D Ax.t/ C Bu.t/

v.t/ D �Kx.t/ C u.t/

y.t/ D Cx.t/ C Du.t/

;

which is arguably more intuitive than the algebraic transformations in the proof of Proposition 4.12. O

The choice of the parameters K and L is clearly not unique. This fact can be exploited to end up with
factorizations having some favorable properties. For example, K can be chosen so that

�
M.s/
N .s/

�

is inner
(always possible, see Section 9.A), M.s/ is inner (possible if G.s/ has no pure imaginary poles), or N.s/

is inner (possible if G.s/ has no pure imaginary zeros and is left invertible). Such choices, as well as their
duals in terms of L, are useful in solving various optimization problems.

4.3.2 Poles, zeros, and degree

It follows from Cramer’s rule that poles of the transfer function G.s/ D D C C.sI � A/�1B belong to
spec.A/ (this was already used in the proof of Proposition 4.12). Motivated by this, we say that pi 2 C is
a pole of the realization .A; B; C; D/ if pi 2 spec.A/. Clearly, these poles are invariant under similarity
transformations. The following fundamental result shows that the relation between poles of a transfer
function and those of its realization is indeed strong.

Theorem 4.13. The McMillan degree of G.s/ equals the order of its minimal realization .A; B; C; D/ and

the set of poles of G.s/ coincides with spec.A/.

Proof (outline). It follows from Theorem 4.8 that hidden modes of a realization do not affect the transfer
function. We thus may assume that the realization .A; B; C; D/ is minimal and only need to prove that
every eigenvalue of A is a pole of G.s/, multiplicities counted. The proof (omitted because it is bulky)
follows from the explicit construction of a minimal realization from the Smith–McMillan form in [13].

Pole directions of transfer functions were defined in §3.4.2 via the Smith–McMillan form (3.35). Con-
nections between this form and state-space realizations requires higher-level polynomial matrix techniques,
which are not studied in these notes (see [23, Ch. 4] for details). Some insight can be gained by looking
into the Smith–McMillan form of the transfer function .sI � J0;n/�1, where J0;n 2 Rn�n is the Jordan
block of size n associated with 0,

J0;n ´

2

6
6
6
6
6
4

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
: : :

: : :
:::

0 0 � � � 0 1

0 0 � � � 0 0

3

7
7
7
7
7
5

It can be verified by direct substitution that the Smith–McMillan form of .sI � J0;n/�1 is

U0.s/.sI � J0;n/�1V0.s/ D diagf1=sn; In�1g; (4.22)

https://en.wikipedia.org/wiki/Cramer's_rule


80 Chapter 4. State-Space Techniques for LTI Systems

where the n � n unimodular polynomial matrices

U0.s/ ´

2

6
6
6
6
6
4

1 0 0 � � � 0 0

0 0 0 � � � �s 1
:::

:::
:::

:::
:::

0 �s 1 � � � 0 0

�s 1 0 � � � 0 0

3

7
7
7
7
7
5

and V0.s/ ´

2

6
6
6
6
6
4

0 0 � � � 0 �1

0 0 � � � �1 0
:::

:::
:::

:::

0 �1 � � � 0 0

1 s � � � sn�2 sn�1

3

7
7
7
7
7
5

(cf. Example 3.4 on p. 59). It follows from (4.22) that the geometric multiplicity of the pole of .sI �J0;n/�1

at s D 0 is one regardless of n, which is not quite intuitive. Also, it is readily seen that

ker

2

6
4

e02
:::

e0n

3

7
5 ŒV0.0/�0 D span.en/ D ker J 00;n and ker

2

6
4

e02
:::

e0n

3

7
5U0.0/ D span.e1/ D ker J0;n:

cf. (3.38).
These arguments can be extended to Jordan blocks associated with any pi by replacing s ! s � pi and

to a general A via transforming it to the Jordan normal form. Hence, the geometric multiplicity of every
pole in .sI � A/�1, as per the definition on p. 56, equals the geometric multiplicity of the corresponding
eigenvalue of A, as per the definition on p. 31. It may then appear natural to define the input and output
directions of a pole pi of the realization .A; B; C; D/ as

pdiri.G; pi/ D B 0 ker.pi I � A/0 � C
m and pdiro.G; pi/ D C ker.pi I � A/ � C

p: (4.23)

Remark 4.4 (pole directions in Gilbert’s realization). Determining pole directions of systems given in
Gilbert’s realization from Theorem 4.11 is particularly simple. Indeed, in this case the eigenvectors of A

are the standard basis in Cn, so that

pdiri.G; ai/ D Im B 0i and pdiro.G; ai/ D Im Ci (4.230)

for realization (4.20), which follows by a direct inspection. O

Introduce now the polynomial matrix

RG.s/ ´
�

A � sIn B

C D

�

; (4.24)

which is called the Rosenbrock system matrix (RSM) of the realization .A; B; C; D/. The following tech-
nical result sheds light on the relation between RG.s/ and the corresponding transfer function.

Lemma 4.14. If .A; B; C; D/ is a realization of G, then

rank.RG.s0// D n C rank.G.s0//; 8s0 62 spec.A/:

and then nrank.RG.s// D n C nrank.G.s//.

Proof. The result follows from either one of the relations

RG.s/ D
�

A � sI 0

C G.s/

��

I �.sI � A/�1B

0 I

�

D
�

I 0

�C.sI � A/�1 I

� �

A � sI B

0 G.s/

�

; (4.25)

which are straightforward to verify, and the fact that the normal rank of a polynomial matrix differs from
its rank only at a finite number of points. The result can also be proved via the observation that G.s/ is the
Schur complement of A � sI in RG.s/.

https://en.wikipedia.org/wiki/Jordan_normal_form
https://en.wikipedia.org/wiki/Howard_Harry_Rosenbrock
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Lemma 4.14 suggests that there may be a relation between system zeros and points at which the corre-
sponding RSM loses its normal rank. We then call every ´i 2 C at which rank.RG.´i// < nrank.RG.s//

an invariant zero of the realization .A; B; C; D/. Because
�

TAT �1 � sI TB

C T �1 D

�

D
�

T 0

0 I

� �

A � sI B

C D

��

T �1 0

0 I

�

;

invariant zeros, like poles of the realization, are not affected by similarity transformations. The following
result establishes a connection between invariant zeros of a realization and the transmission zeros of the
corresponding transfer function, defined in §3.4.2.

Theorem 4.15. Invariant zeros of a realization .A; B; C; D/ comprise all its hidden modes and the trans-

mission zeros of D C C.sI � A/�1B .

Proof. Since invariant zeros are invariant under similarity transformations, we may consider the Kalman
canonical realization as in (4.17). It is then readily verified that RG.s/ loses its normal rank at all hidden
modes. We thus only need to prove that invariant zeros of a minimal realization coincide with transmission
zeros of the corresponding transfer function. This claim is a direct consequence of the first item of Propo-
sition 3.7 and Lemma 4.14 in the case when invariant zeros are not poles of the realization. The proof in
the general case is quite technical and thus omitted, see [12, §6.5.3] for details.

Hence, the problem of calculating transmission zeros of a transfer function G.s/ can be reduced to the
problem of finding points at which the RSM associated with a minimal realization of G.s/ drops rank. This
is a so-called generalized eigenvalue problem associated with the matrix pencil

RG.s/ D
�

A B

C D

�

� s

�

I 0

0 0

�

and we need only finite generalized eigenvalues here.
Zero directions defined by (3.39) can also be expressed in terms of RSMs. Consider first the case when

´i 2 C is a transmission zero of G.s/ given in terms of its minimal realization .A; B; C; D/, but not its
pole (so that ´i 62 spec.A/). By Proposition 3.7, in this case zdiri.G; ´i/ D ker G.´i /. Given any nonzero
ui 2 ker G.´i/, the first equality in (4.25) yields

0 D
�

A � ´i I 0

C G.´i/

��

0

ui

�

D
�

A � ´i I B

C D

� �

I .´iI � A/�1B

0 I

��

0

ui

�

D
�

A � ´i I B

C D

� �

.´i I � A/�1Bui

ui

�

:

This shows that any vector from zdiri.G; ´i/ must belong to
�

0 Im

�

ker RG.´i /. The other direction is
also true. To see that, suppose now that

�
xi
ui

�

2 ker RG.´i /. This implies, again by the first equality in
(4.25), that

0 D
�

A � ´i I B

C D

� �
xi

ui

�

D
�

A � ´iI 0

C G.´i /

� �
Qxi

ui

�

; (4.26)

where Qxi ´ xi � .´i I � A/�1Bui . Because ´i 62 spec.A/, the first block row above entails Qxi D 0 and
the second one reads G.´i/ui D 0, which is what we need. Similar arguments can be applied to the output
zero direction, which leads to the following relations:

zdiri.G; ´i/ D
�

0 Im

�

ker RG.´i / � C
m and zdiro.G; ´i/ D

�

0 Ip

�

kerŒRG.´i/�
0 � C

p: (4.27)

The situation turns more complicated if an invariant zero ´i 2 spec.A/. It can still be shown (perhaps)
that the directions in (4.27) coincide with those in (3.39) in the general case as well. The argument below

https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Generalized_eigenvalue_problem
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supports this claim circumstantially. Assume that there is
�

xi
ui

�

¤ 0 such that the first equality in (4.26)
holds true. By the assumed observability of .C; A/ we can conclude that ui ¤ 0. But then the equality
.´i I � A/xi D Bui ” u0iB

0 D x0i .´iI � A/0, yields that u0i B
0� D 0 for all � 2 ker.´i I � A/0. This, in

turn, implies that ui ? pdiri.G; ´i /, which agrees with the discussion about the orthogonality of pole and
zero directions on p. 57.

Example 4.1. Consider the transfer function from Example 3.1 on p. 57,

G.s/ D 1

s

�

1 1

1 1

�

D 1

s

�

1

1

�
�

1 1
�

:

By Theorem 4.11, its minimal realization is

G.s/ D

2

4

0 1 1

1 0 0

1 0 0

3

5 ;

which has order 1. This realization has one pole at the origin and because ker.s � 0/jsD0 D C, we have
that

pdiri.G; 0/ D
�

1

1

�

C D span
��

1

1

��

and pdiro.G; 0/ D
�

1

1

�

C D span
��

1

1

��

:

The Rosenbrock system matrix for this system,

RG.s/ D

2

4

�s 1 1

1 0 0

1 0 0

3

5 ;

is such that rank.RG.s// D 2 for all s 2 C. Hence, the system has no zeros. All these results agree with
those in Example 3.1. ˙

Example 4.2. The transfer function from Example 3.2 on p. 57,

G.s/ D
�

1 1=s

0 1

�

D
�

1 0

0 1

�

C 1

s

�

0 1

0 0

�

D
�

1 0

0 1

�

C 1

s

�

1

0

�
�

0 1
�

:

Its minimal Gilbert’s realization is

G.s/ D

2

4

0 0 1

1 1 0

0 0 1

3

5

and has order 1. This realization has one pole at the origin and because ker.s � 0/jsD0 D C, we have that

pdiri.G; 0/ D
�

0

1

�

C D span
��

0

1

��

and pdiro.G; 0/ D
�

1

0

�

C D span
��

1

0

��

:

The Rosenbrock system matrix for this system,

RG.s/ D

2

4

�s 0 1

1 1 0

0 0 1

3

5 ;

has full normal rank and det.RG.s// D �s. Hence, the system has a zero at the origin, whose multiplicity
is 1 (because rank.RG.0// D 2). It is readily verified that

ker RG.0/ D span

 " �1
1
0

#!

and kerŒRG.0/�0 D span

 " �1
0
1

#!

;
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so that

zdiri.G; 0/ D
�

0 1 0

0 0 1

�

ker RG.0/ D span
��

1

0

��

and

zdiro.G; 0/ D
�

0 1 0

0 0 1

�

kerŒRG.0/�0 D span
��

0

1

��

:

All these results again agree with those in Example 3.2. ˙

Example 4.3. Consider now the transfer function from Example 3.3 on p. 58,

G.s/ D
�

1=.s C 1/ 0 .s � 1/=..s C 1/.s C 2//

�1=.s � 1/ 1=.s C 2/ 1=.s C 2/

�

:

The least common denominator of its entries is d.s/ D .s � 1/.s C 1/.s C 2/ and the residues of its roots
are

Res.G.s/; 1/ D
�

0

�1

�
�

1 0 0
�

; Res.G.s/; �1/ D
�

1

0

�
�

1 0 �2
�

; Res.G.s/; �2/ D
�

0 0 3

0 1 1

�

:

Hence, its minimal realization by Theorem 4.11 is

G.s/ D

2

6
6
6
6
6
6
6
4

1 0 0 0 1 0 0

0 �1 0 0 1 0 �2

0 0 �2 0 0 0 3

0 0 0 �2 0 1 1

0 1 1 0 0 0 0

�1 0 0 1 0 0 0

3

7
7
7
7
7
7
7
5

which has order 4. Because this is Gilbert’s realization, we use formulae (4.230) on p. 80 to end up with

pdiri.G; 1/ D Im

"
1
0
0

#

D span

 "
1
0
0

#!

; pdiro.G; 1/ D Im
�

0

�1

�

D span
��

0

1

��

;

pdiri.G; �1/ D Im

"
1
0

�2

#

D span

 " �1
0
2

#!

; pdiro.G; �1/ D Im
�

1

0

�

D span
��

1

0

��

;

pdiri.G; �2/ D Im

"
0 0
0 1
3 1

#

D span

 "
0
1
0

#

;

"
0
0
1

#!

; and pdiro.G; �2/ D Im I2 D C
2:

It can be verified that the Rosenbrock system matrix for this system,

RG.s/ D

2

6
6
6
6
6
6
6
4

1 � s 0 0 0 1 0 0

0 �1 � s 0 0 1 0 �2

0 0 �2 � s 0 0 0 3

0 0 0 �2 � s 0 1 1

0 1 1 0 0 0 0

�1 0 0 1 0 0 0

3

7
7
7
7
7
7
7
5

;
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has full rank, 6, at s D 0. Hence, nrank.RG.s// D 6. Solving the corresponding generalized eigenvalue
problem, we find only one finite generalized eigenvalue, that at s D 1. Now,

ker RG.1/ D span

0

B
B
B
B
B
B
@

2

6
6
6
6
6
6
4

1
0
0
1
0
3
0

3

7
7
7
7
7
7
5

;

2

6
6
6
6
6
6
4

1
�3
3
1
0
0
3

3

7
7
7
7
7
7
5

1

C
C
C
C
C
C
A

and kerŒRG.1/�0 D span

0

B
B
B
B
@

2

6
6
6
6
4

�3
3
2
0
6
0

3

7
7
7
7
5

1

C
C
C
C
A

;

which yields

zdiri.G; 1/ D span

 "
0
1
0

#

;

"
0
0
1

#!

and zdiro.G; 1/ D span
��

1

0

��

:

All these results are in accordance with those computed in Example 3.3, again. This is especially notewor-
thy with regard to the zero directions, because the zero does coincide with a pole. ˙

SISO zeros can be interpreted as complex points ´i such that the input u satisfying u.t/ D e´i t1.t / is
filtered out by the system. Such an interpretation can be extended to the MIMO case as well. To this end, let
´i be an invariant zero of the realization .A; B; C; D/ and consider an input of the form u.t/ D ui e´i t 1.t /

for some nonzero ui 2 Cm. If the Sylvester equation �xi´i C Axi C Bui D 0 is solvable in xi 2 Cn, then
the output in the Laplace domain can be split as

Y.s/ D G.s/ui

1

s � ´i

D
�

A B

C D

� �
´i 1

ui 0

�

D �
�

A xi

C 0

�

C
�

´i 1

Cxi C Dui 0

�

;

by (4.9). The Sylvester equation above is solvable for all ui if ´i 62 spec.A/ and may be solvable if ´i 2
spec.A/ and ui ? pdiri.G; ´i/, see the discussion on p. 82. Assuming that xi exists, the expansion of Y.s/

above yields
y.t/ D �C eAt xi1.t / C .Cxi C Dui /e´i t

1.t /:

The first term in this expression equals the response of the system (4.3) to the initial condition x0 D �xi

and can be thought of as the transient component of the response to the chosen u. The second term is then
the “steady-state” effect of the input. It is filtered out by the system iff Cxi C Dui D 0, which, in turn,
happens iff ui 2 zdiri.G; ´i/, cf. the first equality in (4.26). As a matter of fact, if the initial condition of
the system is x.0/ D xi and the input satisfies u.t/ D ui e´i t1.t / for

�
xi
ui

�

2 ker RG.´i/, then the output
y D 0, i.e. the system does not respond to this combination of initial conditions and input at all.

By similar arguments, it can be shown that if the output of G having a zero at ´i is measured by a sensor
with the transfer function 1=.s � ´i / y0i , then the measured signal does not contain a dynamical effect of
the sensor iff yi 2 zdiro.G; ´i /.

4.3.3 Realization poles and invariant zeros in terms of coprime factors

Coprime factors over RH1 of finite-dimensional MIMO systems play, in a sense, roles of the numerator and
denominator of SISO transfer functions. We may then expect that poles and zeros of a transfer function are
related to zeros of its coprime factors. This is indeed the case when poles and invariant zeros of state-space
realizations are considered. The result below also connects pole and zero directions of transfer functions
with zero directions of coprime factors.

Proposition 4.16. Let .A; B; C; D/ be a stabilizable and detectable realization of a finite-dimensional LTI

system G and the coprime factors QM .s/, QN .s/, M.s/, and N.s/ of G.s/ be constructed as in (4.21). The

following statements hold true regardless the choice of the stabilizing gains K and L in (4.21):
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� ´i 2 C is an invariant zero of QM iff it is a realization pole of G, with zdiri. QM; ´i/ D pdiro.G; ´i/;

� ´i 2 C is an invariant zero of M iff it is a realization pole of G, with zdiro.M; ´i/ D pdiri.G; ´i/;

� ´i 2 C is an invariant zero of QN iff it is an invariant zero of G, with zdiri. QN ; ´i/ D zdiri.G; ´i/;

� ´i 2 C is an invariant zero of N iff it is an invariant zero of G, with zdiro.N; ´i/ D zdiro.G; ´i/.

Proof. Key elements of the proof are the relations

R QM .s/ D
�

A C LC � sI L

C I

�

D
�

A � sI L

0 I

� �

I 0

C I

�

;

RM .s/ D
�

A C BK � sI B

K I

�

D
�

I B

0 I

��

A � sI 0

K I

�

;

R QN .s/ D
�

A C LC � sI B C LD

C D

�

D
�

I L

0 I

��

A � sI B

C D

�

D
�

I L

0 I

�

RG.s/;

and

RN .s/ D
�

A C BK � sI B

C C DK D

�

D
�

A � sI B

C D

��

I 0

K I

�

D RG.s/

�

I 0

K I

�

;

which are readily verifiable. Because all matrix factors above are square and nonsingular, the equivalence
of invariant zeros of the coprime factors with invariant zeros and realization poles of G follow immediately.
Consider now input zero directions of QM . Because

ker
�

A � ´i I L

0 I

�

D
�

I

0

�

ker.A � ´i I / H) ker R QM .´i/ D
�

�I

C

�

ker.´iI � A/;

whence the direction statement of the first item follows by comparing the second equality of (4.23) with
the first equality of (4.27). The direction statement in the second item follows by dual arguments. Finally,
the direction statements in the last two items follow from the obvious facts that ker R QN .´i / D ker RG.´i /

and kerŒRN .´i/�
0 D kerŒRG.´i/�

0.

It should be emphasized that the realizations of QM , QN , M , N in (4.21) need not be minimal even if the
original realization of G is minimal, there might be stable cancellations in them. Hence, invariant zeros
of either of the coprime factors might not be related to transmission zeros of the corresponding transfer
functions. Rather, they could be hidden modes of QM , QN , M , or N . Still, no unstable cancellations can
occur, so that all invariant zeros of N and QN in xC0 coincide and are necessarily transmission zeros of both
N.s/ and QN .s/. Likewise, all invariant zeros of M and QM in xC0 coincide and are necessarily transmission
zeros of both M.s/ and QM.s/ and are thus the poles of M�1.s/ and QM�1.s/ (cf. Proposition 3.3).

An advantage of dealing with QM or M instead of G itself in the analysis of poles lies in the fact that the
denominators are always square and bi-proper, which may simplify their analysis. An advantage of dealing
with QN or N instead of G itself in the analysis of zeros is in the possibility to avoid subtle situations of
poles and zeros at the very same points. Indeed, although invariant zeros of QN and N do not depend on
L and K, their poles do. If the original realization of G is minimal, we can always assign eigenvalues of
A C LC or A C BK to be different from zeros of G. Moreover, in many situations only unstable, i.e. those
in xC0, zeros are of interest, so any coprime factors over RH1 can be used to analyze those zeros via the
rank drop of QN .s/ and N.s/ rather than higher-dimensional RSMs.

4.3.4 Computing system norms

In this subsection the computation of the H2 and H1 norms of a stable G in terms of its state-space
realization G.s/ D D C C.sI � A/�1B having a Hurwitz A is studied.
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Proposition 4.17. If D D 0, then

kGk2
2 D tr.B 0QB/ D tr.CP C 0/;

where Q and P are the observability and controllability Gramians of .C; A/ and .A; B/, respectively.

Proof. The impulse response of G satisfies g.t/ D C eAt B1.t /, see (4.4). It follows from (3.26) that

kGk2
2 D

Z

R

tr
�

g.t/0g.t/
�

dt D
Z

RC

tr
�

B 0eA0t C 0C eAt B
�

dt D tr
�

B 0
Z

RC

eA0t C 0C eAt dtB

�

;

which yields the first equality of the proposition. Now, by the property tr.M1M2/ D tr.M2M1/,

kGk2
2 D

Z

R

tr
�

g.t/g.t/0
�

dt D
Z

RC

tr
�

C eAt BB 0eA0t C 0
�

dt D tr
�

C

Z

RC

eAt BB 0eA0t dtC 0
�

;

which yields the second equality of the proposition.

Proposition 4.17 gives an efficient algorithm to compute the H2 norm. The Lyapunov equations for
computing P and Q, (4.10) and (4.15), are linear and can thus be solved in a finite number of steps.

Unlike the H2 case, there are no closed-form formulae for the H1 norm of a stable LTI system. Rather,
an iterative search procedure can be organized on every step of which one has to check whether kGk1 < 

for a given  > 0. The basis for this procedure is given by the result below.

Proposition 4.18. If G 2 RH1, then kGk1 <  for a given  > 0 iff kDk <  and the matrix

HG ´
�

A 0

C 0C �A0

�

�
�

B

C 0D

�

.2I � D0D/�1
�

�D0C B 0
�

has no pure imaginary eigenvalues.

Proof. It follows from equality (3.22), Theorem A.2, and the fact that G 2 RH1 that

kGk1 <  ” 2I � ŒG.j!/�0G.j!/ > 0; 8! 2 R [ f˙1g:

Because G.1/ D D, the condition on the feedthrough term in the statement of the proposition is necessary.
Therefore, in what follows we assume that D0D < 2Im. But in that case we have that kGk1 <  iff
˚.s/ ´ 2I � G�.s/G.s/ has no pure imaginary transmission zeros, by mere continuity of its frequency
response. It follows from the definition of the conjugate transfer function in (3.29) that

G.s/ D
�

A B

C D

�

H) G�.s/ D
�

�A0 C 0

�B 0 D0

�

:

Hence,

˚.s/ D 2I �
�

�A0 C 0

�B 0 D0

� �
A B

C D

�

D

2

4

A 0 B

C 0C �A0 C 0D

�D0C B 0 2I � D0D

3

5 ;

by (4.7). Because A is Hurwitz, the realization above has no pure imaginary poles. This, together with
Theorem 4.15, implies that ˚.s/ has no pure imaginary zeros iff its realization above has no pure imaginary
invariant zeros, regardless its minimality. Taking into account that nrank.˚.s// D rank.˚.1// D m, we
have the following condition:

rank

0

@

2

4

A � j!In 0 B

C 0C �A0 � j!In C 0D

�D0C B 0 2Im � D0D

3

5

1

A D 2n C m; 8! 2 R:

It follows from (B.14b) that the latter condition is equivalent to the full rank of the Schur complement of
2Im � D0D in it, which reads rank.HG � j!I2n/ D 2n, 8! 2 R, and yields the second statement of the
proposition.
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Remark 4.5 (what happens at  D kGk1). It follows from the proof of Proposition 4.18 that two situations
are possible if kGk1 D  . It might happen that kDk is still strictly smaller than  , in which case HG is well
defined and must have at least a pair of j!-axis eigenvalues. In fact, such eigenvalues should be repeated.
This can be seen via the property that HG D �H 0G , which, in turn, implies that � 2 spec.HG/ iff so does
�� too. Thus, as  approaches its lower bound, a pair of eigenvalues, one in Cn xC0 and another one in C0,
approach the very same point at the imaginary axis. Then the absolute values of those eigenvalues are the
very frequencies at which kG.j!/k D  . It should be emphasized that the mere presence of pure imaginary
eigenvalues in HG , even repeated ones, does not say that kGk1 D  . It just implies that kG.j!/k D 

at those frequencies. Now, if kDk D x�.D/ D  , it is still possible that kG.j!/k D  at some other
frequencies ! (in which case nrank.˚.s// D m) or even at all ! 2 R (in which case nrank.˚.s// < m, this
happens, for example, if G.s/ is inner). O

Using the result of Proposition 4.18, the H1 norm can be found by a bisection algorithm. To this end,
we select an upper bound u and a lower bound l (e.g. l D x�.D/) for kGk1 and then check whether
kGk1 < .l C u/=2 (in this case u ! .l C u/=2) or not (in this case l ! .l C u/=2). The iterations
are repeated until the relative error 1 � l=u 2 .0; 1/ falls within a required tolerance level.

4.3.5 KYP lemma

The section is concluded with the celebrated KYP (Kalman–Yakubovich–Popov) lemma. It connects a
class of frequency-domain inequalities with linear matrix inequalities, aka LMIs.

Theorem 4.19 (KYP). Consider a p � m real-rational transfer function G.s/ D D C C.sI � A/�1B and

a matrix Mkyp D M 0
kyp 2 R.mCp/�.mCp/. If A 2 Rn�n has no pure imaginary eigenvalues, then

�

ŒG.j!/�0 Im

�

Mkyp

�

G.j!/

Im

�

< 0 (4.28)

for all ! 2 R [ f˙1g iff there is X D X 0 2 Rn�n such that

�

C 0 0

D0 Im

�

Mkyp

�

C D

0 Im

�

C
�

In A0

0 B 0

� �

0 X

X 0

��

In 0

A B

�

< 0: (4.29)

Proof. To simplify the exposition, assume that C D I and D D 0. Because
�

G.j!/

I

�

D
�

D C C.j!I � A/�1B

I

�

D
�

C D

0 I

� �

.j!I � A/�1B

I

�

;

this assumption entails no loss of generality, we can always redefine

Mkyp !
�

C 0 0

D0 Im

�

Mkyp

�

C D

0 Im

�

µ
�

M11 M12

M21 M22

�

:

(4.28) (H (4.29) W It is readily seen that AG.s/ C B D A.sI � A/�1B C B D s.sI � A/�1B . Hence,

�

ŒG.j!/�0 I
�
�

I A0

0 B 0

��

0 X

X 0

� �

I 0

A B

��

G.j!/

I

�

D �B 0.j!I C A0/�1
�

I �j!I
�
�

0 X

X 0

� �

I

j!I

�

.j!I � A/�1B D 0

for all X . Inequality (4.28) follows then via post- and pre-multiplying (4.29) by
�

G.j!/
I

�

and its adjoint,
respectively.

https://en.wikipedia.org/wiki/Rudolf_E._Kalman
https://en.wikipedia.org/wiki/Vladimir_Yakubovich
https://en.wikipedia.org/wiki/Vasile_M._Popov
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(4.28) H) (4.29) W Define

˚.s/ ´
�

G�.s/ I
�

Mkyp

�

G.s/

I

�

D

2

4

A 0 B

M11 �A0 M12

M21 �B 0 M22

3

5 ;

where the last equality follows by state-space constructions similar to those used to derive the real-
ization of ˚.s/ in the proof of Proposition 4.18. Inequality (4.28) reads then ˚.j!/ < 0, for all !.
This requires M22 < 0, which is assumed hereafter. Repeating the arguments of the proof of Propo-
sition 4.18, (4.28) implies that ˚.s/ has no pure imaginary zeros, which, together with the assumed
property that spec.A/ \ jR D ¿, is equivalent to the absence of pure imaginary eigenvalues of

HM D
�

A 0

M11 �A0

�

�
�

B

M12

�

M�1
22

�

M21 �B 0
�

D
�

A � BM�1
22 M21 BM�1

22 B 0

M11 � M12M�1
22 M21 �A0 C M12M�1

22 B 0

�

:

This is a Hamiltonian matrix, see (B.11) on 193.

Assume first that .A; B/ is stabilizable, so that .A � BM�1
22 M21; BM�1

22 B 0/ is stabilizable as well. By
Theorem B.6, there is a stabilizing solution QX D QX 0 to the Riccati equation

.A � BM�1
22 M21/0 QX C QX.A � BM�1

22 M21/ � M11 C M12M�1
22 M21 C QXBM�1

22 B 0 QX D 0

such that AX ´ A � BM�1
22 M21 C BM�1

22 B 0 QX is Hurwitz. Consider now the Lyapunov equation

A0XY C YAX D .A � BM�1
22 M21/0Y C Y.A � BM�1

22 M21/ C YBM�1
22 B 0 QX C QXBM�1

22 B 0Y D �I;

which has a unique solution Y D Y 0 > 0. It is readily seen that the matrix X D Y � QX satisfies

A0X C XA C M11 � .XB C M12/M�1
22 .B 0X C M21/ D �I � YBM�1

22 B 0Y < 0:

By Lemma B.8 together with the fact that M22 < 0, the latter inequality is equivalent to

�

A0X C XA C M11 XB C M12

B 0X C M21 M22

�

D Mkyp C
�

In A0

0 B 0

� �

0 X

X 0

��

In 0

A B

�

< 0;

i.e. we did find X D X 0 such that (4.29) holds true.

If .A; B/ is not stabilizable, we can construct a similar realization of G of a form similar to that in
(4.12), but with only unstabilizable modes isolated. In this case a sought X can be chosen to be block
diagonal with the block corresponding to the stabilizable part constructed as above and that corre-
sponding to the unstabilizable part, As̄, which does not affect (4.28), constructed via the Lyapunov
equation A0s̄X2 C X2As̄ D �˛I for a sufficiently large ˛ > 0. The details are left as an exercise.

Note that the non-strict counterparts of inequalities (4.28) and (4.29) are also equivalent, provided .A; B/

is controllable, see [22] for a proof.

Theorem 4.19 establishes that an infinite set of inequalities based on the frequency response of a real-
rational system can be verified via a finite number of LMIs. This is an important relation, both from
the numerical and conceptual viewpoints. Linear-matrix inequalities are convex and can be efficiently
solved via interior-point and bundle methods, with plenty of software available. The reduction to matrix
inequalities in terms of state-space realizations also gives a valuable insight into properties of frequency
responses and their connections with time-domain properties of dynamical systems. LMIs can then be
connected with algebraic Riccati equations, facilitates a deeper analysis of their properties.
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The KYP lemma is a fairly general result. For instance, it includes the H1-norm bound as its special
case with the choice

Mkyp D
�

Ip 0

0 �2Im

�

;

for which the inequality in (4.28) reads 2I � ŒG.j!/�0G.j!/ > 0, for all !. If, in addition, A is Hurwitz,
then this inequality is equivalent to kGk1 <  . With this choice of Mkyp inequality (4.29) reads

�

A0X C XA C C 0C XB C C 0D
B 0X C D0C D0D � 2I

�

< 0: (4.29brl)

In fact, it can be shown that G 2 RH1 and kGk1 <  iff there is X D X 0 > 0 such that the inequality
above holds. In other words, there is no need to assume that A is Hurwitz if the positive definiteness of X

is required. This result is known as the bounded-real lemma. The equivalence of this condition and the
condition of Proposition 4.18 can be seen in the proof of the KYP lemma. One more equivalent form can
be stated as the solvability of the ARE

A0X C XA C C 0C C .XB C C 0D/.2I � D0D/�1.B 0X C D0C / D 0

under x�.D/ < 2, which can be viewed via considering the Schur complement of the .2; 2/ element of
(4.29brl).

Another important particular case of Theorem 4.19 corresponds to the choice

Mkyp D �
�

0 Im

Im 0

�

under p D m, which turns (4.28) into the equality G.j!/ C ŒG.j!/�0 > 0 for all !. This is a MIMO
counterpart of the condition Re G.j!/ > 0, i.e. that the frequency response G.j!/ is located entirely in the
right half-plane of the Nyquist plot. The LMI (4.29) then turns

�

A0X C XA XB � C 0

B 0X � C �D � D0

�

< 0; (4.29prl)

with X D X 0 > 0 only if A is Hurwitz. This is known as the strict positive-real lemma. This property
is related to the passivity property of Lm

2 ! Lm
2 systems, which reads as the condition that hGu; ui2 > 0

for all nonzero u 2 Lm
2 , and is important in many applications. For instance, passive systems constitute a

convenient class for feedback stabilization as a feedback interconnection of two passive systems is stable,
see Theorem 6.2 on p. 115, even in the nonlinear case. This property is routinely used in the control of
flexible mechanical systems, telerobotics, adaptive control, et cetera.

Remark 4.6 (finite-frequency KYP lemma). If the inequality in (4.28) is only required to hold for j!j � !0

with a given frequency !0 > 0, then inequality (4.29) should be replaced with

�

C 0 0

D0 Im

�

Mkyp

�

C D

0 Im

�

C
�

In A0

0 B 0

��

!2
0Y X

X �Y

��

In 0

A B

�

< 0 (4.30)

for some X D X 0 and Y D Y 0 > 0. This is still an LMI, in both its parameters, so it can be efficiently
solved numerically. This neat result was proved by Iwasaki, Meinsma, and Fu [11], so perhaps it should
be referred to as the IMF lemma. O

https://en.wikipedia.org/wiki/Nyquist_stability_criterion#Nyquist_plot
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4.4 Model order reduction by balanced truncation

A tradeoff between accuracy and complexity is one of fundamental dilemmas in engineering in general
and in control in particular. On the one hand, complex models might be required to describe physical phe-
nomena accurately and complex (high-order) controller might be needed to satisfy required performance
specifications. On the other hand, complex models are harder to deal with and high-order controllers are
harder to implement, because their implementation might demand more expensive hardware and be less
reliable comparing with low-order controllers. It is thus important to have methods, enabling us to replace
complex models with their simpler approximations without compromising performance too much. Having
such methods, one can either reduce the complexity of the plant prior to controller design or reduce that of
the resulted controller (or both).

In the realm of LTI systems, complexity is almost exclusively measured by the order of corresponding
models2. Accordingly, complexity reduction is known as the model order reduction. An abstract order
reduction problem can be posed as follows:

� given an n-order p � m LTI system G and nr < n, find an nr-order p � m LTI system Gr, which is
“close” to G.

Throughout this section, the “closeness” of G and Gr will be measured by the H1 norm of the difference
between their transfer functions, i.e. kG � Grk1. Of course, any other norm and some other measures of
the difference between G and Gr may make sense depending on the situation.

Performance-wise, a natural approach to derive a reduced-order Gr would be to solve minGrkG�Grk1.
However, there might still be no computationally reliable solution to this problem in general. For that
reason, the treatment in this section will be based on simpler mode-truncation arguments. These arguments
may also we viewed as an example of the use of abstract results discussed in Section 4.2 to a more concrete
application.

4.4.1 How minimal is minimal realization

Some poles of transfer functions might affect input/output relations in the system less than others. Classical
control employs the notion of dominance to explain this situation. Intuitively, poles that are far left in the
complex plane or those nearly canceled by zeros should have a limited effect on the system properties. The
following simple examples support this intuition quantitatively:

Example 4.4. Consider

G.s/ D 1

.s C 1/.�s C 1/
for some � 2 .0; 1/:

This transfer function has degree 2. However, if � � 1, the pole of G.s/ at s D �1=� becomes almost
unnoticeable relatively to that at s D �1. Hence, the first-order transfer function Gr.s/ D 1=.s C 1/ can be
expected to be an accurate representation of the system. This can be seen from

G.s/ � Gr.s/ D � �s

.s C 1/.�s C 1/
H) kG � Grk1 D �

1 C �
;

which vanishes as � ! 0. ˙

Example 4.5. Consider

G.s/ D 2s C 1

.s C 1/..2 � �/s C 1/
for some � 2 .0; 1/:

2In the nonlinear case one may also be interested in limiting the complexity of involved static nonlinear functions.
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This transfer function has degree 2 and its pole at 1=.� � 2/ 2 .�1; �1=2/ is closer to the origin than that at
�1. However, if � � 1, then the former pole is almost canceled by the zero at s D �1=2. Not surprisingly,
the reduced order approximation Gr.s/ D 1=.s C 1/ is accurate for small �, as can be seen from

G.s/ � Gr.s/ D �s

.s C 1/..2 � �/s C 1/
H) kG � Grk1 D �

3 � �
;

which also vanishes as � ! 0. ˙

A naïve approach to the order reduction of LTI systems would be to look for “far left” poles or “closely”
located poles and zeros and cancel them. This is straightforward, at least conceptually, in the SISO case.
However, in the MIMO case the directions of poles and zeros should also be taken into account, we already
know that poles and zeros at the same location do not necessarily cancel each other. The need to account for
pole / zero directions would complicate the procedure considerably. In the case of near cancellations, this
difficulty can be circumvented by considering alternative indications of the “closeness” between poles and
zeros. For example, motivated by the discussed in Section 4.2.3 we may expect that the effect of “almost”
hidden (i.e. “almost” uncontrollable and / or unobservable) modes on the properties of G is negligible. This
observation can be supported by the examples below:

Example 4.6. Consider the system from Example 4.5. Its possible state-space realization is

G.s/ D

2

4

�.3 � �/=.2 � �/ 1 2=.2 � �/

�1=.2 � �/ 0 1=.2 � �/

1 0 0

3

5 :

This realization is minimal and its observability matrix Mo D
�

1 0
�.3��/=.2��/ 1

�

is well-conditioned. Yet its
controllability matrix,

Mc D 1

.2 � �/2

�

4 � 2� �4 C �

2 � � �2

�

;

is almost singular for small �, because det.Mc/ D ��=.2 � �/3. ˙

This example suggests that the presence of “almost” hidden modes may indicate the presence of closely
located poles and zeros which are “almost” canceled. The reduction of such modes should not then incur
significant errors. Natural questions then are how such “almost” hidden modes can be discovered in state-
space realizations and how they can be reduced?

To answer these questions, return to Proposition 4.5, which shows that non-controllable modes and
their directions can be seen from the null space of the associated controllability Gramian P . Extending
this reasoning to the case of a near-singular P seems to be natural. Indeed, assume that P > 0, i.e. that the
realization is controllable, but some of its singular values, say �nrC1 to �n are “almost” zero. This means,
that by partitioning the state-space realization of G accordingly, i.e. as

G.s/ D

2

4

A11 A12 B1

A21 A22 B2

C1 C2 D

3

5

with A11 2 Rnr�nr , we should end up with “almost zero” A21 and B2. One might then be tempted to elim-
inate these “almost uncontrollable” modes and would expect that the resulting nr-order transfer function

Gr.s/ D
�

A11 B1

C1 D

�

is close to G.s/. Yet the result might fall short of this expectation as shown below.
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Example 4.7. Consider the transfer function

G.s/ D 18

5s2 C 12s C 9
D

2

4

�2 �1=˛ 1

˛ �2=5 ˛

�1 1=˛ 0

3

5 ;

which is true for all ˛ ¤ 0. The controllability Gramian of this realization is

P D diagf0:25; 1:25˛2g:

Thus, this realization can be made almost uncontrollable by selecting ˛ small enough. Moreover, the sub-
blocks A21 D B2 D ˛ are then also small. Yet the truncation of the second state yields the reduced-order
transfer function

Gr.s/ D
�

�2 1

�1 0

�

D � 1

s C 2
;

which is anything but a good approximation of G.s/ since

kG � Grk1 D 2:5 > kG � 0k1 D kGk1 D 2:

The source of the problem becomes apparent when we check the observability Gramian, which is

Q D diag
˚

0:25; 1:25=˛2
	

:

This shows that for small ˛ the second state becomes “over-observable,” in a sense. ˙

Example 4.7 shows clearly that the controllability (or observability) Gramian alone cannot serve as
an accurate indication of the relative importance of the system modes in the input / output behavior. Yet
Example 4.7 also suggests a remedy. Indeed, if the “degrees” of controllability and observability of each
mode were balanced (equalized), then the situation above would never occur. Such a balancing is indeed
possible and is studied in the next subsection.

4.4.2 Balanced realization and Hankel singular values

Consider the state-space realization (4.5) and denote by P and Q its controllability and observability
Gramians, respectively. Consider also another realization of G, . QA; QB; QC; D/ ´ .TAT �1; TB; C T�1; D/,
where T is a nonsingular similarity transformation matrix, which has QP and QQ as its Gramians. As follows
from (4.11) and (4.13) on pp. 72 and 74, respectively, the following relations take place:

QP D TP T 0 and QQ D T �0QT �1:

The eigenvalues (and, therefore, the singular values) of both Gramians are not preserved under similarity
transformations. This fact confirms the previous conclusion that the singular values of either P or Q alone
cannot be used to decide whether a part of the system dynamics is negligible or not. Yet further inspection
shows that

QP QQ D T .PQ/T �1;

i.e. the spectrum of the product of the controllability and observability Gramians is invariant under simi-
larity transformations.

Because spec.PQ/ D spec.Q1=2PQ1=2/, we may expect that PQ is also diagonalizable by an appro-
priate similarity transformation. This is indeed true. To see this, let the realization (4.5) be minimal, so
that both P and Q are nonsingular. Because these matrices are also symmetric, there are unitary Uc and
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Uo such that P D Uc˙cU
0
c and Q D Uo˙oU 0o for some diagonal ˙c > 0 and ˙o > 0. Construct the

nonsingular H D ˙
1=2
o U 0oUc˙

1=2
c and bring in its SVD, H D UH ˙H V 0H . Then, defining

TH D ˙
�1=2
H U 0H ˙1=2

o U 0o; (4.31)

it is a matter of straightforward algebra so see that

TH PQT �1
H D ˙2

H :

Note that similar result can be obtained in the case when the realization (4.5) is not minimal, yet the
derivations are more involved then.

Let ˙H D diagf�1In1
; : : : ; �lInl

g for some �1 > � � � > �l � 0 and
Pl

iD1 ni D n. The numbers �i ,
i D 1; : : : ; l , are called the Hankel singular values of the system. The maximal of the Hankel singular
values, �1 D

p

�.PQ/, is called the Hankel norm of G and is denoted as kGkh. This is actually the
induced norm of the Hankel operator HG W L2.R�/ ! L2.RC/ associated with the system. This operator
was defined at the beginning of Section 4, see also §B.1.2 on p. 190 for more details on the Hankel norm.

In the context of model reduction, the Hankel singular values do reflect the relative importance of
system modes. “Small” �i implies that ni modes of G almost do not affect the system and thus can be
eliminated. Yet the knowledge of �i is not sufficient to propose a constructive model reduction procedure.
The modes corresponding to small Hankel singular values should be detected as well. To this end the
following result is important.

Theorem 4.20. Let G 2 RH1 and (4.5) be its minimal realization. There exists a state transformation T

such that the Gramians P and Q of the realization .TAT �1; TB; C T �1; D/ satisfies

P D Q D ˙ ´ diagf�1In1
; : : : ; �lInl

g;

where �1 > � � � > �l > 0 are the Hankel singular values of G.

Proof. Take T D TH , where TH is defined by (4.31). Then the equality above can be verified by the direct
substitution.

The realization of Theorem 4.20 is called the balanced realization, reflecting the fact that the control-
lability and observability Gramians are equally emphasized. Consequently, the modes corresponding to
small diagonal elements of P can now be regarded as less important and, therefore, as elimination candi-
dates.

Example 4.8. Consider the transfer function from Example 4.7. It is clear from the Gramians calculated
there that its realization proposed in Example 4.7 becomes balanced if ˛ D 1 and the components of the
state vector are permutated, i.e.

G.s/ D

2

4

�2=5 1 1

�1 �2 1

1 �1 0

3

5

The corresponding Gramians P D Q D diagf1:25; 0:25g. As a matter of fact, removing the less dominant
second state results now in Gr.s/ D 1=.s C 0:4/, for which kG � Grk1 D 0:5. ˙

4.4.3 Balanced truncation

Consider now a stable G and assume that its realization of the form (4.5) is balanced as described in
Theorem 4.20. Motivated by Example 4.8, the modes corresponding to the smallest Hankel singular values
are natural elimination candidates. However, there are a couple of points we have to carry about. First, we
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definitely want the truncated system to be stable too. So the question is whether stability of the reduced-
order model can be guaranteed and under what conditions. Second, in order to decide how many modes
can be truncated without incurring significant errors, we would like to have some a priori bounds on the
model reduction error. These issues are addressed in the following result, whose proof is omitted.

Theorem 4.21. Let G be a stable system, whose balanced realization is partitioned as

G.s/ D

2

4

A11 A12 B1

A21 A22 B2

C1 C2 D

3

5

and the Gramians P D Q D ˙ D diagf˙11; ˙22g so that

˙11 ´ diagf�1In1
; : : : ; �rInr

g and ˙22 ´ diagf�rC1InrC1
; : : : ; �lInl

g

for �1 > � � � > �r > �rC1 > � � � > �l . The truncated system Gr with the transfer function

Gr.s/ ´
�

A11 B1

C1 D

�

is balanced, with Pr D Qr D ˙11, stable, and such that

kG � Grk1 � 2.�rC1 C � � � C �l/: (4.32)

Moreover, if r D l � 1, then the bound is achieved, i.e. kG � Gl�1k1 D 2�l .

Note, that ˙11 and ˙22 in Theorem 4.21 should not have diagonal elements in common. This is a key
limitation to guarantee the stability of the truncated system as can be seen from the following example:

Example 4.9. Consider the (inner) transfer function

G.s/ D .s � 1/2

.s C 1/2
D

2

4

�1 C cos 2� 1 � sin 2� 2 sin �

�1 � sin 2� �1 � cos 2� 2 cos �

�2 sin � �2 cos � 1

3

5 :

The realization above is balanced, with ˙ D I2, for all � . Its “A11” part is unstable whenever cos 2� D 1

or, equivalently, � D �k. ˙

It may be of interest to return to the first two examples of §4.4.1 and see how the balanced truncation
approach compares with ad hoc cancellations.

Example 4.10. The balanced realization of the system studied in Example 4.4 is

G.s/ D 1

.s C 1/.�s C 1/
D

2

4

�.1 � .1 C �/=˛/.� C 1/=.2�/ 2=˛ 1=
p

˛

�2=˛ .1 C .1 C �/=˛/.� C 1/=.2�/ 1=
p

˛

1=
p

˛ �1=
p

˛ 0

3

5 ;

where ˛ ´
p

�2 C 6� C 1, and the Gramians P D Q D 0:25 diagf˛=.� C 1/ C 1; ˛=.� C 1/ � 1g. Thus,
the first-order approximation obtained by the balanced truncation is

Gr.s/ D k1

�1s C 1
; where �1 D ˛

2

� ˛

� C 1
C 1

�

D
�

0 1
1

3:41
2:91

and k1 D �1

˛
D

�
0 1

1

1:21

in this case. Unlike the mechanical elimination of non-dominant modes, the balanced truncation procedure
changes both the time constant of the dominant mode and the static gain of the resulted system, especially
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when � is not close to zero. The increase of the time constant is perfectly logical, an extra pole is known
to slow down the response. The logic behind the increase of the static gain is not evident. Still, the H1
optimal approximation of this G having the same structure as the balanced truncation, which can be found
via a brute-force parametric search and whose parameters are shown by the dashed lines above, exhibits
the same trend. The advantage of adjusting the time constant and the gain of the approximant can be seen
via the resulting approximation error, which is twice the smallest Hankel singular value, i.e.

kG � Grk1 D 1

2

�p
�2 C 6� C 1

� C 1
� 1

�

D
�

0 1
0

0:21

0:5

:

The red line above shows the error for the ad hoc truncation, which was derived in Example 4.4. We can see
a substantial improvement of the approximation accuracy of the balanced truncation procedure for every �

in this case. The optimal approximation error (dashed line) is only slightly smaller than that attained via
balanced truncation. ˙

Example 4.11. Finding an analytic expression of the balanced realization of the system of Example 4.5,
which is

G.s/ D 2s C 1

.s C 1/..2 � �/s C 1/
;

is more involved. For that reason, only numerical results of the balanced truncation of this system to its
first-order approximation are presented:

Gr.s/ D k2

�2s C 1
; where �2 D

�
0 1

1

0:59
0:47

and k2 D
�

0 1
1

1:21
1:11 :

We can again see that the balanced truncation changes both the remaining time constant and the static gain.
The time constant decreases now, which is again logical. Indeed, the original system has a second pole,
which is slower than the first one at s D �1, and a zero at s D �1=2, which is even slower. Thus, the zero
is more dominant than either of the poles. But the addition of a zero renders the response quicker, which
is reflected in �2 < 1. The optimal H1 approximation (dashed lines) shows similar trends. And, like the
previous example, the balanced truncation outperforms the cancellation of close pole and zero:

kG � Grk1 D

s

�2 � 4� C 9 � .3 � �/
p

�2 � 2� C 9

2.3 � �/2
D

�
0 1

0

0:21

0:5

:

The error derived in Example 4.5 for the cancellation case is shown in the red line above and the optimal
error is shown by the dashed line. ˙

Let us conclude with another example, which illustrate the potential power of the balanced truncation
method in simplifying high-order systems.

Example 4.12. Consider a 25-order stable system G with the strictly proper transfer function

G.s/ D 1 �
�

s C 1

s C 2

�
25

;

having kGk1 D 1:6021. Its Hankel singular values are all different and depicted in Fig. 4.1(a), in dB. It
is clearly seen that only a few first Hankel singular values are noticeable, while the other are extremely
small. This implies that their truncation shall not visibly affect G. This is indeed the case, as can be seen
in Fig. 4.1(b), where the Bode plots of the balanced truncations

G2.s/ D 24:513.s C 3:568/

s2 C 16:69s C 110:5
and G4.s/ D 24:986.s C 3:196/.s2 C 3:165s C 19:48/

.s2 C 5:629s C 24:58/.s2 C 14:69s C 63:86/
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(a) Hankel singular values of G (b) Frequency responses of G.s/ and its approximations

Fig. 4.1: Plots for Example 4.12

are depicted by dotted lines. The second-order approximation is not quite accurate, which could be seen
from the singular values in Fig. 4.1(a). The fourth-order approximation is very close to the full-order G.
The Bode plots of the fifth-order approximation would be indistinguishable from those of G. Note that the
actual values of kG � Grk1 are smaller than their upper bounds calculated by (4.32). ˙

Remark 4.7 (Hankel norm approximation). It is possible to derive a reduced-order approximation of G by
minimizing the Hankel norm of the mismatch G � Gr . This problem is solvable and guarantees that the
H1-norm of the resulted approximation error satisfies

kG � Grk1 � �rC1 C � � � C �l ;

i.e. the bound is a half of that of the balanced truncation in (4.32). Obtaining the optimal approximation
in this case is more numerically involved than truncating the balanced realization and normally results in
a bi-proper Gr. The latter is different from the H1 optimal results presented in Examples 4.10 and 4.11,
where the strictly proper structure k=.�s C 1/ was enforced. O
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Chapter 5

Interactions Between Systems

T
o alter the behavior of a system one can connect it with other systems. This approach is in the core
of many engineering fields, including, of course, control engineering, where the very goal is to change

behaviors. This chapter aims at studying effects of systems interconnections on their properties.

5.1 Basic interconnections and cancellations

Parallel, cascade (series), and feedback interconnections shown in Fig. 5.1 on the next page constitute basic
building blocks of systems interactions. The first two were discussed in §4.1.1, although more as a technical
tool used later on. In this section we are concerned with properties of systems resulting from these three
interconnection of p1 � m1 and p2 � m2 systems G1 and G2 in terms of their minimal realizations

G1.s/ D
�

A1 B1

C1 D1

�

and G2.s/ D
�

A2 B2

C2 D2

�

(5.1)

of orders n1 and n2, respectively. Intuitively, dynamics of interconnections should be affected by dynamics
of each component. A quantitative expression of this would be the preservation of dimensions. In other
words, we would expect that the order of interconnections equals the sum of the orders of its components,
n1 C n2. Yet this is not always the case. Situations when the order of an interconnection is strictly less
than the sum of the orders of its components are referred to as cancellations hereafter. These may be pole-
zero cancellations, similar to their SISO counterparts, but may also be cancellations related to a general
deficiency of components, like a deficient normal rank. Cancellations are the focus point of this section.

5.1.1 Parallel interconnection

We start with the system G W u 7! y in Fig. 5.1(a), for which m1 D m2 and p1 D p2 should be assumed.
The transfer function of G in terms of its realization is

G.s/ D

2

4

A1 0 B1

0 A2 B2

C1 C2 D1 C D2

3

5 ; (5.2)

see (4.6). Poles of the realization above are obviously the union of those of the realizations of G1 and
G2 in (5.1). The question is whether all realization poles are also those of the transfer function G.s/. If
this is not the case, i.e. if the realization in (5.2) is not minimal, we say that there are cancellations in the
interconnection. In the SISO case, cancellations take place whenever G1.s/ and G2.s/ have common poles.
In MIMO systems, pole directions play role as well, so the analysis should be more involved. We address
cancellations via the controllability and observability properties of (5.2).
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G1

G2

uy

(a) parallel, G1 C G2

G1G2
uy

(b) cascade, G2G1

G2

G1
uy

(c) feedback, G1.I � G2G1/�1

Fig. 5.1: Basic system interconnections

Consider the observability of the realization in (5.2) (controllability is addressed by similar arguments).
If it is lost, there should be � 2 C and

�
�1
�2

�

¤ 0 such that

2

4

A1 � �I 0

0 A2 � �I

C1 C2

3

5

�

�1

�2

�

D

2

4

.A1 � �I/�1

.A2 � �I/�2

C1�1 C C2�2

3

5 D 0:

First, note that �i ¤ 0, which follows by the assumed observability of .Ci ; Ai/. Then the first two block
rows above imply that � must be an eigenvalue of both A1 and A2 and that �i must be the corresponding
eigenvectors of Ai . As a matter of fact, this means that cancellations in the parallel interconnection can
take place only if G1.s/ and G2.s/ have common poles. Now, again by the minimality of the realizations
of Gi in (5.1) we know that Ci�i ¤ 0. Hence, observability is lost iff C1�1 and C2�2 are co-directed for
some eigenvectors �i of Ai . This, in turn, is possible iff

C1 ker.�I � A1/ \ C2 ker.�I � A2/ ¤ f0g;

which is the condition under which (5.2) is not observable. The arguments above, combined with (4.23),
can be summarized as follows.

Proposition 5.1. Suppose that both .A1; B1; C1; D1/ and .A2; B2; C2; D2/ are minimal. The realization

in (5.2) is controllable iff

pdiri.G1; �/ \ pdiri.G2; �/ D f0g

and is observable iff

pdiro.G1; �/ \ pdiro.G2; �/ D f0g;

both for all � 2 spec.A1/ \ spec.A2/.

5.1.2 Cascade interconnection

Consider the system G W u 7! y in Fig. 5.1(b), for which p1 D m2 should be assumed. The transfer
function of G in terms of its realization is

G.s/ D

2

4

A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

3

5 ; (5.3)

see (4.7). Poles of the realization above are again the union of those of the realizations of G1 and G2 in (5.1)
and we say that there are no cancellations in the cascade interconnection if the poles of the transfer function
G.s/ are the union of the poles of G1.s/ and G2.s/. Cancellations in the SISO case take place if, and only if,
poles of G1.s/ match zeros of G2.s/ or vice versa. Expectably, the MIMO pole-zero cancellations should
be affected by the directions of potentially canceled poles and zeros. On top of this, MIMO cancellations
might not be related to zeros. For example, let G1.s/ D

�
1=s 0
0 1=s

�

and G2.s/ D
�

1 1
1 1

�

, which are second- and
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zero-order transfer functions, respectively. Being static, G2.s/ has no zeros at all. Nevertheless, G.s/ D
G2.s/G1.s/ D

�
1=s 1=s
1=s 1=s

�

is a first-order system, we saw that in Example 3.1 on p. 57. This happened because
G2.s/ has a normal rank deficiency, a phenomenon having no SISO counterpart.

So, consider again the observability of the interconnected realization in (5.3). If it is lost, there should
be � 2 C and

�
�1
�2

�

¤ 0 such that

0 D

2

4

A1 � �I 0

B2C1 A2 � �I

D2C1 C2

3

5

�

�1

�2

�

D

2

4

0 I 0

A2 � �I 0 B2

C2 0 D2

3

5

2

4

0 I

A1 � �I 0

C1 0

3

5

�

�1

�2

�

or, equivalently,
.A1 � �I/�1 D 0 and

�

A2 � �I B2

C2 D2

��

�2

C1�1

�

D 0:

First, �1 ¤ 0, for otherwise �2 D 0 too by the assumed observability of .C2; A2/. Hence, � must be an
eigenvalue of A1 and then C1�1 2 C1 ker.�I � A1/ must be a component in the kernel of the Rosenbrock
system matrix RG2

.�/. Because .C2; A2/ is observable, we conclude that 0 ¤ C1�1 2 zdiri.G2; �/.
The arguments above, combined with (4.23) and (4.27), can be summarized in the following result.

Proposition 5.2. Suppose that both .A1; B1; C1; D1/ and .A2; B2; C2; D2/ are minimal. The realization

in (5.3) is controllable iff

pdiri.G2; �/ \ zdiro.G1; �/ D f0g

for all � 2 spec.A2/ and is observable iff

zdiri.G2; �/ \ pdiro.G1; �/ D f0g;

for all � 2 spec.A1/.

It should be emphasized, again, that zdiro.G1; �/ and zdiri.G2; �/ might be nontrivial even if � is not
a zero of G1 and G2, respectively. If nrank.RG1

.s// < n1 C p1, be it because m1 < p1 or because of
its normal rank deficiency, zdiro.G1; s/ is nontrivial for all s. Likewise, if nrank.RG2

.s// < n2 C m2 for
whatever reason, zdiri.G2; s/ is nontrivial for all s too. This is why we refer to the phenomenon of G.s/

having its McMillan degree below n1 C n2 as just “cancellations,” rather than “pole-zero cancellations.”

5.1.3 Feedback interconnection

Now consider the system G W u 7! y in Fig. 5.1(c), for which p1 D m2 and p2 D m1 should be assumed.
The positive feedback can be considered without loss of generality, the negative feedback corresponds
to the replacement G2 ! �G2. We say that this interconnection is well posed if y exists and is unique
for all u. The derivation of the realization of this interconnection should start with the realizations of its
components,

G1 W
(

Px1.t / D A1x1.t / C B1u1.t /

y1.t / D C1x1.t / C D1u1.t /
and G2 W

(

Px2.t / D A2x2.t / C B2u2.t /

y2.t / D C2x2.t / C D2u2.t /

Signal relations resulting in the system in Fig. 5.1(c) are y D y1, u2 D y, and u1 D u C y2. The output
equations above result then in

y.t/ D C1x1.t / C D1u.t/ C D1y2.t / ” .I � D1D2/y.t/ D C1x1.t / C D1C2x2.t / C D1u.t/:

This equation is obviously solvable for all u if det.I � D1D2/ ¤ 0. Otherwise, Im D1 � Im.I � D1D2/ is
required. By Proposition 2.1, the latter condition is equivalent to ker.I �D02D01/ � ker D01, which is wrong
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for singular I � D1D2 (in fact, ker.I � D02D01/ ? ker D01 then). Hence, the feedback interconnection in
Fig. 5.1(c) is well posed iff I � D1D2 is invertible, which we assume throughout this section. The output
equation of G reads then

y.t/ D .I � D1D2/�1
�

C1x1.t / C D1C2x2.t / C D1u.t/
�

:

The substitution of this expression into the output equation of G2 with u2 D y yields

y2.t / D .I � D2D1/�1
�

D2C1x1.t / C C2x2.t / C D2D1u.t/
�

:

Substituting these expressions to the state equations of G1 and G2, we get the realization

G W

„�
Px1.t /

Px2.t /

�

D
�

A1 C B1
QSD2C1 B1

QSC2

B2SC1 A2 C B2SD1C2

� �

x1.t /

x2.t /

�

C
�

B1
QS

B2SD1

�

u.t/

y.t/ D S
�

C1 D1C2

�
�

x1.t /

x2.t /

�

C SD1u.t/

where
S ´ .Im2

� D1D2/�1 and QS ´ .Im1
� D2D1/�1 D Im1

C D2SD1

(the last equality follows by the Matrix Inversion Lemma, see Lemma B.7 on p. 195). Hence, we end up
with

G.s/ D

2

4

A1 C B1D2SC1 B1C2 C B1D2SD1C2 B1 C B1D2SD1

B2SC1 A2 C B2SD1C2 B2SD1

SC1 SD1C2 SD1

3

5 : (5.4)

The realization in (5.4) is substantially simplified if D1D2 D 0 and D2D1 D 0, for which S D I and
QS D I . In such a case we say that the feedback system in Fig. 5.1(c) has no algebraic loops. Clearly, the
feedback interconnection is well posed whenever it has no algebraic loops.

Consider now the observability property of the realization in (5.4). To this end, note that the PBH
matrix for it is

2

4

A1 C B1D2SC1 � �I B1C2 C B1D2SD1C2

B2SC1 A2 C B2SD1C2 � �I

SC1 SD1C2

3

5 D

2

4

I 0 B1D2S

0 I B2S

0 0 S

3

5

2

4

A1 � �I B1C2

0 A2 � �I

C1 D1C2

3

5 :

Because the first matrix in the right-hand side above is nonsingular, the realization in (5.4) loses observ-
ability iff the “natural” realization of G1G2 loses observability. The conditions for the latter are then given
by Proposition 5.2 modulo swapping the order of G1 and G2.

The controllability analysis follows similar reasoning. Namely,

�

A1 C B1D2SC1 � �I B1C2 C B1D2SD1C2 B1 C B1D2SD1

B2SC1 A2 C B2SD1C2 � �I B2SD1

�

D
�

A1 � �I 0 B1

B2C1 A2 � �I B2D1

�
2

4

I 0 0

0 I 0
QSD2C1

QSC2
QS

3

5 ;

which is derived by SD1 D D1
QS and D2S D QSD2. The only point to pay attention is that there is no

symmetry between G1 and G2 in the feedback interconnection in Fig. 5.1(c) and the PBH controllability
matrix of G is related to that of the cascade G2G1, rather than G1G2 as in the observability case.

The arguments above can be summarized in the following result.
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Proposition 5.3. Suppose that both .A1; B1; C1; D1/ and .A2; B2; C2; D2/ are minimal and that I �D1D2

is nonsingular. The realization in (5.4) is controllable iff

pdiri.G2; �/ \ zdiro.G1; �/ D f0g
and is observable iff

zdiri.G1; �/ \ pdiro.G2; �/ D f0g;

both for all � 2 spec.A2/. In particular, every pole of G2.s/ canceled in G2.s/G1.s/ is not controllable in

(5.4) and every pole of G2.s/ canceled in G1.s/G2.s/ is not observable in that realization.

A qualitative difference between the feedback interconnection and those studied in §5.1.1 and §5.1.2 is
that the poles of the realization in (5.4) are typically not those of G1 and G2. While the parallel and cascade
connections can affect joint dynamics only via cancellations, the feedback connection has more authority
over doing that. The ability to alter dynamics is a key property of feedback interconnections, extensively
used in control applications. This is especially important in the context of the stability of interconnections,
which will be studied in depth in Chapter 6.

However, there might be situations when poles of G1 are still those of G. This happens if those poles
are canceled in the series interconnections of G1 and G2, regardless the order. To see this, assume that a
pole of G1 at s D � is canceled in G2G1. By Proposition 5.2, zdiri.G2; �/ \ pdiro.G1; �/ ¤ f0g then. In
other words, there is y� ¤ 0 such that

.A1 � �I/�1 D 0; y� D C1�1 and
�

A2 � �I B2

C2 D2

� �

�2

y�

�

D 0

for some �1 ¤ 0 and �2. Consider now the RSM associated with G1G2 � I ,

RG1G2�I .s/ D

2

4

A1 � sI B1C2 B1D2

0 A2 � sI B2

C1 D1C2 D1D2 � I

3

5 D

2

4

A1 � sI B1C2 B1D2

0 A2 � sI B2

C1 D1C2 �S�1

3

5 :

Its normal rank is n1 C n2 C m2 because S�1 is nonsingular. It is readily verified that

RG1G2�I .�/

2

4

�1

�2

y�

3

5 D

2

4

B1.C2�2 C D2y�/

.A2 � �I/�2 C B2y�

y� C D1.C2�2 C D2y2/ � y�

3

5 D 0;

which means that RG1G2�I .s/ loses its rank at � (i.e. � is an invariant zero of G1G2 � I ). But then the
Schur complement of �S�1 in RG1G2�I .s/,
�

A1 � sI B1C2

0 A2 � sI

�

C
�

B1D2

B2

�

S
�

C1 D1C2

�

D
�

A1 C B1D2SC1 � sI B1C2 C B1D2SD1C2

B2SC1 A2 C B2SD1C2 � sI

�

;

must be singular at s D �. In other words, this � is a pole of the realization in (5.4). Repeating these
arguments for poles of G1 canceled in G1G2 we have the following result.

Proposition 5.4. Suppose that both .A1; B1; C1; D1/ and .A2; B2; C2; D2/ are minimal and I � D1D2 is

nonsingular. If � 2 spec.A1/ is canceled in G1G2 or G2G1, then it is a pole of realization (5.4). Moreover,

if this canceled � 62 spec.A2/, then it is also a pole of the corresponding transfer function, G.s/.

Proof. It is only left to prove the last statement. If � 62 spec.A2/, then it is not a pole of G2.s/ and neither
its controllability nor its observability in (5.4) can be lost, by Proposition 5.3. Hence, the pole of realization
(5.4) is a pole of G.s/ as well.
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The condition that � is not a pole of G2.s/ is sufficient for G.s/ to have it as a pole, but not necessary.
The examples below demonstrate that it may go both ways in that case.

Example 5.1. Let

G1.s/ D
�

1 1=s

0 1

�

D

2

4

0 0 1

1 1 0

0 0 1

3

5 and G2.s/ D �
�

1 0

0 1=s

�

D

2

4

0 0 1

0 �1 0

�1 0 0

3

5:

We know from Examples 3.2 and 4.2 that G1.s/ has both a pole and a zero at the origin, with

pdiri.G1; 0/ D zdiro.G1; 0/ D span.e2/ and pdiro.G1; 0/ D zdiri.G1; 0/ D span.e1/:

Because G2.s/ is diagonal, it obviously has a pole at the origin and no zeros, with

pdiri.G2; 0/ D pdiro.G2; 0/ D span.e2/:

Hence, by Proposition 5.2 the pole at the origin is canceled in

G2.s/G1.s/ D �
�

1 1=s

0 1=s

� �

but not in G1.s/G2.s/ D �
�

1 1=s2

0 1=s

��

:

The feedback interconnection of G1 and G2 as in Fig. 5.1(c) does not satisfy the condition in the last
statement of Proposition 5.4 and, indeed, we have that

G.s/ D

2

6
6
4

0 �1 0 1

0 �1 0 1

1=2 0 1=2 0

0 �1 0 1

3

7
7
5

D 1

2

�

1 1=.s C 1/

0 2s=.s C 1/

�

does not have poles at s D 0 (because the realization pole at the origin is not controllable). ˙

Example 5.2. Let now swap G1 and G2 from the previous example,

G1.s/ D �
�

1 0

0 1=s

�

D

2

4

0 0 1

0 �1 0

�1 0 0

3

5 and G2.s/ D
�

1 1=s

0 1

�

D

2

4

0 0 1

1 1 0

0 0 1

3

5 ;

in which case G1.s/G2.s/ has a cancellation at the origin. And although the condition in the last statement
of Proposition 5.4 still does not hold, in this case

G.s/ D

2

6
6
4

�1 0 0 1

�1 0 0 0

0 �0:5 �0:5 0

�1 0 0 0

3

7
7
5

D 1

2

�

�1 1=.s2 C s/

0 �2=.s C 1/

�

does have a pole at the origin. ˙

Propositions 5.3 and 5.4 show that the effects of dynamics of G1 and G2 on those of G W u 7! y in
Fig. 5.1(c) are different. Specifically, assume that there are cancellations in the loop, i.e. in G1.s/G2.s/ or
G2.s/G1.s/. While canceled modes of the backward path system, G2, are canceled in G as well, canceled
modes of the forward path system, G1, may remain modes of G, unchanged. This difference is one of the
reasons why internal stability, which was mentioned in §1.4.2 and will be studied in §6.1.1, requires the
stability of closed-loop systems from all possible inputs to all signals in the loop.
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�

G11 G12

G21 G22

�

H

u1y1

y2 u2

(a) Lower LFT, Fl.G; H/

�

G11 G12

G21 G22

�

H

u2y2

y1 u1

(b) Upper LFT, Fu.G; H/

Fig. 5.2: Linear fractional transformations (LFTs)

5.2 Linear fractional transformations

A more general interconnection model, which includes the parallel, cascade, and feedback interconnections
in Fig. 5.1 as its particular cases, is the linear fractional transformation (LFT) presented in Fig. 5.2. Here

G D
�

G11 G12

G21 G22

�

is a system mapping two (possibly vector) inputs u1 and u2 with two (possibly vector) outputs y1 and y2.
A pair of these inputs and outputs is then connected via yet another system H . The lower LFT, depicted in
Fig. 5.2(a) and denoted Fl.G; H/, does it according to the law u2 D Hy2 and the upper LFT, Fu.G; H/ in
Fig. 5.2(b)—according to the law u1 D Hy1.

The lower LFT is the mapping Fl.G; H/ W u1 7! y1. To derive it, consider the relation

u2 D Hy2 D KG21u1 C HG22u2 ” .I � HG22/u2 D HG21u1:

If I �G22H is invertible, then u2 D .I �HG22/�1HG21u1. Thus, y1 D
�

G11CG12H.I �G22H/�1G21

�

u1

and we end up with

Fl.G; H/ D G11 C G12.I � HG22/�1HG21 D G11 C G12H.I � G22H/�1G21; (5.5)

where the second equality follows from the relation X.I � YX/�1 D .I � XY /�1X , which is true for all
X and Y provided I � XY is invertible. The invertibility of I � G22H (or, equivalently, of I � G22H ),
which guarantees that (5.5) is well defined, is referred to as the well posedness condition of Fl.G; H/ and
will be discussed later on, in §5.2.1.

The interconnections studied in Section 5.1 can be viewed as special cases of this LFT, e.g.

Fl

��

G1 I

I 0

�

; G2

�

D G1 C G2; Fl

��

0 I

G1 0

�

; G2

�

D G2G1;

and

Fl

��

G1 G1

G1 G1

�

; G2

�

D G1 C G1.I � G2G1/�1G2G1 D G1.I � G2G1/�1

(these choices are not unique). Normally, if G22 D 0, then the corresponding lower LFT defines an inter-
connection without feedback. Feedback interconnections correspond to the case of G22 ¤ 0.

The upper LFT is the mapping Fu.G; H/ W u2 7! y2 for the system in Fig. 5.2(b). Repeating the steps
that led to (5.5), we can derive the following expression for it:

Fu.G; H/ D G22 C G21.I � HG11/�1HG12 D G22 C G21H.I � G11H/�1G12; (5.6)

where the invertibility of I � HG11 (or, equivalently, of I � G11H ) is assumed. It is readily seen that the
upper LFT turns the lower LFT if the two inputs and the two outputs are swapped. In other words,

Fu.G; H/ D Fl
��

0 I
I 0

�

G
�

0 I
I 0

�

; H
�

: (5.7)
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This means that the separation between the lower and upper linear fractional transforms is merely a matter
of notational convenience.

Example 5.3. Let T .s/ D D C C.sI � A/�1B . One can then verify that

T .s/ D Fu

��

A B

C D

�

;
1

s
I

�

;

which is well defined whenever s 62 spec.A/. ˙

Example 5.4. The bilinear (Tustin) transform is given by s D .´�1/=.´C1/. For any  > 0 it transforms
the unit disk to the left half-plane. Observing that s D  � 2=.´ C 1/, the Tustin transform can be written
as

s D Fl

��

 �2

 �1

�

;
1

´

�

;

which well defined whenever ´ ¤ �1. ˙

The two propositions below present some useful algebraic properties of LFTs.

Proposition 5.5. Suppose Fl.G; H/ is square and well posed and G11 is nonsingular. Then Fl.G; H/ is

invertible and

ŒFl.G; H/��1 D Fl. OG; H/; where OG D
�

G�1
11 �G�1

11 G12

G21G�1
11 G22 � G21G�1

11 G12

�

:

Similarly, if Fu.G; H/ is square and well posed and G22 is nonsingular, then Fu.G; H/ is invertible and

ŒFu.G; H/��1 D Fu. QG; H/; where QG D
�

G11 � G12G�1
22 G21 G12G�1

22

�G�1
22 G21 G�1

22

�

:

Proof. We prove only the lower LFT part, the upper LFT part is proved similarly. The logic is that the
sought ŒFl.G; H/��1 is a mapping y1 7! u1, so what we need is to swap u1 with y1. Because H is still
supposed to have y2 as its input and u2 as its output, these signals remain untouched. The result then
follows from the relation
�

y1

y2

�

D
�

G11 G12

G21 G22

��

u1

u2

�

”
�

u1

y2

�

D
�

G�1
11 �G�1

11 G12

G21G�1
11 G22 � G21G�1

11 G12

� �

y1

u2

�

D OG
�

y1

u2

�

;

which is verified by direct substitution.

Example 5.5. Consider the LFT in Example 5.3. If D is square and nonsingular, Proposition 5.5 yields

T �1.s/ D Fu

��

A � BD�1C BD�1

�D�1C D�1

�

;
1

s
I

�

D D�1 � D�1C.sI � A C BD�1C /�1BD�1;

which agrees with (4.8). ˙

Example 5.6. Consider the LFT from Example 5.4. Using Proposition 5.5, and then (5.7), we have that

1

s
D Fl

��

1= 2=

1 1

�

;
1

´

�

D Fu

��

1 1

2= 1=

�

;
1

´

�

;

which is well defined whenever ´ ¤ 1 and indeed yield 1=s D .´ C 1/=..´ � 1//. ˙
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Proposition 5.6. If G is invertible and such that G12 and G21 are square and invertible too, then

T D Fl.G; H/ ” H D Fu.G�1; T /:

Proof. Let T D Fl.G; H/. Since G is nonsingular,
�

u1
u2

�

D G�1
�

y1
y2

�

. Then, taking into account that T

is the mapping u1 7! y1 and H is the mapping y2 7! u2, we have that H satisfies the following set of
equations:

�

u1

u2

�

D G�1

�

y1

y2

�

and y1 D T u1:

This defines exactly Fu.G�1; T /. Similar arguments yield that H D Fu.G�1; T / H) T D Fl.G; H/. To
complete the proof we only need to show that Fl.G; H/ is well posed iffFu.G�1; T / is well posed. To show
this, assume first that Fl.G; H/ is well posed, i.e. that I � G22H is nonsingular. The well-posedness of
Fu.G�1; T / reads then as the non-singularity of I �

�

I 0
�

G�1
�

I
0

�

T or, because I �M1M2 is nonsingular
iff I � M2M1 is nonsingular, of

I � G�1

�

I

0

�

T
�

I 0
�

D G�1

��

G11 G12

G21 G22

�

�
�

G11 C G12H.I � G22H/�1G21 0

0 0

��

D G�1

�

�G12H.I � G22H/�1G21 G12

G21 G22

�

D G�1

�

G12 �G12H.I � G22H/�1G21

G22 G21

��

0 I

I 0

�

:

Now, G12 is assumed to be invertible. Its Schur complement in the system in the middle of the right-hand
side above,

G21 C G22H.I � G22H/�1G21 D .I � G22H/�1G21;

is invertible too, because G21 is also assumed to be invertible. Hence, Fu.G�1; T / is well posed. The other
direction follows by similar arguments.

Example 5.7. Consider the lower LFT in Example 5.6. Because its “G” matrix satisfies the conditions of
Proposition 5.6,

1

´
D Fu

��

� 2

 �1

�

;
1

s

�

D Fl

��

�1 

2 �

�

;
1

s

�

:

In other words, 1=´ D �.s � /=.s C /, as expected. ˙

5.2.1 Well posedness of LFT

The invertibility of I � HG22 assumed in the developments above clearly guarantees that Fl.G; H/ is well
defined. Yet this assumption might not be necessary in this context. To see this, consider the static

�

G11 G12

G21 G22

�

D

2

4

1 0 1

1 ˛ 0

0 0 0

3

5 and H D I2:

The matrix I � HD22 D diagf1 � ˛; 1g is singular at ˛ D 1. At the same time, Fl.G; H/ D 1 irrespective
of ˛, so it is well defined as a mapping u1 7! y1 even if I � HD22 is singular. Nevertheless, this situation
is problematic, because the mappings from u1 to the “internal” variables u2 and y2 might still not be well
defined. Indeed, we already saw that u2 satisfies .I � HG22/u2 D HG21u1, so that for this example

�
1 � ˛ 0

0 1

�

u2 D
�

1

0

�

u1:
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v1

v2

v3

e1

e2
e3

�

G11 G12

G21 G22

�

H

Fig. 5.3: Well-posedness setup for a lower LFT

This relation is not well defined at ˛ D 1.
To rule out such situations, the notion of well posedness for the LFT in Fig. 5.2(a) is introduced via

adding two auxiliary exogenous inputs v2 and v3 as depicted1 in Fig. 5.3. Supposing that both G and H

are well-defined systems, we say that the liner-fractional transformation Fl.G; H/ W v1 7! e1 is well posed

if all nine mappings .e1; e2; e2/ 7! .v1; v2; v3/ are well defined. Because these signals are related via

2

4

I 0 �G12

0 I �G22

0 �H I

3

5

2

4

e1

e2

e3

3

5 D

2

4

G11 0 0

G21 I 0

0 0 I

3

5

2

4

v1

v2

v3

3

5 ;

well-posedness is equivalent to an appropriately defined invertibility of the system on the left-hand side of
the relation above. This, in turn, boils down to the invertibility of

�

I �G22

�H I

�

;

which is equivalent to the invertibility of either I � HG22 or I � G22H (they are the Schur complements
of the diagonal blocks). These are exactly the assumptions stated in the beginning of this section.

In what follows LFTs are considered over finite-dimensional LTI systems. Such systems are well de-
fined if their (real-rational) transfer functions are proper, so that they admit state-space realizations of form
(4.3). A system is then invertible iff its transfer function is bi-proper. Thus, the well-posedness property of
LFTs should be understood in this case as the invertibility of the matrix I �G22.1/H.1/ or, equivalently,
I �H.1/G22.1/. Similarly to the feedback interconnection studied in §5.1.3, we say that a lower LFT has
no algebraic loops if both G22.1/H.1/ D 0 and H.1/G22.1/ D 0. Linear fractional transformations
having no algebraic loops are always well posed.

5.2.2 Redheffer star product

An important property of linear fractional transformations is that they can be nested one into another one.
Namely, Fl.G;Fl. QG; H// is again a lower LFT. This can be seen via the block-diagram in Fig. 5.4. The
interconnection of G and QG, which is obtained by equating Qu1 D y2 and u2 D Qy1, is known as the Redheffer

star-product, denoted G? QG. The star product is a mapping .u1; Qu2/ 7! .y1; Qy2/. Algebraically, the relations
between input and output signals in Fig. 5.4 is

2

6
6
4

y1

Qy2

y2

Qy1

3

7
7
5

D

2

6
6
4

G11 0 0 G12

0 QG22
QG21 0

G21 0 0 G22

0 QG12
QG11 0

3

7
7
5

2

6
6
4

u1

Qu2

Qu1

u2

3

7
7
5

and
�

y2

Qy1

�

D
�

Qu1

u2

�

:

1Mind that the other variables are also renamed there, mainly to confuse the adversary.

https://en.wikipedia.org/wiki/Raymond_Redheffer
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�

G11 G12

G21 G22

�

�

QG11
QG12

QG21
QG22

�

H

u1

Qy1

u2

y1

y2

Qu1

Qy2 Qu2

(a) Fl.G;Fl. QG; H//

�

G11 G12

G21 G22

�

�

QG11
QG12

QG21
QG22

�

u1y1

Qy2 Qu2

(b) G ? QG

Fig. 5.4: Nested LFTs and the Redheffer star product

Thus, the internal signals Qu1 and u2 satisfy

�

Qu1

u2

�

D
�

G21 0 0 G22

0 QG12
QG11 0

�

2

6
6
4

u1

Qu2

Qu1

u2

3

7
7
5

”
�

I �G22

� QG11 I

� �

Qu1

u2

�

D
�

G21 0

0 QG12

��

u1

Qu2

�

;

from which, assuming the invertibility of I � G22
QG11 (or, equivalently, of I � QG11G22),

G ? QG D
�

G11 0

0 QG22

�

C
�

0 G12

QG21 0

� �

I �G22

� QG11 I

��1 �
G21 0

0 QG12

�

D
�

G11 G12
QG12

0 QG22

�

C
�

G12
QG11

QG21

�

.I � G22
QG11/�1

�

G21 G22
QG12

�

;

where the last equality is obtained by (B.15b). The nested LFT in Fig. 5.4 reads then

Fl.G;Fl. QG; H// D Fl.G ? QG; H/: (5.8a)

Likewise,

Fu.G;Fu. QG; H// D Fu. QG ? G; H/; (5.8b)

which can be derived by similar arguments.
The transfer function of G ? QG can be derived in terms of those of its components,

G.s/ D

2

4

A B1 B2

C1 D11 D12

C2 D21 D22

3

5 and QG.s/ D

2

4

QA QB1
QB2

QC1
QD11

QD12

QC2
QD21

QD22

3

5;

as shown below.

Proposition 5.7. If det.I � D22
QD11/ ¤ 0, then

G.s/ ? QG.s/ D
�

A? B?

C? D?

�

;
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where, denoting S ´ .I � D22
QD11/�1,

A? D
�

A B2

C2 D22

�

?

� QD11
QC1

QB1
QA

�

D
�

A B2
QC1

0 QA

�

C
�

B2
QD11

QB1

�

S
�

C2 D22
QC1

�

;

B? D
�

B1 B2

D21 D22

�

?

� QD11
QD12

QB1
QB2

�

D
�

B1 B2
QD12

0 QB2

�

C
�

B2
QD11

QB1

�

S
�

D21 D22
QD12

�

;

C? D
�

C1 D12

C2 D22

�

?

� QD11
QC1

QD21
QC2

�

D
�

C1 D12
QC1

0 QC2

�

C
�

D12
QD11

QD21

�

S
�

C2 D22
QC1

�

;

D? D
�

D11 D12

D21 D22

�

?

� QD11
QD12

QD21
QD22

�

D
�

D11 D12
QD12

0 QD22

�

C
�

D12
QD11

QD21

�

S
�

D21 D22
QD12

�

:

Proof. The state equations of G and QG are

G W

�
Px.t/ D Ax.t/ C B1u1.t / C B2u2.t /

y1.t / D C1x.t/ C D11u1.t / C D12u2.t /

y2.t / D C2x.t/ C D21u1.t / C D22u2.t /

and QG W

� PQx.t/ D QA Qx.t/ C QB1 Qu1.t / C QB2 Qu2.t /

Qy1.t / D QC1 Qx.t/ C QD11 Qu1.t / C QD12 Qu2.t /

Qy2.t / D QC2 Qx.t/ C QD21 Qu1.t / C QD22 Qu2.t /

The logic of the development below is to equate y2 D Qu1 and u2 D Qy1 and eliminate these variables. To
this end, substitute Qy1 from the second equation for QG to the third equation for G (as u2) to get

y2 D C2x C D21u1 C D22. QC1 Qx C QD11 Qu1 C QD12 Qu2/ D C2x C D21u1 C D22. QC1 Qx C QD11y2 C QD12 Qu2/;

from which
y2 D SC2x C SD22

QC1 Qx C SD21u1 C SD22
QD12 Qu2:

Then,

Qy1 D QC1 Qx C QD11y2 C QD12 Qu2 D QC1 Qx C QD11.SC2x C SD22
QC1 Qx C SD21u1 C SD22

QD12 Qu2/ C QD12 Qu2

D QD11SC2x C QS QC1 Qx C QD11SD21u1 C QS QD12 Qu2;

where the equality I C QD11SD22 D QS is used (it follows from Lemma B.7 on p. 195). The state-space
formula follows then by direct substitution with the use of the fact that QD11S D QS QD11.

The formula of Proposition 5.7 is considerably simplified if both D22
QD11 D 0 or QD11D22 D 0. Note

also that each matrix of the realization of G ? QG is itself a star product. For example,

Example 5.8. Consider the LFTs from Examples 5.3 and 5.6. With the help of (5.8b), we have that

NP .´/ ´ P
�

 ´�1
´C1

�

D Fu

��
A B

C D

�

;Fu

��
I I

2= I 1= I

�

;
1

´

��

D Fu

��

I I

2= I 1= I

�

?

�

A B

C D

�

;
1

´

�

D Fu

��

.I C A/.I � A/�1 .I � A/�1B

2C.I � A/�1 D C C.I � A/�1B

�

;
1

´

�

D
�

.I C A/.I � A/�1 .I � A/�1B

2C.I � A/�1 D C C.I � A/�1B

�

;

which is well defined whenever  62 spec.A/. The transfer function NP .´/ above is the transfer function of
the discrete system NP , obtained from P by Tustin’s method. ˙

https://en.wikipedia.org/wiki/Bilinear_transform
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Stability of Interconnections

S
tability is one of fundamental requirements to control systems, which should be met in virtually any
application. It is therefore of a great importance to understand, what are stabilizing mechanisms in

system interconnections and how they can be exploited to end up with stable controlled behaviors. The
goal of this chapter is to shed light on these well-studied questions. We also address the use of stabilization
techniques in analyzing steady-state behaviors, which is somewhat less manifest aspects of the stability
formalism.

6.1 Closed-loop stability

An important property of feedback is its ability to stabilize controlled dynamics. In this section we define
the internal stability notion, which is required to work with feedback interconnections, and study stability
criteria that do not hinge on an overly detailed knowledge of involved systems models.

6.1.1 Internal stability

The system in Fig. 6.1(a) on the next page depicts a feedback interconnection of two LTI systems, S1 and
S2. We say that this interconnection is internally stable if all four systems vi 7! ej , i; j 2 Z1::2, are stable.
The relation between the inputs and outputs in Fig. 6.1(a) can be expressed as

�

I �S2

�S1 I

� �

e1

e2

�

D
�

v1

v2

�

Thus, assuming the invertibility of the system in the left-hand side above, the system in Fig. 6.1(a) is inter-
nally stable iff the system

�
I �S2

�S1 I

��1

D
��

I �S2

0 I

�

�
�

0

I

�

S1

�

I 0
�
��1

D
�

I S2

0 I

�

C
�

S2

I

�

S1.I � S2S1/�1
�

I S2

�

(by Lemma B.7) (6.1a)

D
�

.I � S2S1/�1 S2.I � S1S2/�1

S1.I � S2S1/�1 .I � S1S2/�1

�

(6.1b)

is stable. As we study causal L2 systems, the last requirement is equivalent to the condition that the transfer
function of system (6.1) belongs to H1.

The reason for considering all possible closed-loop systems, rather than only one of them, lies in the
need to rule out stabilization via unstable cancellations in the loop. To understand this better, consider two
simple examples.
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v2

v1

e2 e1

S1

S2

(a) Symmetric (analysis) form

v2

v1

e2 e1

P

R

(b) Plant–controller (design) form

Fig. 6.1: Closed-loop internal stability setup

Example 6.1. Let

S1.s/ D 1

s
and S2.s/ D � s

s C 1
:

It is readily seen that with these choices the .1; 1/, .1; 2/, and .2; 2/ components of (6.1b),

1

1 � S2.s/S1.s/
D 1

1 � S1.s/S2.s/
D s C 1

s C 2
and

S2.s/

1 � S1.s/S2.s/
D � s

s C 2
;

are H1 functions (stable), whereas the .2; 1/ element,

S1.s/

1 � S1.s/S2.s/
D s C 1

s.s C 2/
;

is not. The reason is the cancellation of the unstable pole of G1.s/ at the origin by a zero of G2.s/. The
canceled pole still shows up as a pole of the closed-loop transfer function corresponding to the intercon-
nection in Fig. 5.1(c) under G1 D S1 and G2 D S2, cf. Proposition 5.4. ˙

The example above is representative for SISO systems. Namely, it is then sufficient to consider only
the “off-diagonal” systems v1 7! e2 and v2 7! e1. This is also the case if there are unstable cancellations
of the same pole in both S1.s/S2.s/ and S2.s/S1.s/. But not for general MIMO systems, as shown below.

Example 6.2. Let

S1.s/ D
�

1 1=s

0 1

�

and S2.s/ D �
�

s=.s C 1/ 0

0 1=s

�

:

For these choices

�

I �S2.s/

�S1.s/ I

��1

D

2

6
6
6
4

sC1
2sC1

� s
.sC1/.2sC1/

� s
2sC1

1
.sC1/.2sC1/

0 s
sC1

0 � 1
sC1

sC1
2sC1

1
2sC1

sC1
2sC1

� 1
s.2sC1/

0 s
sC1

0 s
sC1

3

7
7
7
5

and all closed-loop transfer functions except that of the .2; 2/ block are stable. But the system v2 7! e2

is unstable, hence the interconnection in Fig. 6.1(a) is not internally stable. The reason is again unstable
cancellations. Now both S1.s/ and S2.s/ have a pole and a zero at the origin, with

pdiri.S1; 0/ D zdiro.S1; 0/ D span.e2/; pdiro.S1; 0/ D zdiri.S1; 0/ D span.e1/;

pdiri.S2; 0/ D pdiro.S2; 0/ D span.e2/; zdiri.S2; 0/ D zdiro.S2; 0/ D span.e1/:

(cf. Example 5.1 on p. 104). Hence, there is an unstable cancellation in S2.s/S1.s/, but not in S1.s/S2.s/.
The canceled dynamics then still show up in .I � S1S2/�1. As a matter of fact, this system has also a zero
at the origin, with zdiri..I � S1S2/�1; 0/ D span.e1/ and zdiro..I � S1S2/�1; 0/ D span.e2/. Because the
input zero direction of .I �S1.s/S2.s//�1 matches the output pole direction of the pole of S1.s/, this pole is
canceled in .I �S1.s/S2.s//�1S1.s/. Likewise, because the output zero direction of .I �S1S2/�1 matches
the input pole direction of the pole at the origin of S2, this pole is canceled in S2.s/.I �S1.s/S2.s//�1. ˙
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In principle, we could consider any one of the four closed-loop systems in Fig. 6.1(a), provided unstable
cancellations in both S1S2 and S2S1 are ruled out. However, keeping track of such cancellations is way
more cumbersome than the analysis of the combined system in (6.1).

Remark 6.1. The internal stability of feedback interconnections can be alternatively defined in terms of
state-space realizations of involved systems. For example, we may call the system in Fig. 5.1(c) internally
stable if all poles of the realization in (5.4) are in Cn xC0. Because that realization contains all modes of the
system, even the canceled ones, no auxiliary signals are required. Still, the definition of the internal stability
notion via the abstract, representation-free, setup in Fig. 6.1(a) appears cleaner. Its potential technical
advantage lies in that it is readily applicable to infinite-dimensional systems. O

Stability of feedback interconnections is a delicate matter. For example, the feedback interconnection
of stable system is not necessarily stable (like with S1 D .�s C 1/=.s C 1/ and S2 D 2). Stability analyses
require then a fairly detailed knowledge of models of S1 and S2. Nonetheless, there are situations, in
which closed-loop stability can be guaranteed under rather mild and general assumptions on interconnected
dynamics. Two of those situations are studied below. The presented results are very general and do not
even need to assume that the involved dynamics are finite dimensional.

6.1.2 Small gain theorem

Arguably, the best known, and the most important, result of this kind is the small gain theorem. Roughly,
it states that if the loop is stable and contractive, i.e. its gain is smaller than 1, at all frequencies, then the
closed loop system is stable as well. This can be seen as the condition that the frequency-response plot of a
stable loop is located within the open unit disk D on the Nyquist plane, in the shaded area in Fig. 6.2(a) on
the next page. Obviously, none of such plots can encircle the critical point. The Nyquist stability criterion
yields then that the closed-loop system is stable. An algebraic MIMO version of this result is stated below.

Theorem 6.1. Consider the system in Fig. 6.1(a). If Si 2 H1 with kSik1 D i � 0 for i D 1; 2, then the

closed-loop system is internally stable whenever 12 < 1.

Proof. Given M1 2 Cp�m and M2 2 Cm�p, by Proposition 2.4 k.I � M2M1/�1k D 1=�.I � M2M1/ and

�.I � M2M1/ D min
kukD1

k.I � M2M1/uk � min
kukD1

.kuk � kM2M1uk/ D 1 � kM2M1k � 1 � kM1kkM2k;

whose first inequality follows by the triangle inequality and the second one follows by the sub-multiplicative
property of the spectral matrix norm, cf. (2.7). Hence,

sup
s2C0

k.I � S2.s/S1.s//�1k D 1

infs2C0
�.I � S2.s/S1.s//

� 1

1 � 12

;

which holds because 12 < 1. Thus, .I � S2.s/S1.s//�1 is bounded in C0 and, because both S1.s/ and
S2.s/ are holomorphic in that region, is also holomorphic in C0. Therefore, .I � S2S1/�1 2 H1. This,
together with the facts that S1 2 H1 and S2 2 H1, yields the stability of (6.1).

Remark 6.2 (beyond LTI). The result of Theorem 6.1 remains valid under time-varying and nonlinear S1

and S2. All we need is to replace the H1 condition with an appropriate definition of stability and the H1-
norms with whatever induced norms of the involved systems. The proof then uses time-domain arguments.
Roughly, it is based on the following two inequalities (true for every q � 1),

ke1kq D kv1 C S2e2kq � kv1kq C kS2e2kq � kv1kq C 1ke2kq

and

ke2kq D kv2 C S1e1kq � kv2kq C kS1e1kq � kv2kq C 2ke1kq;

https://en.wikipedia.org/wiki/Nyquist_stability_criterion
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Im

Re�1

(a) Small gain

Im

Re�1

(b) Passivity

Fig. 6.2: Nyquist plane insight into small-gain and passivity analysis philosophies

which, in turn, are direct consequences of the triangle inequality and the definition of the induced norm.
The only delicacy is that we do not know a priori that e1; e2 2 Lq. As such, a rigorous proof starts with
considering systems over a finite horizon, say Œ0; T �, showing that there are bounds on norms of e1 and e2

independent of T , and then using limit arguments to prove the infinite-horizon case. O

6.1.3 Passivity theorem

While the small-gain philosophy is about the loop gain, passivity results are effectively about the loop
phase. A phase-centric way to ensure the stability of the closed-loop system in the case when the loop gain
has no open right-half place poles is to require that the loop phase is in .��; �/ [rad]. In other words, the
Nyquist plot should never cross the negative real semi-axis. This also ensures that the critical point is not
encircled, even if the gain is arbitrarily high. The permitted region on the Nyquist plane (mind that the
negative feedback is assumed) is the whole complex plane sans its negative real semi-axis, i.e. Cn.�1; 0/,
see the shaded area in Fig. 6.2(b).

A key concept to formulate such ideas algebraically for the system in Fig. 6.1(a) is the notion of positive
realness. This notion has its roots in the circuit theory and is connected with the passivity property of
systems, see [2, Sec. 2.7] or [6, Ch. VI]. Given an m � m system G, we say that its transfer function G.s/

is positive real (PR) if G.s/ 2 Rm�m for all s 2 .0; 1/, G.s/ is holomorphic in C0 and G.s/ C ŒG.s/�0 � 0

for all s 2 C0. The latter condition is the MIMO counterpart of Re G.s/ � 0. PR transfer functions need
not be bounded in C0, so they might not belong to H1. For example, 1=s is PR because it is holomorphic
in C0 and

1

s
C 1

Ns D 2
Re s

jsj2 > 0; 8s 2 C0:

A more exotic example is tanh.s/, which can be associated with certain wave equations [5, §3.2]. It has
infinitely many pure imaginary poles, at s D j.i C 1=2/� for all i 2 Z, but is holomorphic in C0 and

tanh.s/ C tanh.Ns/ D 2
1 � e�4 Re s

j1 C e�2sj2 > 0; 8s 2 C0

and is thus PR. Positive-real transfer functions are also not necessarily proper. For example, s is PR. But
1=s2 and s2 are not, because

1

s2
C 1

Ns2
D 2

.Re s/2 � .Im s/2

jsj4 and s2 C Ns2 D 2
�

.Re s/2 � .Im s/2
�

;



6.1. Closed-loop stability 115

are both negative for all s 2 C0 such that jIm sj > Re s. It can be shown that PR transfer functions may
only have simple pure imaginary unstable poles1 j!i whose residues Gi ´ lims!j!i

.s � j!i/G.s/ are
finite and satisfy Gi D G0i � 0. Also, PR transfer functions cannot have zeros in the open right-half plane.
If rank.G.s0/ C ŒG.s0/�0/ < normalrank.G.s/ C ŒG.s/�0/ for some s0 2 C0, then G.s/ is necessarily not
PR. A transfer function G.s/ is said to be strongly positive real (SPR) if it is PR and there is � > 0 such
that G.s/ C ŒG.s/�0 � �I for all s 2 C0. None of the transfer functions discussed above is SPR. But
s C 1 and .s C 2/=.s C 1/ are SPR, both with � D 2. SPR transfer functions may not have pure imaginary
singularities, but are still not necessarily in H1 (like s C 1).

Systems with PR and SPR transfer functions have intuitive interpretations in terms of their frequency
responses. If G.s/ is PR, then

G.j!/ C ŒG.j!/�0 � 0; 8! 2 R n f pure imaginary singularities of G.s/ g

and if it is SPR, then G.j!/ C ŒG.j!/�0 � �I for some � > 0 and all ! 2 R. In the scalar case, that means
that their Nyquist plots are in the closed and open right-half plane, respectively, and the phase of their fre-
quency responses is in the ranges Œ��=2; �=2� and .��=2; �=2/. This suggests that the negative feedback
interconnection of LTI systems with PR and SPR transfer functions has its loop frequency response in the
shaded area in Fig. 6.2(b), never crossing the negative real semi-axis, and it thus stable. This is indeed
true, under some technical assumptions, and applies to MIMO systems. A key result is presented below.
Although its formulation is not symmetric, in the sense that it imposes different conditions on S1 and S2,
it should be clear that S1 and S2 may be interchanged without affecting the result.

Theorem 6.2. Consider the system in Fig. 6.1(a). If S1.s/ is positive real, �S2.s/ is strongly positive real,

and S2 2 H1, then the closed-loop system is internally stable.

The proof of Theorem 6.2 requires some technical results. The first one of them may be thought of a
matrix counterpart of the known fact that the bilinear (Tustin) transform maps a half plane to a unit disk.

Lemma 6.3. Let M 2 Cm�m and ı 2 Œ0; 1�. The following statements are equivalent:

1. M C M 0 � ı.I C M 0M/,

2. det.I C M/ ¤ 0 and k.I � M/.I C M/�1k �
p

.1 � ı/=.1 C ı/.

Moreover, if either of these conditions holds, then k.I C M/�1k � 1=
p

1 C ı .

Proof. We start with showing that the first condition implies that det.I CM/ ¤ 0 and the last condition. To
this end, note that the first condition can be rewritten as .I CM 0/.I CM/ � .1Cı/.I CM 0M/ � .1Cı/I ,
whence these two conditions follow.

Now, the first statement is equivalent to the condition

0 � M C M 0 � ı.I C M 0M/ D 1 C ı

2

� 1 � ı

1 C ı
.I C M 0/.I C M/ � .I � M 0/.I � M/

�

:

Thus, the first statement holds iff

.I C M 0/�1.I � M 0/.I � M/.I C M/�1 � 1 � ı

1 C ı
I ;

which is equivalent to the second statement by Theorem A.2.

The following result is an extension of Lemma 6.3 to transfer functions. It shows that positive-realness
is connected with the contraction property via linear fractional transformations and is of independent in-
terest. In fact, the “only if” part of its second item also holds, under mild technical conditions, see [9,
Cors. 3.6 and 4.3]. Nevertheless, the formulation below is sufficient for the purposes of this section.

1Irrational positive-real transfer functions may also have certain pure imaginary essential singularities, see [9, Thm. 3.7].

https://en.wikipedia.org/wiki/Bilinear_transform
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Proposition 6.4. If G.s/ is PR, then

� .I C G/�1 2 H1 with k.I C G/�1k1 � 1

� .I � G/.I C G/�1 2 H1 with k.I � G/.I C G/�1k1 � 1.

If G.s/ is SPR and G 2 H1, then the non-strict inequalities above can be replaced with the strict ones.

Proof. If G.s/ is PR, then G.s/ satisfies the first condition of Lemma 6.3 with ı D 0 for all s 2 C0.
Together with the assumed holomorphic property of G.s/ in C0 that yields both items of the proposition.
If G.s/ is SPR, then G.s/ C ŒG.s/�0 � �I for some � 2 .0; 2kGk1�. In this case the first condition of
Lemma 6.3 holds for G.s/ for all s 2 C0 under ı � �=.1CkGk2

1/ � 1. If G 2 H1, then this ı > 0, so that
p

.1 � ı/=.1 C ı/ < 1 and 1=
p

1 C ı < 1. Hence, we have the strict contractiveness of both .I C G/�1

and .I � G/.I C G/�1.

We are now in the position to prove the passivity theorem.

Proof of Theorem 6.2. It is a matter of straightforward algebra to verify that

�

I �S2

�S1 I

��1

D
�

I I

I �I

�

QTaux
‚ …„ ƒ
�

I .I C S2/.I � S2/�1

�.I � S1/.I C S1/�1 I

��1 �
.I � S2/�1 0

0 �.I C S1/�1

�

:

The first and the last factors in the right-hand side above are stable, the last one by Proposition 6.4. Hence,
the stability of QTaux would imply that of the system in Fig. 6.1(a) (but not vice versa, because I C S1 is
not necessarily stable). The system QTaux is the closed-loop system associated with the internal stability of
Fig. 6.1(a) under the substitutes S1 ! QS1 ´ .I � S1/.I C S1/�1 and S2 ! QS2 ´ �.I C S2/.I � S2/�1.
By Proposition 6.4 we have that both these systems are stable, with k QS1k1 � 1 and k QS2k1 < 1. Hence,
the closed-loop system is stable by the small gain theorem (Theorem 6.1).

The proof of Theorem 6.2 might suggest that the passivity theorem is merely a special case of the small
gain theorem. Technically, this may be true. However, having a stability result directly in terms of the
positive realness property is important in many applications, because of connections between the positive
realness and passivity properties. By Parseval’s theorem, a causal system G whose transfer function is PR
satisfies hGu; ui2 � 0 for all u 2 L2Œ0; T � and all T > 0. This property, known as passivity, has energy
conservation interpretations in several applications, in particular, in electrical and mechanical networks.
As such, the passivity theorem is used to design simple controllers to stabilize systems, which exhibit
energy conservation properties.

For example, a PR plant is stabilized by any proportional controller under negative feedback, provided
the controller gain is positive definite. This implies that PR plants admit arbitrarily high-gain controllers
in theory, cf. the discussion in §1.4.2. This may suggest that having feedback loops with passive elements
might not be a realistic situation. Indeed, the passivity property itself is extremely fragile in control systems.
Infinitesimal loop delays or arbitrarily fast sampling in the loop would destroy it. It thus appears to be taken
for granted too frequently, especially at high frequencies. Perhaps some frequency-dependent alternation
of passivity and small-gain arguments is a more sensible rationale behind the stability of many practical
feedback systems.

Remark 6.3 (beyond LTI). The result of Theorem 6.2 also remains valid under time-varying and nonlinear
S1 and S2. A fairly general formulation can be found in [6, Sec. VI.5]. To state a version of it, denote by
k�kT and h�; �iT the norm and inner product on L2Œ0; T �. Assume that there are constants �1, �2, 2 > 0,
and ˇi for i D f1; 2; 3g such that
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1. hS1e1; e1iT � �1kS1e1k2
T C ˇ1, for all T 2 RC,

2. he2; �S2e2iT � �2ke2k2
T C ˇ2 and kS2e2kT � 2ke2k2

T C ˇ3, for all T 2 RC.

The closed-loop system in Fig. 6.1(a) is then internally stable if �1 C �2 > 0. The constants ˇi , which play
no role in the stability condition itself, are required to handle nonlinear systems, in the linear case all ˇi

may be taken zero. The PR property for S1 is replaced above with the stronger strict output passivity. It
becomes the familiar passivity under �1 D 0, but is more restrictive under �1 > 0. The first requirement
on S2 is known as the strict input passivity and can be viewed as the time-domain counterpart of the SPR
property under �2 > 0. The second requirement on S2 is just its L2-stability. With �1 D 0 the result (�2 > 0

implies stability) is similar to that in Theorem 6.2. In general, the lack of passivity in one of systems may
be compensated by its excess in another one. O

6.2 Closed-loop stabilization

Having defined the stability notion, we are now in the position to study the stabilization problem associated
with the feedback interconnections in Fig. 6.1(a). The basic assumption now is that one of the interconnect-
ing systems is given and another one can be chosen (designed) to render the interconnection internally sta-
ble. In this context, it is convenient to switch to the block-diagram in Fig. 6.1(b), in which the given system
(the plant) is denoted P and the system to be chosen (the controller / regulator) is denoted R. Henceforth,
we mostly assume that the plant is finite dimensional and seek for finite-dimensional controllers having
proper transfer functions. The internal stability of the system in Fig. 6.1(b) is then equivalent (see §3.3.2)
to the condition Taux 2 RH1, where

Taux ´
�

I 0

P I

�

C
�

I

P

�

R.I � PR/�1
�

P I
�

D
�

.I � RP /�1 R.I � PR/�1

P.I � RP /�1 .I � PR/�1

�

(6.2)

is the system
�

v1
v2

�

7!
�

e1
e2

�

, cf. (6.1). Note that the stability of Taux requires the properness of Taux.s/, see
the discussion posterior to Eqn. (3.27) on p. 50. This, in turn, requires the invertibility of I � R.1/P.1/,
i.e. the well posedness of the system in Fig. 6.1(b).

6.2.1 All stabilizing controllers: stable plants

The main idea behind characterizing all stabilizing controllers below is to reduce the stability analysis of
the four subsystems in Taux to that of only one it subsystem, which is a bijective function of the controller.
This reduction is particularly simple and intuitive in the case when the plant itself is stable. We thus start
with assuming that P 2 RH1, postponing the general case to §6.2.2.

If the plant is stable, then
�

I 0

�P I

�

D
�

I 0

P I

��1

is bi-stable. Hence, the stability of Taux is equivalent to that of
�

I 0

�P I

�

Taux

�

I 0

�P I

�

D
�

I 0

�P I

�

C
�

I

0

�

R.I � PR/�1
�

0 I
�

D
�

I R.I � PR/�1

�P I

�

:

Three sub-blocks of this system are stable regardless of R and only the .1; 2/ sub-block depends on the
controller. Thus,

Taux 2 RH1 ” Tc ´ R.I � PR/�1 2 RH1;

which is intuitive. Indeed, if P is stable, then unstable loop cancellations are only possible between unstable
poles of R and the plant. Hence, it is sufficient to consider only the system mapping v1 7! e2, which can
be thought of as the control sensitivity system defined in §1.4.2.
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Fig. 6.3: Q-parametrization in the unity-feedback system (with negative feedback)

An advantage of analyzing Tc instead of Taux is that the former is a bijective function of R. In other
words, not only R uniquely determines Tc (provided the feedback is well posed), but also every Tc can
be produced by a unique R. The mapping from Tc to R can be obtained via various approaches. We use
LFT-based arguments below. It is readily seen that

Tc D Fl

��

0 I

I P

�

; R

�

:

This lower LFT falls into the scope of Proposition 5.6, so we have that

R D Fu

��

0 I

I P

��1

; Tc

�

D Fu

��

�P I

I 0

�

; Tc

�

D Fl

��

0 I

I �P

�

; Tc

�

D Tc.I C P Tc/
�1:

These relations imply that every controller that can be presented in the form R D Q.I C PQ/�1 for some
stable Q is stabilizing (it results in Tc D Q) and every stabilizing R can be presented in that form for a
stable Q (actually, Q D Tc). These arguments lead to the result below.

Theorem 6.5 (Q-parametrization). If P 2 RH1, then R stabilizes the system in Fig. 6.1 iff there exists

Q 2 RH1 such that

R D Fl

��

0 I

I �P

�

; Q

�

D Q.I C PQ/�1: (6.3)

Moreover, R is well posed iff I C P.1/Q.1/ is nonsingular.

A remarkable outcome of the characterization of stabilizing controllers above is that is substantially
simplifies resulting closed-loop systems. Indeed, substituting R.I � PR/�1 D Q into the first part of (6.2)
yields

Taux D
�

I 0

P I

�

C
�

I

P

�

Q
�

P I
�

D
�

I C QP Q

P C PQP I C PQ

�

:

All subsystems above are linear or affine functions of Q, which is an advantage over the fractional depen-
dence on R in (6.2). In a sense, the parametrization of Theorem 6.5 converts a closed-loop problem into an
open-loop one, cf. (1.7). This has far-reaching implications on understanding attainable closed-loop maps
and controller design methods. Some of these issues will be discussed in Chapter 7.

The structure of the parametrization in (6.3) has an intuitive interpretation in terms of the unity feedback
control architecture like that in Fig. 1.4(c) on p. 4. To see that, consider the closed-loop system in Fig. 6.3(a),
which is the standard unity-feedback system, whose controller is of the form (6.3). By Ptrue we understand
the real plant, which might be different from its model P used by the controller. Mind also that we consider
the negative feedback case now. Hence, the sign of the controller in (6.3) should be inverted, which yields
the positive feedback in the internal controller loop and the sign inverse of the Q-parameter in the diagrams
in Fig. 6.3. The system can then be equivalently presented in the form depicted in Fig. 6.3(b) via elementary
block-diagram manipulation rules. If there is no uncertainty, i.e. if P D Ptrue, d D 0, and n D 0, the signal
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fed back vanishes, eu D 0, and we effectively have an open-loop control system, like that in Fig. 1.4(b).
The signal eu shows up only if there is uncertainty, when

eu D .Ptrue � P /u C Ptrued C n:

This agrees with the understanding that for open-loop stable processes feedback is only needed because of
uncertainty. The feedback signal eu D ym � P u can thus be thought of as the uncertainty indicator. As a
matter of fact, the architecture in Fig. 6.3(b) is known as the internal model control (IMC) setup, see [19]
for its comprehensive exposition.

6.2.2 All stabilizing controllers: possibly unstable plants

The transformation used in the previous subsection to decouple three out of four components of the closed-
loop system from R cannot be used if P 62 H1 because it is unstable then. Yet the idea behind it still applies
if properly modified.

To see how, bring in a doubly coprime factorization over RH1, like that in (3.34). That is, consider
transfer functions N 2 RH p�m

1 , M 2 RH m�m
1 , QN 2 RH p�m

1 , and QM 2 RH p�p
1 such that M.s/ and QM .s/

are bi-proper,
P D NM�1 D QM�1 QN ;

and there are appropriately dimensioned X; Y; QX; QY 2 RH1 such that
�

X Y

� QN QM

� �

M � QY
N QX

�

D
�

Im 0

0 Ip

�

(6.4)

(this is just a repeated (3.34)). From the construction in §4.3.1 we know that these functions always exist.
We can also suppose that X.s/ and QX.s/ are bi-proper as well, cf. (4.21).

Now, the second term on the middle expression of (6.2) can be rewritten as
�

I

P

�

R.I � PR/�1
�

P I
�

D
�

M

N

�

M�1R.I � PR/�1 QM�1
� QN QM

�

:

It follows from (6.4) that
�

X Y

� QN QM

� �

M

N

�

D
�

I

0

�

and
� QN QM

�
�

I 0

0 �I

� �

M � QY
N QX

� �

I 0

0 �I

�

D
�

0 I
�

: (6.5)

This suggests that the bi-stable factors on the left-hand side of (6.4) could be used instead of
�

I 0
�P I

�

. This
is indeed the case as shown in the proof of the theorem below.

Theorem 6.6 (Q-parametrization). R stabilizes the system in Fig. 6.1 iff there exists Q 2 RH1 such that

R D Fl

��

�X�1Y X�1

QM C QN X�1Y � QN X�1

�

; Q

�

D .X C Q QN /�1.�Y C Q QM/ (6.6a)

D Fl

��

� QY QX�1 M C QY QX�1N
QX�1 � QX�1N

�

; Q

�

D .� QY C MQ/. QX C NQ/�1: (6.6b)

Moreover, R is well posed iff QX.1/ C N.1/Q.1/ (equivalently, X.1/ C Q.1/ QN .1/) is nonsingular.

Proof. Because the factors on the left-hand side of (6.4) are bi-stable, by construction,

Taux 2 RH1 ” QTaux ´
�

X Y

� QN QM

�

Taux

�

I 0

0 �I

� �

M � QY
N QX

��

I 0

0 �I

�

2 RH1
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It is readily verified using (6.4) that

�
X Y

� QN QM

��
I 0

P I

��
M QY
�N QX

�

D
�

M�1 Y

0 QM

� �
M QY

�N QX

�

D
�

I � YN Y QX C M�1 QY
� QMN QM QX

�

;

so that, taking into account (6.5),

QTaux D
�

I � YN Y QX
� QMN QM QX

�

C
�

I

0

�
�

M�1 QY C M�1R.I � PR/�1 QM�1
� �

0 I
�

: (6.7)

The first term on the right-hand side above is stable irrespective of R, which affects only the .1; 2/ sub-block
of QTaux. Therefore, we have that

Taux 2 RH1 ” Q ´ M�1 QY C M�1R.I � PR/�1 QM�1 D Fu

��

P QM�1

M�1 M�1 QY

�

; R

�

2 RH1:

Now, because
�

P QM�1

M�1 M�1 QY

�

D
�

0 QM�1

M�1 0

��
I QY
QN I

�

D
�

0 M
QM 0

��1 �
I C QY .I � QN QY /�1 QN � QY .I � QN QY /�1

�.I � QN QY /�1 QN .I � QN QY /�1

��1

(by (B.15a))

D
��

I C QY QX�1 QM�1 QN � QY QX�1 QM�1

� QX�1 QM�1 QN QX�1 QM�1

� �

0 M
QM 0

���1

(by (6.4))

D
�

� QY QX�1 M C QY QX�1N
QX�1 � QX�1N

��1

is invertible and so are its .1; 2/ and .2; 1/ sub-blocks, it follows from Proposition 5.6 that the mapping
R 7! Q is bijective whenever I C P.1/R.1/ is nonsingular. Repeating then the arguments used to prove
Theorem 6.5 we end up with the LFT in (6.6b). Opening up this LFT, we have that

R D � QY QX�1 C .M C QY QX�1N /Q.I C QX�1NQ/�1 QX�1

D
�

� QY QX�1. QX C NQ/ C .M C QY QX�1N /Q
�

. QX C NQ/�1 D .� QY C MQ/. QX C NQ/�1;

which is exactly the second equality in (6.6b). The formulae in (6.6a) follow then by straightforward algebra
and (6.4).

The characterization of the set of all stabilizing controllers for the system in Fig. 6.1 presented in
Theorem 6.6 is known as the Youla–Kučera parametrization. In the particular case of P 2 RH1 the
Youla–Kučera parametrization matches that of Theorem 6.5. This follows from the possibility to choose
N D QN D P , M D X D Im, QM D QX D Ip , and Y D QY D 0 in that case. The controller corresponding
to the trivial choice Q D 0, i.e. R D � QY QX�1 D �X�1Y , is sometimes called the central controller of
this parametrization. Because the Bézout coefficients (as well as their respective coprime factors) are not
unique, neither is the central controller. Still, it might be convenient to have a controller, around which the
whole parametrization is built and with respect to which the free parameter Q is analyzed.

To interpret the effect of the free parameter Q on the central controller, consider the block-diagrams in
Fig. 6.4. They present two forms of the Youla–Kučera parametrization, those given by the lcf (6.6a) and by
the rcf (6.6b). The signals y and u stand for the measured plant output and the control input generated by the
controller. In the nominal case, when the plant model is accurate and no exogenous inputs, like disturbances
and measurement noise, affect the plant, these signals are related as y D NM�1u D QM�1 QN u.

https://en.wikipedia.org/wiki/Dante_C._Youla
https://cs.wikipedia.org/wiki/Vladim%C3%ADr_Ku%C4%8Dera_(d%C4%9Bkan)
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yu

�

�
�Y

QM

Q

X�1

QN -

(a) In the lcf form (6.6a)

y�

�

u
� QY

M

Q

QX�1

N

-

(b) In the rcf form (6.6b)

Fig. 6.4: Youla–Kučera parametrization of stabilizing controllers

Fig. 6.4(a): The input to Q is � D QMy � QN u. In the nominal case, when QMy D QN u, we have that � D 0.
In this situation only the central controller acts. The signal � can then be viewed as an indicator
of the mismatch between expected and actual behavior of the control system, be it due to modeling
uncertainty or due to the effect of exogenous signals (disturbances). The block Q is activated only if
this indicator generates an “uncertainty alert” notification.

Fig. 6.4(b): The signal � generated by the block Q affects both the plant input, via adding M� to it, and the
measured output, via subtracting N� from it. If the plant model is perfectly known, the input injection
M� propagates to y as the signal PM� D N�, which is canceled out by �N� coming directly from
Q. Thus, Q affects the controller behavior only if there is a mismatch between the model and the
actual plant. However, unlike the setup in Fig. 6.4(a), exogenous signals affecting the plant have no
affect on this process.

It should be emphasized that these interpretations are based on idealized scenarios. Modeling uncertainties
and disturbances must be present in any realistic setup, so the effect of Q is always perceptible.

Remark 6.4 (non-uniqueness of Bézout coefficients). As already mentioned above, the non-uniqueness of
the doubly coprime factorization (6.4) may affect the central controller in (6.6). But it does not offer any
additional degree of freedom to the Q-parametrization. To see that, consider another choice of coprime
factors of P , say N1, M1, QN1, and QM1. By Proposition 3.2, there are bi-stable U and QU such that N1 D N U ,
M1 D MU , QN1 D QU QN , and QM1 D QU QM . Bézout coefficients of the new factorization resulting in (6.4)
satisfy then

�
I 0

0 QU

��
X1 Y1

� QN QM

� �

M � QY1

N QX1

��

U 0

0 I

�

D
�

I 0

0 I

�

or, equivalently,
�

U 0

0 I

��

X1 Y1

� QN QM

� �

M � QY1

N QX1

��

I 0

0 QU

�

D
�

I 0

0 I

�

Hence, we may have that Y1 D U�1Y , X1 D U�1X , QY1 D QY QU�1, and QX1 D QX QU�1. In this case, (6.6b)
in terms of the new factorization reads

R D .� QY1 C M1Q1/. QX1 C N1Q1/�1 D .� QY QU�1 C MUQ1/. QX QU�1 C N UQ1/�1

D .� QY C MUQ1
QU /. QX C N UQ1

QU /�1

and we return to the original parametrization for any given Q with Q1 D U�1Q QU�1, which is admissible
because U�1; QU�1 2 RH1. Thus, a different choice of coprime factors of P merely results in a different
choice of Q to end up with the same stabilizing controller in form (6.6b). Similar arguments apply to form
(6.6a) of the parametrization. O

Remark 6.5 (coprime factors of stabilizing controllers). It is readily verified that

.X C Q QN /M C .�Y C Q QM/.�N / D I and QM . QX C NQ/ C .� QN/.� QY C MQ/ D I
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for all Q. This implies that the right-hand sides of (6.6a) and (6.6b) constitute rcf and lcf of stabilizing R

over RH1, respectively. Another consequence of the Bézout equalities above is that every pair of Bézout
coefficient of coprime factorizations of the plant constitute coprime factors of a stabilizing controller for it.
Thus, constructing Bézout coefficients is effectively equivalent to constructing a stabilizing controller (this
fact is used in the proof of Theorem 6.8 below). This analogy works both ways. Say, if we have a simple
stabilizing controller, then its coprime factors can serve as Bézout coefficients for a coprime factorization
of the plant. O

Like in the stable case, the Youla–Kučera parametrization can be used to simplify the closed-loop
system Taux. To this end, rewrite (6.7) as

QTaux D
�

I

0

�
�

I 0
�

C
�

Y
QM

�
�

�N QX
�

C
�

I

0

�

Q
�

0 I
�

:

It is then a matter of tedious but straightforward algebra to see that

Taux D
�

MX �M Y

NX I � N Y

�

C
�

M

N

�

Q
� QN QM

�

D
�

MX C MQ QN �M Y C MQ QM

NX C NQ QN I � N Y C NQ QM

�

:

This is again an affine function of Q, which simplifies performance analyses of the closed-loop system, as
well as controller design procedures, see Chapter 7 for further details.

Remark 6.6 (stability and domains of systems in the loop). The first output of Taux,

e1 D M
�

�Y v1 C Xv2 C Q. QMv1 C QN v2/
�

;

is the input signal entering P in Fig. 6.1(b). The formula above implies that e1 2 DP for all v1; v2 2 L2,
cf. Proposition 3.4. In other words, every stabilizing controller ensures that the plant input is always in its
domain, which is expectable. Likewise, the second output of Taux is

e2 D .NX C NQ QN /v1 C .I � N Y C NQ QM/v2 D . QX C NQ/. QN v1 C QM v2/;

where the relations NX D QX QN and I �N Y D QX QM resulting from (6.4) are used. Taking into account the
discussion in Remark 6.5, this relation implies that any stabilizing controller should ensure that its input
signal e2 2 DR. O

The generator of all stabilizing controllers in the Youla–Kučera parametrization can be constructed via
a state-space realization of P . Suppose

P.s/ D
�

A B

C D

�

and that .A; B/ is stabilizable and .C; A/ is detectable (i.e. no minimality assumption is required). We aim
at constructing a state-space realization of the 2 � 2 generator of the LFT in (6.6b). A key observation
toward this end is that

�

u

�

�

D J

�

y

�

�

´
�

� QY QX�1 M C QY QX�1N
QX�1 � QX�1N

� �

y

�

�

”
�

u

y

�

D
�

M � QY
N QX

��

�

�

�

;

so that the logic of Remark 4.3 on p. 79 can be used. Namely, (4.21b) reads

�

M � QY
N QX

�

W

� POx.t/ D .A C BK/ Ox.t/ C B�.t/ � L�.t/

u.t/ D K Ox.t/ C �.t/

y.t/ D .C C DK/ Ox.t/ C D�.t/ C �.t/
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where K and L are any matrices such that A C BK and A C LC are Hurwitz. It follows from the output
equation above that � D �.C C DK/ Ox C y � D�. Hence, a realization of J is that between the rearranged
signals,

J W

� POx.t/ D .A C BK C LC C LDK/ Ox.t/ � Ly.t/ C .B C LD/�.t/

u.t/ D K Ox.t/ C �.t/

�.t / D �.C C DK/ Ox.t/ C y.t/ � D�.t/

(6.8)

and the first equality in (6.6b) reads

R.s/ D Fl

0

@

2

4

A C BK C LC C LDK �L B C LD

K 0 I

�C � DK I �D

3

5 ; Q.s/

1

A (6.9)

with the well-posedness requirement det.I � Q.1/D/ ¤ 0.

Remark 6.7 (Q-parametrization of general controllers). The arguments used to derive the parametrizations
in (6.6), as well as that in (6.9), are based on transforming I/O signals in Fig. 6.1 and did not touch the
controller R itself. Hence, they apply almost literally to the case when R is not constrained to be LTI
or finite dimensional. This is why a sheer replacement of Q 2 RH1 in Theorem 6.6 with any causal
system—possibly nonlinear, time varying, or infinite dimensional—bounded as an operator on L2 does
not change the result. The only subtlety here is that the well-posedness condition should be reformulated
if P.1/ ¤ 0, perhaps via ideas from [30, Ch. 4]. We then end up with an exhaustive parametrization of
all nonlinear time-varying infinite-dimensional controllers for finite-dimensional LTI plants. O

6.2.3 All stabilizing controllers based on a given one

Return to the parametrization of all stabilizing controllers in (6.9). To gain an additional insight into it,
rearrange the state equation in (6.8) as

POx.t/ D A Ox.t/ C B
�

K Ox.t/ C �.t/
�

� L
�

y.t/ � C Ox.t/ � D.K Ox.t/ C �.t//
�

D A Ox.t/ C Bu.t/ � L
�

y.t/ � C Ox.t/ � Du.t/
�

:

This is the conventional observer equation. The signal � D y � C Ox � Du D C.x � Ox/ is an indicator
of the mismatch between the plant state x and its estimation Ox, obtained from the measurement equation
y D Cx C Du of the plant P (� is known as the innovations process in the Kalman filtering theory). The
control signal u D K Ox C � is then almost the standard observer-based control law, modulo the addition of
the “correction” signal � D Q�.

The central controller of (6.9), the one with Q D 0 and thus � D 0, is the classical observer-based
controller, which is known to stabilize the plant. It means that all stabilizing controllers in this case can
be constructed as an extension of a given stabilizing controller. It may be of interest to extend this charac-
terization to an arbitrary given stabilizing controllers, say C0. This is indeed possible and to derive such a
parametrization a preliminary technical result, which is of independent interest, is required.

Lemma 6.7. The following conditions are equivalent:

1. R internally stabilizes P ,

2.

�

M �NR

�N MR

��1

2 RH1,

3.

� QM � QN
� QNR

QMR

��1

2 RH1,

https://en.wikipedia.org/wiki/State_observer
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4. . QMRM � QNRN /�1 2 RH1,

5. . QM MR � QN NR/�1 2 RH1,

where components of the transfer functions above are coprime factors of the plant P D NM�1 D QM�1 QN
and the controller R D NRM�1

R D QM�1
R

QNR over RH1.

Proof. With these factorizations, the system Taux defined by (6.2) can be expressed as follows:

Taux ´
�

I �R

�P I

��1

D
�

M 0

0 MR

� �

M �NR

�N MR

��1

(6.10a)

D
� QMR � QNR

� QN QM

��1 � QMR 0

0 QM

�

(6.10b)

D
�

M 0

N I

��

. QMRM � QNRN /�1 0

0 I

� � QMR
QNR

0 I

�

; (6.10c)

where the last equality follows by (B.14a) on p. 195 and the relation I � RP D QM�1
R . QMRM � QNRN /M�1.

1 ” 2 W Let QY ; QX and QYR; QXR be the Bézout coefficients for N; M and NR; MR, respectively. It is
readily verified that

� QMR � QY
� QYR

QM

� �

M �NR

�N MR

�

C
� QX � QMR

QY C QNR

QN C QYR � QM C QXR

� �

M 0

0 MR

�

D
�

I 0

0 I

�

:

This proves that the factors in (6.10a) constitute a rcf of Taux over RH1. Hence, the sought equivalence
follows by Proposition 3.3.

1 ” 3 W Follows by similar arguments from the left coprimeness of the factors in (6.10b).

1 H) 4 ^ 5 W Follows by the already proved fact that 1 ” 2 ^ 3 and the relation

�

M �NR

�N MR

��1 � QMR
QNR

QN QM

��1

D
�

. QMRM � QNRN /�1 0

0 . QMMR � QN NR/�1

�

;

which can be verified by a straightforward algebra.

4 H) 1 W Follows by (6.10c).

The last two items also prove that 5 H) 1, which completes the proof.

Now, suppose that a finite-dimensional LTI controller R0 internally stabilizes the plant. Bring in its
coprime factorizations over RH1,

R0 D NR0
M�1

R0
D QM�1

R0

QNR0

for appropriately dimensional NR0
; MR0

; QNR0
; QMR0

2 RH1. The set of all stabilizing controllers having
this R0 as its central controller is given by the following result.

Theorem 6.8 (Q-parametrization from R0). R stabilizes the system in Fig. 6.1 iff there exists Q 2 RH1
such that

R D Fl

��

R0 I

I �P.I � R0P /�1

�

; QM�1
R0

QM�1
R0

�

(6.11a)

D
�

NR0
C . QMR0

� QNR0
P /�1Q

��

MR0
C P. QMR0

� QNR0
P /�1Q

��1
(6.11b)

D
�

� QMR0
C Q.MR0

� PNR0
/�1P

��1� QNR0
C Q.MR0

� PNR0
/�1
�

(6.11c)

and such that I C P.1/. QM�1
R0

.1/Q.1/M�1
R0

.1/ � C0.1// is nonsingular.
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Proof. The idea behind the proof is to construct right (left) coprime factors of P having � QNR0
and QMR0

(�NR0
and MR0

) as the Bézout coefficients for them, so that the formulae of Theorem 6.6 can be used.
To this end, start with any coprime factorizations P D QM�1 QN D NM�1. By Lemma 6.7, the stability
of the closed-loop system implies that U0 ´ QMR0

M � QNR0
N and QU0 ´ QMMR0

� QN NR0
are bi-stable.

By Proposition 3.2, MU�1
0 and N U�1

0 ( QU�1
0

QM and QU�1
0

QN ) are then also right (left) coprime factors of P .
But then

� QU�1
0

QM � QU�1
0

QN
� QNR0

QMR0

� �

MR0
N U�1

0

NR0
MU�1

0

�

D I

and we have our sought factorizations, cf. (6.4). By (6.6b), all stabilizing controllers can then be charac-
terized as .NR0

C MU�1
0 Q/.MR0

C N U�1
0 Q/�1 or . QMR0

C Q QU�1
0

QN /�1. QNR0
C Q QU�1

0
QM /. The formulae

in (6.11) follow then by straightforward algebra.

Remark 6.8 (all stabilized plants). The stability setup in Fig. 6.1 is symmetric with respect to the plant and
the controller in it. In other words, P and R can be interchanged. As a result, if we know one plant, say
P0, stabilized by a given controller R, we can exhaustively characterize all plants stabilized by that very
controller. This class can be obtained by “mirroring” the formula of Theorem 6.8 as

P D Fu

��
�R.I � P0R/�1 I

I P0

�

; QM�1
0 QM�1

0

�

;

where M0 and QM0 are the denominators of coprime factorizations of P0 over RH1 (the upper LFT is used
merely for aesthetic reasons). Characterizations of this kind are used in some closed-loop identification
algorithms, where the task is to identify a more accurate plant model from closed-loop experiments via
adjusting Q. Perhaps, the parametrization above can also be used in some control design problems. O

6.2.4 Extensions

Up to this point only finite-dimensional LTI systems having real-rational transfer functions were consid-
ered. Yet apart from somewhat more involved well-posedness conditions, all arguments of §6.2.2 apply to
infinite-dimensional systems, whose transfer functions are irrational, literally.

A potential obstacle in exploiting this direction might be the construction of doubly coprime factor-
izations of irrational transfer functions. There are general-purpose methods, expressing coprime factors,
or counterparts to the state-space formula in (6.9), in terms of some operator equations. However, the
resulted controllers might be non-transparent and hard to implement. Still, for some relatively simple, yet
quite practical, classes of infinite-dimensional problems the arguments of §6.2.2 can be applied in a neat
way. One such problem is studied below.

Consider first the following abstract class of infinite-dimensional LTI plants:

P D Pfd C ˘; (6.12)

where Pfd is a finite-dimensional LTI system having a real-rational transfer function Pfd.s/ and ˘ 2 H1
but otherwise unconstrained. This class of systems effectively contains all systems having a finite number
of unstable poles. The following result shows that a doubly coprime factorization of P can be constructed
from that of its finite-dimensional part.

Lemma 6.9. Let Pfd D NfdM�1
fd D QM�1

fd
QNfd, where Nfd; Mfd; QNfd; QMfd 2 RH1 satisfy

�
Xfd Yfd

� QNfd
QMfd

� �

Mfd � QYfd

Nfd
QXfd

�

D
�

I 0

0 I

�
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for appropriately dimensional RH1 Bézout coefficients. Then

�
X Y

� QN QM

�

´
�

Xfd � Yfd˘ Yfd

� QNfd � QMfd˘ QMfd

�

and

�

M � QY
N QX

�

´
�

Mfd � QYfd

Nfd C ˘Mfd
QXfd � ˘ QYfd

�

constitute a doubly coprime factorization of P D Pfd C ˘ D NM�1 D QM�1 QN over H1.

Proof. Follows from the relation
� QM � QN

Y X

�� QX N

� QY M

�

D
�

Xfd Yfd

� QNfd QMfd

� �

I 0

�˘ I

��

I 0

˘ I

��

Mfd � QYfd

Nfd QXfd

�

D
�

I 0

0 I

�

and the facts that M D Mfd and QM D QMfd are bi-proper.

The transparency of the coprime factors formulae pays off in the controller architecture. Applying the
parametrization of Theorem 6.6, all controllers stabilizing this P can be presented as

R D .� QY C MQ/. QX C NQ/�1 D .� QYfd C MfdQ/. QXfd C NfdQ C ˘.� QYfd C Mfd//�1

D .� QYfd C MfdQ/. QXfd C NfdQ/�1
�

I C ˘.� QYfd C Mfd/. QXfd C NfdQ/�1
��1

D Rfd.I C ˘Rfd/�1;

where Rfd D .� QYfd C MfdQ/. QXfd C NfdQ/�1. This is the feedback interconnection of G1 D Rfd and G2 D
�˘ in the setup presented in Fig. 5.1(c). Here Rfd is the parametrization of all stabilizing controllers for
the finite-dimensional part of the plant, Pfd. Thus, altering a plant by a stable system connected in parallel
can always be counteracted by adding the same stable system as an internal feedback to the controller. This
is a frequently used trick, known as loop shifting.

This result has several useful applications. The best known of them is perhaps that to the stabilization
of dead-time systems. Let

P.s/ D P0.s/e��s D
�

A B

R 0

�

e��s

for some delay � > 0. What we need is to transform this P to form (6.12). This is a straightforward task
in the stable case. Indeed,

P.s/ D P0.s/ � P0.s/.1 � e��s/

is what we need because ˘ D �P0.1 � e��s/ 2 H1 then. Adding this �P0.1 � e��s/ in feedback with a
finite-dimensional controller designed for the delay-free system P0 results in the celebrated Smith controller

proposed in [27], which is a well-understood controller architecture for dead-time systems.
If P0 is unstable, the split of P as in (6.12) is still possible. Arguably, the easiest way to see that is via

the impulse response of P (derived by delaying (4.4)),

p.t/ D C eA.t��/B1.t � �/ D C eA.t��/B1.t / � C eA.t��/B1Œ0;��.t /

D C e�A� eAt B1.t / � C eA.t��/B1Œ0;��.t / µ pfd.t / C �.t/:

The first term above is the impulse response of a finite-dimensional system Pfd, whose transfer function

Pfd.s/ D
�

A B

C e�A� 0

�

D
�

A e�A� B

C 0

�

: (6.13)

The second term corresponds to an FIR (finite impulse response) system ˘ whose transfer function

˘.s/ D Lf�g D �C

Z �

0

eA.t��/e�st dtB

https://en.wikipedia.org/wiki/Otto_J._M._Smith
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does belong to H1. To see that, we need to show that ˘.s/ is holomorphic and bounded in C0. As ˘.s/

is an entire function of s (integral of an exponential function), the first part is obvious. Now, for all s 2 C0

k˘.s/k �
Z �

0

je�st jkC eA.t��/Bkdt <

Z �

0

kC e�AtBkdt < 1;

where the second inequality follows by the fact that je�st j D e�t Re s < 1 for all Re s > 0 and t � 0. Hence,
˘.s/ is bounded in C0 and thus belongs to H1. The FIR ˘ above, known as the modified Smith predictor,
was proposed in [29]. As a matter of fact, ˘.s/ can be alternatively presented as

˘.s/ D C.e�A� � e��sI /.sI � A/�1B;

whose all singularities at the eigenvalues of A are removable. The case of A D 0 and B D C D 1, when
˘.s/ D .1 � e��s/=s, gives the finite-memory integrator Gfmint;� studied in Chapter 3.

6.3 Open-loop stabilization

Unlike the feedback interconnection, (open-loop) parallel and series interconnections can only alter joint
dynamics via canceling some of their parts. These cancellations are not limited to cancellations between
poles and zeros, they might reflect directional properties or even more complicated phenomena. Unstable
dynamics can be stabilized via cancellations. For example, if G1.s/ D �1=.s.s C 1//, placing in parallel
with it G2.s/ D 1=s yields a stable system with the transfer function G.s/ D G1.s/ C G2.s/ D 1=.s C 1/.
A less trivial example is the (unstable) system with the transfer function G1.s/ D 1=.s C 1 C se�s/ studied
in Remark 3.4 on p. 48. It can be stabilized by connecting it in series with any finite-dimensional low-pass
filter, e.g. G2.s/ D 1=.s C 1/, as in that case one can show that G2G1 2 H1. Although no poles of
G1.s/ are canceled here, poles are not the cause of its instability. Of course, stabilization via open-loop
cancellations would be quite fragile (arbitrarily small mismatches ruin it) and would not guarantee internal
stability. Therefore, this is by no means a practical stabilization method.

Nonetheless, the ideas behind it are useful in shaping steady-state behavior of controlled systems. To
clarify this statement, consider the open-loop tracking problem in the configuration of Fig. 1.4(b) for a
stable plant with the transfer function P.s/ D 1=.s C 1/ and a stable controller R to be designed to reduce
the tracking error e D yr � y. The transfer function of the system yr 7! e there is Te.s/ D 1 � R.s/=.s C 1/

and it is stable whenever so is R, i.e. there are no constraints on R.s/ apart from the obvious requirement
to be stable. But if we also need to have a zero steady-state error for the step yr.t / D 1.t /, which reads

lim
t!1

e.t/ D lim
s!0

sTe.s/
1

s
D Te.0/ D 1 � R.0/

by the final value theorem, then the condition R.0/ D 1 must hold. This is an additional (interpolation)
constraint to be imposed on R. At the same time, consider the problem of stabilizing TeW D W � PRW ,
where the (unstable) weight W.s/ D 1=s. It is readily seen that

Te.s/W.s/ D 1

s
� R.s/

s.s C 1/
D 1 � R.0/

s
� R.s/ � R.0/.s C 1/

s.s C 1/
:

The second term on the right-hand side above has a removable singularity at the origin and can be shown
to be an RH1 function whenever R 2 RH1. This implies that all instabilities of TeW are in the first term
above. Hence, TeW is stable iff R.0/ D 1, which is the same interpolation constraint as that guaranteeing
the zero steady-state error to a step reference, discussed above. In other words, the steady-state requirement
in this case can be cast as a stability requirement for an appropriately chosen (unstable) weighting function

https://en.wikipedia.org/wiki/Final_value_theorem
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ve
�

G11 G12

G21 0

�

Rol

(a) General two-sided setup

ve
�

G1 G2
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�

Rol

(b) One-sided “tracking” setup

ve
�

G1 I

G2 0

�

Rol

(c) One-sided “estimation” setup

Fig. 6.5: Open-loop stabilization configurations

W . This W is not a system existent “in the flesh,” whose unstable dynamics should be stabilized. Rather,
it is a fictitious system, whose sole purpose is to shape the error transfer function at certain points in the
complex plane.

Thus, if considered in an appropriate context, stabilization by cancellations has no hidden hazards in
it. A general open-loop stabilization setup is presented in Fig. 6.5(a), where systems Gij are given and and
a stable Rol is to be selected to render the “error” system Ge W v 7! e stable as well. The zero G22 block in
Fig. 6.5(a) is what makes it open loop, with the error system

Ge D G11 C G12RolG21

being an affine function of Rol. We are not concerned with internal signals here, so they are not named.
The problem represented by Fig. 6.5(a) is dubbed the two-sided setup and might be rather complicated,
see [14, Ch. 3]. For that reason, it shall not be studied here in its full generality. Rather, its special, one-

sided, versions presented in Figs. 6.5(b) and 6.5(c) are considered. Their error systems, G1 C G2Rol and
G1 C RolG2, can be thought of as representing feedforward tracking and estimation problems, respectively
(more details will be discussed in Chapter 7). These setups are, in a sense, “transpose” to each other and a
solution to one of them can easily be derived from the other by algebraic duality. So only the “estimation”
version is addressed below in details.

6.3.1 Stabilization in one-sided setting

Consider the interconnection in Fig. 6.5(c). Our task is to select Rol 2 RH1 such that

Ge D G1 C RolG2 (6.14)

belongs to RH1 too. The problem is trivial if G1 and G2 are themselves stable, in which case any stable
Rol does the trick. If only G2 is unstable, its instabilities can be canceled by Rol via matching the directions
of every unstable pole pi of G2.s/ by zero directions of Rol.pi/, see §5.1.2. If G1 is unstable, its unstable
dynamics should be canceled by those of RolG2. Because Rol is required to be stable, we must have every
instability of G1 present in G2. The task of Rol is then reshape the output directions of unstable poles
of G2 to match those of G1, see §5.1.1. Thus, the stabilization problem is effectively to shape Rol.pi/ at
every unstable pole pi of both G1.s/ and G2.s/. These can be viewed as problems of characterizing stable
systems from given interpolations constraints on their transfer functions.

It should be emphasized that an appropriate shaping of Rol is not always possible, even if all unstable
poles of G1.s/ are also those of G2.s/. For example, let G1.s/ D 1=sI2 and G2.s/ D diagf1=s; 1=.s2 C1/g.
The error system

Ge.s/ D
�

.1 C Rol;11.s//=s Rol;12.s/=.s2 C 1/

Rol;21.s/=s 1=s C Rol;22.s/=.s2 C 1/

�

:

To stabilize its .1; 1/ and .2; 1/ elements, we need Rol;11.0/ D �1 and Rol;21.0/ D 0, which cancel their
only instabilities at the origin. The .1; 2/ element is stable iff Rol;12.˙j/ D 0, which cancels its unstable
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poles at s D ˙j. But there is no way to cancel the pole at the origin in the .2; 2/ element by a stable Rol;22

(the poles at s D ˙j are canceled if Rol;22.˙j/ D 0). In general, we may expect that a stabilizing Rol exists
if input directions of every unstable mode of G1 is contained in those of G2. Otherwise, some instabilities
of the former might be excited even if their counterparts of the latter are not, in which case Rol cannot “see”
them and cannot counteract.

Thus, the stabilization of the system in Fig. 6.5(c) boils down to two main technical issues. First, we
should know how to characterize the “containment” of the directions of unstable poles of G1.s/ in those of
G2.s/. Second, we should know how to generate (preferably, all) stable systems interpolating given points
in the complex plane, directions counting. Addressing both these issues is substantially simplified by the
use of coprime factorization machinery.

To this end, let G2 D N2M�1
2 D QM�1

2
QN2 constitute a doubly coprime factorization of G2 with ap-

propriate Bézout coefficients X2; Y2; QX2; QY2 2 RH1. The lemma below gives necessary and sufficient
stabilizability conditions for the problem in Fig. 6.5(c).

Lemma 6.10. The following conditions are equivalent:

1. there is Rol 2 RH1 stabilizing Ge in (6.14),

2. G1M2 2 RH1 (equivalently, DG1
� DG2

, see Proposition 3.4),

3. the combined system admits a lcf of the form

�

G1

G2

�

D
�

I QM1

0 QM2

��1 � QN1

QN2

�

(6.15)

for some QN1; QM1 2 RH1.

Proof.

1 ” 2 W To prove that 1 H) 2, assume that Rol 2 RH1 stabilizes Ge D G1 C RolN2M�1
2 . This

implies that GeM2 D G1M2 C RolN2 or, equivalently, G1M2 D GeM2 � RolN2 2 RH1. To prove
that 1 (H 2, assume that G1M2 2 RH1 and pick Rol D �G1M2Y2. Then

Ge D G1 � G1M2Y2N2M�1
2 D G1 � G1M2.I � X2M2/M�1

2 D G1M2X2 2 RH1:

1 ” 3 W If the factorization in (6.15) exist, then the choice Rol D QM1 is stabilizing because Ge D QN1

then. If there is Rol 2 RH1 for which Ge 2 RH1, then (6.15) holds with QN1 D Ge and QM1 D Rol. It
is only left to show that the factorization in (6.15) is coprime. This follows by the relation

�

I QM1

0 QM2

� �

I � QM1
QX2 � QN1

QY2

0 QX2

�

C
� QN1

QN2

�
�

0 QY2

�

D
�

I 0

0 I

�

; (6.16)

which is the related Bézout equality constructed from the Bézout coefficients of the left coprime QM2

and QN2.

The relation 2 ” 3 is then obviously true.

The second condition of Lemma 6.10 can be viewed as a way to formalize the “containment” mentioned
above. It is intuitive and easy to verify. For instance, in the example considered above we can always select
M2.s/ D diagfs=.s C 1/; .s2 C 1/=.s C 1/2g, so that G1.s/M2.s/ D diagf1=.s C 1/; .s2 C 1/=.s.s C 1/2/g is
unstable. However, this condition is less self-contained in characterizing all stabilizing Rol’s (a lcf of G2

would be required to that end). The last condition of Lemma 6.10 may appear less intuitive, but it leads to
the following useful result.



130 Chapter 6. Stability of Interconnections

Theorem 6.11. If a lcf of G1 and G2 of form (6.15) exists, then Rol 2 RH1 stabilizes the system in

Fig. 6.5(c) iff there is Q 2 RH1 such that

Rol D QM1 C Q QM2 (6.17)

and then Ge D QN1 C Q QN2 is the set of all attainable stable error systems v 7! e.

Proof. Obviously, this Rol 2 RH1 if so does Q. The first row of (6.15) reads G2 D QN1 � QM1
QM�1

2
QN2.

Hence, if Rol is of form (6.17), then Ge D QN CQ QN2 2 RH1, whence the sufficiency of (6.17) follows. To
show necessity, let Ge D G1 � Rol;0G2 2 RH1 for some Rol;0 2 RH1. Define Q0 ´ .Rol;0 � QM1/ QM�1

2 .
It is readily verified that it satisfies the equality

�

I Q0

�
�

I QM1
QN1

0 QM2
QN2

�

D
�

I Rol;0 Ge
�

:

Post-multiplying this equality by the Bézout coefficients from (6.16) yields
�

I Q0

�

D
�

I � QM1
QX2 � QN1

QY2 C Rol;0 QX2 C Ge QY2

�

2 RH1:

Hence, this Rol;0 is in form (6.17) for Q D Q0.

Example 6.3. To illustrate the results above, consider the problem of reconstructing a signal v from its
version passed via a communication channel, whose transfer function H.s/ D .�s C 1/=.s C 1/. The
measurement equation can then be defined as y D Hv and our goal is to design a stable reconstructor
Rol W y 7! Ov rendering the reconstruction error e D v � Ov small. This requirement can be expressed in
terms of the error system connecting v with e, i.e. 1� RolH . Because H is not stably invertible, we cannot
expect to have the zero error. But we may require it to be zero for the DC component of v. The latter
reads as the condition 1 � Rol.0/H.0/ D 0 or, equivalently, as the requirement Rol.0/ D 1=H.0/ D 1. To
reformulate this requirement as a stabilization problem, introduce the weight Wv.s/ D 1=s and assume that
v D Wv Qv for some fictitious Qv 2 L2. The error system Ge W Qv 7! e ´ v � Ov becomes then

Ge D .1 � RolH/Wv

and the condition Ge 2 RH1 is equivalent to 1 � Rol.0/H.0/ D 0. This error system is in form (6.14) for
G1 D Wv and G2 D �HWv , for which

G.s/ D
�

G1.s/

G2.s/

�

D
�

1=s

.s � 1/=.s.s C 1//

�

:

It is perhaps not hard to guess that a possible denominator of a rcf of this G2 is M.s/ D s=.s C 1/ and then
G1.s/M.s/ D 1=.s C 1/. Hence, the second condition of Lemma 6.10 holds true and we may expect to be
able to construct a lcf of G in form (6.15). With some educated guesses, its possible choice is

G.s/ D
�

1 1

0 s=.s C 1/

��1 �
2=.s C 1/

.s � 1/=.s C 1/2

�

;

which are indeed left coprime, as can be seen from the Bézout equality
�

1 1

0 s=.s C 1/

��

1 �1

0 .s C 3/=.s C 1/

�

C
�

2=.s C 1/

.s � 1/=.s C 1/2

�
�

0 �1
�

D
�

1 0

0 1

�

:

Thus, the sets of all “stabilizing” reconstructors Rol and corresponding error systems from Theorem 6.11
have

Rol.s/ D 1 C Q.s/
s

s C 1
and Ge.s/ D 2

s C 1
C Q.s/

s � 1

.s C 1/2

for an arbitrary Q 2 RH1. All these Rol’s indeed satisfy the required condition Rol.0/ D 1 and can thus
be viewed as a parametrization of all stable transfer functions with the unit static gain. ˙
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The parametrization of all stabilizing Rol’s in (6.17) relies on a lcf of form (6.15). We show below that
this factorization can be readily constructed from a joint state-space realization of G1 and G2. To this end,
bring in a realization

G.s/ D
�

G1.s/

G2.s/

�

D

2

4

A B

C1 D1

C2 D2

3

5 (6.18)

The following result yields an algorithm for constructing the parametrization of Theorem 6.11.

Lemma 6.12. If the realization of G in (6.18) is stabilizable, then G admits a left coprime factorization

of form (6.16) iff .C2; A/ is detectable, in which case

� QM1.s/ QN1.s/
QM2.s/ QN2.s/

�

D

2

4

A C L2C2 L2 B C L2D2

C1 0 D1

C2 I D2

3

5 (6.19)

for any L2 such that A C L2C2 is Hurwitz.

Proof. The sufficiency of the detectability of .C2; A/ follows by choosing L D
�

0 L2

�

in realization
(4.21a) of QM in a general lcf G D QM�1 QN (the stabilizability of .A; B/ is required to construct corre-
sponding Bézout coefficients).

To prove necessity, assume that G can be factorized as in (6.15). Bring in arbitrary realizations

� QM1.s/
QM2.s/

�

D

2

4

AM BM

CM1 DM1

CM2 DM2

3

5 and
� QN1.s/

QN2.s/

�

D

2

4

AN BN

CN1 DN1

CN 2 DN 2

3

5 ;

such that AM and AN are Hurwitz. Because QM2.s/ is the denominator of a coprime factorization of G2.s/,
DM2 must be square and nonsingular and we can assume that DM2 D I without loss of generality (other-
wise, the scaling QM2 ! D�1

M2
QM2 and QN2 ! D�1

M2
QN2 does the trick). In this case equality (6.15) reads

G.s/ D

2

4

AM 0 BM

CM1 I DM1

CM2 0 I

3

5

�12

4

AN BN

CN1 DN1

CN 2 DN 2

3

5 D

2

4

AM � BM CM2 0 �BM

CM1 � DM1CM2 I �DM1

CM2 0 I

3

5

2

4

AN BN

CN1 DN1

CN 2 DN 2

3

5

D

2

6
6
4

AN 0 BN

�BM CN 2 AM � BM CM2 �BM DN 2

CN1 � DM1CN 2 CM1 � DM1CM2 DN1 C DM1DN 2

CN 2 CM2 DN 2

3

7
7
5

:

To prove the statement of the Lemma, it is now sufficient to show that the realization above is detectable
from its second block output. To this end, bring in the corresponding PBH observability equality:

2

4

AN � �I 0

�BM CN 2 AM � BM CM2 � �I

CN 2 CM2

3

5

�

x1

x2

�

D

2

4

I 0 0

0 I �BM

0 0 I

3

5

2

4

AN � �I 0

0 AM � �I

CN 2 CM2

3

5

�

x1

x2

�

D 0:

Because AM and AN are Hurwitz, this equality can hold for no � 2 xC0.
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Fig. 6.6: General LFT internal stability setup

6.4 Internal stability in the LFT setting

This chapter is wound up with a study of the internal stability for the LFT setup depicted in Fig. 6.6. This
is a generalization of the internal stability notion for the system in Fig. 6.1 and it shall play an important
role in the performance analyses in the next chapter.

Following the logic of §6.1.1, we say that the system in in Fig. 6.6 is internally stable if all nine systems
.v1; v2; v3/ 7! .e1; e2; e3/ are stable. The relation between its inputs and outputs can be described by the
following equation:

2

4

I �R 0

�G22 I 0

�G12 0 I

3

5

2

4

e1

e2

e3

3

5 D

2

4

I 0 0

0 I G21

0 0 G11

3

5

2

4

v1

v2

v3

3

5 :

Hence, its internal stability is equivalent to the stability of

Taux ´

2

4

I �R 0

�G22 I 0

�G12 0 I

3

5

�12

4

I 0 0

0 I G21

0 0 G11

3

5 D

0

@

2

4

I 0 0

�G22 I 0

�G12 0 I

3

5�

2

4

0 R 0

0 0 0

0 0 0

3

5

1

A

�12

4

I 0 0

0 I G21

0 0 G11

3

5

D

2

4

I 0 0

G22 I G21

G12 0 G11

3

5C

2

4

I

G22

G12

3

5R.I � G22R/�1
�

G22 I G21

�

; (6.20)

where the Matrix Inversion Lemma (Lemma B.7) is used to derive the last equality.
The analysis of (6.20) also follows the logic of §6.2.2. We are seeking for bi-stable transformations

decoupling the R-independent terms in the second term of (6.20). However, there is a qualitative difference
between (6.2) and (6.20). The R-independent terms of the former, see (6.7), are always stable. This is not
necessarily true for (6.20). Hence, the stabilization result below includes restrictive conditions on coprime
factorizations of the composed system G.

Theorem 6.13. There is an internally stabilizing R iff there are coprime factorizations of the form

�

G11 G12

G21 G22

�

D
�

I QM12

0 QM22

��1 � QN11
QN12

QN21
QN22

�

D
�

N11 N12

N21 N22

��

I 0

M21 M22

��1

(6.21)

with right coprime QN22 and QM22 and left coprime N22 and M22. If factorizations as above exist, then R

internally stabilizes the system in Fig. 6.6 iff it internally stabilizes the system in Fig. 6.1 under P D G22.

Proof. The first step is to prove the necessity of (6.21). To this end, bring in a doubly coprime factorization
of G22, i.e. transfer functions N22; M22; QN22; QM22 2 RH1 such that M22.s/ and QM22.s/ are bi-proper,

G22 D N22M�1
22 D QM�1

22
QN22;

and there are appropriately dimensioned X22; Y22; QX22; QY22 2 RH1 such that
�

X22 Y22

� QN22
QM22

� �

M22 � QY22

N22
QX22

�

D
�

I 0

0 I

�

:
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From the construction in §4.3.1 we know that these function always exist. Now,

Taux

2

4

M22
QY22 0

�N22
QX22 0

0 0 I

3

5 D

2

4

M22
QY22 0

0 QM�1
22 G21

G12M22 G12
QY22 G11

3

5C

2

4

I

G22

G12

3

5R.I � G22R/�1
�

0 QM�1
22 G21

�

is stable iff Taux is stable. Because the first column of the system above does not depend on R, there is a
stabilizing R only if G12M22 2 RH1. By Lemma 6.10, there are then QN12; QM12 2 RH1 such that

�

G12

G22

�

D
�

G12M22

N22

�

M�1
22 D

�

I QM12

0 QM22

��1 � QN12

QN22

�

;

and the later is a lcf. Moreover, taking into account (6.16) we can construct Bézout coefficients for the
corresponding doubly coprime factorization as follows:

2

4

X22 0 Y22

� QN12 I QM12

� QN22 0 QM22

3

5

2

4

M22 0 � QY22

G12M22 I � QM12
QX22 � QN12

QY22

N22 0 QX22

3

5 D

2

4

I 0 0

0 I 0

0 0 I

3

5 :

Next, consider

2

4

X22 Y22 0

� QN12
QM12 I

� QN22
QM22 0

3

5Taux D

2

4

M�1
22 Y22 Y22G21

0 QM12 G11 C QM12G21

0 QM22
QM22G21

3

5C

2

4

M�1
22

0

0

3

5R.I � G22R/�1
�

G22 I G21

�

;

which is again stable iff Taux is stable. Because the last two rows of this system are independent of R,

�

G11 C QM12G21

QM22G21

�

D
�

I QM12

0 QM22

� �

G11

G21

�

must be stable for a stabilizing R to exist. Combining two necessary conditions above, we have the necessity
of the first (left) factorization in (6.21), where QN11 D G11 C QM12G21 and QN21 D QM22G21. The necessity
of the right factorization in (6.21) follows by dual arguments. To complete the proof of necessity, we only
need now to show that the factorizations in (6.21) are coprime. This follows by the explicit construction of
the Bézout equalities,

2

6
6
4

I 0 0 0

X21 X22 0 Y22

� QN11 � QN12 I QM12

� QN21 � QN22 0 QM22

3

7
7
5

2

6
6
4

I 0 0 0

M21 M22 0 � QY22

N11 N12 I QX12

N21 N22 0 QX22

3

7
7
5

D

2

6
6
4

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

3

7
7
5

; (6.22)

where QN11 D G11 C QM12G21, QN12 D G12M22, QN21 D QM22G21, and QX12 D � QM12
QX22 � G12M22

QY22 are
the factors associated with the lcf in (6.21) and N11 D G11 C G12M21, N21 D QM22G21, N12 D G12M22,
and X21 D �X22M21 � Y22

QM22G12 are those associated with the rcf there (the construction of QM12 and
M21 is less explicit, see the proof of Lemma 6.10).

To prove sufficiency of (6.21) and properties of R, define

QTaux ´

2

4

X22 0 Y22

� QN12 I QM12

� QN22 0 QM22

3

5

2

4

I 0 0

0 0 I

0 I 0

3

5Taux

2

4

0 I 0

0 0 �I

I 0 0

3

5

2

4

I 0 0

M21 M22 � QY22

N21 N22
QX22

3

5 ;
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which is again stable iff Taux is stable, because both external factors in it are bi-stable (follows from (6.22)).
By tedious but otherwise straightforward algebra it can be shown that

QTaux D

2

4

�X21 I 0
QN11 0 0
QN21 0 0

3

5 �

2

4

Y22

QM12

QM22

3

5
�

N21 N22
QX22

�

�

2

4

I

0

0

3

5Q
�

0 0 I
�

;

where Q ´ M�1
22

QY22 C M�1
22 R.I � G22R/�1 QM�1

22 . Hence, the stability of QTaux is equivalent to that of Q,
which is exactly what we had in the proof of Theorem 6.6, cf. (6.7). But the stabilization of Q depends
only on G22 and is always possible. This proves the sufficiency of (6.21) and the last statement.

Despite looking rather technical, the stabilizability condition of Theorem 6.13 are intuitive. Indeed,
the equalities in (6.21) read
�

G11 G12

G21 G22

�

D
� QN11 � QM12

QM�1
22

QN21
QN12 � QM12

QM�1
22

QN22

QM�1
22

QN21
QM�1

22
QN22

�

D
� QN11

QN12

0 0

�

�
� QM12

�I

�

QM�1
22

� QN21
QN22

�

D
�

N11 � N12M�1
22 M21 N12M�1

22

N21 � N22M�1
22 M21 N22M�1

22

�

D
�

N11 0

N21 0

�

�
�

N12

N22

�

M�1
22

�

M21 �I
�

;

i.e. all unstable poles of the composed system are those of either QM22.s/ and M22.s/, which are the de-
nominators of left and right coprime factors of G22, respectively. But we know, see Proposition 3.3, that
the inverses of the denominators of coprime factorizations contain all unstable poles of the system itself.
Hence, conditions of Theorem 6.13 effectively say that all unstable modes of G must be present in G22,
around which the feedback loop is closed. Consequently, in the open-loop case studied in Section 6.3, in
which G22 D 0, internal stabilization is possible only if all remaining Gij are stable themselves.

Substituting R.I � G22R/�1 D � QY22
QM22 C M22Q QM22 into (6.20), all stable systems T33 W v3 7! e3

can be characterized as

T33 D G11 � G12
QY22

QM22G21 C G12M22Q QM22G21 D QN11 � . QM12 C N12Y22/ QM�1
22

QN21 C N12Q QN21

D QN11 C QX12
QN21 C N12Q QN21;

where the equalities M�1
22

QY22 D Y22
QM�1

22 and QX12
QM22 D �. QM12 C N12Y22/, which follow from (6.22), are

used. This is again an affine function of Q.
Arguably, the simplest way to verify the condition of Theorem 6.13 for a general G is via its state-space

realization. Specifically, bring in a minimal realization of the composite system,

�

G11.s/ G12.s/

G21.s/ G22.s/

�

D

2

4

A B1 B2

C1 D11 D12

C2 D21 D22

3

5 :

The following result offers simple ways to verify the conditions of Theorem 6.13 and construct all stabi-
lizing controllers for the system in Fig. 6.6.

Proposition 6.14. The conditions of Theorem 6.13 hold iff .A; B2/ is stabilizable and .C2; A/ is detectable.

If these conditions hold, then all proper stabilizing controllers for the system in Fig. 6.6 are given by

R.s/ D Fl

0

@

2

4

A C B2K C LC2 C LD22K �L B2 C LD22

K 0 I

�C2 � D22K I �D22

3

5 ; Q.s/

1

A ; (6.23)

where K and L are any matrices such that A C B2K and A C LC2 are Hurwitz and Q 2 RH1 and is such

that det.I � Q.1/D22/ ¤ 0, but otherwise arbitrary.

Proof. The stabilizability conditions can be proved in line with the proof of Lemma 6.12. Formula (6.23)
is merely a notational adjustment to (6.9), because R only needs to stabilize G22.



Chapter 7

Performance and the Standard Problem

O
ptimization-based approaches to control system design comprise essentially two basic stages. In
the first stage, a control problem is formulated as a problem of minimizing a norm (“size”) of some

specially built closed-loop system. Then, in the second stage, the controller is produced by solving this
optimization problem subject to a suitably defined constraint (like stability). It is usually convenient to
formulate the optimization problem in the first stage in a unified fashion, so that it can be solved using
a general purpose machinery. Such a unified optimization setup, known as the standard problem, is the
focus point of this chapter. Specifically, we shall see how to cast some (more or less) standard approaches
to the optimization-based controller design as standard problems and discuss some aspects of the related
generalized plant paradigm.

7.1 The setup, main definitions, and stability

The standard problem corresponds to the lower LFT configuration depicted in Fig. 7.1 on the next page.
The system G there is known as the generalized plant and R is referred to as the controller. Our goal is then
to design R to reduce the effect of w on ´ in the closed-loop system Fl.G; R/ W w 7! ´. The generalized
plant has two inputs, w and u, and two outputs, ´ and y, whose meaning is spelt out below.

w is dubbed the exogenous input and contains all exogenous signals, whose effect is important for the
problem at hand. These may be a reference signal, a load disturbance, measurement noise, et cetera.
These signals might also be fictitious (normalized) signals forming the actual signals of interest.

´ is dubbed the regulated output and contains signals that are required to be kept “small” (in whatever
sense). These may be deviations from a required behavior, like tracking or estimation errors, actuator
signals and suchlike, weighted to focus their relative importance and important aspects of them.

y is the measured output, through which the controller acquires the information about the effect of w

on the system behavior.

u is the control input, which is the signal generated by the controller and through which the effect of w

on ´ can be affected.

Control and estimation problems considered throughout this chapter shall clarify these definitions.
The generalized plant G contains dynamics of a controlled plant itself, sensors, actuators, weighing

functions (see below), and even some fixed parts of the controller (e.g. the integral action). It is conven-
tionally presented by the joint dynamics of its components, like

G.s/ D
�

G´w.s/ G´u.s/

Gyw.s/ Gyu.s/

�

D

2

4

A Bw Bu

C´ D´w D´u

Cy Dyw Dyu

3

5 (7.1)
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G

R

w´

y u

Fig. 7.1: The “standard problem”

for input and output partitions compatible with those in Fig. 7.1.
Because stability is normally a vital property of control systems, in most cases we require the controller

to internally stabilize the system in Fig. 7.1 in the sense discussed in Section 6.4. Consequently, we assume
that the realization .A; Bu; Cy; Dyu/ is stabilizable and detectable or, equivalently, that G admits a doubly
coprime factorization over RH1 of the form

G D
�

N´w N´u

Nyw Nyu

� �

I 0

Myw Myu

��1

D
�

I QM´u

0 QMyu

��1 � QN´w
QN´u

QNyw
QNyu

�

; (7.2)

with the corresponding Bézout coefficients
2

6
6
4

I 0 0 0

Xyw Xyu 0 Yyu

� QN´w � QN´u I QM´u

� QNyw � QNyu 0 QMyu

3

7
7
5

2

6
6
4

I 0 0 0

Myw Myu 0 � QYyu

N´w N´u I QX´u

Nyw Nyu 0 QXyu

3

7
7
5

D

2

6
6
4

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

3

7
7
5

; (7.3)

cf. (6.21) and (6.22). The class of all stabilizing controllers is

R D .� QYyu C MyuQ/. QXyu C NyuQ/�1 D .Xyu C Q QNyu/�1.�Yyu C Q QMyu/ D Fl.J; Q/; (7.4)

where

J.s/ D

2

4

A C BuKu C LyCy C LyDyuKu �Ly Bu C LyDyu

Ku 0 I

�Cy � DyuKu I �Dyu

3

5 (7.5)

and Q is any stable system such that det.I � Q.1/Dyu/ ¤ 0. With this class of admissible controllers,
the set of all closed-loop maps T´w W w 7! ´ can be characterized as

T´w D QN´w C QX´u
QNyw C N´uQ QNyw : (7.6)

An informative state-space realization of the systems on the right-hand side of (7.6) is

� QN´w.s/ C QX´u.s/ QNyw.s/ N´u.s/
QNyw.s/ 0

�

D

2

6
6
4

A C BuKu �LyCy �LyDyw Bu

0 A C LyCy Bw C LyDyw 0

C´ C D´uKu C´ D´w D´u

0 Cy Dyw 0

3

7
7
5

; (7.7)

which actually equals G.s/ ? J.s/ and as such can be derived by the formulae of Proposition 5.7 (and
applying the similarity transformation

�
0 I
I �I

�

). The .2; 2/ element of the realization above contains only
uncontrollable (those of A C LyCy) and unobservable (those of A C BuKu) modes and is thus indeed zero.

7.2 Some (familiar) H2 problems

The H2 version of the standard problem in Fig. 7.1 consists in designing a stabilizing R that minimizes the
H2-norm of the system T´w W w 7! ´. This section aims at showing how a couple of classical control and
filtering problems (see [15, 1] for their explication) can be cast as standard H2 problems.
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7.2.1 LQR

The linear-quadratic regulator problem, aka LQR, studies systems of the form

Px.t/ D Ax.t/ C Bu.t/; x.0/ D x0

and aims at minimizing the cost function

Jlqr ´
Z

RC

�

x0.t /Qx.t/ C u0.t /Ru.t/
�

dt (7.8)

for some Q D Q0 � 0 and R D R0 > 0. Although the problem itself does not assume any particular
measurement equation, it is well known that the optimal control law can be written in the form of a static
state feedback. Thus, we shall assume that the whole state vector x.t/ is perfectly measurable.

To cast this problem in the form presented in Fig. 7.1, we shall define its inputs and outputs first. To
this end, note that Jlqr is the L2-norm of the signal

´ D
�

Q1=2x

R1=2u

�

:

This is a natural candidate for the regulated output. To determine w, note that the only influence on the
system not related to our actions is the initial condition. But the effect of the initial condition x0 is equivalent
to the effect of the Dirac delta impulse applied via the “B” matrix x0. In other words, the state dynamics
can be equivalently described as

Px.t/ D Ax.t/ C x0ı.t/ C Bu.t/; x.0/ D 0:

This implies that the LQR problem boils down to minimizing the L2-norm of ´ under an impulse input.
But that is exactly the deterministic interpretation of the H2-norm of the controlled system discussed on
p. 50. Taking into account that the measured output is x and the control input is u, we end up with the
generalized plant

G.s/ D Glqr.s/ ´

2

6
6
4

A x0 B

Q1=2 0 0

0 0 R1=2

I 0 0

3

7
7
5

: (7.9)

The solution to the LQR problem is currently well understood, see [15, 1]. It is based on one algebraic
Riccati equation, has a static state-feedback structure, and possesses several attractive properties, like the
infinite gain margin and a phase margin of at least 60ı. Another known property is that the solution of the
corresponding H2 optimization problem does not depend on x0. Hence, it can be replaced with any Bw ,
including the case of Bw D I .

Yet another generalization may be introduced by considering the generalized plant

G.s/ D Glqr0.s/ ´

2

4

A Bw Bu

C´ 0 D´u

I 0 0

3

5 ; (7.90)

which corresponds to the cost function

Jlqr0 D
Z

RC

�

x0.t / u0.t /
�
�

C 0´C´ C 0´D´u

D0´uC´ D0´uD´u

� �

x.t/

u.t/

�

dt: (7.80)

The cost in (7.8) corresponds to the particular case of C 0´D´u D 0. A nonzero C 0´D´u, which penalizes a
cross-coupling between x and u, might be handy in handling cost functions including a physically meaning-
ful variable y D Cyx and its derivatives. Indeed, Py.t/ D CyAx.t/ C CyBu.t/ and, unless B 0C 0yCyA D 0,
there is a cross-coupling in Py0 Py.
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7.2.2 Steady-state Kalman–Bucy filtering

Let (

Px.t/ D Ax.t/ C nx.t /

y.t/ D Cx.t/ C ny.t /
(7.10)

where nx and ny are independent zero-mean white Gaussian processes having covariances

EŒnx.t /n0x.s/� D Qxı.t � s/ and EŒny.t /n0y.s/� D Qyı.t � s/

for some Qx D Q0x � 0 and Qy D Q0y > 0, where EŒv� denotes the expected value of a random variable
v. A stationary version of the celebrated Kalman–Bucy filtering problem can be posed as the task of
generating a reconstruction (estimate) Ox.t/ of the state vector x.t/ using measurements y.t/ that minimize

Jkbf ´ lim
t!1

E
�

kx.t/ � Ox.t/k2
�

;

which is the steady-state variance of the reconstruction error x � Ox. It is assumed that the reconstructor
y 7! Ox, known as filter, is a stable and causal LTI system. Stability is required because filtering is an open-
loop operation. The time invariance of the filter, which result in the time invariance of the whole system,
renders the problem meaningful. Otherwise nothing would prevent a filter to start acting at an arbitrarily
late time instance, which would not affect Jkbf. A more conventional Kalman–Bucy filtering formulation
aims at minimizing the error variance at every time instance and in general results in a time-varying filter.
However, if the process in (7.10) is time invariant, parameters of such time-varying filters tend to converge
to their steady-state values rapidly. Hence, the steady-state version may not be unduly limiting in such
situations performance-wise, while is clearly advantageous from the implementation viewpoint.

To formulate the standard problem, note that the system of interest from the performance viewpoint
is that connecting the exogenous signals nx and ny with the reconstruction error ´ D x � Ox. It is known
[15, §1.11.3] that the asymptotic variance of the response of an LTI system G W u 7! y to a zero-mean
white input with EŒu.t/u0.s/� D Qı.t � s/ equals lim t!1 EŒky.t/k2� D kGQ1=2k2

2. This implies that the
H2-norm is the right performance measure here and that the input channels of the system of interest should
be scaled by diagfQ1=2

x ; Q
1=2
y g. This yields the generalized plant

G.s/ D Gkbf.s/ ´

2

6
4

A Q
1=2
x 0 0

I 0 0 �I

C 0 Q
1=2
y 0

3

7
5 ; (7.11)

whose measured output is y and whose control input is the filter output Ox. The exogenous input w in this
case is any zero-mean unit-intensity, i.e. normalized, white process such that

�
nx.t /

ny.t /

�

D
"

Q
1=2
x 0

0 Q
1=2
y

#

w.t/:

The Kalman–Bucy filtering problem is then to design a stabilizing R minimizing the H2-norm of the
system w 7! ´, which is a special case of the standard H2 problem. Because the problem is open loop (as
Gyu D 0), the internal stability requires A to be Hurwitz and constrains the filter R to be stable itself. We
can also accommodate unstable processes by dropping the internal stability requirement and requiring R

to be stable explicitly. This situation can be handles with the help the machinery in Section 6.3.
The problem can be faintly generalized by considering the generalized plant

G.s/ D Gkbf0.s/ ´

2

4

A Bw 0

C´ 0 �I

Cy Dyw 0

3

5 : (7.110)

https://en.wikipedia.org/wiki/Rudolf_E._Kalman
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=34369
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Re

Im

�ph

1=�g

L.j!/

�1

(a) Gain (�g) and phase (�ph) margins

Re

Im1 � �m

2 arcsin
�m

2

�m

L.j!/

�1

(b) Modulus margin (�m)

Fig. 7.2: Stability margins in the Nyquist plane

It corresponds to the assumption that the exogenous signals in (7.10) have covariances

E
��

nx.t /

ny.t /

�
�

n0x.s/ n0y.s/
�
�

D
�

BwB 0w BwD0yw

DywB 0w DywD0yw

�

ı.t � s/;

i.e. it allows mutual dependencies between nx and ny if DywB 0w ¤ 0. Also, the regulated signal in (7.110)
aims at estimating a subset of the state vector, v D C´x. Yet the latter generalization actually changes
nothing, as the optimal solution is known to be of the form Ov D Cv Ox, where Ox is the optimal estimate of
the whole stave vector x. Further generalizations include relaxations of the causality requirement. If R

is assumed to have access to a finite preview of y, the problem is dubbed the fixed-lag smoothing. If the
whole future behavior of y is available, we have a fixed-interval smoothing problem.

7.3 Some (less familiar) H1 problems

The H1 version of the standard problem is more recent1 and less conspicuous in introductory control texts.
Nevertheless, there is a number of H1 problems that are directly connected to classical frequency-domain
control ideas and thus should be easier to grasp based on loop-shaping insight. Thus, this section not only
introduces some of these problems and shows how to cast them in the form of Fig. 7.1, but also discusses
their potential in revealing intrinsic limitations of feedback control. Another emphasis in this section is
placed on the need to be-careful-what-you-wish-for in posing control design problems. Optimization, and
the H1 approach is not an exception, might find unexpected ways to exploit loopholes even in seemingly
well-chosen cost functions to produce poor to meaningless optimal controllers. This should be always
taken this into consideration in formulating optimization-based problems.

7.3.1 Maximum attainable modulus margin

Stability margins play a prominent role in classical frequency-domain design methods. They quantify
the proximity of the loop frequency-response plot to the critical point .�1; 0/ on the Nyquist plane. The
“far from the critical point” requirement is essential both to avoid resonances in closed-loop frequency
responses (and thus have smoother transients) and to reduce the sensitivity of the controlled system to
modeling mismatches.

Historically, the best known margins are the gain and phase margins, �g and �ph, shown in Fig. 7.2(a),
which are relatively simple to calculate also from the Bode plot. Another margin, which is less common
but not less informative, is the modulus margin, �m. It is defined as the shortest (Euclidean) distance from

1Developments of the H1 control theory started in the early ’80s, with the appeal of the seminal work of Zames [33].

https://en.wikipedia.org/wiki/George_Zames
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the critical point to the Nyquist plot, see Fig. 7.2(b). In other words, �m D inf!2Rj1 C L.j!/j, so that
1=�m D sup!2RjS.j!/j, where S ´ 1=.1 C L/ is the sensitivity function, which is obviously assumed to
be stable. Hence, we have that

�m D 1=kSk1
and minimizing the H1-norm of the sensitivity function is effectively the problem of maximizing the
modulus margin.

Remark 7.1 (�g and �ph warranties via �m). It is a matter of simple plane geometry to show that if �m � 1,
then

�g � 1

1 � �m
and �ph � 2 arcsin

�m

2
:

We shall see below that the condition �m � 1 holds in any meaningful problem. In the particular case of
�m D 1, we have the familiar [1, Sec. 5.4] stability margins of the LQR controller. O

To form the standard problem for minimizing kSk1, consider the unity-feedback system in Fig. 1.4(c).
The sensitivity function corresponds to the system from yr 7! e there. Setting the exogenous signal as yr,
the regulated signal—as e, the measured output—also as e and u in its standard role, we end up with

G.s/ D Gmm.s/ D
�

I �P.s/

I �P.s/

�

: (7.12)

Bring in a doubly coprime factorization of P D NM�1 D QM�1 QN . Because Gyu D �P here, we have
that Nyu D �N , QNyu D � QN , and the corresponding Bézout coefficients Yyu D �Y and QYyu D � QY , which
should be taken into account in all related equations. The stabilizability condition (7.2) always holds for
this G:

G D
�

I �N

I �N

� �

I 0

0 M

��1

D
�

I �I

0 QM

��1 �
0 0
QM � QN

�

with
2

6
6
4

I 0 0 0

Y X 0 �Y

0 0 I �I

� QM QN 0 QM

3

7
7
5

2

6
6
4

I 0 0 0

0 M 0 QY
I �N I QX
I �N 0 QX

3

7
7
5

D

2

6
6
4

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

3

7
7
5

:

It then follows from (7.4) and the first equality in (7.6) that all stabilizing controllers are parametrized as

R D . QY C MQ/. QX � NQ/�1 D .X � Q QN /�1.Y C Q QM/ (7.13)

and all attainable stable sensitivity functions are parametrized as

T´w D S D . QX � NQ/ QM (7.14)

for an arbitrary Q 2 RH1 such that QX.1/ � N.1/Q.1/ is nonsingular. This form is quite convenient
for the analysis of properties of S , as will be shown in the examples below.

Example 7.1. Let

P.s/ D s � ´1

s C 1

for some ´1 2 R. In this case we can always choose M D QM D X D QX D 1 and N D QN D P . Hence, all
attainable stable sensitivity transfer functions are

S.s/ D 1 � s � ´1

s C 1
Q.s/

for Q 2 RH1 such that Q.1/ ¤ 1. This is essentially an open-loop plant inversion problem like that
considered in §1.4.1. There are two situations, depending on the sign of the plant zero:
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1. If ´1 < 0, i.e. the plant is minimum phase, then the obvious choice Q.s/ D .s C1/=.s �´1/ is optimal,
as it renders S D 0. But this choice is not admissible, because it violates the well-posedness condition.
Still, we can approximate this ideal yet infeasible Q by altering its high-frequency gain slightly almost
without sacrificing performance. For example, Q.s/ D ..1� �/s C 1/=.s � ´1/ is feasible for all � ¤ 0

and yields S.s/ D �s=.s C 1/, whose H1 norm approaches zero as � ! 0.

2. If the plant is nonminimum phase (´1 � 0), then we can no longer stably invert N.s/. In fact, the
condition S.´1/ D 1 must hold regardless Q, because Q.´1/ is bounded whenever Q 2 RH1. Taking
into account the original definition of the H1 norm in (3.20) on p. 47, this implies that kSk1 � 1. In
fact, this bound is attained by the trivial choice Q D 0, which happens to be unique.

As a matter of fact, all stable plants with bi-proper transfer functions can be treated similarly. ˙

Arguments of Example 7.1 can be extended to general stable plants with strictly proper transfer func-
tions as well. Specifically, if P is stable, then all stable sensitivity functions are given by

S.s/ D 1 � P.s/Q.s/

for an arbitrary Q 2 RH1 (because P.1/ D 0, the controller is always well posed). Because P.s/Q.s/ is
always strictly proper then, S.1/ D 1 and the optimal kSk1 D 1, again attained by opening the loop. In
other words, the minimum modulus margin for stable strictly proper plants is �m D 1 and it is attained by
Q D 0. Of course, this is a senseless controller. This suggests that the problem of sheer minimizing kSk1
is not the problem to rely on in controller design. Still, having a calculable lower bound on the modulus
margin has its value, it helps to tell hard from easy plants from the stability margins point of view.

The situation becomes less trivial for unstable plants, as opening the loop is not an option here.

Example 7.2. Let now

P.s/ D s � ´1

s2 � 1

for some ´1 ¤ 1. A possible choice of coprime factors in this case is

M.s/ D QM.s/ D s � 1

s C a
and N.s/ D QN .s/ D s � ´1

.s C a/.s C 1/
D P.s/M.s/

for any a > 0. This M.s/ is the lowest-order proper transfer function containing the unstable pole of P.s/

as its zero. The corresponding Bézout coefficients are

X.s/ D QX.s/ D s C .a´1 C 2´1 C a/=.´1 � 1/

s C 1
and Y.s/ D QY .s/ D �2.a C 1/

´1 � 1
:

Hence, all attainable stable sensitivity transfer functions are

S.s/ D
�

s C .a´1 C 2´1 C a/=.´1 � 1/

s C 1
� s � ´1

.s C 1/.s C a/
Q.s/

�
s � 1

s C a

for any Q 2 RH1. An important observation in analyzing this system is that the factor .s � 1/=.s C a/

becomes co-inner (defined on p. 50) if a D 1. This choice is convenient because, by Proposition 3.1, the
multiplication of a transfer function by a co-inner function from the right does not change its H1 norm.
Hence, if a D 1, then kSk1 D kSeqk1, where

Seq.s/ ´ s C .3´1 C 1/=.´1 � 1/

s C 1
� s � ´1

.s C 1/2
Q.s/:

This is again an open-loop plant inversion problem, again with two qualitatively different situations, de-
pending on the sign of the plant zero:
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1. If ´1 < 0, then the only constraint imposed on Seq is that Seq.1/ D 1 and it yields the lower bound
kSeqk1 � 1. This norm can always be reached, although the solution might not be unique. Indeed,
the (nontrivial) choice

Q.s/ D
QX.s/ � QX.1/

N.s/
D
�

s C .3´1 C 1/=.´1 � 1/

s C 1
� 1

�
.s C 1/2

s � ´1

D 2.´1 C 1/

´1 � 1

s C 1

s � ´1

(7.15)

yields Seq.s/ D 1, which obviously attains the lower bound. But Q D 0 is also an admissible solution
if �1 � ´1 < 0, in which case j.3´1 C 1/=.´1 � 1/j � 1 and j QX.j!/j is a monotonically increasing
function of !, approaching 1 as ! ! 1.

2. If ´1 � 0, then there are two constraints that Seq.s/ must satisfy,

Seq.1/ D 1 and Seq.´1/ D QX.´1/ D 1

QM.´1/
D ´1 C 1

´1 � 1

(if ´1 D 0, the fact that all components are real-rational is used to justify the second constraint). The
first of these constraints is associated with the strict properness of N.s/ and the second one—with its
RHP zero. Hence,

kSeqk1 � max
�

1;

ˇ
ˇ
ˇ
ˇ

´1 C 1

´1 � 1

ˇ
ˇ
ˇ
ˇ

�

D ´1 C 1

j´1 � 1j
(because ´1 C 1 � j´1 � 1j for all ´1 � 0). Thus, the constraint imposed by the nonminimum-phase
zero of N.s/ is more restrictive than that imposed by its “zero at infinity.” Forget for a moment about
the latter and apply the same logic of the choice of Q as that used in the previous item to choose

Q.s/ D
QX.s/ � QX.´1/

N.s/
D
�

s C .3´1 C 1/=.´1 � 1/

s C 1
� ´1 C 1

´1 � 1

�
.s C 1/2

s � ´1

D � 2

´1 � 1
.s C 1/:

This Q results in the static Seq.s/ D .´1 C 1/=.´1 � 1/, which obviously attains the corresponding
lower bound. Yet this Q.s/ is non-proper, so it should be modified. A simple choice is

Q.s/ D � 2

´1 � 1

s C 1

�s C 1
(7.16)

for some � > 0, which guarantees

kSeqk1 <
3� C 1

� C 1

´1 C 1

j´1 � 1j

(the derivations are tedious). Hence, the performance attained by the non-proper Q.s/ above can be
recovered by a proper Q.s/ arbitrarily close if � is sufficiently small.

Summarizing, the supremal modulus margin attainable in this case is

sup
stabilizing R

�m D
(

1 if ´1 < 0

j´1 � 1j=.´1 C 1/ if ´1 � 0
D

�m

plant zero, ´10 1=3 1 3

1
1=2 :

This technical result is actually quite intuitive. It attests to the well-known thesis that nonminimum-phase
zeros render feedback stabilization harder and especially so if such zeros are close to unstable plant poles.

As a matter of fact, the controller in (7.13) corresponding to Q from (7.16) has the transfer function

R.s/ D � 2.s C 1/..1 C 2�/s C 1/

�.´1 � 1/s2 C .´1 C 1 C .3´1 C 1/�/s C ´1 C 1

�!0���! � 2

´1 C 1
.s C 1/:
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This controller cancels the stable pole of the plant at s D �1, becomes unstable if ´1 2 Œ0; 1/, its static gain
R.0/ D �2=.´1 C 1/, and its high-frequency gain R.1/ D �2.��1 C 2/=.´1 � 1/ grows as � ! 0. This is
perhaps not a controller one would choose in any meaningful formulation. Effectively, it succeeds only in
one thing, the increase of the modulus margin. The controller for the minimum-phase case corresponding
to Q in (7.15), R.s/ D 2.s C 1/=.s � ´1/, is not quite impressive either. An important point to take note
in this respect is that an optimal controller is not necessarily a “good” one. ˙

Arguments of Example 7.2 can be applied to general unstable plants with strictly proper nonminimum-
phase transfer functions as well. To see this, let P.s/ have nrhpp 2 N poles in C0, say at s D pi , and no
poles on the imaginary axis. In this case we can always construct a coprime factorization of the plant with
the co-inner QM.s/ D

Qnrhpp
i .s �pi/=.s Cpi/. This again renders kSk1 D k QX �NQk1. If P.s/ has a zero

j́ 2 C0, then so does N.s/ and kSk1 � j QX. j́ /j. Now, at every zero of N.s/ we have QX. j́ / D 1= QM. j́ /,
which follows from the Bézout equality QM QX C QN QY D 1. Thus, kSk1 � maxj 1=j QM. j́ /j. In other words,

�m � min
j́2C0

nrhppY

iD1

ˇ
ˇ
ˇ
ˇ

j́ � pi

j́ C pi

ˇ
ˇ
ˇ
ˇ

< 1: (7.17)

If P.s/ has only one nonminimum-phase zero, then this bound is tight. Otherwise, it might be conservative.
But even then it supports the conventional wisdom that a plant is hard to control if its transfer function has
poles and zeros in the open right half-plane C0 in a close proximity to each other.

The solution logic in the MIMO case is similar, although the results are richer.

Example 7.3. Consider

P.s/ D
�

0 1

0 0

�
1

s � 1
C
�

˛ �2´1=.´1 � 1/

�˛ˇ ˇ

�
1

s C 1

for some ˛ 2 R, ˇ 2 R n f0g, and ´1 2 RC n f1g. This system has an unstable pole at s D 1 with

pdiri.P; 1/ D span
��

0

1

��

and pdiro.P; 1/ D span
��

1

0

��

and a (nonminimum-phase) zero at s D ´1 with

zdiri.P; ´1/ D span
��

1

˛

��

and zdiro.P; ´1/ D span
��

ˇ

1

��

:

Possible doubly coprime factors of this P.s/ with inner M.s/ and QM.s/ are

�
X Y

� QN QM

�

D

2

6
6
6
4

1 0 0 0

0 1 C ´1C1
´1�1

2
sC1

2 2=ˇ

�˛.s�1/

.sC1/2

.´1C1/s�3´1C1

.´1�1/.sC1/2

s�1
sC1

0
˛ˇ

sC1
� ˇ

sC1
0 1

3

7
7
7
5

and

�

M � QY
N QX

�

D

2

6
6
6
4

1 0 0 0

0 s�1
sC1

�2 � 2
ˇ

s�1
sC1

˛
sC1

� .´1C1/s�3´1C1

.´1�1/.sC1/2 1 C ´1

´1�1
4

sC1
2 .´1C1/s�3´1C1

ˇ.´1�1/.sC1/2

� ˛ˇ
sC1

�ˇ.s�1/

.sC1/2 � 2ˇ
sC1

s2C3
.sC1/2

3

7
7
7
5

(the Bézout coefficients above are not required for the discussion to follow). Because QM is co-inner, we
again have that kSk1 D kSeqk1, where Seq ´ QX � NQ. The transfer function N.s/ is not invertible
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only at s D 1, where it vanishes, and s D ´1, where its rank drops to 1. Hence, Seq.s/ is constrained at
those points. The constraint at infinity is not different from what we had in the SISO case of Example 7.2,
namely, Seq.1/ D QX.1/ D I , so that kSeqk1 � 1. However, the constraint at the nonminimum-phase
zero is qualitatively different. We know from §4.3.3 that the unstable zeros of P.s/ and N.s/ and their
output directions coincide. Hence, Seq.´1/ is only constrained along zdiro.P; ´1/, whereas no constraints
are imposed on it along C2 	 zdiro.P; ´1/. In other words, we only have to account for

�0Seq.´1/ D �0 QX.´1/ D �0 QM�1.´1/; for any � 2 zdiro.P; ´1/;

where the second equality follows by QX D QM�1 � P QY . Thus, we have that

kSk1 � kSeq.´1/k � max�2zdiro.P;´1/;k�kD1k�0 QM�1.´1/k:

As zdiro.P; ´1// is a one-dimensional space, the only unity vector in it, modulo the sign, is � D
� cos �o

sin �o

�

,
where �o D arccos ˇ=

p

1 C ˇ2 2 .0; �/ is the angle between pdiro.P; 1/ and zdiro.P; ´1/, cf. (A.2) on
p. 183. It is then readily seen that

kSk1 � opt ´
s
�

´1 C 1

´1 � 1

�2

cos2 �o C sin2 �o 2
�

1;
´1 C 1

j´1 � 1j

�

:

Because opt > 1, it can be shown that this lower bound is tight, meaning there are Q 2 H1 approaching
it arbitrarily close.

It is informative to compare this opt with the optimal performance attained in the SISO case studied
in Example 7.2, which is .´1 C 1/=j´1 � 1j. The MIMO performance level, opt, is always smaller and
approaches the SISO performance as �o ! �=2 (for ˇ ! 1). At the same time, as �o ! 0 (for ˇ ! 0),
opt approaches the performance level of the SISO control in the stable case studied in Example 7.1. This
says that system is easier to control if output directions of unstable pole and zero are further apart. In
other words, in MIMO systems not only relative positions of poles and zeros in C, but also their spatial
alignments are important.

As a matter of fact, the sensitivity function considered above is the output sensitivity So D .I CPR/�1,
cf. the discussion in the beginning of Section 1.5. If the input sensitivity Si D .I CRP /�1 was considered,
the angle between input directions of the unstable pole and zero of P.s/ would be relevant. ˙

7.3.2 Weighted sensitivity

The problem of minimizing the sensitivity function uniformly over all frequencies offers an insight into
intrinsic limitations of feedback systems, but is not a way to produce meaningful controllers. This is
because stability margins is not the only requirement to control systems. A better justified approach to
handle S.j!/ would be to impose different requirements on it in different frequency ranges. For example,
it is normally required to reduce jS.j!/j at low frequencies within a required closed-loop bandwidth, see
the discussion in the beginning of §1.4.3 and the design in §1.A.4. Combining this requirement with that on
the modulus margin, which should hold over all frequencies, we may consider the following requirements:

jS.j!/j �
(

�� if ! � !0

1=�m otherwise
(7.18)

for some �� < 1, �m < 1, and !0 > 0, which may be viewed as tuning parameters. These are simplified
requirements, one may add more requirements in more frequency ranges, like rendering S.j!/ D 0 at a
number of selected frequencies, like ! D 0, et cetera. Nonetheless, (7.18) does capture the essence of the
idea and is thus sufficiently general for our purposes.
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Requirements (7.18) can be cast as a standard H1 problem. To this end, introduce a system W� having
the frequency response

jW�.j!/j D
(

1=�� if ! � !0

�m otherwise
D

!0 !0

1
�m

1=��

: (7.19)

Bound (7.18) is then equivalent to the condition jW� .j!/S.j!/j � 1 for all !. Equivalently, if the natural
condition W� S 2 H1 holds, this can be expressed as the H1-norm bound

kW�Sk1 � 1: (7.20)

The question of the existence of a stabilizing controller guaranteeing (7.20) can be addressed via minimiz-
ing kW�Sk1. Clearly, a required controller exists iff the minimum attainable norm is smaller than or equal
to 1. The existence of such a controller can be resolved conclusively in the framework of the standard H1
problem.

The H1 problem with the cost kW� Sk1 for a given weighting function W� is known as the weighted

sensitivity problem. It can be formulated for a wide class of weighting functions, not necessarily those
having the frequency response as in (7.19). The corresponding generalized plant is

G.s/ D Gws.s/ D
�

W�.s/ �W�.s/P.s/

I �P.s/

�

; (7.21)

which can be constructed by similar arguments to those leading to (7.12). Important is that the minimization
here is a tool to attain a feasible solution for (7.20) rather than a goal per se, so the central question is whether
the system T´w D W� S corresponding to (7.21) is contractive.

It follows from Theorem 6.13, cf. the discussion on p. 134, that this system is internally stabilizable
only if all its instabilities are contained in Gyw D �P . This entails that the condition W� 2 H1 should be
imposed on the weighting function. But the system is always internally stabilizable as

G D
�

W� �W�N

I �N

��

I 0

0 M

��1

D
�

I �W�

0 QM

��1 �
0 0
QM � QN

�

is the coprime factorization required in Theorem 6.13 (the corresponding Bézout coefficients can be con-
structed similarly to their counterparts for G in (7.12)). The set of all stabilizing controllers in this case is
still that in (7.13), yielding the affine family of attainable stable

T´w D W� S D W� . QX � NQ/ QM (7.22)

in terms of an arbitrary Q 2 RH1 such that QX.1/ � N.1/Q.1/ is invertible.
Before we discuss the solution to the weighted sensitivity problem, some additional clarifications about

properties of the weighting function are in order.

� There might be situations when weighting functions with pure imaginary poles are required, like if
there is a need to impose an integral action in the controller via requiring S.0/ D 0. In such situations,
we have to relax the internal stability requirement and use ideas from Section 6.3. Addressing such
situations goes beyond the scope of the notes though.

� Without loss of generality we may limit our attention to weighting functions having no zeros in C0.
This is because jW� .j!/j D jW�.j!/ .j! � ´1/=.j! C ´1/j, so we can replace any RHP zero with its
mirror in the LHP without affecting the left-hand side of (7.20).
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� We also assume that W� .s/ has no pure imaginary zeros, i.e. that jW� .j!/j ¤ 0 for all !. This should
not appreciably limit the class of considered problems. Indeed, jW� .j!1/j D 0 effectively implies that
jS.j!1/j is not a part of the optimization problem. Because jS.j!1/j must be bounded anyway (as
S 2 H1), adding a very small penalty on it does not change the problem.

Thus, in what follow we assume that W�.s/ has neither poles no zeros in xC0 and is bi-proper.
The problem of minimizing the H1 norm of (7.22) is then not quite different from that of (7.14).

Considering for the sake of simplicity the SISO case, the first step is again to select a co-inner QM , which
is possible whenever P.s/ has no pure imaginary poles, and then to look for constraints imposed upon
Teq ´ W�

QX � W�NQ by non-invertible components of W�N . The assumptions on W� above imply that
these are exactly non-invertible components of N . Two cases should again be considered separately.

1. If P.s/ is minimum phase, then so is W� .s/N.s/ and, loosely speaking, the only constraint on the
closed-loop transfer function is Teq.1/ D W� .1/ QX.1/ D W�.1/ D �m. This constraint expectably
agrees with (7.20) if �m � 1. But it depends neither on �� nor on !0, meaning that any low-frequency
performance level over any frequency band can be attained.

2. If P.s/ has unstable zeros, say at s D ´i , those are the only unstable zeros of W� .s/N.s/ and we have
that

Teq.´i/ D W� .´i / QX.´i / D W� .´i/= QM .´i/:

Thus, there is a stabilizing controller rendering kTeqk1 D kW�Sk1 � 1 only if jW�.´i /= QM.´i /j � 1,
which, in turn, is equivalent to the condition, cf. (7.17),

jW�.´i /j � j QM .´i/j D
nrhppY

jD1

ˇ
ˇ
ˇ
ˇ

´i � pj

´i C pj

ˇ
ˇ
ˇ
ˇ

� 1 (7.23)

at every nonminimum-phase zero ´i of the plant. This condition becomes also sufficient if there is
only one nonminimum-phase zero of P.s/, say at s D ´1 (we again ignore a potential non-properness
of 1=N.s/ which is almost always safe to do).

Performance limitations

Let us first focus on implications of condition (7.23), which depends on all parameters of the original
constraint (7.18)—the low-frequency performance level �� < 1, the modulus margin �m < 1, and the
bandwidth !0. The analysis of (7.23) is hindered by the fact that the weighting function in (7.19) is de-
fined in terms of its magnitude frequency response, whereas we mostly need to analyze its magnitude at
points in C0. In mathematical terms, we need to extrapolate the absolute value of an H1 function W� .s/

from the absolute values of its boundary function. It is known, see Remark 3.3, that an H1 function can
be recovered from its boundary function via the Poisson integral formula (3.23). The magnitude of the
frequency response does not define an H1 function unambiguously. For example, 1 and .s � 1/=.s C 1/

are both in H1 and both have the unity magnitude of their frequency responses. Still, a class of H1 func-
tions, known as outer (roughly, minimum-phase) functions, can be recovered from the magnitude of their
frequency responses. This fact is established in the following technical lemma, see [21, Sec. 1.3].

Lemma 7.1. If �.!/ W R ! R satisfies
R

R
j�.!/j=.1 C !2/ d! < 1, then the (outer) function

f .s/ D exp
�

1

�

Z

R

�.!/

�
Re s

.Re s/2 C .Im s � !/2
� j
�

Im s � !

.Re s/2 C .Im s � !/2
C !

1 C !2

��

d!

�

belongs to H1 and is such that lim�#0 lnjf .� C j!/j D �.!/ for almost every !.
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�m

��

!0
D ´1

=3

0:55

! 0
D

´ 1

0:1
! 0

D
3

1́

0 0:1 1

1

(a) Stable plant

�m

��

!0
D ´1=3

0:33

!0
D

´1

0:044
!0

D 3´1

0 0:1 1 1=j QM .´1/j

j QM.´1/j

1

(b) Unstable plant, j QM.´1/j D 2=3

Fig. 7.3: ��–�m tradeoff (waterbed effect) for different !0=´1; admissible regions are below lines

Having this result, we are in a position to analyze (7.23). An immediate consequence of Lemma 7.1 is
that any outer (minimum phase, in engineering terms) transfer function W�.s/ satisfies

jW� .s/j D exp
�

1

�

Z

R

lnjW� .j!/j Re s

.Re s/2 C .Im s � !/2
d!

�

D exp
�

1

�

Z

R

lnjW� .j!/j d arctan
! C Im s

Re s

�

at every s 2 C0. For the sake of simplicity, assume that there is only one unstable zero of P.s/, say at
s D ´1 > 0. Thus, taking into account (7.19), we have that

jW� .´1/j D exp
�

�2 ln ��

�

Z !0

0

d arctan
!

´1

C 2 ln �m

�

Z 1

!0

d arctan
!

´1

�

from which

jW� .´1/j D .�m/1�ˇz

.�� /ˇz
; where ˇz ´ 2

�
arctan

!0

´1

2 .0; 1/ (7.24)

(this ˇz is a strictly increasing function of the normalized bandwidth !0=´1). jW� .´1/j in (7.24) is a
decreasing function of �� , an increasing function of �m, and, because �� 2 .0; 1/ and �m 2 .0; 1/, an
increasing function of !0. These properties support the intuition that the problem becomes harder as ��

decreases and �m and !0 increase. The fact that the required bandwidth is normalized by the position of
the nonminimum-phase zero of the plant also agrees with the conventional wisdom that limitations on the
achievable closed-loop bandwidth become more severe as the unstable zero approaches the real axis.

Reachable �� and �m as functions of the intended bandwidth are visualized in Fig. 7.3. Shaded areas
there show regions in the ��–�m plane in which inequality (7.23) can hold for various !0=´1 and under
various j QM .´1/j on the right-hand side of (7.23). First, consider the case when the plant is stable, for which
QM D 1, see Fig. 7.3(a). We know from the analysis in §7.3.1 that any modulus margin �m � 1 can be

attained here if this is the only design goal. Fig. 7.3(a) shows that this is no longer the case if, in addition,
we need to reduce the sensitivity magnitude below some level in a finite low-frequency band. For example,
if �� D 0:1, then the attainable modulus margin drops from about 0:55 when !0 D ´1=3 to virtually zero
when !0 D 3´1. This implies that as we push jS.j!/j down in ! 2 Œ0; !0�, it necessarily grows outside
this frequency band, up to 1=�m. That phenomenon is known as the waterbed effect, which is fairly self-
explanatory. The situation is similar in the unstable plant case shown in Fig. 7.3(b), the only difference is
that we could not attain the upper bound on �m, which equals now j QM .´1/j < 1, if �� < 1.

Note that the level curves in the plots in Fig. 7.3 are straight lines if !0 D ´1, convex curves with a
vertical slope at �� # 0 if !0 < ´1, and concave curves with a horizontal slope at �� # 0 if !0 > ´1. Hence,
if the bandwidth requirement does not exceed the zero, the system is easier to control in a sense that a slight
relaxation of the low-frequency magnitude requirement yields a significant modulus margin improvement.
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If the bandwidth requirement goes beyond the size of the RHP zero, then similar improvements of �m

require a significantly larger concession in terms of the performance. This agrees with a classical rule of
thumb, limiting the closed-loop bandwidth by the location of the nonminimum-phase zero of the system.

Optimal controller: design and properties

The performance bounds discussed above were obtained assuming that the frequency response of the
weighting function is (7.19). This frequency response corresponds to an infinite-dimensional system. As
a result, an infinite-dimensional Q, and then R, are required to approach these bounds, which is not prac-
tical. Normally, finite-dimensional weights are used to design finite-dimensional controllers (designing
finite-dimensional controllers for infinite-dimensional problem data is a substantially more complicated,
and less transparent, task). It is customary to capture the spirit of requirement (7.18) by simple real-rational
weights, whose frequency responses are close to (7.19).

A possible, albeit not unique, direction here is to use normalized Butterworth polynomials. These are
Hurwitz polynomials Bn.s/ of order n 2 N, whose frequency response magnitude

jBn.j!/j D
p

1 C !2n (7.25)

is a monotonically increasing function of !, approximating maxf1; !ng well. For example, B1.s/ D s C 1

and B2.s/ D s2 C
p

2s C 1. We may consider the bi-proper and minimum-phase transfer function of the
form

W�;n.s/ D k
Bn.s=!2/

Bn.s=!1/
; (7.26)

whose three parameters are tuned to approximate (7.19), as a candidate weighting function. The choice of
its parameters might be based on the conditions

W�;n.0/ D k D 1

��

; W�;n.1/ D k
!n

1

!n
2

D �m; and jW�;n.!0/j D k
!n

1

!n
2

s

!2n
2 C !2n

0

!2n
1 C !2n

0

D ˛

��

for some ˛ 2 .0; 1/ determining what we compromise in terms of performance at frequencies close to !0.
These equalities yield

k D 1

��

; !1 D
�

˛2 � .�m�� /2

1 � ˛2

�1=2n

!0; and !2 D
�

˛2=.�m�� /2 � 1

1 � ˛2

�1=2n

!0 > !1; (7.27)

which corresponds to the following frequency responses:

jW�;n.j!/j D
!

0:9486833=��

0 !0

1
�m

1=��

if ˛ D
p

0:9 � 0:95 and n 2 f1; 2; 5g (with the logarithmic abscissa scale).
With this introduction, we are in a position to consider simple design examples.

Example 7.4. Return to Example 7.1 with the plant

P.s/ D s � ´1

s C 1

and assume that it is nonminimum phase, i.e. that ´1 > 0. Let �� D 0:1 and �m D 0:5, with the bandwidth
being our tuning parameter. Select a second-order Butterworth weight with ˛ D

p
0:9, which is

W�;2.s/ D 0:5s2 C 5:47!0s C 30!2
0

s2 C 2:45!0s C 3!2
0

(7.28)

https://en.wikipedia.org/wiki/Butterworth_filter#Normalized_Butterworth_polynomials
https://en.wikipedia.org/wiki/Hurwitz_polynomial


7.3. Some (less familiar) H1 problems 149

in this case. Condition (7.23) with this weighting function yields !0 � 0:0912´1. As a matter of fact, this
is more conservative, by more than a factor of four, than the bound !0 � 0:38´1 resulting from (7.23) for
the original weighting function with the magnitude frequency response (7.19). Choosing then the maximal
!0 D 0:0912´1 and following the arguments of Example 7.1, all stable closed-loop transfer functions are

T´w.s/ D 0:5s2 C 0:499´1s C 0:249´2
1

s2 C 0:223´1s C 0:0249´2
1

�

1 � s � ´1

s C 1
Q.s/

�

for Q 2 RH1 such that Q.1/ ¤ 1. The H1-optimal Q for this problem is

Q.s/ D W�;2.s/ � W�;2.´1/

W�;2.s/P.s/
D � .s C 1/.s C 0:448´1/

s2 C 0:998´1s C 0:498´2
1

and then the optimal controller

R.s/ D 0:5.s C 1/.s C 0:448´1/

s2 C 0:223´1s C 0:0249´2
1

:

The order of this controller is two, which is actually one short of the order of the generalized plant (7.21).
This property is common for H1 optimal solutions. Another common property of this controller, this
time regarding weighted sensitivity H1 problems, is that it cancels the stable pole of the plant. Canceling
stable plant poles might not be desirable if P.s/ has lightly damped poles, but the weighted sensitivity
formulation does not have an intuitive control over that.

Consider now the control effort required to attain (7.20). To this end, we need to analyze the the control
sensitivity function Tc D SR D . QY C MQ/ QM . With the chosen controller,

Tc.s/ D .s C 1/.s C 0:448´1/

s2 C 0:998´1s C 0:498´2
1

:

Both its static gain, jTc.0/j D 0:9=´1, and the peak of its magnitude frequency response,

kTck1 D
r

0:5 C 0:405=´2
1 C

q

0:2907 C 1:1717=´4
1 > 1:0194;

grow without bound as the zero ´1 approaches the origin. This implies that not only the problem becomes
harder for smaller ´1, but also that attaining the required performance level requires higher control effort in
that case. The magnitude of Tc can be reduced by relaxing the requirements, but there is no direct parameter
that can affect it in the weighted sensitivity problem either. ˙

7.3.3 Mixed sensitivity

Control effort can be addressed by imposing explicit constraints on the gain of the control sensitivity fre-
quency response, similarly to what was done with the sensitivity frequency response in (7.18). A possible
choice, which is sufficiently simple while still reflects basic requirements, is

jTc.j!/j � ~ minf1; .!1=!/�g (7.29)

for some ~ > 0 reflecting constraints on the gain of the closed-loop mapping yr 7! u and � 2 ZC reflecting
requirements on the controller roll-off at high frequencies (understood as frequencies ! > !1). This is
again a constraint on the contractiveness of the H1-norm, this time of the weighted control sensitivity in

kW~Tck1 � 1
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for

jW~.j!/j D maxf1; .!=!1/�g
~

D
!0 !0 !1

1=~
: (7.30)

When this constraint complements (7.20), we have the problem of designing a stabilizing controller, which
guarantees

kW� Sk1 � 1 and kW~Tck1 � 1: (7.31)

This is the so-called multidisk problem and it is different from the standard H1 problem. This is because
(7.31) requires that

�

W�.j!/S.j!/

W~.j!/Tc.j!/

�

2 B1; 8!

i.e. belongs to the unit ball in the 1-Hölder vector norm on C2, see Fig. 2.1(c) on p. 26, whereas the
underlying vector norm for the H1 space is the Euclidean (2-Hölder) norm. The solution to the multidisk
problem is substantially more complicated than that of a standard H1 problem.

A workaround is to note that B2 � B1, cf. the areas in Figs. 2.1(b) and 2.1(c), so that (7.31) holds
whenever 





�

W�S

W~Tc

�



1

� 1: (7.32)

The problem of designing a stabilizing controller guaranteeing this condition for some stable weighting
functions W� and W~ (their frequency responses might be different from those in (7.19) and (7.30)) is
known as the mixed sensitivity problem. The mixed sensitivity formulation introduces some conservatism,
because the failure of attaining (7.32) does not necessarily implies that of (7.31), unless the minimal at-
tainable norm of the left hand side of (7.32) is above

p
2.

At the same time, the mixed sensitivity problem is a special case of the standard H1 problem and as
such can be solved by standard tools, like those presented in §7.A.2. To see this, return to the unity-feedback
system in Fig. 1.4(c) and note that Tc corresponds to the system yr 7! u there, like S—to the system yr 7! e.
Thus suggests that we may still select the exogenous signal as yr and the regulated signal—as

�
W� e
W~u

�

, the
measured output—as e, and u in its standard role. This yields the generalized plant

G.s/ D Gms.s/ D

2

4

W� .s/ �W�.s/P.s/

0 W~.s/

I �P.s/

3

5 ; (7.33)

whose closed-loop system w 7! ´ is exactly the system on the left-hand side of (7.32). Because W~

is assumed to be stable, all unstable poles of this G.s/ are indeed those of P.s/, so that the system is
stabilizable. Because Gyu in (7.33) is the same as that in (7.12), all stabilizing controllers for the mixed
sensitivity problem are again given by (7.13) and all stable closed-loop systems are parametrized as

T´w D
�

W� 0

0 �W~

��� QX
� QY

�

�
�

N

M

�

Q

�

QM ;

which is again an affine function of Q.

Remark 7.2 (proper W~.s/). The requirement on W~ to be stable actually conflicts with (7.30), which grows
unbounded as ! ! 1. A simple workaround is to replace it with something like

jW~.j!/j D
min

˚

.!2=!1/�; maxf1; .!=!1/�g
	

~
D

!0 !0 !1 !2

1=~

.!2=!1/�=~

(7.300)
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(a) Sensitivity S and its weight W� (b) Control sensitivity Tc and its weight W~

Fig. 7.4: Plots for Example 7.5

for a sufficiently large !2 > !1. This function can be approximated by the bi-stable

W~;�.s/ D B�.s=!1/

~B�.s=!2/
; (7.34)

where B�.s/ is the normalized Butterworth polynomial of order �, whose frequency response gain is as in
(7.25). A more elegant approach, which does not involve approximations, is described in [18]. O

Solving the standard problem corresponding to the generalized plant (7.33) in an analytic form is no
longer informative and reasonably compact. Yet the problem can be solved via the state-space procedure
presented in §7.A.2. Technical assumptions there hold whenever W� and W~ are bi-stable, so the problem
is normally well posed. The following example .

Example 7.5. Consider a stable lightly damped plant with the transfer function

P.s/ D 1

s2 C 0:1s C 1

and the following requirements to its closed-loop frequency responses:

1. the sensitivity magnitude does not exceed �� D 0:1 over the frequency band Œ0; !0� for some !0,

2. the modulus margin �m � 0:5,

3. the control sensitivity is bounded by ~ D 10 and decays with the roll-off 1 after !1 D 2:4 [rad/sec].

Our tuning parameter is !0, which we endeavor to increase as long as condition (7.32) holds. The sensitivity
weighting function W� is chosen as the second-order weight of form (7.26) with ˛ D

p
0:9. This is exactly

the choice of Example 7.4 presented by (7.28). The control sensitivity weight is a first-order transfer
function of form (7.34) with !2 D 1000!1, which is sufficiently high. Thus, our choice is

W~;1.s/ D 100.s C 2:4/

s C 2400
:

A simple trial and error procedure yields the maximal attainable !0 D 0:2 [rad/sec]. The resulted
sensitivity functions are presented in Fig. 7.4 and are located below the plots of the reciprocal to the corre-
sponding weighting function (thin light lines). In fact, the attained modulus margin, �m � 0:623, is even
better than that required. The resulting controller has the transfer function

R.s/ D 15367.s C 2400/.s C 0:9364/.s2 C 0:1s C 1/

.s C 1:774 � 106/.s2 C 0:4896s C 0:1198/.s2 C 6:372s C 17:97/
:
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(a) Complementary sensitivity T (b) Disturbance sensitivity Td

Fig. 7.5: More plots for Example 7.5

One of its poles is located very far left, which is a technical property caused by numerical inaccuracies.
This pole can be safely removed. There is also a zero located at the very pole of the weight W~;1.s/ above
at s D 2400. This is a general property, so if this pole is chosen to be sufficiently far left, the corresponding
controller zero can also be safely removed. As a matter of fact, the Hankel singular values of this controller
are f5:3784; 1:9576; 1:5738; 0:4788; 0:0043g, also suggesting that a fourth-order approximation would be
almost the same. We can then perform the balanced truncation procedure studied in Section 4.4. But in
this case a naïve cancellation of the far-left pole and zero,

R.s/ D 20:787.s C 0:9364/.s2 C 0:1s C 1/

.s2 C 0:4896s C 0:1198/.s2 C 6:372s C 17:97/
;

yields practically the same result and also does not alter the static gain of the controller, R.0/ D 9:04.
Another general property of the optimal mixed sensitivity controller is that it cancels all stable poles of

the plant, similarly to what we saw in the weighted sensitivity optimization. This might be problematic in
the case when the plant has lightly-damped poles, like what we have in the present example. The problem
is already hinted at in the control sensitivity plot in Fig. 7.4(b), where a visible notch at the plant resonance
around 1 [rad/sec] is present. This implies that the controller effectively “shuts its eyes” at that frequency
and is thus inactive in dampening the resonance. A more perceptible picture is obtained via inspecting two
remaining closed-loop frequency responses, which are the complementary sensitivity function T and the
disturbance sensitivity Td presented in Fig. 7.5. The cancellation of lightly-damped plant poles results in
that the resonance peak of the plant remains present in Td, see Fig. 7.5(b). This phenomenon is a result
of the exclusion of Td from the mixed sensitivity cost. Consequently, it happens that it pays off for the
optimization procedure to cancel them. To avoid this trait, the disturbance sensitivity should also be made
a part of the cost function, perhaps with its own weight. However, this would further increase the number
of design parameters, rendering the weights harder to tune. ˙

7.3.4 Concluding remarks

In this section we saw how several simple, perhaps simplistic, problems motivated by classical frequency-
domain design ideas can be cast as optimal control problems with the H1 cost. Some traits of the described
techniques are worth emphasizing, as they are representative of the whole family of methods.

� The H1 system norm, which is uniform over all frequencies, might appear “dumb” from the classical
control perspective, where different frequency ranges play different roles. Nevertheless, it becomes
a powerful tool for shaping system gains over different frequencies, i.e. “cleverly” selective, by the
use of frequency-dependent weighting functions. Adding such weights is similar to the use of matrix
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weights to shape spatial properties in Section 2.4. This idea, which is one of the cornerstones of
modern optimization-based approaches, rendering them a powerful analysis and design tool.

� A significant advantage of the optimization-based approaches discussed in this section is that they
succeed in separating hardly formalizable yet technically simple stage of the specification (weighting)
selection from the technically more difficult stage of the controller design for given specifications. The
latter stage, which is frequently most difficult in the classical design, is now well formalized, with the
internal stability granted “for free.” Consequently, a negative answer (opt � 1) means that there exist
no stabilizing controllers achieving required performance level. This is a clear advantage over the
classical loop-shaping methods, where the failure to find an admissible controller does not imply that
such a controller does not exist for given specifications.

� The optimal attainable performance level is treated in many situations just as the indicator of whether
required specifications can be met, rather than as the “best achievable performance.” In other words,
the optimization here serves as a technical tool and by no means as a design goal.

� The use of optimization-based methods, both H2 and H1, in MIMO systems is not substantially
different from that in SISO systems. Of course, the choice of weighting functions becomes more
complicated, with more design parameters and more properties to take into consideration (like spatial
directions). But the technical side is the same, except perhaps for a handful of problems where analytic
solutions are available. In fact, optimization-based methods offer natural generalizations of some
SISO notions, like stability margins, which would be highly nontrivial otherwise.

� With all these advantages, “you get what you pay for,” they say, and they are right. Optimization
is not a panacea and there is no way to squeeze all requirements to any real-life control problem
into one cost function. Optimization-based approaches should thus be used consciously. There is no
universal control design method and no universal recipe for selecting weighting functions. We saw
that optimization procedures might be efficient in finding weaknesses in the cost function to produce
optimal yet poor controllers. This should be always remembered and any solution must be tested
carefully, especially from viewpoints that are not explicitly included in the cost.

As a matter of disclosure, my design method of choice is H1 loop shaping, which is sufficiently simple
yet powerful and efficient in many situations. This method is discussed in Chapter 9.

7.A State-space solutions to standard problems

This appendix collects solutions to the H2 and H1 problems for the setup in Fig. 7.1 and the generalized
plant given in terms of its state-space realization as in (7.1). The goal here is to provide a handy reference,
rather than ideas and techniques for solving these problems. For this reason, no comprehensive proofs are
provided. But then the results are presented in almost the most general forms, without imposing simplifying
assumptions and without the need to carry out intermediate transformations. This deviates from what is
conventionally done in the literature.

Both the H2 and the H1 versions of the standard problem require the following assumptions on the
parameters of the realization in (7.1):

A1: the pair .A; Bu/ is stabilizable,

A2: the pair .Cy; A/ is detectable,

A3: the realization .A; Bu; C´; D´u/ has no invariant zeros in jR and D0´uD´u > 0,

A4: the realization .A; Bw ; Cy; Dyw/ has no invariant zeros in jR and DywD0yw > 0.
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Assumptions A1,2 are obviously necessary, otherwise no stabilizing controller exists, by Proposition 6.14.
Assumptions A3,4 are technical and are required to guarantee the solvability of two involved algebraic Ric-
cati equations. Often, although not always, they are necessary for the corresponding optimization problems
to be well defined.

7.A.1 The H2 standard problem

The standard H2 problem for the system in Fig. 7.1 can be posed as the design on an internally stabilizing
R, which minimizes kFl.G; R/k2. Its solution is based on the following two algebraic Riccati equations:

A0X C XA C C 0´C´ � .XBu C C 0´D´u/.D0´uD´u/�1.B 0uX C D0´uC´/ D 0 (7.35a)

and

AY C YA0 C BwB 0w � .YC 0y C BwD0yw/.DywD0yw/�1.CyY C DywB 0w/ D 0; (7.35b)

whose solutions X and Y are said to be stabilizing if A C BuKu and A C LyCy are Hurwitz, respectively,
where

Ku ´ �.D0´uD´u/�1.B 0uX C D0´uC´/ and Ly ´ �.YC 0y C BwD0yw/.DywD0yw/�1: (7.36)

If A1–4 hold true, then stabilizing solutions always exist, are unique, and such that X D X 0 � 0 and
Y D Y 0 � 0. Furthermore, X > 0 iff .A; Bu; C´; D´u/ has no invariant zeros in C n xC0 and Y > 0 iff
.A; Bw ; Cy; Dyw/ has no invariant zeros in C n xC0.

Theorem 7.2. Let A1–4 hold true and D´w be such that Im D´w � Im D´u and ker Dyw � ker D´w . If

all stabilizing controllers are presented in the form

R.s/ D Fl

0

@

2

4

A C BuKu C LyCy C LyDyuKu �Ly Bu C LyDyu

Ku 0 I

�Cy � DyuKu I �Dyu

3

5 ; Q.s/

1

A

with Ku and Ly as in (7.36), then kFl.G; C /k2
2 D opt C kD´w C D´uQDywk2

2, where

opt ´ tr.B 0wXBw/ C tr.C´YC 0´/ C tr.XAY C YA0X/:

The unique controller attaining opt is produced by Q D �.D0´uD´u/�1D0´uDywD0yw.DywD0yw/�1.

Some remarks are in order:

Remark 7.3 (solution properties). If D´w D 0, then the optimal R, which corresponds to Q D 0, is
an observer-based controller (cf. the discussion at the beginning of §6.2.3), comprised of the LQR state
feedback with the gain Ku and the Kalman–Bucy filter with the gain Ly . This separation is remarkable
and not quite obvious. At the same time, the optimal cost is not just a sum of the LQR (the first term in
the expression for opt) and the Kalman–Bucy (the second term) costs. It also contains the coupling term
tr.XAY C YA0X/, which might be both positive and negative, depending of properties of A. This can be
explained via rewriting the optimal cost as

opt D tr.B 0wXBw/ C tr.D´uKuYK 0uD0´u/:

The first term above is still the LQR cost. The second term is the cost of estimating v D D´uKux from
the measured y. The signal D´uKux is the contribution of the LQR control law u D Kux to the regulated
signal ´ D C´x C D´ww C D´uu. O
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Remark 7.4 (AREs). The Hamiltonian matrices, see (B.9), associated with the AREs (7.35) are

HX D
�

A 0

�C 0´C´ �A0

�

�
�

Bu

�C 0´D´u

�

.D0´uD´u/�1
�

D0´uC´ B 0u
�

and

HY D
�

A0 0

�BwB 0w �A

�

�
�

C 0y
�BwD0yw

�

.DywD0yw/�1
�

DywB 0w Cy

�

:

Their .1; 2/ parts (the “R” part of (B.7)) are negative semi-definite, so that Theorem B.6 applies and the
connections of their solvability with A1–4 can be derived. O

7.A.2 The H1 standard problem

The standard H1 problem for the system in Fig. 7.1 can be posed as the design on an internally stabilizing
R, which renders kFl.G; R/k1 <  for a given  > 0. Its solution is based on two algebraic Riccati
equations too, now of the form

A0X C XA C C 0´C´ �
�

X
�

Bw Bu

�

C C 0´
�

D´w D´u

��

�
�

D0´wD´w � 2I D0´wD´u

D0´uD´w D0´uD´u

��1 ��
B 0w
B 0u

�

X C
�

D0´w

D0´u

�

C´

�

D 0 (7.37a)

and

AY C YA0 C BwB 0w �
�

Y
�

C 0´ C 0y
�

C Bw

�

D0´w D0yw

��

�
�

D´wD0´w � 2I D´wD0yw

DywD0´w DywD0yw

��1 ��
C´

Cy

�

Y C
�

D´w

Dyw

�

B 0w

�

D 0; (7.37b)

whose solutions are said to be stabilizing if ACBwKw CBuKu and ACL´C´ CLyCy are Hurwitz, where

�

Kw

Ku

�

´ �
�

D0´wD´w � 2I D0´wD´u

D0´uD´w D0´uD´u

��1 ��
B 0w
B 0u

�

X C
�

D0´w

D0´u

�

C´

�

(7.38a)

and
�

L´ Ly

�

´ �
�

Y
�

C 0´ C 0y
�

C Bw

�

D0´w D0yw

��
�

D´wD0´w � 2I D´wD0yw

DywD0´w DywD0yw

��1

: (7.38b)

Assumptions A1–4 are necessary for the solvability of these equations, but might not be sufficient if  is
not large enough. Moreover, even if AREs (7.37) do admit stabilizing solutions, these solutions might not
be positive semi-definite, also depending on  . At the same time, null spaces of X and Y do not depend on
 . We still have that det.X/ ¤ 0 iff .A; Bu; C´; D´u/ has no invariant zeros in C n xC0 and det.Y / ¤ 0 iff
.A; Bw ; Cy; Dyw/ has no invariant zeros in C n xC0. Also, the AREs in (7.37) reduce to the corresponding
H2 AREs in (7.35) as  ! 1.

Theorem 7.3. If A1–4 hold true, then the standard H1 problem is solvable iff

(a) max
˚

k.I � D´u.D0´uD´u/�1D0´u/D´wk; kD´w.I � D0yw.DywD0yw/�1Dyw/k
	

<  ,

(b) there is a stabilizing solution X to ARE (7.37a) such that X D X 0 � 0,

(c) there is a stabilizing solution Y to ARE (7.37b) such that Y D Y 0 � 0,

(d) �.XY / < 2.



156 Chapter 7. Performance and the Standard Problem

In this case Z ´ .I � �2YX/�1 is well defined and, denoting QBu ´ Bu C L´D´u C LyDyu and
QCy ´ Cy C DywKw C DyuKu, all -suboptimal controllers are given by

R.s/ D Fl

0

@

2

4

A C BwKw C BuKu C Z Ly
QCy �ZLy Z

QBu

Ku 0 I

� QCy I �Dyu

3

5 ; Q.s/

1

A

D Fl

0

@

2

4

A C L´C´ C LyCy C QBuKuZ �Ly
QBu

KuZ 0 I

� QCyZ I �Dyu

3

5 ; Q.s/

1

A

for any Q 2 H1 such that kD´w C D´uQDywk1 <  .

Some remarks are in order:

Remark 7.5 (solution properties). Although this fact is less evident than in the H2 case, the central subop-
timal controller, that corresponding to Q D 0, is also observer based. The resulting control signal is also
the H1 suboptimal estimate of the signal v D D´uufi, where

ufi ´ �.D0´uD´u/�1D0´uD´w.w � Kwx/ C Kux D �.D0´uD´u/�1.D0´uD´ww C .B 0uX C D0´uC´/x/

and u D ufi would attain the performance level  if both the exogenous input w and the plant state x were
measurable (known as the full-information problem, requires that k.I � D´u.D0´uD´u/�1D0´u/D´wk < 

and condition (b) of Theorem 7.3 holds). As a matter of fact, wworst D Kwx is the worst-case exogenous
input, which is the most problematic from the H1 performance viewpoint in full-information control. In
contrast to the H2 (Kalman–Bucy) case, parameters of the H1 estimator do depend on the signal it es-
timates, so the formulae are more involved and nontrivial transformations are required to decouple the
estimator ARE, which depends on the state-feedback gain, from Ku. The coupling condition (d) of Theo-
rem 7.3 is actually a remnant of this procedure. O

Remark 7.6 (what if kD´wk < ). The existence of Q such that kD´w C D´uQDywk1 <  is guaranteed
by condition (a) in Theorem 7.3 (follows by Parrott’s theorem [20]). If kD´wk <  , then condition (a)
holds regardless D´u and Dyw and the constraint on Q is simplified, rendering Q D 0 feasible. Moreover,
if we replace �Dyu with �Dyu � DywD0´w.2I � D´wD0´w/�1D´u in the .2; 2/ feedthrough term of the
generator of all -suboptimal controllers, then it can be shown that Q must satisfy kSuQSyk1 <  , where
Su and Sy are any matrices satisfying

S 0uSu D D0´u.I � �2D´wD0´w/�1D´u and SyS 0y D Dyw.I � �2D0´wD´w/�1D0yw

(they are both nonsingular). O

Remark 7.7 (AREs). The Hamiltonian matrices, see (B.9), associated with the AREs (7.37) are

HX D
�

A 0

�C 0´C´ �A0

�

�
�

Bw Bu

�C 0´D´w �C 0´D´u

� �

D0´wD´w � 2I D0´wD´u

D0´uD´w D0´uD´u

��1 �
D0´wC´ B 0w
D0´uC´ B 0u

�

and

HY D
�

A0 0

�BwB 0w �A

�

�
�

C 0´ C 0y
�BwD0´w �BwD0yw

� �
D´wD0´w � 2I D´wD0yw

DywD0´w DywD0yw

��1 �
D´wB 0w C´

DywB 0w Cy

�

and their .1; 2/ parts are sign definite only for  ! 1, in general. Hence, the results of Theorem B.6 can
no longer be used. As a matter of fact, as  decreases, the stabilizing solutions of H1 AREs normally
increase, to the point where one or several eigenvalues change their sign via infinity. Thus, the coupling
condition typically violates first. Still, it might be advantageous to work with the pseudo-inverses of X and
Y . The null spaces of X and Y do not depend on  and the eigenvalues of their pseudo-inverses change
sign via zero crossings as  decreases. O
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t

g�.t/
q.t/

0

Fig. 7.6: Nehari extension of G�.s/ D Œ.s=3 C 1/=.s2 C 2s=3 C 1/��, the arrow represents the Dirac ı

7.A.3 The Nehari extension problem

The last problem considered in this Appendix is actually not a standard problem. Nevertheless, it plays an
important role in solving the H1 standard problem and is of interest by itself.

Let G 2 RH1 be strictly proper and given by its stable realization G.s/ D C.sI � A/�1B (i.e. A is
Hurwitz). The Nehari extension problem (or just the Nehari problem) is the problem of finding the closest
extension of the stable and anti-causal adjoint G0 of this G to the class of stable and causal systems, see
Fig. 7.6. The metric used is the L1.jR/ system norm defined by (3.21) on p. 48, which makes the problem
nontrivial (the solution in the L2.jR/ metric would be zero). In formal terms, it is the problem of finding

n ´ inf
Q2RH1

kG� C Qk1;

because G�.s/ is the transfer function of the adjoint G0.
To formulate the solution to the Nehari problem, introduce the controllability and observability Grami-

ans of G, Wc and Wo, respectively, satisfying the Lyapunov equations

AWc C WcA
0 C BB 0 D 0 and WoA C A0Wo C C 0C D 0

(cf. (4.10) and (4.15)). The following result gives both the distance and all “sufficiently close” RH1 func-
tions to G�.

Theorem 7.4. n D kGkh D
p

�.WcWo/. Given  > n, all Q 2 RH1 such that kG� C Qk1 �  are

given by

Q.s/ D Fl

0

@

2

4

A � VWcC
0C VWcC

0 VB

�B 0Wo 0 I

�C I 0

3

5 ; QQ.s/

1

A D Fl

0

@

2

4

A � BB 0WoV WcC
0 B

�B 0WoV 0 I

�C V I 0

3

5 ; QQ.s/

1

A

for an arbitrary QQ 2 RH1 such that k QQk1 �  , where V ´ .2I � WcWo/�1 is well defined.

Proof that n � kGkh (for it’s fun). Because kG� C Qk1 D kG C Q�k1, we may look for the distance
from L1.jR/n H1 to a given G 2 RH1, which is more convenient for the notational conventions adopted
in the notes. For any signal v 2 L2� we have that Q0v 2 L2� too. Hence,

..G C Q0/v/C D .Gv/C

for all such Q’s, where xC denotes the orthogonal projection of x 2 L2 onto L2C (i.e. xC.t / D x.t/ for
t � 0 and xC.t / D 0 for t < 0). Taking into account that the L1.jR/ norm of the frequency response of a
system is the induced norm of the corresponding operator L2 ! L2, we have that

kG C Q�k1 D sup
v2L2;kvk2D1

k.G C Q0/vk2 � sup
v2L2�;kvk2D1

k.G C Q0/vk2

� sup
v2L2�;kvk2D1

k..G C Q0/v/Ck2 D sup
v2L2�;kvk2D1

k.Gv/Ck2 D kGkh;

see (B.5) on p. 190. The Gramian expression follows then by Proposition B.4. Hence, n � kGkh.
The proof that this bound is tight and the derivation of the parametrization are way more technical and

thus omitted.

https://en.wikipedia.org/wiki/Zeev_Nehari
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Note that as  # n, the matrix V becomes singular. Still, the generator of all solutions in Theorem 7.4
is well defined and only loses at least one of its poles. For example, consider the optimal extension problem
for the second-order G.s/ D .s=3 C 1/=.s2 C 2s=3 C 1/. The impulse response of its adjoint is shown in
Fig. 7.6 by the dark line. In this case n D 1 and the optimal extension is unique and has the first-order
transfer function

Q.s/ D � s

s C 1
:

Its impulse response, q.t/ D �ı.t/ C e�t1.t /, is shown in Fig. 7.6 by the pale line.



Chapter 8

Model Uncertainty and Robustness

N
obody’s perfect and models of controlled processes are not exceptions. As was already discussed
in Section 1.2, mathematical models are merely approximations, more or less accurate, of described

phenomena. Any meaningful control analysis should take this fundamental fact into account. This is
particularly important in feedback control, because feedback can both alleviate effects of modeling inac-
curacies and aggravate them, to the level of losing stability. One day, this chapter will present basic ideas
on describing model uncertainty and coping with their effect on system stability and performance.
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Chapter 9

H1 Loop Shaping Design Method

L
oop shaping is a conceptually simple yet powerful design method in the frequency domain. The idea
(see §1.4.3) is to express closed-loop design objectives in terms of requirements on the open-loop

transfer function (loop gain), which is a linear function of the controller and independent of involved sig-
nals and loop components. The controller is then designed to shape the loop gain differently in different
frequency ranges. However, the constraints of the loop phase near crossover frequency (stability and sta-
bility margins requirements) complicate the loop shaping procedure considerably, especially for systems
with right half-plane poles and zeros and in the MIMO case. This chapter studies an optimization-based
twist on this theme, dubbed H1 loop shaping. The approach, put forward by McFarlane and Glover [17],
follows classical loop shaping guidelines in the choice of the control objectives and casts the stability and
“far from the critical point” requirements as a special H1 optimization problem. This yields a relatively
simple design method, capable of guaranteeing certain important characteristics (stability, robustness, et
cetera) and intuitive to adjust, with not too many tuning parameters.

9.1 The setup and loop-shaping guidelines

Consider the block-diagram1 in Fig. 9.1 on the next page. It represents the so-called 2-degrees-of-freedom
(2DOF) control architecture originated in [16], which combines open- and closed-loop control configura-
tions presented in Fig. 1.4(b) and 1.4(c), respectively. The p � m plant model P D NM�1, where N and
M are its right coprime factors, is supposed to be given and m � p systems R and F , with F 2 H1, are
design parameters (controllers). We also assume hereafter that nrank.P.s// D p, i.e. that the plant is not

underactuated. It is readily seen that the controlled signals y and u in this setup equal

�

y

u

�

D
�

N

M

�

F yr C
�

So Td

Tc Ti

� �

do

di

�

C
�

To

Tc

�

n (9.1)

for
�

So Td

Tc Ti

�

´
�

I

R

�

.I � PR/�1
�

I P
�

and To ´ .I � PR/�1PR D So � I

(cf. (1.19) on p. 10). A remarkable property of this relation that the effect of the (measured) reference signal
yr on the system behavior depends only on the feedforward component of the controller, F , whereas effects
of all other (unmeasured) signals—only on the feedback component of the controller, R. This explains the
term and, more importantly, makes it possible to address tracking requirements separately from those of
disturbance attenuation (and robustness). The former is solved in open loop and is thus less sensitive to the

1The positive feedback form is chosen solely for aesthetic reasons, negative feedback corresponds to changing the sign of R.
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https://www.ifm.eng.cam.ac.uk/people/dm114/
https://en.wikipedia.org/wiki/Keith_Glover
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yr

u

d ido

y

n

P

�

M

N

�

R
F-

Fig. 9.1: 2-degrees-of-freedom control setup

approach taken to choose a stable F . Selecting R is a closed-loop design problem, which renders it more
complicated and potentially hazardous, as an inapt design might give rise to a substantial performance
deterioration or even to instability. For this reason, in this chapter we concentrate on the design of R and
disregard reference tracking properties of the system.

Remark 9.1 (tracking and modeling uncertainty). The complete separation between the tracking and feed-
back properties holds only under the perfect match between the plant and the systems M and N used to
process the reference signal in Fig. 9.1. If this is not the case, i.e. if P ¤ NM�1, then instead of (9.1) we
have

�

y

u

�

D
�

N

M

�

F yr C
�

So Td

Tc Ti

���

�N

M

�

F yr C
�

do

di

��

C
�

To

Tc

�

n; (9.10)

where the system
�

So Td

Tc Ti

��

�N

M

�

F D
�

I

R

�

.I � PR/�1.PM � N /F

reflects the modeling mismatch. If a “size” of .I � PR/�1.PM � N /F is small, which depends on the
robustness properties of the closed-loop system, we may expect that tracking performance is still largely
separated from other properties of the system. O

Disturbance attenuation and low noise sensitivity performance can be expressed, somewhat simplisti-
cally, as the following frequency-dependent requirements:

� kSo.j!/k � 1 at frequencies where the spectrum of do is concentrated (typically, low frequencies),

� kSd.j!/k � 1 at frequencies where the spectrum of di is concentrated (typically, all frequencies),

� kTo.j!/k � 1 at frequencies where the spectrum of n is concentrated (typically, high frequencies).

It is implicitly assumed hereafter that various components of the disturbance signals are normalized, so we
shall expect them to have roughly equal intensities. In addition, it is normally required to

� keep kTc.j!/k and kTi.j!/k not too large at all ! 2 R,

where the proportions are determined by the scaling of the control signal, and

� avoid sharp resonance peaks in closed-loop frequency responses

to prevent oscillating transients in the closed-loop system. In the classical SISO loop shaping, the first
three of these requirements are translated to those on the gain of the open-loop frequency response, the
fourth requirement is affected via adjusting the crossover frequency, and the fifth requirement is expressed
as the “far from the critical point” endeavor and quantified by stability margins. In the remainder of this
section conceptually straightforward MIMO generalizations of the gain requirements are discussed.

Define the p � p output loop transfer function

Lo.s/ ´ P.s/R.s/;

which is obtained by breaking the feedback loop in Fig. 9.1 at the plant output. Clearly, So D .I � Lo/�1

and To D .I � Lo/�1Lo then. Because kMk D x�.M/ D 1=�.M�1/ for any nonsingular M , we have that
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kSo.j!/k D 1=�.I � Lo.j!//. Also, given a nonsingular M such that I � M is nonsingular too, it follows
by Proposition 2.4 on p. 34 and the reverse triangle inequality that

�.I � M/ D min
kukD1

k.I � M/uk � min
kukD1

jkMuk � kukj D j�.M/ � 1j:

Hence,
kSo.j!/k � 1

�.Lo.j!// � 1

provided �.Lo.j!// > 1. This, in turn, implies that kSo.j!/k � 1 whenever �.Lo.j!// � 1, i.e. the
lowest loop gain is sufficiently high.

Next,

kTd.j!/k � kSo.j!/kkP.j!/k � x�.P.j!//

�.Lo.j!// � 1
:

Hence, a high loop gain also helps to attenuate input (load) disturbances. Certain care should be taken
at frequencies, where the plant itself has a high gain, which is the case for lightly-damped systems, for
instance. In such situations, extra requirements on the loop gain should normally be imposed. At the same
time, load disturbances may be attenuated even under a low loop gain at frequencies where the plant gain is
low itself. Thus, the requirement �.Lo.j!// � 1 in the context of load disturbance attenuation should only
be considered in the intersection of the spectrum of di and the bandwidth of the plant, which are typically
low frequencies.

Increasing the loop gain is not helpful for reducing kTo.j!/k though. Indeed, if �.Lo.j!// > 0, then

kTo.j!/k D k.I � L�1
o .j!//�1k D 1

�.I � L�1
o .j!//

� 1

�.L�1
o .j!// C 1

D 1

1 C 1=x�.Lo.j!//

� 1

1 C 1=�.Lo.j!//

and an increase of �.Lo.j!// raises this lower bound. What can help is a decrease of the loop gain. To see
that, note that

kTo.j!/k � k.I � Lo.j!//�1kkLo.j!/k D x�.Lo.j!//

�.I � Lo.j!//
� x�.Lo.j!//

1 � �.Lo.j!//
� x�.Lo.j!//

1 � x�.Lo.j!//
;

provided x�.Lo.j!// < 1. Thus, kTo.j!/k � 1 whenever x�.Lo.j!// � 1, i.e. the highest loop gain is
sufficiently low.

Summarizing the arguments above, the first three requirements to the closed-loop frequency responses
can be translated to the following requirements to the loop gains:

ı �.Lo.j!// � 1 at frequencies where the spectrum of do is concentrated (typically, low frequencies)
and where the spectrum of di is concentrated within the bandwidth of P (also low frequencies),

ı x�.Lo.j!// � 1 at frequencies where the spectrum of n is concentrated (typically, high frequencies).

These are MIMO counterparts of the standard SISO loop gain shaping guidelines briefly outlined in §1.4.3.
They are relatively straightforward to grasp and not overly difficult to attain, much like what we know in
the SISO loop-shaping design.

Connections between the control effort and the crossover frequency, and even the definition of the latter,
are less transparent in the MIMO case. Still, these connections are not overly quantitative in the SISO case
either and the underlying idea remains roughly the same. Namely, any increase of the frequency band in
which the loop gain is high beyond the plant bandwidth requires higher control efforts. The extension of
the “far from the critical point” requirement to MIMO loops, where the very notion of phase is not well
defined, is less obvious and lies at the core of the H1 loop shaping approach.

https://en.wikipedia.org/wiki/Triangle_inequality#Reverse_triangle_inequality
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9.2 Principles of H1 loop shaping

There are many really good reasons to keep the Nyquist plot of the loop far from the critical point .�1; 0/

(equivalently, the Nichols plot far from the critical points .180 .mod 360/; 0/). One of them is particularly
relevant in the context of extending the idea to MIMO loops. It is the need to render the feedback system
less sensitive to model inaccuracies. Indeed, if the Nyquist plot is too close to the critical point, small
alterations to the loop frequency response might lead to a change in its winding number around the critical
point, which, in turn, implies that the closed-loop system becomes unstable. Thus, the distance of the
Nyquist plot, in whatever meaningful sense, from the critical point is essentially a robustness indicator.
But robustness, as should be discussed in Chapter 8, is a property extendible to MIMO systems, in fact in
an analytic manner.

This observation is in the core of the H1 loop shifting approach. Its essence is to split the problem into
two phases. In the first, the magnitude of the loop is shaped using weighting functions placed in series with
the plant. In the second phase, a controller is designed to maximize an appropriately chosen robustness
measure, which is used as a success indicator. If the second phase is successful, the weights are added
to the controller, also in series. If not, weights are reselected and the procedure repeats. A more detailed
exposition of these phases is described below.

1. Let Wo and Wi be weighting functions such that the magnitude frequency response of Pmsh ´ WoP Wi

reflects our requirements to the magnitude frequency response of the loop and its crossover frequency.
In the SISO case, we can keep either one of these weights identity without loss of generality. In
the MIMO case, there might be situations when different input or output channels should be scaled
differently, in which situations we need both Wo and Wi. Also, it might be conceptually convenient to
use Wi to shape low-frequency properties and Wo to shape high-frequency properties, just because the
former will then process the control signals, while the latter—measured signals. Technically, the only
limitation on the weights is that the cascade Pmsh.s/ has no unstable cancellation and is proper. Thus,
we may consider the unstable PID weight Wi.s/ D kp.1 C ki=s C �ds/ or suchlike and a low-pass filter
as Wo. The choice of the weights is thus technically simple.

2. This phase consists in formulating and solving an H1 robust stabilization problem to ensure the
closed-loop stability and robustness of the resulting system. Success is “measured” by the recip-
rocal of the attainable H1-norm of the corresponding standard problem (although should be always
validated by analyzing the resulted closed-loop system). If this phase is deemed successful, i.e. if
the success indicator is sufficiently large, the (sub)optimal controller, say Rrob, forms the basis of the
resulting controller for our problem. Specifically, the final controller is R D WiRrobWo. This choice
renders Lo D P WiRrobWo, which is, of course, different from the intended WoP Wi (and even from
the designed WoP WiRrob, unless Wo commutes with the rest). Still, the resulting closed-loop system
is always stable and we may expect that if the robust stabilization is successful, then Rrob alters the
loop gain mainly in the crossover region, which is its role in the whole process.

It should be emphasized that the whole procedure depends heavily on the robust stabilization problem
of choice in the second phase of the design. Being based on the H1 optimization techniques, the outcome
of this problem possesses all traits of optimization-based solutions discussed in §7.3.4. On the credit
side, we can be sure that there is no other controller rendering the system “more robust” with respect
to the chosen measure. On the debit side, the optimal solution might exploit loopholes in the problem
formulation to produce poor controllers. This means that the choice of the robust stability problem is of a
major importance in the success of the whole procedure.

To understand the choice of the optimization problem in the H1 loop-shaping procedure suggested by
McFarlane and Glover, note that the H1 norm of essentially every closed-loop system can be interpreted
in terms of an appropriately defined robustness measure. We already saw in §7.3.1 that the sensitivity

https://en.wikipedia.org/wiki/Winding_number
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function is connected with the modulus margin �m. In more abstract terms, it is known that

� kSik1 quantifies robustness in the inverse input multiplicative uncertainty model P.I C �/�1,

� kSok1 quantifies robustness in the inverse output multiplicative uncertainty model .I C �/�1P ,

� kTik1 quantifies robustness in the input multiplicative uncertainty model P.I C �/,

� kTok1 quantifies robustness in the output multiplicative uncertainty model .I C �/P ,

� kTck1 quantifies robustness in the additive uncertainty model P C �,

� kTdk1 quantifies robustness in the inverse additive uncertainty model .I C P�/�1P

(the meaning of this quantification is that the closed-loop system is stable for all � 2 H1 and such that
k�k1 � ˛ iff the H1-norm of the corresponding transfer function is smaller than 1=˛, this can be proved
via the small gain theorem, see Theorem 6.1). The uncertainty model is normally recommended to be
chosen to reflect dominant uncertainty sources in the real plant. But this is not a right criterion for loop
shaping. Rather, the choice should result in a balanced optimization problem, where “dirty tricks” of
canceling dominant lightly damped or slow plant poles and zeros do not pay off.

The sought balancing can be achieved if all four closed-loop transfer functions shaping the response
to di and do in (9.1), aka the Gang of Four, are included in the cost with equal weights. Specifically, the
problem solved in the second phase is

minimize
Rrob






�

Rrob

I

�

.I � PmshRrob/�1
�

I Pmsh
�




1

; (9.2)

which can be named the balanced sensitivity problem. This optimization is not expected to encourage
stable yet bad pole-zero cancellations between Pmsh.s/ and Rrob.s/. This is because whatever stable poles
or zeros of the plant are canceled by the controller, they still show up as poles in at least one of the block
entries in the cost. This problem has a concrete robustness measure associated with it too. This is the
robustness with respect to uncertainty in the so-called normalized coprime factorization of the plant, in the
form . QMmsh C Q�M /�1. QNmsh C Q�N / for k

� Q�M
Q�N

�

k1 � ˛ and with an appropriate scaling on the left
coprime factors QMmsh and QNmsh of Pmsh, see Lemma 9.1 on p. 173. This robust stability setup is not likely
to reflect any practical situation, but it has good system-theoretical justifications being associated with the
gap metric [28]. Incidentally, and atypically for H1 problems, the solution to (9.2) is quite simple as well.
In particular, the optimal attainable performance level, say min, can be obtained analytically, rather than
derived via iterations. Technical details are discussed in Section 9.A.

With the attainable performance level min of (9.2) in hand, the success indicator in the second phase
of the H1 loop shaping procedure is chosen as the smallest destabilizing uncertainty size, which is

�max D 1

min
2 .0; 1/ (9.3)

(as a matter of fact, �2
max D 1 � k

� QNmsh QMmsh
�

kh for a special, normalized, lcf of Pmsh). A “sufficiently
large” �max should indicate that the magnitude shape introduced in the first phase does not conflict with the
crossover region requirements too much. If �max � 1, we should be alarmed and reconsider the weights
selected in the first phase; there is a good chance that the associated loop gain requirements are not realistic
and some relaxations, be it with respect to gain requirements or the crossover, are needed. The question of
what indicator to regard as “sufficiently large” is open to interpretation. The level �max � 0:25 may perhaps
be regarded as adequate in many situations. In some cases a higher robustness level can be achieved. For
example, if Pmsh.s/ is positive real, see §6.1.3, then �max �

p
0:5 � 0:707, which confirms yet again that

systems with positive-real transfer functions are easy to control. It is not against reason to regard �max < 0:1

as inadequate, although even then the resulting loop should be inspected.
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9.3 Design case studies

Below we consider several academic SISO examples to illustrate traits of the H1 loop shaping methodol-
ogy. All results are derived with the formulae of Section 9.A at the end of this chapter.

9.3.1 Double integrator

We start with a couple of examples where an analytic solution can be derived. Consider first the H1 loop
shaping procedure for the double integrator P.s/ D 1=s2 and the static weight W.s/ D Q!2

c , where Q!c > 0

is an intended crossover frequency. With this choice

Pmsh.s/ D Q!2
c

s2
D

2

4

0 1 0

0 0 Q!c

Q!c 0 0

3

5

indeed has its crossover frequency !c D Q!c.
To solve now the balanced sensitivity problem (9.2), we need AREs (9.12). The control Riccati (9.12a)

in this case reads �

0 0

1 0

�

X C X

�

0 1

0 0

�

� X

�

0 0

0 Q!2
c

�

X C
�

Q!2
c 0

0 0

�

D 0

with the stabilizing solution

X D
� p

2 Q!c 1

1
p

2= Q!c

�

> 0:

Likewise, the filtering ARE (9.12b) reads
�

0 1

0 0

�

Y C Y

�

0 0

1 0

�

� Y

�

Q!2
c 0

0 0

�

Y C
�

0 0

0 Q!2
c

�

D 0

and its stabilizing solution

Y D
� p

2= Q!c 1

1
p

2 Q!c

�

> 0:

Thus,

2
min D 1 C �

�� p
2= Q!c 1

1
p

2 Q!c

� � p
2 Q!c 1

1
p

2= Q!c

��

D 1 C �

��

3 2
p

2= Q!c

2
p

2 Q!c 3

��

D 4 C 2
p

2

and, by (9.3)

�max D
r

1

2
�

p
2

4
� 0:3827; (9.4)

which is reasonably high. Remarkably, it does not depend on Q!c, which can be explained by the fact that
the phase of Pmsh.j!/ does not depend on ! either.

We then calculate the controller corresponding to  D �max. To this end, we need to calculate the
matrix Z defined in Theorem 9.2 at the optimal performance

Zmin D 2 C
p

2

4

�

1 0

0 1

�

� 2 �
p

2

4

�

3 2
p

2= Q!c

2
p

2 Q!c 3

�

D .
p

2 � 1/

�

1 �1= Q!c

� Q!c 1

�

Substituting this matrix into (9.140), we obtain the first-order transfer function

Rrob.s/ D � .1 C
p

2/s C Q!c

s C Q!c.1 C
p

2/
(9.5)
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(mind that feedback is positive). This is the classical lead controller tuned for the crossover frequency Q!c,
which provides a phase lead of 45ı at this frequency and has jRrob.1/=Rrob.0/j D 3 C 2

p
2 � 15:3 dB.

After moving the weight to the controller, we end up with

R.s/ D � Q!2
c

.1 C
p

2/s C Q!c

s C Q!c.1 C
p

2/
;

which is the controller to implement. Because jR.j Q!c/j D Q!2
c , the crossover frequency of the resulting

loop L.s/ D P.s/R.s/ is exactly as intended, i.e. !c D Q!c, which is not typical. The classical stability
margins of the resulted loop are �g D 1, �ph D 45ı, and �m � 0:692.

9.3.2 Triple integrator

Let us now repeat the steps considered in the previous case study with the triple integrator P.s/ D 1=s3,
which is a more challenging system to control, as more than a 90ı phase lead is required. Select again a
static weight, now of the form W.s/ D Q!3

c , where Q!c > 0 is an intended crossover frequency. With this
choice

Pmsh.s/ D Q!3
c

s3
D

2

6
6
4

0 1 0 0

0 0 1 0

0 0 0
p

Q!3
cp

Q!3
c 0 0 0

3

7
7
5

indeed has its crossover frequency at ! D Q!c.
AREs (9.12) still can be solved analytically, with the stabilizing solutions

X D

2

4

2 Q!2
c 2 Q!c 1

2 Q!c 3 2= Q!c

1 2= Q!c 2= Q!2
c

3

5 > 0 and Y D

2

4

2= Q!2
c 2= Q!c 1

2= Q!c 3 2 Q!c

1 2 Q!c 2 Q!2
c

3

5 > 0

and

�max D
r

1

2
�

p
2

3
� 0:1691; (9.6)

which is about 44% of what we had in the double integrator case. It does not depend on Q!c, again, which
also follows by the fact that the phase of Pmsh.j!/ does not depend on !.

The controller corresponding to  D �max calculated by (9.140) is then the second-order transfer func-
tion

Rrob.s/ D � .1 C
p

2/2s2 C .2 C
p

2/ Q!cs C Q!2
c

s2 C .2 C
p

2/ Q!cs C .1 C
p

2/2 Q!2
c

: (9.7)

This is a complex second-order lead controller tuned for the crossover frequency Q!c, actually, of the form
(1.32) for the choices ˛ D .1C

p
2/2 � 5:828 and � D 1=

p
2. It provides a phase lead of � 109ı at Q!c and

has jRrob.1/=Rrob.0/j D .1 C
p

2/4 � 30:6 dB. As a matter of fact, this Rrob.s/ D ˇB2.s=!1/=B2.s=!2/,
where B2.s/ is the normalized Butterworth polynomial of order 2, see the discussion on p. 148, ˇ D
3 � 2

p
2 � 0:1716, !1 D Q!cˇ and !2 D Q!c=ˇ.

After moving the weight to the controller, we end up with

R.s/ D � Q!2
c

.1 C
p

2/2s2 C .2 C
p

2/ Q!cs C Q!2
c

s2 C .2 C
p

2/ Q!cs C .1 C
p

2/2 Q!2
c

;

which is the controller to implement. Because jR.j Q!c/j D Q!2
c , the crossover frequency of the resulting

loop L.s/ D P.s/R.s/ is again exactly as intended. The classical stability margins of the resulted loop,
�g � 2:29, �ph � 19ı, and �m � 0:33, are significantly lower than those in the double integrator case.
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(a) Second-phase success indicator, �max (b) Resulting crossover mismatch, 1 � !c= Q!c

(c) Phase and modulus margins

Fig. 9.2: Performance measures for the example in §9.3.3

9.3.3 Servo control of a DC motor

Let now

P.s/ D 1

s.s C 1/
;

which can be thought of as a model of a DC motor connected with a rigid mechanical load, see §1.A.1, in
particular, Eqn. (1.22) on p. 13. The goal here is to design a controller with an integral action (to reduce slow
load disturbances di), to have a high-frequency roll-off, and to have a desired crossover. The bandwidth of
the plant itself is !b D 1 [rad/sec] and it has a unit gain at the frequency ! D 0:786 [rad/sec].

A choice of the weighting function for the requirements above is W.s/ D k=s, where k D Q!2
c

p

1 C Q!2
c

for an intended crossover Q!c > 0. With this choice,

Pmsh.s/ D Q!2
c

p

1 C Q!2
c

s2.s C 1/
:

If Q!c is placed well below the plant bandwidth, the phase lag of the pole at s D �1 around ! D Q!c is
negligible and we effectively have the same double integrator from §9.3.1. As Q!c increases, the problem is
expected to become harder, because the phase lag due to the plant pole will become noticeable. If Q!c grows
well beyond the plant bandwidth, the problem should approach that for the triple integrator considered in
§9.3.2. These arguments are supported by the success indicator �max. It is expectably a decreasing function
of Q!c then, starting from 0:3827 as in (9.4) and approaching 0:1691 as in (9.6) as Q!c grows, see Fig. 9.2(a).
Other stability margins similarly deteriorate as Q!c increases, which is seen in the plots in Fig. 9.2(c).

The controllers produced in the second phase of the H1 loop-shaping procedure also migrate, in a
sense, from the first-order lead as in (9.5) for relatively small Q!c to the complex second-order lead as in
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(a) Sensitivity, jS.j!/j (b) Complementary sensitivity, jT .j!/j

(c) Disturbance sensitivity, jTd.j!/j (d) Control sensitivity, jTc.j!/j

Fig. 9.3: Closed-loop frequency-responses for the example in §9.3.3

(9.7) as Q!c grows. Controllers R D WRrob for three choices of Q!c are presented below:

R.s/ D �0:025912.s C 0:04072/.s C 1/

s.s C 0:2819/.s C 0:9603/
; if Q!c D 0:1

R.s/ D �5:1584.s C 0:4733/.s C 0:9477/

s.s2 C 3:614s C 5:968/
; if Q!c D 1

R.s/ D �5448:9.s2 C 6:512s C 19:16/

s.s2 C 33:62s C 563:1/
; if Q!c D 10

They all are strictly proper and contain integral action, as required. The controller for Q!c D 0:1 can afford
canceling the stable pole of the plant as this pole is fast comparing to the required crossover. Moreover, it
has a close pole at s D �0:96, so the whole controller is effectively an integrator with a first-order lead.
The controller for Q!c D 1 does not cancel the stable pole of the plant. Its zeros at s D 0:47 and s D 0:95

attract two root loci, so that the stable pole of the plant is shifted, rather than canceled. The controller for
Q!c D 10 is not even close to canceling the plant pole at s D �1, apparently because this pole is rather slow
relatively to the intended bandwidth.

Note that the actual crossover frequency !c, that of the resulted loop P WRrob, is now affected by the
control design in the second phase of the H1 loop-shaping procedure. Its relative deviation from the
intended Q!c is presented in Fig. 9.2(b). Still, this deviation is always below 8%, meaning that in this case
robust stability does not conflict with the crossover requirement too much.

The closed-loop frequency responses are shown in Fig. 9.3. Their trends are quite expectable. As
Q!c grows, the closed-loop bandwidth increases (both if defined in terms of the sensitivity function, see
Fig. 9.3(a), and if defined in terms of the complementary sensitivity, see Fig. 9.3(b)), disturbance attenua-
tion improves (see Fig. 9.3(c)), but all this comes at the expense of higher control effort (see Fig. 9.3(d)).
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(a) Second-phase success indicator, �max (b) Modulus margin, �m

Fig. 9.4: Performance measures for the example in §9.3.4

The design can be refined by adding a lead element to the weighting function. This, in a sense, helps
the loop-shaping procedure to end up with a more robust design in the second phase. For example, if
the lead element .3s C Q!c/=.s C 3 Q!c/ was added to the I weight W.s/, the success indicator would lie in
.0:268; 0:542/, rather than in .0:109; 0:383/ as in Fig. 9.2(a). The resulting stability margins and closed-
loop frequency responses would improve as well, at the expense of a slightly slower high-frequency decay
of the controller gain. Further refinements can be brought via adding a low-pass filter . . .

9.3.4 Lightly-damped system from Example 7.5

Consider now a plant with the transfer function

P.s/ D 1

s2 C 0:1s C 1
;

which was studied in Example 7.5 on p. 151. The goal here remains the same as in §9.3.3: design a
controller with an integral action, a high-frequency roll-off, and a desired crossover. The bandwidth of the
plant itself is !b D 1:551 [rad/sec]. We again select W.s/ D k=s, now with

k D Q!c

q

1 � 1:99 Q!2
c C Q!4

c D
Q!c

k

0 0:58 0:995 1:147

0:386

0:099

for an intended crossover Q!c > 0. With this choice,

Pmsh.s/ D Q!c
p

1 � 1:99 Q!2
c C Q!4

c

s.s2 C 0:1s C 1/

satisfies jPmsh.j Q!c/j D 1. If Q!c 2 .0; 0:58/ [ .1:147; 1/, this is the only crossover frequency. Otherwise,
there are three and the smallest of them is below 0:58 anyway. Thus, the choice of Q!c 2 .0:58; 1:147/,
around the resonance peak, would produce the same gain k of the weighting function W.s/ as some smaller
Q!c and there is no loss of generality in considering only Q!c 2 .0; 0:58/ [ .1:147; 1/.

The success indicator �max and the modulus margin of the resulting design are presented in Fig. 9.4
(the actual crossover is complicated around the plant resonance, so its values are not presented). It is seen
that the success indicator is very high if Q!c is below the plant resonance at ! D 0:9975, but deteriorates
rapidly afterwards. This can be explained by observing that at low Q!c’s the resonance of P is outside the
frequencies of interest and Pmsh is essentially a single integrator. The latter is an easy system to control,
with the huge �max D

p
0:5 � 0:7071. After the resonant frequency, the phase of Pmsh.j!/ quickly decays

to �270ı, rendering Pmsh close to the triple integrator from §9.3.2, whose �max � 0:1691.
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(a) Sensitivity, jS.j!/j (b) Complementary sensitivity, jT .j!/j

(c) Disturbance sensitivity, jTd.j!/j (d) Control sensitivity, jTc.j!/j

Fig. 9.5: Closed-loop frequency-responses for the example in §9.3.3

Consider now design outcomes for three choices of Q!c 2 f0:13; 2; 6g. The resulting controllers are

R.s/ D �0:1396.s2 � 0:03291s C 0:9464/

s.s2 C 0:6051s C 1:129/
; if Q!c D 0:13

R.s/ D �27:083.s2 C 0:8226s C 0:8323/

s.s2 C 5:725s C 16:88/
; if Q!c D 2

R.s/ D �1184:8.s2 C 3:453s C 6:361/

s.s2 C 20:1s C 202:4/
; if Q!c D 6

The controller for Q!c D 0:13 is actually nonminimum phase2 and its zeros at s D 0:0165 ˙ j0:9727 nearly
cancel the lightly-damped plant poles at s D �0:05 ˙ j0:9987. This near-cancellation can be explained by
the irrelevance of the resonant frequency, which lies almost a decade above the intended crossover, for the
design in this case. As high loop gain requirements overtake the resonance, canceling the lightly-damped
poles of P.s/ does not pay off any longer and the controllers designed with Q!c D 2 and Q!c D 6 have their
zeros, s D �0:4113 ˙ j0:8143, s D �1:7264 ˙ j1:8386, further away from the plant poles.

The effect of canceling (and not canceling) lightly-damped poles can be clearly seen in the disturbance
sensitivity plots in Fig. 9.5(c), by comparing closed-loop frequency response with that of the plant itself
(shown by the thin light line there). The design with Q!c D 0:13 practically does not alter the plant response
to load disturbances above that frequency, including the resonance. As Q!c passes the resonant frequency,
the closed-loop disturbance sensitivity at the latter is substantially lower than that of the plant.

In other respects, the trends of the plots in Fig. 9.5 are similar to those in the previous example. It is
perhaps worth emphasizing that the H1 loop-shaping design with Q!c D 2 is roughly compatible with the

2For no apparent reason, mirroring its zeros over the imaginary axis would result in virtually the same design.
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mixed sensitivity design of Example 7.5 in properties of the sensitivity and control sensitivity functions,
see Figs. 7.4 and 7.5. At the same time, it reduces the disturbance sensitivity peak by almost 20 dB, i.e. by
an order of magnitude.

9.A Balanced sensitivity problem in H1

This section presents technical steps required to solve the balanced sensitivity problem of form (9.2) and
its state-space solution. Throughout this part we consider the problem of minimizing the H1-norm of the
system

T´w D
�

Tc Ti

So Td

�

D
�

Rrob

I

�

.I � PmshRrob/�1
�

I Pmsh
�

; (9.8)

i.e. we drop the subscripts associated with the phases of H1 loop shaping.

Remark 9.2 (symmetry). Consider the system

NT´w ´
�

I

Pmsh

�

.I � RrobPmsh/�1
�

Rrob I
�

D
�

Tc Si

To Td

�

D
�

0 I

�I 0

�

C T´w :

It can be shown that k NT´w.j!/k D kT´w.j!/k for all ! 2 R at which det.I C Pmsh.j!/Rrob.j!// ¤ 0.
Thus, the use of So and Ti in (9.8) does not entail any asymmetry between input and output sensitivity and
complementary sensitivity functions. O

The closed-loop system in (9.8) corresponds to the standard problem in Fig. 7.1 with the generalized
plant

G.s/ D Gbs.s/ D

2

4

0 0 I

I Pmsh.s/ Pmsh.s/

I Pmsh.s/ Pmsh.s/

3

5 ; (9.9)

which can be obtained as the system
�

do
di

�

7!
�

u
y

�

in the setup of Fig. 9.1. It is always stabilizable, as
follows from Theorem 6.13 via the following construction of coprime factorizations of G:

G D

2

4

0 �I M

I 0 N

I 0 N

3

5

2

4

I 0 0

0 I 0

0 �I M

3

5

�1

D

2

4

I 0 0

0 I �I

0 0 QM

3

5

�12

4

0 0 I

0 0 0
QM QN QN

3

5

(the corresponding Bézout coefficients are straightforward to generate from those of Pmsh). Using the
Youla–Kučera parametrization from (7.4), we then end up with

T´w D
��

� QY
QX

�

C
�

M

N

�

Q

�
� QM QN

�

; (9.10)

which is again an affine function of the Q-parameter.
The minimization of kT´wk1 is a particular case of the standard H1 problem, whose solution is pre-

sented in §7.A.2. As such, the solution can be in principle derived via Theorem 7.3. However, the balanced
sensitivity problem possesses some special properties, worth examining separately. This is the subject of
the remainder of this section.

The solution discussed below exploits the freedom in the choice of the coprime factors of Pmsh. To
motivate a special doubly coprime factorization of choice below, recall the arguments used in Example 7.2
on p. 141 to choose a co-inner denominator of the plant. In the same vein, it may make sense to look for
a lcf Pmsh D QM�1 QN with a co-inner

� QM.s/ QN .s/
�

, because this also eliminates this factor from the
analysis of kT´wk1 by virtue of Proposition 3.1 on p. 51. The result below generalizes this choice to other
parts of a doubly coprime factorization of Pmsh (the notation G� stands for the conjugate of G defined in
(3.29)).
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Lemma 9.1. There always exists a doubly coprime factorization of Pmsh, known as normalized, such that

�

M� N�
�
�

M � QY
N QX

�

D
�

I V �
�

and

�
X Y

� QN QM

��

� QN�
QM�

�

D
�

�V �

I

�

(9.11)

for some V 2 RH1 such that V.s/ is strictly proper.

Proof. Let Pmsh D N0M�1
0 D QM�1

0
QN0 be some doubly coprime factorization of Pmsh with corresponding

Bézout coefficients X0, Y0, QX0, and QY0. It is readily seen that

�
X Y

� QN QM

�

´
�

U0 �U0W0

0 QU�1
0

��
X0 Y0

� QN0
QM0

�

and �
M � QY
N QX

�

´
�

M0 � QY0

N0
QX0

� �
U�1

0 W0
QU0

0 QU0

�

are also doubly coprime factors and Bézout coefficients of Pmsh for every U0; QU0; U�1
0 ; QU�1

0 ; W0 2 H1, cf.
Proposition 3.2. Because of coprimeness, we have that

ŒM0.j!/�0M0.j!/ C ŒN0.j!/�0N0.j!/ > 0 and QM0.j!/Œ QM0.j!/�0 C QN0.j!/Œ QN0.j!/�0 > 0

for all ! 2 R [ f˙1g. Hence, there are bistable U0 and QU0 (the spectral factors) such that

M�
0 M0 C N�0 N0 D U�0 U0 and QM0

QM�
0 C QN0

QN�0 D QU0
QU�0 :

These spectral factors are actually unique up to right and left multiplications by unitary matrices. With
these choices, M�M C N�N D I and QM QM� C QN QN� D I , as required by (9.11). Next,

�

M� N�
�
�

� QY
QX

�

D
�

M� N�
�
�

M � QY0

N QX0

� �

U0W0
QU0

QU0

�

D U0W0
QU0 � T;

where T ´ .M� QY0 � N� QX0/ QU0. We can always decompose T D Ts C Ts̄ where Ts 2 RH1 and Ts̄.s/ is
strictly proper and has all its poles in the closed right half-plane xC0. The choice W0 D U�1

0 Ts QU�1
0 2 RH1

yields then the required left Bézout coefficients under V D �T �s̄ .
The final step is to show that the right Bézout coefficients satisfy then the second equality in (9.11). To

this end, rewrite its first equality as

�

M� N�
�

D
�

I V �
�
�

M � QY
N QX

��1

D
�

I V �
�
�

X Y

� QN QM

�

:

Post-multiplying both sides by
�

� QN QM
��

we get

0 D
�

I V �
�
�

X Y

� QN QM

� �

� QN�
QM�

�

D
�

I V �
�
�

Y QM� � X QN�
I

�

and then V � D X QN� � Y QM�, which yields the last piece to (9.11).

Thus, assume that the factors in (9.10) are normalized and that the Bézout coefficients also satisfy
(9.11). Because

� QM QN
�

is co-inner, it follows from Proposition 3.1 that kT´wk1 D kT1k1, where

T1 ´
�

� QY
QX

�

C
�

M

N

�

Q:
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The H1-norm of T1 can then be replaced by its L1-norm defined in (3.21). This switch is safe as long as
we keep Q 2 H1. Define

U ´
�

M� N�

� QN QM

�

:

It follows from (9.11) and (3.34) that U�.s/U.s/ D I , implying that U.j!/ is a unitary matrix for every
!. This, in turn, implies that kT1k1 D kU T1k1. Using the relation

U T1 D
�

M� N�

� QN QM

� �

� QY
QX

�

C
�

I

0

�

Q D
�

V � C Q

I

�

and the definition of the matrix spectral norm in (2.6b), we have that

kU.j!/T1.j!/k2 D 1 C kŒV .j!/�0 C Q.j!/k2

at every !. Hence, we may conclude that

kT´wk1 D kU T1k1 D
q

1 C kV � C Qk2
1

for every Q 2 RH1. But this implies that the problem of selecting Q 2 RH1 that minimizes kT´wk1
reduces to the Nehari problem of minimizing kV � C Qk1. We know from Theorem 7.4 that the latter
problem has its minimal performance level at kV kh, which is the Hankel norm of V and can be calculated
by solving two Lyapunov equations. Hence, we end up with a non-iterative attainable performance formula
for the balanced sensitivity problem. Namely,

inf
stabilizing Rrob






�

Rrob

I

�

.I � PmshRrob/�1
�

I Pmsh
�




1

D
q

1 C kV k2
h;

where the doubly coprime factors of of Pmsh are those satisfying (9.11). All admissible controllers can
then be constructed in state space using Theorem 7.4.

Remark 9.3 (alternative cost expression). It can be shown, see [17], that the optimal cost for the balanced
sensitivity problem can be equivalently expressed as

inf
stabilizing Rrob






�

Rrob

I

�

.I � PmshRrob/�1
�

I Pmsh
�




1

D 1
q

1 �


� QN QM

�


2

h

:

Because
� QN QM

�

is co-inner, its Hankel norm is always strictly contractive. O

To present the resulting state-space formulae, bring in a stabilizable and detectable state-space realiza-
tion .A; B; C; D/ of the plant Pmsh. We need two algebraic Riccati equations,

A0X C XA � .C 0D C XB/.I C D0D/�1.D0C C B 0X/ C C 0C D 0; (9.12a)

with the corresponding gain matrix K ´ �.I C D0D/�1.D0C C B 0X/, and

AY C YA0 � .BD0 C YC 0/.I C DD0/�1.DB 0 C C Y / C BB 0 D 0; (9.12b)

with the corresponding gain matrix L ´ �.BD0 C YC 0/.I C DD0/�1. Their solutions are said to be
stabilizing if A C BK and A C LC are Hurwitz matrices. Note that these AREs do not depend on  and
are of the H2 form, with negative semi-definite quadratic terms. These are not typical properties of AREs
arising in H1 optimization, cf. (7.37). The main result of this section, whose proof is postponed to §9.A.1,
is then formulated as follows.
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Theorem 9.2. The minimal attainable performance for the balanced sensitivity H1 problem is

min D
p

1 C �.YX/ > 1:

Given then any  > min, all -suboptimal controllers are given by

Rrob.s/ D Fl

0

@

2

4

A C BK � Z�1
 YC 0.C C DK/ Z�1

 YC 0 Z�1
 .B � YCD0/

�B 0X �D0 I C D0D
�C � DK I �D

3

5 ; Q.s/

1

A ; (9.13)

for any Q 2 RH1 such that det.I C DQ.1// ¤ 0 and

k.I C D0D/1=2Q.I C DD0/1=2k1 <
p

2 � 1;

where Z ´ .1 � �2/I � �2YX .

The central controller, the one corresponding to Q D 0, is then obviously

Rrob.s/ D �
�

A C BK � Z�1
 YC 0.C C DK/ Z�1

 YC 0

B 0X D0

�

(9.14)

Note that as  # min, the matrix lim#min Z D �2
min.�.YX/I � YX/ becomes singular and the controller

above is not well defined. However, this can be resolved via rewriting the central controller as

Rrob.s/ D �D0 � B 0X.sZ � ZA � ZBK C YC 0.C C DK//�1YC 0: (9.140)

This is the so-called descriptor form of the transfer matrix and it is well defined provided the polynomial
matrix sZ � ZA � Z BK C YC 0.C C DK/ has full normal rank. It can be shown that this is always the
case for the central controller above. As a result, the optimal controller is also well defined and, actually,
it is a reduced-order controller. The order of the optimal controller equals rank.�.YX/I � YX/, i.e. the
order of the optimal controller is reduced by the geometric multiplicity of the largest eigenvalue of YX .

9.A.1 Proof of Theorem 9.2

First, some technical facts about the algebraic Riccati equations (9.12) will be established. To this end,
define the Hamiltonian matrix

H(9.12) D
�

A 0

�C 0C �A0

�

�
�

B

�C 0D

�

.I C D0D/�1
�

D0C B 0
�

:

It happens that both AREs in (9.12) are associated with it. Indeed, it can be verified that
�

I 0

�X I

�

H(9.12)

�

I 0

X I

�

D
�

A C BK �B.I C D0D/�1B 0

0 �.A C BK/0

�

(9.15a)

and
�

I Y

0 I

�

H(9.12)

�

I �Y

0 I

�

D
�

A C LC 0

�C 0.I C DD0/�1C �.A C LC /0

�

(9.15b)

for any X and Y satisfying (9.12). The solvability of AREs requires that H(9.12) has no j!-axis eigenvalues.
Straightforward arguments based on the Schur complement notion yields that � 2 spec.H(9.12)/ iff the
polynomial matrix

2

4

A � sI 0 B

�C 0C �A0 � sI �C 0D
D0C B 0 I C D0D

3

5 D RICP 0
mshPmsh.s/
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(RG stands for the Rosenbrock system matrix of G, defined by (4.24)) looses its rank at s D �. Because
I CŒPmsh.j!/�0Pmsh.j!/ > 0 for all ! and the realization .A; B; C; D/ of Pmsh is stabilizable and detectable,
I C P�msh.s/Pmsh.s/ cannot have pure imaginary invariant zeros, so that RICP 0

mshPmsh.j!/ has full rank at
all !. Hence, H(9.12) has no pure imaginary eigenvalues and, by Theorem B.6, both AREs in (9.12) have
stabilizing solutions.

The pre-multiplication of (9.15a) and the post-multiplication of (9.15b) by
�

I Y
0 I

��
I 0
X I

�

equates their
left-hand sides and yields the following relation, playing an important role in the analysis below:

�

I C YX Y

X I

� �

A C BK �B.I C D0D/�1B 0

0 �.A C BK/0

�

D
�

A C LC 0

�C 0.I C DD0/�1C �.A C LC /0

��

I C YX Y

X I

�

: (9.16)

We also need the following technical result.

Lemma 9.3. The RH1 transfer functions

�

X.s/ Y.s/

� QN .s/ QM.s/

�

D
�

.I C D0D/1=2 .I C D0D/�1=2D0

0 .I C DD0/�1=2

�
2

4

A C LC B C LD �L

�K I 0

�C �D I

3

5 (9.17a)

and

�

M.s/ � QY .s/

N.s/ QX.s/

�

D

2

4

A C BK B �L

K I 0

C C DK D I

3

5

�

.I C D0D/�1=2 �D0.I C DD0/�1=2

0 .I C DD0/1=2

�

(9.17b)

constitute a normalized double coprime factorization of Pmsh, as in Lemma 9.1, with

V.s/ D �.I C DD0/�1=2

�
A C LC .I C YX/B

C 0

�

.I C D0D/�1=2: (9.18)

Proof. The fact that the transfer functions above constitute a doubly coprime factorization of Pmsh follows
by Propositions 4.12 and 3.2. Denote now S ´ .I C D0D/�1=2 and QS ´ .I C DD0/�1=2 and note that
(9.12b) reads .A C LC /Y C Y.A C LC /0 C .B C LD/.B C LD/0 C LL0 D 0. Thus,

�
X.s/ Y.s/

� QN .s/ QM .s/

��

� QN�.s/
QM�.s/

�

D

2

4

A C LC B C LD �L

SB 0X S SD0

� QSC � QSD QS

3

5

2

4

�.A C LC /0 C 0

.B C LD/0 �D0

�L0 I

3

5 QS

D

2

6
6
4

A C LC �.A C LC /Y � Y.A C LC /0 YC 0

0 �.A C LC /0 C 0

SB 0X SB 0 0

� QSC QSC Y QS�1

3

7
7
5

QS

and the application of a similarity transformation with the matrix
�

I �Y
0 I

�

yields

D

2

6
6
4

A C LC 0 0

0 �.A C LC /0 C 0 QS
SB 0X SB 0.I C XY / 0

� QSC 0 I

3

7
7
5

D

2

4

�.A C LC /0 C 0 QS
SB 0.I C XY / 0

0 I

3

5 ;

which proves the second equality in (9.11) with V as in (9.18). The first equality in (9.11) can be obtained
by similar arguments.
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Now, to derive the formula for the optimal performance of the balanced sensitivity problem we need
the controllability and observability Gramians of the realization of V as in (9.18). This is done by the
following result.

Lemma 9.4. The controllability and observability Gramians of V in (9.18) are

Wc D Y.I C XY / and Wo D .I C XY /�1X;

respectively.

Proof. The .1; 2/ block of (9.16) reads

�.I C YX/B.I C D0D/�1B 0 � Y.A C BK/0 D .A C LC /Y

Taking into account that .A C BK/0 D .I C XY /.A C LC /0.I C XY /�1, which follows from the .1; 1/

block of (9.16), we end up with

.A C LC /Y.I C XY / C Y.I C XY /.A C LC /0 C .I C YX/B.I C D0D/�1B 0.I C XY / D 0;

meaning that Y.I C XY / is indeed the controllability Gramian of (9.18) (because A C LC is Hurwitz, the
Lyapunov equation above has a unique solution).

Now, the .2; 1/ block of (9.16) reads

X.A C BK/ D �.A C LC /0X � C 0.I C DD0/�1C.I C YX/:

Taking into account that A C BK D .I C YX/�1.A C LC /.I C YX/, we now end up with

X.I C YX/�1.A C LC / C .A C LC /0X.I C YX/�1 C C 0.I C DD0/�1C D 0;

meaning that .I C XY /�1X D X.I C YX/�1 is indeed the observability Gramian of (9.18).

With this result, the Hankel norm of V is obtained by Proposition B.4 as

kV kh D
p

�.WcWo/ D
p

�.YX/:

This yields the min of Theorem 9.2.
The next step is to characterize all Q 2 RH1 such that kV �C Qkh for V given by (9.18). This can be

done with the help of Theorem 7.4 for

A ! A C LC; B ! .I C YX/B.I C D0D/�1=2; C ! �.I C DD0/�1=2C;

Gramians from Lemma 9.4, and V D �2Z�1
 (mind that  in Theorem 7.4 equals 2 �1 in Theorem 9.2).

The final controller in (9.13) is finally derived by plugging that LFT to the Youla–Kučera parametrization,
based on the coprime factors and their Bézout coefficients in (9.17), and applying the Redheffer start prod-
uct formula in Proposition 5.7. The details are left as a (tedious) exercise.
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Appendix A

Spaces and Operators

T
he purpose of this appendix is to collect some basic mathematical definitions required throughout the
notes. I’ll try to avoid mathematical complications if possible, so the exposition might be somewhat

informal at times.

A.1 Vector spaces

A.1.1 Basic definitions

A field is a set F together with two operations, addition C W F � F 7! F and multiplication � W F � F 7! F ,
which satisfies the conditions presented in Table A.1 for both addition and multiplication for all its elements

Addition Multiplication

Commutativity ˛ C ˇ D ˇ C ˛ ˛ � ˇ D ˇ � ˛

Associativity .˛ C ˇ/ C  D ˛ C .ˇ C / .˛ � ˇ/ �  D ˛ � .ˇ � /

Distributivity ˛ � .ˇ C / D ˛ � ˇ C ˛ �  or .˛ C ˇ/ �  D ˛ �  C ˇ � 

Identity 90 2 F such that ˛ C 0 D ˛ 91 2 F such that ˛ � 1 D ˛

Inverses 9 � ˛ 2 F such that ˛ C .�˛/ D 0 9˛�1 2 F such that ˛ � ˛�1 D 1 if ˛ ¤ 0

Table A.1: Field conditions

˛, ˇ, and  . Because the identity elements for addition and multiplication must be different, every field
must have at least two elements. Examples include the complex numbers C, rational numbers Q, and real
numbers R, but not the integers Z (not closed under the inversion).

A vector space over a field F , denoted .V; F / (or simply V , when the field is clear from the context),
is a set V together with two operations, addition C W V � V 7! V and multiplication � W F � V 7! V ,
which satisfies the conditions presented in Table A.2 for both addition and scalar multiplication for all
u; v; w 2 V and ˛; ˇ 2 F . It is worth emphasizing that this definition says that any vector space is closed

Addition Scalar multiplication

u C v D v C u

.u C v/ C w D u C .v C w/ .˛ � ˇ/ � u D ˛ � .ˇ � u/

˛ � .u C v/ D ˛ � u C ˛ � v and .˛ C ˇ/ � u D ˛ � u C ˇ � u

90 2 V such that u C 0 D u 0 � u D 0 and 1 � u D u

Table A.2: Vector space conditions
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under the addition and the multiplication by scalars operations. The boldface notation 0, used in Table A.2
to distinguish the zero vector from V from the zero scalar 0 2 F , is dropped hereafter. The meaning of “0”
is typically clear from the context. Also, the notation “�” is dropped from the scalar multiplication, so that
we write ˛ˇ or ˛u to mean ˛ � ˇ or ˛ � u, respectively. Examples of vector spaces include the real vector
space .Rm; R/ (or simply Rm), the complex vector space .Cm; C/ (or simply Cm), etc.

A.1.2 Measuring sizes and angles

The introduction of the notion “norm” is driven by the need to measure sizes and distances. A function
k�k W V 7! R is called a norm if it satisfies the following three conditions:

1. kvk � 0 and kvk D 0 ” v D 0 (positive definiteness)

2. k˛vk D j˛jkvk, 8˛ 2 F (homogeneity)

3. ku C vk � kuk C kvk (triangle inequality)

for all elements u; v 2 V . The conditions above can be interpreted as follows. The first condition says that
size cannot be negative and only zero element might have zero size; the second condition states that scaling
an element should result in the same scaling of its size; and the third condition is actually a generalization
of the Euclidean axiom that the shortest distance between two points is the straight line. Note that there may
be many norms for a given vector space V . To distinguish between different norms, they may be indexed,
like k�kq norms on Cm defined in Section 2.2.1. When a vector space is endowed with a norm it becomes
a normed vector space. A complete normed space, i.e. a normed space in which each Cauchy sequence
converges to an element of this space, is called a Banach space. Examples of normed vector spaces are Cm

with the norm kvk D
p

jv1j2 C � � � C jvmj2 (called the Euclidean norm), the spaces C Œ0; 1� of continuous
C-valued functions in Œ0; 1� with the norm kvk D

�R 1

0
jv.t/j2dt

�
1=2, and the space L2Œ0; 1� of measurable

square-integrable C-valued functions in Œ0; 1� with the same norm. The first and the third of these normed
spaces are Banach, whereas the second one is not, as we can construct a sequence of continuous functions
converging to a discontinuous function.

The introduction of the notion of “inner product” may be thought of as driven by the need to measure
angles between two vectors. A function h�; �i W V � V 7! F is called an inner product if it satisfies the
following conditions:

1. hv; vi � 0 and hv; vi D 0 ” v D 0 (positive definiteness)

2. h˛u C ˇv; wi D ˛hu; wi C ˇhv; wi, 8˛; ˇ 2 F (semi-linearity)

3. hu; vi D hv; ui (symmetry)

for all elements u; v; w 2 V . It also follows from the first condition that if hu; vi D 0, 8v 2 V , then
u D 0. The last two conditions imply that hu; ˛v C ˇwi D N̨hu; vi C Ňhu; wi. The third condition
(implicitly) requires that hv; vi 2 R. An example of the inner product is hx; yi ´ x1y1 C x2y2 defined
on R2 (this quantity is also called the dot or scalar product). It can be shown that in this case hx; yi D
p

hx; xi
p

hy; yi cos � , where � is the angle between the vectors x and y. In other words, the scalar product
is the scaled cosine of the angle between two vectors in this case. This interpretation can be continued to
the general case. To this end, the following result is required.

Theorem A.1 (Cauchy–Schwarz Inequality). If V be a vector space with an inner product h�; �i, then

jhu; vij2 � hu; uihv; vi (A.1)

for all u; v 2 V .
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Proof. First, inequality (A.1) is obviously true for v D 0 (in which case it is actually an equality). Assume
now that v ¤ 0, i.e. hv; vi > 0. Clearly, for any ˛ 2 F ,

0 � hu � ˛v; u � ˛vi D hu; ui � ˛hv; ui � ˛hu; vi C j˛j2hv; vi:

Choose ˛ D hu; vi=hv; vi, in which case ˛ D hv; ui=hv; vi. The inequality above writes then as

0 � hu; ui � jhv; uij2=hv; vi;

whence (A.1) follows immediately.

Now, define

~uv ´
( hu;vip
hu;ui

p
hv;vi if v ¤ 0 and u ¤ 0

0 otherwise
(A.2)

It follows from the Cauchy–Schwarz inequality that j~uvj � 1. Also, for any given ˛ 2 R n f0g we have
that ~.˛u/u D sign.˛/. This prompts regarding ~uv as the cosine of the “angle” between u and v. We then
may extend the notion of the orthogonality to abstract spaces. Namely, u; v 2 V are said to be orthogonal,
denoted by u ? v, if hu; vi D 0, i.e. if the “angle” between them is ˙�=2.

When a vector space is endowed with an inner product, it becomes an inner product space. A complete
inner product space is called a Hilbert space. All three examples of normed spaces above are also inner
product spaces with hu; vi D v1u1 C � � � C vmum for Cm and hu; vi D

R 1

0
v.t/u.t/dt for C Œ0; 1� and

L2Œ0; 1�. A remarkable fact is that the inner product generates a norm (i.e. every inner product space is a
normed space), namely kvk ´

p

hv; vi. To show that this is indeed a norm, it suffices to show the triangle
inequality (the positive definiteness and the homogeneity follow directly from the properties of the inner
product). To this end, note that

ku C vk2 D hu C v; u C vi D hu; ui C hu; vi C hv; ui C hv; vi
D kuk2 C hu; vi C hu; vi C kvk2

� kuk2 C 2jhu; vij C kvk2 � kuk2 C 2kukkvk C kvk2 D .kuk C kvk/2;

where the Cauchy–Schwarz inequality was used in the second inequality. Taking the square roots of both
sides gives the triangle inequality. The equality here would require that both hu; vi C hu; vi D 2jhu; vij
(i.e. Rehu; vi � 0 and Imhu; vi D 0) and jhu; vij D kukkvk (i.e. that the “angle” between u and v is zero).

We thus saw that the inner product defines the norm. It turns out that the inner product can be recovered
from the corresponding norm:

� 4hu; vi D ku C vk2 � ku � vk2 C jku C jvk2 � jku � jvk2 (polarization identity)

This equality can be proved by substitution.
The following two facts, which hold for any inner product space with the norm generated by the in-

ner product and can be easily checked by direct substitution, are abstract generalizations of the classical
geometrical notions:

� if u ? v, then ku C vk2 D kuk2 C kvk2 (Pythagoras’ theorem)

� ku C vk2 C ku � vk2 D 2kuk2 C 2kvk2 (parallelogram law)

Curiously, it can be shown that for any normed space, the norm on which satisfies the parallelogram law,
an inner product generating this norm can be defined.
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A.1.3 Subspaces and linear combination

A subset S of a vector space .V; F / is a subspace if ˛x C ˇy 2 S for all x; y 2 S and all ˛; ˇ 2 F . In
other words, S is closed under addition and scalar multiplication and hence it itself is a vector space over
F . Clearly, both f0g (aka the zero space) and the whole V are subspaces. A subspace S of V is said to be
proper if S ¤ V . Given any two subspaces S1 and S2, their intersection,

S1 \ S2 ´
˚

x j x 2 S1 and x 2 S2

	

;

and sum,
S1 C S2 ´

˚

x j x D x1 C x2; x1 2 S1; x2 2 S2

	

;

are both subspaces as well (if S1 \ S2 D f0g, then their sum is said to be the internal direct sum and
is written S1 ˚ S2). A geometric intuition of subspaces is that they are hyperplanes passing through the
origin.

Let S be a subspace of an inner product space V . The orthogonal complement of S in V is the set

S? ´ fx 2 V j x ? y; 8y 2 Sg:

The orthogonal complement is an inner product space itself. Moreover, if S is closed, then .S?/? D S

and V D S ˚ S?. The latter equality means that any u 2 V can be uniquely decomposed as u D u1 C u2,
where u1 2 S and u2 2 S? and kuk2 D ku1k2 C ku2k2.

Given vectors v1; : : : ; vm, any vector of the form ˛1v1 C � � � C ˛mvm for some scalars ˛1; : : : ; ˛m is a
linear combination of v1; : : : ; vm. Any linear combination of elements of a vector space V belongs to this
space. The set of all linear combinations of v1; : : : ; vm is called span of v1; : : : ; vm and denoted as

span.v1; : : : ; vk/ ´
˚

v j v D ˛1v1 C � � � C ˛mvm for some ˛1; : : : ; ˛m 2 F
	

:

Clearly, span.v1; : : : ; vk/ is a subspace.
A set of vectors fv1; : : : ; vmg is said to be linearly independent if

˛1v1 C � � � C ˛mvm D 0 H) ˛1 D � � � D ˛m D 0I

otherwise this set is said to be linearly dependent (clearly, any set containing 0 is linearly dependent). It
follows from the definition that the following three conditions are equivalent:

1. fv1; : : : ; vmg is linearly independent;

2. coefficients of any linear combination of v1; : : : ; vm are uniquely determined, i.e.

˛1v1 C � � � C ˛mvm D ˇ1v1 C � � � C ˇmvm H) ˛i D ˇi ; 8i D 1; : : : ; mI

3. no vi can be expressed as a linear combination of the other vectors from fv1; : : : ; vmg.

A.1.4 Basis and dimension

Let V be a vector space. A (finite) set of vectors fv1; : : : ; vmg 2 V is a basis for V if v1; : : : ; vm are linearly
independent and V D span.v1; : : : ; vm/. In particular, if fv1; : : : ; vmg is a basis for V , then every vector
v 2 V can be expressed as a linear combination of v1; : : : ; vm.

A basis for any nonzero space is not unique. This can be seen by replacing any two vectors vi and vj

in a basis fv1; : : : ; vmg with vj C vj and vj � vj . It turns out, however, that the number of elements in
any basis of V is the same. This number (i.e. the number of vectors in any basis) is called the dimension
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of V and denoted as dim V . A vector space V having no basis with finitely many vectors is called infinite

dimensional.
Since elements of any basis for (an m-dimensional) V are linearly independent, any vector v 2 V can

be uniquely decomposed as a linear combination of a basis for V , i.e.

9˛i ; i D 1; : : : ; m; such that v D ˛1v1 C � � � C ˛mvm:

These scalars, i.e. ˛1; : : : ; ˛m, are said to be the coordinates of v in the given basis.
A basis fv1; : : : ; vmg for an inner product space is said to be orthogonal if all its elements are mutually

orthogonal, i.e. if vi ? vj whenever i ¤ j . If, in addition, kvik D 1 for all i , the orthogonal basis is said
to be orthonormal. An example of the orthonormal basis is the standard basis for Cm, fe1; : : : ; emg, where
each ei is defined as the vector whose i th element is 1 and the other elements are 0.

Finding coordinates in an orthonormal basis is a particularly simple task. Indeed, let fv1; : : : ; vmg be
an orthonormal basis of an m-dimensional inner product space V . We already know that any vector v 2 V

can be uniquely expressed as v D ˛1v1 C � � � C ˛mvm. Thus,

hv; vii D
m
X

jD1

j̨ hvj ; vii D ˛ihvi ; vii D ˛i

or, in other words,

v D
m
X

iD1

hv; viivi : (A.3)

This expression immediately leads to the celebrated Parseval’s identity, saying that any two vectors u and
v in V satisfy

hu; vi D
m
X

iD1

hu; viihv; vii:

In particular, for u D v we have that

kvk2 D
m
X

iD1

jhv; viij2;

i.e. the square of the norm on an inner product space equals the sum of squares of the coordinates in an
orthonormal basis.

Remark A.1. The analysis above can, in principle, be applied to infinite-dimensional spaces as well, al-
though the math in that case is more delicate. For example, the span of the orthonormal basis might no
longer result in V . Rather, only the closure of the span should be equal V . Yet we still may present any
element of V as the infinite-dimensional counterpart of (A.3). Consider, for instance, V D L2Œ0; 1�. A
possible choice of the orthonormal basis for this space is

˚

ej.�C2�i/t
	

i2Z, for any � 2 Œ��; ��. The Fourier

expansion of an element v of L2Œ0; 1� is then

v.t/ D
X

i2Z

˛iej.�C2�i/t ; where ˛i D hv; vii D
Z 1

0

e�j.�C2�i/t v.t/dt

(best known under � D 0). One should, however, be careful with the convergence of this Fourier expansion.
It might not converge to v.t/ pointwise (the Gibbs phenomenon), but rather only in the sense of the L2Œ0; 1�

norm. The reason is that the span of this basis is not L2Œ0; 1�, as any linear combination of the functions
ej.�C2�i/t is continuous, whereas L2Œ0; 1� may contain discontinuous functions. O

https://en.wikipedia.org/wiki/Gibbs_phenomenon
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A.2 Linear operators and their properties

Given vector spaces U and Y , both over a field F , an operator T is a mapping of a vector from U to a
unique vector in Y . An operator is not necessarily defined for each element of U , but rather on its subspace
DT � U , called the domain of T . A compact form of writing the said mapping is T W DT � U 7! Y or
in the simplified form T W U ! Y if the domain is not important in a given context or is the whole U . An
operator T is said to be linear if the superposition property holds, i.e. if

T .˛1u1 C ˛2u2/ D ˛1T u1 C ˛2T u2 (A.4)

for all ˛1; ˛2 2 F and all u1; u2 2 DT . The superposition is sometimes presented as the combination of
the additivity, T .u1 C u2/ D T u1 C T u2, and homogeneity, T .˛u/ D ˛T u, properties.

The sum of operators and the multiplication of an operator by a scalar can be easily deduced from
the definition. Another operation that can be naturally defined for linear operators is their product (the
cascade). Let T W DT � U 7! V and S W DS � V 7! Y be such that the set of all possible outputs of T

belongs to DS . In this case, ST W DT � U 7! Y is the operator such that .ST /u D S.T u/. The identity
operator I W U 7! U is defined as the operator satisfying Iu D u for all u 2 U .

A.2.1 Structural properties

The set of all possible “outputs” of an operator T W U 7! Y is a subspace of Y , as follows from the very
definition of the linear operator. This subspace is called the image (or range) of T and denoted as

Im T ´
˚

y 2 Y j 9u 2 DT such that y D T u
	

:

It is also possible to write TU to describe the image of T . Accordingly, sometimes we may write TS to
denote the set of all possible images of a set S � U under the linear transformation T , even when S is not
a subspace. A mapping T W U 7! Y is surjective (onto) if Im T D Y . The dimension of Im T is called the
rank of the operator T and is denoted as rank.T / ´ dim.Im T /.

The subset of U , elements of which are nullified by T is also a subspace U . This subspace is called the
kernel (or the null space) of T . More precisely, it is defined as

ker T ´
˚

u 2 DT j T u D 0
	

:

If the kernel of T is trivial, i.e. ker T D f0g, then T is called injective. If T is both injective and surjective,
it is said to be bijective.

An operator T W U 7! U is invertible if there is a mapping S W U 7! U such that ST u D u D TSu for
all u from U . This S , which is also a linear operator, is called the inverse of T and is denoted as T �1. It
is a known result that T is invertible iff it is bijective, i.e. iff ker T D f0g and Im T D U .

A.2.2 Operators on normed spaces

Consider now linear operators over normed vector spaces. Let U and Y be normed spaces with corre-
sponding norms (to simplify the notation, we use the symbol k�k for both norms, even though norms on U

and Y may be different). An operator T W U 7! Y is said to be bounded if DT D U and there is  > 0

such that
kT uk � kuk; 8u 2 U :

If T is bounded, the quantity

kT k ´ sup
u2U ;u¤0

kT uk
kuk
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is well-defined and can be regarded as its norm (induced norm). Alternatively, exploiting the linearity of
T , the induced norm can be expressed as

kT k D sup
u2U ;kukD1

kT uk;

Induced norms always satisfy the three conditions for a norm on p. 182. In some situations, the induced
norm of operators from U to Y are denoted as k�kU 7!Y .

A.2.3 Operators on inner product spaces

Additional concepts can be introduced for operators over inner product spaces. One of them is the funda-
mental notion of the adjoint operator. Let U and Y be inner product spaces with the inner products h�; �iU
and h�; �iY , respectively, and their generated norms and let T W U 7! Y be a bounded linear operator. There
exists a unique operator T 0 W Y 7! U satisfying

hT u; yiY D hu; T 0yiU ; 8u 2 U ; y 2 Y :

It is readily seen that .T 0/0 D T , .˛S C ˇT /0 D ˛S 0 C ˇT 0, and .ST /0 D T 0S 0. It can also be proved that
kT 0k D kT k and kT 0T k D kT k2.

An operator T W U 7! U is called self-adjoint if T D T 0. It follows from the symmetry property
of the inner product that if T is self-adjoint, hT u; ui 2 R for all u 2 U even if U is a space over the
complex field C. The converse is also true: if U is a space over C and hT u; ui 2 R for all u 2 U , then
T D T 0. The induced norm of self-adjoint operators can be calculated as kT k D supkukD1hT u; ui. The
last two properties imply that hT u; ui D 0 for all u 2 U iff T D 0. Motivated by this interpretation of the
zero operator, we may define sign definite operators via the sign of the corresponding inner products. A
self-adjoint operator T is then said to be positive definite (denoted T > 0) if hT u; ui > 0 and positive semi-
definite (denoted T � 0) if hT u; ui � 0 for all u ¤ 0. With these notions, the comparison of self-adjoint
operators T < S and T � S should be understood as S � T > 0 and S � T � 0, respectively.

Clearly, T 0T is self-adjoint for every T W U 7! Y . Because

hT 0T u; ui D hT u; T ui D kT uk2 � 0;

the operator T 0T � 0. It turns out that the converse is true as well: if T W U 7! U is a self-adjoint operator
such that T � 0, it can be factorized as T D S 0S for some S W U 7! Y (Y may be different from U ). Such
an S is not unique. There is, however, a unique factor, satisfying S D S 0 � 0. This factor is called the
square root of T and denoted as T 1=2. Note that T 1=2 > 0 iff T > 0.

The notion of sign-definite operators can be used in the calculation of the operator norm, induced by
the inner product vector norms. The following result is important.

Theorem A.2. If T W U 7! Y is a linear operator over inner product spaces, then

kT k <  ” T 0T < 2I ” T T 0 < 2I:

Proof. Clearly, kT k <  ” kT uk2 < kuk2 ” hT u; T ui < hu; ui for all u 2 U . The latter
inequality is equivalent to

0 < h2u; ui � hT 0T u; ui D h.2I � T 0T /u; ui; 8u 2 U ;

whence the first part follows. The second part follows by the fact that kT k D kT 0k.
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A.2.4 Matrix form of linear operators

In some situations, it is convenient to represent linear operators as rectangular tables, known as matrices,
of elements from F . To this end, assume that dim U D m and dimY D p and bring in their bases
fu1; : : : ; umg and fy1; : : : ; ypg, respectively. Consider now a linear operator T W U 7! Y and denote by tij
the i th coordinate of T uj in the chosen basis of Y (note that it is uniquely determined). By linearity,

T .˛1u1 C � � � C ˛mum/ D ˛1T u1 C � � � C ˛mT um D ˛1

p
X

iD1

ti1yi C � � � C ˛m

p
X

iD1

timyi

D
� m
X

jD1

j̨ t1j

�

y1 C � � � C
� m
X

jD1

j̨ tpj

�

yp D ˇ1y1 C � � � C p̌yp:

This means that the relation between the coordinates ˛i and ˇi of u and T u, respectively, can always be
written in the form 2

6
4

ˇ1

:::

p̌

3

7
5 D

2

6
4

t11 � � � t1m

:::
: : :

:::

tp1 � � � tpm

3

7
5

2

6
4

˛1

:::

˛m

3

7
5 :

The p � m matrix on the right-hand side above is called the matrix representation of T in the given basis
and denoted as ŒŒT ��fui g;fyi g, or simply ŒŒT �� when the bases are irrelevant or clear from the context. It is
worth emphasizing that although the term “operator” is frequently interchanged with the term “operator
matrix,” strictly speaking ŒŒT �� 2 F p�m is not T W U 7! Y itself. While the matrix representation ŒŒT ��fui g;fyig
does depend on the chosen basis of U and Y , the operator T itself does not.

Still, many properties of matrix representations are coordinate-independent. For example, it is readily
seen that T is invertible iff its system matrix ŒŒT �� is invertible. It can also be shown that

Im T D span.t1�; : : : ; tp�/;

where ti� stands for the i th row of ŒŒT �� in any bases.
This idea can be extended to operators over infinite-dimensional spaces as well, in which case matrix

representations are matrices with infinitely many rows and / or columns. However, a special care should be
taken in such extensions for the convergence of infinite sums.



Appendix B

Matrix Equations and Manipulations

M
atrix equations play an important role in the state-space analysis and design of finite-dimensional
linear systems. Linear matrix equations (Sylvester and Lyapunov equations) are an important analy-

sis tool, whereas quadratic equations (Riccati) are crucial in numerous design problems, like H2 and H1
optimization and robust control. This appendix discusses some basic properties of these equations. It also
contains the definition of the Schur complement of block matrices and some related formulae.

B.1 Linear matrix equations (Sylvester & Lyapunov)

Let A1 2 Rn1�n1 , A2 2 Rn2�n2 , and Q 2 Rn1�n2 . The following linear matrix equation:

A1X � XA2 C Q D 0 (B.1)

is called the Sylvester equation. It has a unique solution X 2 Rn1�n2 iff

spec.A1/ \ spec.A2/ D ¿;

i.e. iff none of the eigenvalues of A1 is also an eigenvalue of A2. If this condition fails to hold, then the
Sylvester equation might have either no solutions or an infinite number of solutions (depending on Q). The
following result establishes the connection between the solvability of (B.1) with the block-diagonalizability
of certain block-triangular matrices.

Proposition B.1 (Roth’s removal rule). Equation (B.1) is solvable iff the matrices

�
A1 Q

0 A2

�

and

�
A1 0

0 A2

�

are similar.

An important particular case of the Sylvester equation is the so-called (continuous-time) Lyapunov

equation, which is defined as
AX C XA0 C Q D 0 (B.2)

for given A 2 Rn�n and Q 2 Rn�n. If Q is symmetric (i.e. Q D Q0), then the solution X is symmetric too.
Furthermore, if A is Hurwitz, i.e. if A has all its eigenvalues in the open left half-plane C n xC0, then

X D
Z

RC

eAt QeA0t dt (B.3)

189
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exists and is the solution of (B.2). Indeed, it is readily seen that

A eAt QeA0t C eAt QeA0tA0 D d
dt

�

eAt QeA0t
�

:

Thus, if the integral in (B.3) exists,

A

Z

RC

eAt QeA0t dt C
Z

RC

eAt QeA0t dtA0 C Q D
Z

RC

d
�

eAt QeA0t
�

C Q D 0;

where the fact that lim t!1 eAt QeA0t D 0 was used.

B.1.1 Lyapunov equations and stability

The Lyapunov equation plays an important role in control and systems theory. Some examples can be found
in §4.2.1, §4.3.4, and §4.4.2. Another example is the connection between the existence of positive definite
solution of a Lyapunov equation and the stability of matrices.

Proposition B.2. A matrix A 2 Rn�n is Hurwitz iff the solution X 2 Rn�n of the Lyapunov equation (B.2)
satisfies X D X 0 > 0 whenever Q D Q0 > 0.

Proof. First, assume that A is Hurwitz. Clearly, .A; Q/ is controllable (follows from the non-singularity
of Q), so that X > 0 by (B.3). Now, let X > 0 for some Q > 0. Assume that A is not Hurwitz, i.e. that
it has an eigenvalue � such that Re � � 0. Denote the corresponding eigenvector by � ¤ 0 and pre- and
post-multiply (B.2) by �0 and �, respectively. We have:

��0Q� D �0.AX C XA0/� D ��0X� C ��0X� D 2 Re ��0X�:

This, in turn, implies that Re ��0X� < 0, which is a contradiction.

Proposition B.2 actually says that the stability of A is equivalent to the existence of a matrix X D X 0 > 0

such that
AX C XA0 < 0: (B.4)

Inequality (B.4) belongs to the so-called class of Linear Matrix Inequalities (LMI), for the verification of
which efficient numerical methods are available. For this reason (B.4) can be considered an alternative to
the conventional verification of eigenvalues of A. More important is that the LMI (B.4) can be incorporated
into many other analysis and design problems that also reduce to LMIs.

B.1.2 Lyapunov equations and Hankel norm

Another use of the Lyapunov equation in systems analysis is in computing the Hankel norm of causal
finite-dimensional LTI systems. Given a stable linear system G, its Hankel norm kGkh is defined as

kGkh ´ sup
u2L2�;kuk2D1

k.Gu/Ck2; (B.5)

where vC stands for the orthogonal projection of v 2 L2 onto L2C, i.e. it is the induced norm of the Hankel
operator HG W L2.R�/ ! L2.RC/ associated with G.

To compute the Hankel norm of a finite-dimensional LTI system, we need to remember the fundamental
(in fact, defining) property of the state vector at any time instance t to accumulate the input history up to
t . This implies that the response of G in the time interval RC to any input signal having support in R� is



B.1. Linear matrix equations (Sylvester & Lyapunov) 191

completely determined by the state vector of G at t D 0, say x.0/ D x0. If G has the (minimal) state space
realization

G.s/ D
�

A B

C 0

�

;

then its output response is y.t/ D C eAt x0 and its energy in RC is

kGuk2
2 D

Z

RC

x00eA0tC 0C eAt x0dt D x00Qx0;

where Q D Q0 > 0 is the observability Gramian of the pair .C; A/, which satisfies the Lyapunov equation
A0Q C QA C C 0C D 0 (see p. 74).

Now, x.0/ depends on u according to the following law:

x.0/ D
Z

R�

e�At Bu.t/dt: (B.6)

It is known that there is an infinite number of inputs satisfying this equation for every x.0/ D x0 (mind
the controllability of .A; B/). Among all these inputs we are actually interested in that having the minimal
energy. Indeed, because for a given x0 the numerator in (B.5) remains the same, the minimal energy u

maximizes the ratio in (B.5). The following lemma yields this u.

Lemma B.3. Let P D P 0 > 0 be the controllability Gramian of the pair .A; B/ satisfying the Lyapunov

equation PA0 C AP C BB 0 D 0 (see p. 71). The signal

u.t/ D umin.t / ´ B 0e�A0tP�1x0;

is the unique minimum-energy input rendering x.0/ D x0.

Proof. First, prove that umin does render x.0/ D x0. To this end, substitute it to the right-hand side of
(B.6). We have:

x.0/ D
Z

R�

e�At Bumin.t /dt D
Z

R�

e�At BB 0e�At dtP�1x0 D
Z

RC

eAt BB 0eAt dtP�1x0 D x0

indeed. Now, define uı ´ u � umin. It is readily seen that u satisfies (B.6) for x.0/ D x0 iff uı satisfies
Z

R�

e�At Buı.t /dt D 0:

Hence, if u 2 L2� renders x.0/ D x0, then its energy is

kuk2
2 D humin C uı ; umin C uıi2

D kumink2
2 C kuık2

2 C 2huı ; umini2 D kumink2
2 C kuık2

2 C 2x00P�1

Z

R�

e�At Buı.t /dt

D kumink2
2 C kuık2

2:

It is then clear that among all u rendering x.0/ D x0, the one with the minimal energy corresponds to
uı D 0.

The energy of this input is then

kumink2
2 D

Z

R�

u0.t /u.t/dt D
Z

R�

x00P�1e�At BB 0e�A0tP�1x0dt D x00P�1x0:

Thus, the Hankel norm can be equivalently calculated via

kGk2
h D max

x0¤0

x00Qx0

x00P�1x0

D max
x1¤0

x01P 1=2QP 1=2x1

x01x1

D kQ1=2P 1=2k2 D �.P 1=2QP 1=2/ D �.PQ/;

where k�k stands for the spectral matrix norm. We thus just proved the following result.
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Proposition B.4. Given a stable and causal finite-dimensional LTI system G with a strictly proper transfer

function G.s/,

kGkh D
p

�.PQ/;

where P and Q are the controllability and observability Gramians of G, respectively.

B.2 Quadratic matrix equations (Riccati)

A matrix equation of the form
A0X C XA C Q C XRX D 0 (B.7)

for some matrices A 2 Rn�n, Q D Q0 2 Rn�n, and R D R0 2 Rn�n is called the (continuous-time)
algebraic Riccati equation (ARE). Such equations can be thought of as a matrix extension of the standard
quadratic equation rx2 C 2ax C q D 0. Like in the quadratic equation case, a solution X of the ARE of
the form (B.7) is not unique. In control applications we are mostly concerned with the so-called stabilizing

solution, which is defined as the solution for which the matrix A C RX is Hurwitz (stable). The stabilizing
solution is unique (if exists) as proved below.

Proposition B.5. If there is a stabilizing solution to (B.7), then it is Hermitian and unique.

Proof. Let X be a stabilizing solution to (B.7). Denoting � ´ X � X 0, we have that

0 D A0X C XA C Q C XRX � .A0X C XA C Q C XRX/0 D A0� C �A C XRX � X 0RX 0

D .A C RX/0� C �.A C RX/ C XRX � X 0RX 0 � X 0R.X � X 0/ � .X � X 0/RX

D .A C RX/0� C �.A C RX/:

This is a Lyapunov equation, whose solution by (B.3) is � D 0 (A C RX is Hurwitz). Hence, X D X 0.
Now, assume that there are two stabilizing solutions, X1 D X 01 and X2 D X 02, i.e. that

A0X1 C X1A C Q C X1RX1 D 0 and A0X2 C X2A C Q C X2RX2 D 0

with Hurwitz A1 ´ A C RX1 and A2 ´ A C RX2. Subtracting the second equation from the first one
and denoting Xı ´ X1 � X2 we have that

0 D A0X1 C X1A1 C Q � .A0X2 C X2A2 C Q/ D A0Xı C X1A1 � X2A2 ˙ X2A1

D A0Xı C X2.A1 � A2/ C XıA1 D A0Xı C X2RXı C XıA1

D A02Xı C XıA1;

where the last equality uses the already proved fact that X2 D X 02. This is a Sylvester equation, whose
solution is unique because A1 and A2 are Hurwitz. This solution is obviously Xı D 0, so that X1 D X2.

Important for studying AREs, as well as for their numerical solutions, is the fact that solutions of (B.7)
can be expressed in terms of the eigenstructure of certain matrices. To see this, note that (B.7) can be
equivalently written as

�

A R

�Q �A0

� �

I

X

�

D
�

I

X

�

.A C RX/ (B.8)

(here the first row is an obvious equality, whereas the second row is just a rewritten (B.7)). This equation
is actually reminiscent of the eigenvalue equation. Connections indeed exist. To see them, denote

Hric ´
�

A R

�Q �A0

�

2 R
2n�2n: (B.9)
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Let � be an eigenvector of A C RX corresponding to an eigenvalue �. Post-multiplying (B.8) by � and
denoting Q� ´

�
I
X

�

�, we obtain that Hric Q� D � Q�. This implies that any eigenvalue of the n � n matrix
A C RX is an eigenvalue of the 2n � 2n matrix Hric as well.

To understand properties of Hric, introduce the 2n � 2n skew-symmetric matrix

J ´
�

0 �I

I 0

�

: (B.10)

It is readily verified that J�1 D �J D J 0, so J is also unitary. The direct substitution then shows that

J�1HricJ D �H 0ric (B.11)

(such matrices are called Hamiltonian). This implies that Hric and �H 0ric are similar. Hence, � is an
eigenvalue of Hric iff its imaginary axis mirror, ��, is an eigenvalue of Hric.

Now, if ACRX is Hurwitz, Hric should have n eigenvalues in Cn xC0. This, in turn, means that the other
n eigenvalues of Hric must be in C0 and this partition of the spectrum of Hric (n eigenvalues in Cn xC0 and
the other n are in the C0) is unique. Of course, this partition is possible iff Hric has no j!-axis eigenvalues,
which is thus necessary for the ARE (B.7) to have a stabilizing solution. This is not sufficient though.
Some insight why is this the case can be gained through the reexamination of the eigenvector structure
of Hric. Indeed, it follows from the formula Q� D

� �
X�

�

and the fact that � is a (non-zero) eigenvector of
A C RX that at least one of the first n components of Q� must be non-zero. This is not necessarily true for
all stable (i.e. those corresponding to stable eigenvalues) eigenvectors of Hamiltonian matrices as can be
seen in the following simple example:

Hric D

2

6
6
4

�1 0 1 0

0 1 0 0

�1 �1 1 0

�1 �1 0 �1

3

7
7
5

; for which spec.Hric/ D f˙1; ˙
p

2g and � D �1 has Q� D

2

6
6
4

0

0

0

1

3

7
7
5

: (B.12)

The corresponding ARE has no stabilizing solutions indeed, which can be easily seen from the fact that
the pair .A; R/ D

�� �1 0
0 1

�

;
�

1 0
0 0

��

is not stabilizable, so that there is no X for which A C RX is stable.
For general R, there might not be an easy criterion, in terms of A, Q, and R, for the existence of a

stabilizing solution X to (B.7). The situation is more transparent for sign semi-definite R’s as the following
result shows.

Theorem B.6. If either R � 0 or R � 0, then there is a stabilizing solution of the ARE (B.7) iff Hric has

no j!-axis eigenvalues and the pair .A; R/ is stabilizable.

Proof. The necessity of spec.Hric/ \ jR D ¿ was shown before. Hence, we may assume that Hric has no
j!-axis eigenvalues and there is a nonsingular T 2 R2n�2n such that

T �1HricT D
�

T11 T12

T21 T22

��1 �
A R

�Q �A0

� �

T11 T12

T21 T22

�

D
�

Hs H12

0 Hs̄

�

;

where Hs is Hurwitz and Hs̄ is anti-Hurwitz (one such T , which is orthogonal, can be obtained by the
Schur decomposition of Hric). Equivalently,

�

A R

�Q �A0

��

T11 T12

T21 T22

�

D
�

T11 T12

T21 T22

��

Hs H12

0 Hs̄

�

;

from which �
A R

�Q �A0

� �
T11

T21

�

D
�

T11

T21

�

Hs: (B.13)

https://en.wikipedia.org/wiki/Schur_decomposition
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Now, show that there is a stabilizing solution iff T11 is nonsingular. The “if” part follows by construc-
tion, as in this case X D T21T �1

11 is the required solution with A C RX D T11HsT
�1
11 (can be verified by

a direct substitution). To prove the “only if” part, assume that there is a stabilizing solution X . Eqn. (B.8)
can then be complemented to

�

A R

�Q �A0

� �

I 0

X I

�

D
�

I 0

X I

��

A C RX R

0 �.A0 C XR/

�

(as a matter of fact, this shows that A0 C XR is Hurwitz because the .2; 2/ block in the last matrix above
should contain all n eigenvalues of Hric in C0). This implies that

�

A C RX R

0 �.A0 C XR/

�

D
�

I 0

�X I

� �

T11 T12

T21 T22

� �

Hs H12

0 Hs̄

���

I 0

�X I

� �

T11 T12

T21 T22

���1

;

which, in turn, leads to
�

A C RX R

0 �.A0 C XR/

� �

T11

T21 � XT11

�

D
�

T11

T21 � XT11

�

Hs:

The second row above reads .A0C XR/.T21 � XT11/C .T21 � XT11/Hs D 0, which is a Sylvester equation
having the unique solution (as the matrices A0 C XR and Hs are Hurwitz) T21 � XT11 D 0. This equality
implies that if there is a vector � ¤ 0 such that T11� D 0, then T

�
�
0

�

D 0, which is a contradiction because
T is nonsingular.

Next, show that T11 is nonsingular iff the pair .A; R/ is stabilizable. The “only if” part here is straight-
forward, otherwise A C RT21T �1

11 D T11HsT
�1
11 cannot be stable. The “if” part, i.e. the proof that the

stabilizability of .A; R/ implies det.T11/ ¤ 0, is more involved. To show it, assume the opposite, i.e. that
det.T11/ D 0 despite the stabilizability of .A; R/. Pick any 0 ¤ � 2 ker T11 and pre- and post-multiply the
first row of (B.13) by �0T 021 and �, respectively. This yields (mind the symmetry of T 021T11)

�0T 021.AT11 C RT21/� D �0T 021T11Hs� D �0T 011T21Hs�

and then �0T 021RT21� D 0. This is the part where the sign definiteness of R is used as then the last equality
implies that RT21� D 0. This, in turn, leads to T11Hs� D 0 from the first row of (B.13). Since � 2 ker T11

is arbitrary, we actually just proved that Hs ker T11 � ker T11, i.e. that ker T11 is Hs-invariant. It is a known
fact that any (nonzero) invariant subspace of a matrix M contains at least one eigenvector of M . So there
is a vector 0 ¤ � 2 ker T11 such that Hs� D �� for some Re � < 0. Post-multiplying (B.13) by this � we
have:

�

R

�A0

�

T21� D
�

0

�I

�

T21� ”
�

R

A0 C �I

�

T21� D 0 ” �0T 021

�

A � .��/I R
�

D 0:

The detectability of .A; R/ then yields (via the PBH test) that the latter necessarily yields T21� D 0. As
T11� D 0 too and T is nonsingular, we have a contradiction. Hence, det.T11/ ¤ 0.

Thus, we just proved that there is a stabilizing solution X iff .A; R/ is stabilizable and this stabilizing
X D T21T �1

11 for any T11 and T21 satisfying (B.13). This completes the proof.

B.3 Schur complement and matrix inversion formulae

Let A be a square matrix partitioned as follows:

A D
�

A11 A12

A21 A22

�

;
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with square A11 and A22. If A11 is nonsingular, then it can be verified by a direct substitution that
�

A11 A12

A21 A22

�

D
�

I 0

A21A�1
11 I

� �

A11 0

0 A22 � A21A�1
11 A12

��

I A�1
11 A12

0 I

�

: (B.14a)

It follows from this equality that A is nonsingular iff so is the matrix

�11 ´ A22 � A21A�1
11 A12;

which is called the Schur complement of A11 in A. Similarly, if A22 is nonsingular, then
�

A11 A12

A21 A22

�

D
�

I A12A�1
22

0 I

� �

A11 � A12A�1
22 A21 0

0 A22

��

I 0

A�1
22 A21 I

�

(B.14b)

and the Schur complement of A22 is defined as follows:

�22 ´ A11 � A12A�1
22 A21:

There are many applications of decompositions (B.14). Below two of them are briefly discussed. The
first is related to the inversion of block 2 � 2 matrices. Namely, using the facts that

�

I A

0 I

��1

D
�

I �A

0 I

�

and
�

I 0

A I

��1

D
�

I 0

�A I

�

(can be verified by direct substitution), we have that

�

A11 A12

A21 A22

��1

D
�

I �A�1
11 A12

0 I

� �

A�1
11 0

0 ��1
11

� �

I 0

�A21A�1
11 I

�

(if A11 is nonsingular)

D
"

A�1
11 C A�1

11 A12��1
11 A21A�1

11 �A�1
11 A12��1

11

���1
11 A21A�1

11 ��1
11

#

(B.15a)

D
�

I 0

�A�1
22 A21 I

� �

��1
22 0

0 A�1
22

� �

I �A12A�1
22

0 I

�

(if A22 is nonsingular)

D
"

��1
22 ���1

22 A12A�1
22

�A�1
22 A21��1

22 A�1
22 C A�1

22 A21��1
22 A12A�1

22

#

: (B.15b)

The formulae above are particularly simple in the case of general block-triangular matrices:

�
A11 A12

0 A22

��1

D
�

A�1
11 �A�1

11 A12A�1
22

0 A�1
22

�

(B.16a)

and
�

A11 0

A21 A22

��1

D
�

A�1
11 0

�A�1
22 A21A�1

11 A�1
22

�

: (B.16b)

Relations (B.15a) and (B.15b) also lead to the following useful result.

Lemma B.7 (Matrix Inversion Lemma). Let Aij 2 F mi�mj for i; j 2 f1; 2g. If A11 and A22 are nonsingu-

lar, then

.A11 � A12A�1
22 A21/�1 D A�1

11 C A�1
11 A12

�

A22 � A21A�1
11 A12

��1
A21A�1

11

whenever the inverse in the left-hand side exists.
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Proof. The result follows by comparing the .1; 1/ sub-blocks in (B.15a) and (B.15b).

Another use of (B.14) is in verifying sign definiteness of symmetric block matrices. Remember, a
matrix M is said to be positive definite if x0Mx > 0 for all x ¤ 0, cf. the related discussion on sign
definite operators in §A.2.3. So assume that our A D A0 and consider the quadratic form

q.x1; x2/ ´
�

x01 x02
�
�

A11 A12

A21 A22

��

x1

x2

�

:

Because q.x1; 0/ D x01A11x1 and q.0; x2/ D x02A2x2, this quadratic form is positive for all x ¤ 0 only if
A11 > 0 and A22 > 0. But then both Schur complements are well defined and, by (B.14),

q.x1; x2/ D
�

x01 C x02A21A�1
11 x02

�
�

A11 0

0 �11

� �

x1 C A�1
11 A12x2

x2

�

D .x1 C A�1
11 A12x2/0A11.x1 C A�1

11 A12x2/ C x02�11x2 (B.17a)

D
�

x01 x02 C x01A12A�1
22

�
�

�22 0

0 A22

� �

x1

x2 C A�1
22 A21x1

�

D x01�22x1 C .x2 C A�1
22 A21x1/0A22.x2 C A�1

22 A21x1/ (B.17b)

Inspecting (B.17a) and taking into account that A22 > 0 is necessary, we have that q.x1; x2/ > 0 whenever
�11 > 0. If the latter condition is not true, then there is x2 ¤ 0 such that x02�11x2 � 0. But then the choice
x1 D �A�1

11 A12x2 renders q.x1; x2/ D x2�11x2 � 0 under x ¤ 0. Hence, �11 > 0 is not only sufficient,
but also necessary for A > 0. Similar arguments apply to (B.17b) and we have the following result.

Lemma B.8. Let A D A0. The following conditions are equivalent:

1. A > 0,

2. A11 > 0 and �11 > 0,

3. A22 > 0 and �22 > 0.

Lemma B.8 can obviously be used to verify the negative definiteness. One just needs to invert all signs
in its conditions.

B.4 Useful matrix relations

Lemma B.9. Let A 2 F n�m and B 2 F m�n. Every nonzero eigenvalue of AB 2 F n�n is also an eigenvalue

of BA 2 F m�m.

Proof. If � ¤ 0 is an eigenvalue of AB and � its eigenvector, then, AB� D �� and � ´ B� ¤ 0. Yet then
BAB� D B�� or, equivalently, BA� D ��.

Lemma B.10. If A 2 F n�m and B 2 F m�n are such that In � AB is invertible, then

.In � AB/�1A D A.Im � BA/�1 (B.18)

and Im � BA is invertible as well.

Proof. The invertibility of In � AB is equivalent to the condition that AB does not have eigenvalues at 1.
Hence, neither does BA (by Lemma B.9) and the invertibility of Im � BA follows. Assuming invertibility,

.In � AB/�1A � A.Im � BA/�1 D .In � AB/�1.A.Im � BA/ � .In � AB/A/.Im � BA/�1 D 0;

which proves (B.18).
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Index

Bode’s gain-phase relation, 9
Bode’s sensitivity integral, 10
Bounded-real lemma, 89
Bézout coefficients

left, 51
right, 51

Cauchy–Schwarz inequality, see Inequality
Controllability, 70

Gramian, 71
matrix, 70
tests, 70

PBH (Popov–Belevich–Hautus), 70
Controller

first-order lead, 167
second-order lead, 19, 167

Equality
Bézout, 51

Equation
algebraic Riccati, 88, 192

H2, 154
H1, 155
stabilizing solution, 154, 155, 192

Lyapunov, 74, 189

Sylvester, 189

Factorization
doubly coprime, 54
full rank (matrix), 36
left coprime, 52
normalized coprime, 173
right coprime, 52

Field, 181

Gang of Four, 7, 165

IMF (Iwasaki–Meinsma–Fu) lemma, 89
Impulse response, 42, 62
Inequality

Cauchy–Schwarz, 182
triangle, 182

Inner product, 182

KYP (Kalman–Yakubovich–Popov) lemma, 87

Linear combination, 184
Linear fractional transformation, 105

well posed, 105, 108

Linear independence, 184
Linear operator, see Operator

Markov parameters, 63
Matrix

diagonal, 24, 30
eigenvalue, 31

algebraic multiplicity, 31
geometric multiplicity, 31
index, 31
repeated, 31
simple, 31

eigenvector, 31
full rank factorization, 36
Hamiltonian, 193
Hermitian, 29
Hurwitz, 31, 189
induced norm, 27
normal, 29
Schur, 31
similar, 25
singular value decomposition, 32
singular values, 33
skew-Hermitian, 29
skew-symmetric, 29
spectral radius, 31
spectrum, 31
symmetric, 29
trace, 24
triangular, 24
unitary, 32

Matrix Inversion Lemma, 195
Modes

hidden, 76
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uncontrollable, 72
unobservable, 74
unstabilizable, 72

Norm, 182
equivalence, 27
Euclidean (vector norm), 26
Frobenius (matrix norm), 27
H2 (system norm), 49

computation, 86
Hankel (system norm), 93, 190

H1 (system norm), 48
computation, 86

Hölder (vector norm), 26
induced, 27, 187

spectral (matrix norm), 27
sub-multiplicative property, 27

Observability, 73
Gramian, 74
matrix, 73
tests, 73

Operator, 186
adjoint, 29, 187

delay, 43
domain, 186
image, 29, 186

induced norm, 187
injective, 186
kernel, 29, 186

trivial, 29
matrix representation, 188
rank, 186
shift, 39
surjective, 186

Orthogonality, 183

Paley–Wiener theorem, 42
Parallelogram law, 183
Parseval’s theorem, 42, 185
Passivity theorem, 115
Poisson integral formula, 48
Polarization identity, 183
Polynomial matrix

unimodular, 56
Positive-real lemma, 89
Problem

balanced sensitivity, 165
Kalman–Bucy filtering, 138

LQR (linear-quadratic regulator), 137
mixed sensitivity, 150
modulus margin maximization, 140
multidisk, 150
Nehari, 157
standard, 135

H2, state-space solution, 154
H1, state-space solution, 155

weighted sensitivity, 145
Pythagoras’ theorem, 183

Realization
pole direction

input, 80
output, 80

Redheffer star-product, 108
Rosenbrock system matrix, 80
Roth’s removal rule, 189

Schur complement, 195
Shift operator, see Operator, shift
Signal

codomain, 39
controlled output, 4
control input, 4
direction, 28
disturbance, 4
domain, 39
measurement noise, 4
reference, 4
size, 26

Small gain theorem, 113
Span, 184
Stability

internal, 5, 7, 111, 132
L2, 43
L1, 45
`2, 62

Stability margin
gain, 139
modulus, 18, 139

phase, 139
State-space realization, 68

balanced, 93
controllable, 70
decomposition

controllable, 73
Kalman canonical, 75
observable, 74
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descriptor form, 175
observable, 73
similar, 68

State vector, 65, 67

System, 2
adjoint, 44
bi-stable, 44
causal, 44, 62
convolution representation, 45, 63
feedthrough term, 62
finite-dimensional, 64, 67

frequency response, 45
impulse response, 42, 62
kernel representation, 42, 62
linear, 2
Markov parameters, 63
passive, 89, 116

periodic, 44
shift invariant, 63
stable, 43, 62
state representation, 66, 68

state vector, 65, 67

time-invariant, 3, 44

time-varying, 44
transfer function, 46

Systems interconnection
cascade, 100
feedback, 100
LFT, 105
parallel, 100

System matrix, 62

Theorem
Paley–Wiener, 42
Parseval’s, 42
passivity, 115
small gain, 113

Transfer function, 46
co-inner, 50
conjugate, 50
coprime over H1

left, 51
right, 51

inner, 50
McMillan degree, 56

poles, 56

pole direction, 55
input, 56

output, 56

positive real, 114
proper, 50
real-rational, 54
Smith–McMillan form, 56
state-space realization

Gilbert’s, 77
minimal, 76

strictly proper, 50
strongly positive real, 115
transmission zeros, 56

zero direction, 55
input, 57

output, 57

Transform
continuous-time Fourier, 41
Laplace (two-sided), 41

Unit ball, 26
weighted, 38

Vector space, 181
C Œ0; 1�, 182
L2Œ0; 1�, 182
inner product, 183
internal direct sum, 184
intersection, 184
normed, 182
sum, 184

Waterbed effect, 147

Youla–Kučera parametrization, 120, 134, 136

Zeros
invariant, 81
transmission, 56
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