תורת הבקרה (035188)

דוגמאות בחינות סופיות

Part I

Frequency-domain methods

Question 1

Suggest a first-order system, whose addition to the loop gain adds a phase lag of 170° at certain frequency.
$\mathrm{G}(\mathrm{s})=$ \qquad , because \qquad
\qquad

Question 2

Fig 1(a) presents the Nichols chart of an open-loop transfer function $L(s)$. What is the tightest estimate of the closed-loop bandwidth, which can be deduced from this plot?
$\omega_{\mathrm{b}} \in$ \qquad , because \qquad

Question 3

Fig 1(b) presents the Nichols chart of an open-loop transfer function $L(s)$. What is the tightest estimate of the closed-loop bandwidth, which can be deduced from this plot?
$\omega_{\mathrm{b}} \in$ \qquad , because \qquad

Figure 1: Nichols charts

(a) $P_{1}(s)$

(b) $\mathrm{P}_{2}(\mathrm{~s})$

(c) $P_{3}(s)$

Figure 2: polar plots

Figure 3: Nichols charts

Question 4

Figs. 2 and 3 present polar plots and Nichols charts, respectively, of 3 stable systems. Find correspondences between these plots.
$\mathrm{P}_{\alpha}=\mathrm{P}$, , because \qquad
$P_{\beta}=P$, because \qquad
$\mathrm{P}_{\gamma}=\mathrm{P}_{-}$, because \qquad

Question 5

For each one of the systems in Fig. 3, determine if there is output feedback $u=-k y$ with $|k| \geqslant 1$, for which the closed-loop system is stable. If the answer is affirmative, then provide an example of such feedback law. stabilizing $|k| \geqslant 1$ for P_{α} does / doesn't exist, because \qquad
\qquad
stabilizing $|k| \geqslant 1$ for P_{β} does / doesn't exist, because \qquad
\qquad
stabilizing $|k| \geqslant 1$ for P_{γ} does / doesn't exist, because \qquad
\qquad

Question 6

What is the magnitude of the frequency response of the 2-order Butterworth filter with the bandwidth $2 \frac{\mathrm{rad}}{\sec }$? $|F(j \omega)|=$

Question 7

Let $L(s)=\frac{b_{1} s+1}{s^{2}+s+1}$ for some $b_{1} \geqslant 0$. For what b_{1} we have $\int_{0}^{\infty} \ln |S(j \omega)| d \omega=0$, where $S(s)=1 /(1+L(s))$? $\mathrm{b}_{1}=$ \qquad , because \qquad

Question 8

Given $P(s)=s(s-1) /\left(s^{3}+s+1\right)$, what is the minimum-degree closed-loop characteristic polynomial $\chi_{\text {cl }}(s)$ for which all closed-loop poles are in $s=-1$ for the pole-placement approach based on the Sylvester matrix?
$\chi_{\mathrm{cl}}(\mathrm{s})=$ \qquad , because \qquad

Question 9

Given $P(s)=s(s-1) /\left(s^{3}+s+1\right)$, what is the minimum-degree closed-loop characteristic polynomial $\chi_{\mathrm{cl}}(s)$ for which all closed-loop poles are in $s=-1$ and the controller includes an integral action for the pole-placement approach based on the Sylvester matrix?
$\chi_{\mathrm{cl}}(\mathrm{s})=$ \qquad , because \qquad

Question 10

Is the system $P(s)=(s-10)^{3} /(s+1)^{5}$ strongly stabilizable?
yes / no, because \qquad

Question 11

Can $R(s)=\frac{-s^{5}+s^{4}+s^{3}+s^{2}-s+1}{s^{5}+s^{4}-s^{3}+s^{2}+s+1}$ be a Padé approximant of $e^{-s h}$ for some $h>0$?
yes / no, because \qquad

Question 12

Can $R(s)=\frac{-s^{3}+6 s^{2}-6 s+1}{s^{3}+3 s^{2}+3 s+1}$ be a Padé approximant of $e^{-s h}$ for some $h>0$?
yes / no, because

Figure 4: Dead-time system

Question 13

What is the complementary sensitivity function (from r to y) for the system in Fig. 4, where $P_{r}(s)=\frac{s+8}{s(s+4)}$, $\tilde{\mathrm{C}}(\mathrm{s})=\frac{\mathrm{s}+4}{\mathrm{~s}+8}$, and $\mathrm{h}=0.1$?
$T(s)=$

Question 14

Is the system in Fig. 4 internally stable under $P_{r}(s)=\frac{(s+3)^{2}+4}{(s-1)(s+3)}, \tilde{C}(s)=10$, and $h=0.2 ?$ yes / no, because \qquad
\qquad

Question 15

Is the system in Fig. 4 internally stable under $\mathrm{P}_{\mathrm{r}}(\mathrm{s})=\frac{7}{s(s+3)^{2}}, \tilde{\mathrm{C}}(\mathrm{s})=10$, and $h=0.2$? yes / no, because \qquad
\qquad

Question 16

Which one of the transfer functions below does not correspond to an FIR system:

$$
\mathrm{G}_{1}(\mathrm{~s})=\frac{1-\mathrm{e}^{-2 \pi \mathrm{~s}}}{\mathrm{~s}^{2}}, \quad \mathrm{G}_{2}(\mathrm{~s})=\frac{1-\mathrm{e}^{-2 \pi \mathrm{~s}}}{\mathrm{~s}^{2}+1}, \quad \text { and } \quad \mathrm{G}_{3}(\mathrm{~s})=\frac{1-2 \pi \mathrm{~s}-\mathrm{e}^{-2 \pi \mathrm{~s}}}{\mathrm{~s}^{2}} ?
$$

G_(s), because \qquad
\qquad

Question 17

For what α_{1} and α_{2} the impulse response of $\mathrm{G}(\mathrm{s})=\frac{1+\alpha_{1} \mathrm{e}^{-2 \mathrm{~s}}+\alpha_{2} \mathrm{e}^{-3 \mathrm{~s}}}{2 \mathrm{~s}^{2}}$ is $\mathrm{g}(\mathrm{t})=$ $\alpha_{1}=$ \qquad and $\alpha_{2}=$ \qquad , because \qquad
\qquad

Question 18

Given $P(s)=1 / s$, what is the control signal $u(t)$, which causes the output to move from $y(0)=0$ to $y\left(t_{f}\right)=10$ in minimum time under $|u(t)| \leqslant 1$?
$u(t)=$ \qquad , because \qquad

Question 19

Given $P(s)=(s-1) /\left(s^{2}+3 s+2\right)$. Is there a stabilizing controller such that the resulting complementary sensitivity function is $T(s)=4 /\left((s+30)\left(s^{2}+2 \sqrt{2} s+4\right)\right)$? If there is, what is it?
yes / no, because

Question 20

Suppose that the open-loop transfer function $\mathrm{L}(\mathrm{s})$ is stable and satisfis the relation

$$
\left|\frac{\mathrm{L}(\mathrm{j} \omega)}{\mathrm{L}_{0}(\mathrm{j} \omega)}-1\right| \leqslant \frac{|\omega|}{3}, \quad \forall \omega
$$

for a known $L_{0}(s)$. Under what conditions the closed-loop system is stable for all such $L(s)$? (no need to explain)

Question 21

Given a plant $P(s)$ belonging to the uncertainty set $\mathfrak{P}_{\omega}=\left\{P(j \omega):\left|\frac{P(j \omega)}{P_{0}(j \omega)}-1\right| \leqslant \ell_{P}(\omega)\right\}$ for the nominal plant $P_{0}(s)=1 /\left(s(s+1)^{2}\right)$ and uncertainty radius $\ell_{P}(\omega) \geqslant 0$. Is there a stabilizing controller $C(s)$, for which the complementary sensitivity function $T(s)=P(s) C(s) /(1+P(s) C(s))$ belongs to the uncertainty set

$$
\mathfrak{T}_{\omega}=\left\{T(\mathrm{j} \omega):\left|\frac{T(\mathrm{j} \omega)}{T_{0}(\mathrm{j} \omega)}-1\right| \leqslant \ell_{\mathrm{T}}(\omega)\right\}
$$

for $T_{0}(s)=P_{0}(s) C(s) /\left(1+P_{0}(s) C(s)\right)$ and $\ell_{\mathrm{T}}(\omega) \leqslant \ell_{\mathrm{P}}(\omega)$ for all ω ?
yes / no, because

Question 22

Fig. 5 presents a control system with the controller $C(s)=\frac{1}{s-1}$ and an anti-windup mechanism. What is the admissible range of the gain $k_{a w u}$?
$k_{\text {awu }} \in$ \qquad , because \qquad
\qquad

Figure 5: Control system with anti-windup

Part II

State space

Question 23

Is $(A-I)^{4}=0$ for $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 5 & 1\end{array}\right]$?
yes / no, because

Question 24

Could it be true that $\exp \left(\left[\begin{array}{cc}-1 & 1 \\ 2 & 2\end{array}\right] t\right)=\left[\begin{array}{cc}e^{-t} e^{2 t}-e^{-t} \\ 0 & e^{2 t}\end{array}\right]$?
yes / no, because

Question 25

Calculate $\Phi(\mathrm{t})=\exp \left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \mathrm{t}\right)$. No need to explain.
$\Phi(t)=[\square$

Question 26

Is the matrix $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]>0$?
yes / no, because \qquad

Question 27

Is the matrix $M=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]>0$?
yes / no, because \qquad

Question 28
Question 28
What is the pole excess of $G(s)$, whose state-space realization is $G:\left\{\begin{array}{l}\dot{x}(t)=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] x(t)+\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] u(t) \\ y(t)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right] x(t)\end{array}\right.$?
$n-m=$ \qquad , because

Question 29

Given $G:\left\{\begin{array}{l}\dot{x}=A x+B u \\ y=C x\end{array}\right.$. Derive a state-space realization of $2 G+1$ whose dimension matches that of G.

Question 30

Given $G:\left\{\begin{array}{l}\dot{x}=A x+B u \\ y=C x+2 u\end{array}\right.$. Derive a state-space realization of $(G-1)^{-1}$ whose dimension matches that of G.

Question 31

Is the system $\dot{x}_{1}=x_{2}, \dot{x}_{2}=u$ stable?
yes / no, because \qquad

Question 32

Consider a second-order system of the form $\dot{x}(t)=A x(t)+B u(t)$ and assume that there is a control law attaining $x(5)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ from all $x(0)$. Is the system controllable?
yes / no, because

Question 33

Consider a second-order system of the form $\dot{x}(t)=A x(t)+B u(t)$ and assume that there is a control law attaining $x(5)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ from $x(0)=0$. Is the system controllable?
yes / no, because

Question 34

Is the system $\dot{x}(t)=\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right] x(t)+\left[\begin{array}{l}0 \\ 1\end{array}\right] u(t)$ controllable?
yes / no, because \qquad

Question 35

Let $X=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $Y=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Is the matrix $\int_{0}^{0.00001} e^{X t} Y^{\prime} e^{X^{\prime} t} d t$ singular (i.e. not invertible)?
singular / nonsingular, because \qquad

Question 36

What mode of $\left(\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is uncontrollable?
$\lambda=$ \qquad , because

Question 37

Is the realization with $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 1\end{array}\right]$ minimal ? yes / no, because \qquad

Question 38

Find a minimal realization for the system $\left\{\begin{array}{l}\dot{x}=\left[\begin{array}{ll}3 & 0 \\ 0 & 8\end{array}\right] x+\left[\begin{array}{l}0 \\ 1\end{array}\right] u \\ y=\left[\begin{array}{ll}0 & 1\end{array}\right] x\end{array}\right.$.

Question 39

Is the system $\dot{x}=\left[\begin{array}{cccc}-1 & 4.5 & 1 & 9 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & -0.5 & 4 \\ 0 & 0 & 0 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] u$ stabilizable?
yes / no, because

Question 40

Design the state-feedback gain assigning all closed-loop eigenvalues at -1 for the system

$$
\dot{x}(t)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u(t)
$$

$K=$ \qquad , because \qquad

Question 41

Can $\mathrm{T}_{\mathrm{yr}}(\mathrm{s})=1 /(s+1)^{3}$ be the closed-loop transfer function for a stabilizing state feedback for $\mathrm{P}(\mathrm{s})=(s+2) / s^{4}$? yes / no, because \qquad

Question 42

Can $\mathrm{T}_{\mathrm{yr}}(s)=1 /(s+2)^{4}$ be the closed-loop transfer function for a stabilizing state feedback for $\mathrm{P}(\mathrm{s})=(s+2) / s^{4}$? yes / no, because \qquad

Question 43

The standard Luenberger observer for the system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t)=C x(t)
\end{array}\right.
$$

is

$$
\dot{\hat{x}}(\mathrm{t})=\mathrm{A} \hat{\mathrm{x}}(\mathrm{t})+\mathrm{Bu}(\mathrm{t})+\mathrm{L}(\mathrm{y}(\mathrm{t})-\mathrm{C} \hat{\mathrm{x}}(\mathrm{t})), \quad \hat{\mathrm{x}}(0)=0 .
$$

It is known to render the estimation error $\epsilon(t) \doteq x(t)-\hat{x}(t)$ independent of the control signal $u(t)$ and the convergence of the error can be affected by the choice of the gain L, provided (C, A) is observable. Suggest an observer to the system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t), \\
y(t)=C x(t)+D u(t)
\end{array} \quad x(0)=x_{0},\right.
$$

with the same properties (estimation error is independent of $u(t)$ and its convergence can be affected by a design parameter). Prove that via presenting the dynamic equation for $\epsilon(t)$.

Question 44

Is $\bar{X}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ the stabilizing solution to the Riccati equation

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \bar{X}+\bar{X}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]-\bar{X}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \bar{X}=0 ?
$$

yes / no, because \qquad

Question 45

Is $\bar{X}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ the stabilizing solution to the Riccati equation

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \bar{X}+\bar{X}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]-\frac{1}{2} \bar{X}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \bar{X}=0 ?
$$

yes / no, because

Question 46

Is there a similarity transformation between the realizations

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 2 } (t) = [\begin{array} { l l }
{ 1 } & { 1 } \\
{ 0 } & { 2 }
\end{array}] x _ { 2 } (t) + [\begin{array} { l }
{ 0 } \\
{ 1 }
\end{array}] u (t) } \\
{ y (t) = [\begin{array} { l l }
{ 1 } & { 0 }
\end{array}] x _ { 2 } (t) }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\dot{x}_{1}(t)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] x_{1}(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) ? \\
y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x_{1}(t)
\end{array}\right.\right.
$$

If yes, find its transformation matrix T .
yes / no, because

Question 47

Is there a similarity transformation between the realizations

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 2 } (t) = [\begin{array} { l l }
{ 1 } & { 1 } \\
{ 0 } & { 1 }
\end{array}] x _ { 2 } (t) + [\begin{array} { l }
{ 0 } \\
{ 1 }
\end{array}] u (t) } \\
{ y (t) = [\begin{array} { l l }
{ 1 } & { 0 }
\end{array}] x _ { 2 } (t) }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\dot{x}_{1}(t)=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] x_{1}(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) ? \\
y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x_{1}(t)
\end{array}\right.\right.
$$

If yes, find its transformation matrix T .
yes / no, because

Question 48

The loop transfer function for a state feedback, $u=K x$, designed by $L Q R$ with $S=0$ is $L(s)=-K(s I-A)^{-1} B$. Can $L(s)=1 /(s+1)^{2}$ be such a transfer function? yes / no, because

Question 49

The loop transfer function for a state feedback, $u=K x$, designed by $L Q R$ with $S=0$ is $L(s)=-K(s I-A)^{-1} B$. Can $L(s)=(s-1) /(s+1)^{2}$ be such a transfer function?
yes / no, because \qquad

Figure 6: Root-locus plots

Question 50

Is a third-order state-space realization of $L(s)=P(s) C(s)$, where $P(s)=1 /\left(s^{2}+2 s+1\right)$ and $C(s)=(2 s+2) /(s+4)$ (a lead controller), minimal ?
yes / no, because \qquad

Question 51

Can the root locus in Fig. 6(a) belong to $1+\frac{1}{r} P(-s) Q P(s)=0$ under $r>0$ and $Q \geqslant 0$? yes / no, because \qquad

Question 52

Can the root locus in Fig. 6(b) belong to $1+\frac{1}{r} P(-s) Q P(s)=0$ under $r>0$ and $Q \geqslant 0$?
yes / no, because \qquad

Question 53

Consider the plant $\mathrm{P}(\mathrm{s})=1 /\left(s^{2}-a^{2}\right)$ for $\mathrm{a}<0$. Write its state-space realization and design the state feedback law $u(t)=K x(t)$ minimizing $\int_{0}^{\infty} u^{2}(t) d t$.

Question 54

Write a quadratic cost function, whose minimization for an LTI plant with a measured state guarantees that closed-loop poles are in $\{s \mid \operatorname{Re} s<-2\}$.

Question 55

The return-difference equality for the LQR problem is $1+\frac{1}{r} B^{\prime}\left(-j \omega I-A^{\prime}\right)^{-1} Q(j \omega I-A)^{-1} B=|1+L(j \omega)|^{2}$, where $L(s)=-K(s I-A)^{-1} B$ is the loop transfer function. Prove that the LQR controller guarantees a phase margin of at least 60°.

Part III

Sampled-data systems

Question 56

The figure below presents the spectrum of an analog signal $f(t)$. Draw the spectrum of its sampled version $\bar{f}[i]=f(i h)$ under the sampling period $h=\frac{\pi}{4}$ (assume that the axes of $F(\omega)$ and $\bar{F}(\theta)$ are compatible).

Question 57

The spectra of an analog signal $f(t)$ and its sampled version $\bar{f}[i]=f(i h)$ are presented below. What is the sampling period h ?

$\stackrel{\text { Sampling }}{\longleftarrow}$

Question 58

Frequency range of an adult human ear is $20 \div 20,000 \mathrm{~Hz}$. Choose the bandwidth of the ideal anti-aliasing filter to be placed in a microphone before converting a record to a digital form. Explain briefly.
$\omega_{\mathrm{b}}=$ \qquad , because \qquad

Figure 7: Spectrum of $f(t)$

Question 59

Fig. 7 depicts the spectrum of an analog signal $f(t)$. What is the maximal sampling period h for which $f(t)$ can be perfectly reconstructed from its sampling $\bar{f}[i]=f(i h)$? Draw the spectrum of $\bar{f}[i]$ for the chosen h.
$h_{\text {max }}=$ \qquad , because \qquad

Question 60

Can $\bar{C}(z)=\left(z^{2}+z+1\right) /\left(z^{2}+4 z+4\right)$ be the Tustin approximant of $C(s)=(s+1) /\left(s^{2}+3 s+1\right)$ for some sampling period? yes / no, because \qquad

Question 61

Can $\bar{C}(z)=\left(z^{2}+z+1\right) /(z-1)^{2}$ be the Tustin approximant of $C(s)=(s+1) / s^{2}$ for some sampling period ? yes / no, because \qquad

Question 62

Can $\bar{C}(z)=(z+1)^{4} /(3 z-1)^{4}$ be the Tustin approximant of $C(s)=(s+1)^{3} /(s+2)^{4}$ for some sampling period ? yes / no, because \qquad

Question 63

Can $\overline{\mathrm{P}}(z)=(z+1)^{4} /(3 z-1)^{4}$ be the discretization of $\mathrm{P}(s)=(s+2)^{3} /(s+1)^{4}$ for some sampling period ? yes / no, because

Question 64

Can $\overline{\mathrm{P}}(z)=(z+1)^{3} /(z-1)^{4}$ be the discretization of $\mathrm{P}(s)=(s+2)^{3} /(s+1)^{4}$ for some sampling period ? yes / no, because

Question 65

Under what conditions on a the system $x[t+1]=\frac{4}{3+4 a^{2}} x[t]+\pi^{8} u[t]$ is stable?
$|a| \in$ \qquad , because \qquad

Question 66

Is there a sampling period h for which the discrete system below is the discretization of the analog system below under $\bar{x}[k]=x(k h)$?

$$
\dot{x}(t)=\left[\begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \quad \longrightarrow \quad \bar{x}[i+1]=\left[\begin{array}{cc}
0.5 & 0.3 \\
0 & 0.25
\end{array}\right] \bar{x}[i]+\left[\begin{array}{c}
1.72 \\
0
\end{array}\right] \bar{u}[i]
$$

yes / no, because \qquad

Question 67

What sampling period h is pathological for a system with the transfer function $G(s)=s /\left(s^{2}-1\right)$?
$h=$ \qquad , because \qquad
\qquad

Formulae ${ }^{1}$

- Constants: $\mathrm{e}=2.7182818284590452354, \pi=3.1415926535897932385$
- Power series: $F(s)=F(0)+\frac{F^{\prime}(0)}{1!} s+\frac{F^{\prime \prime}(0)}{2!} s^{2}+\frac{F^{\prime \prime \prime}(0)}{3!} s^{3}+\cdots$
- Bode's sensitivity integral (provided the pole excess of $\mathrm{L}(\mathrm{s})$ is at least 2):

$$
\int_{-\infty}^{\infty} \ln |S(j \omega)|= \begin{cases}0 & \text { if } L(s) \text { is stable } \\ \pi \sum_{i} \operatorname{Re} p_{i} & \text { otherwise }\end{cases}
$$

- Ackermann's formula: $F=\left[\begin{array}{llll}0 & \cdots & 0 & 1\end{array}\right] M_{c}^{-1} \chi_{c l}(A)$.
- Continuous-time optimal LQR control law $u(t)=-R^{-1}\left(S^{\prime}+B^{\prime} \bar{X}\right) x(t)$, where $\bar{X}=\bar{X}^{\prime} \geqslant 0$ is the stabilizing solution to the ARE

$$
A^{\prime} \bar{X}+\bar{X} A+Q-(S+\bar{X} B) R^{-1}\left(S^{\prime}+B^{\prime} \bar{X}\right)=0, \quad \text { where } R>0 \text { and }\left[\begin{array}{cc}
Q & S \\
S^{\prime} & R
\end{array}\right] \geqslant 0
$$

- Discretization:

$$
\dot{x}(t)=A x(t)+B u(t) \rightarrow \bar{x}[i+1]=e^{A h} \bar{x}[i]+\int_{0}^{h} e^{A t} d t B \bar{u}[i]
$$

[^0]
[^0]: ${ }^{1}$ Don't pavlov on their use.

