הטכניון – מכון טכנולוגי לישראל, הפקולטה להנדסת מכונות

TECHNION—Israel Institute of Technology, Faculty of Mechanical Engineering

X

תורת הבקרה (035188)

דוגמאות בחינות סופיות

Tammuz 21, 5783

July 10, 2023

Part I Frequency-domain methods

Question 1

Suggest a first-order system, whose addition to the loop gain adds a phase lag of 170° at certain frequency.

G(s) = _____, because

Question 2

Fig 1(a) presents the Nichols chart of an open-loop transfer function L(s). What is the *tightest* estimate of the closed-loop bandwidth, which can be deduced from this plot?

 $\omega_b \in$ _____, because

Question 3

Fig 1(b) presents the Nichols chart of an open-loop transfer function L(s). What is the *tightest* estimate of the closed-loop bandwidth, which can be deduced from this plot?

 $\omega_b \in \qquad \qquad \text{, because}$

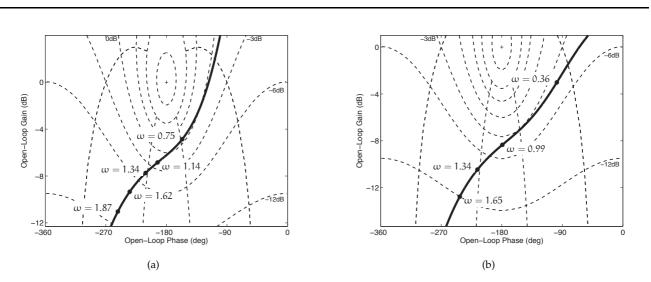


Figure 1: Nichols charts

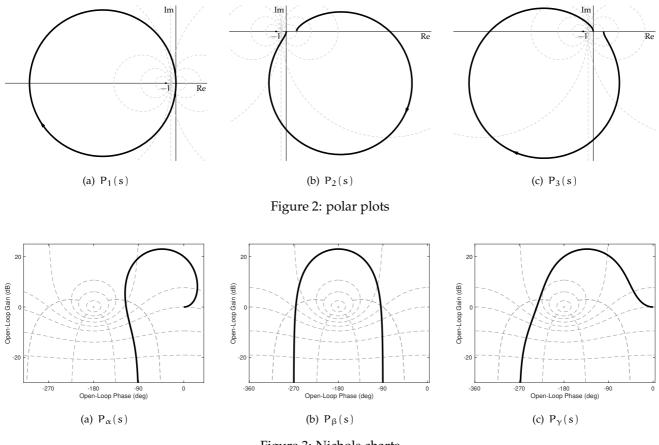
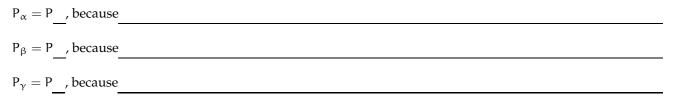


Figure 3: Nichols charts

Figs. 2 and 3 present polar plots and Nichols charts, respectively, of 3 stable systems. Find correspondences between these plots.



Question 5

For each one of the systems in Fig. 3, determine if there is output feedback u = -ky with $|k| \ge 1$, for which the closed-loop system is stable. If the answer is affirmative, then provide an example of such feedback law.

stabilizing $|\mathbf{k}| \ge 1$ for P_{α} does / doesn't exist, because

stabilizing $|k| \ge 1$ for P_{β} does / doesn't exist, because

stabilizing $|\mathbf{k}| \ge 1$ for P_{γ} does / doesn't exist, because

What is the magnitude of the frequency response of the 2-order Butterworth filter with the bandwidth $2 \frac{\text{rad}}{\text{sec}}$?

 $|F(j\omega)| =$

Question 7

Let $L(s) = \frac{b_1 s + 1}{s^2 + s + 1}$ for some $b_1 \ge 0$. For what b_1 we have $\int_0^\infty \ln|S(j\omega)|d\omega = 0$, where S(s) = 1/(1 + L(s))? $b_1 = 1$, because

Question 8

Given $P(s) = s(s-1)/(s^3 + s + 1)$, what is the minimum-degree closed-loop characteristic polynomial $\chi_{cl}(s)$ for which all closed-loop poles are in s = -1 for the pole-placement approach based on the Sylvester matrix?

$\chi_{cl}(s) =$, because	

Question 9

Given $P(s) = s(s-1)/(s^3 + s + 1)$, what is the minimum-degree closed-loop characteristic polynomial $\chi_{cl}(s)$ for which all closed-loop poles are in s = -1 and the controller includes an integral action for the pole-placement approach based on the Sylvester matrix?

 $\chi_{cl}(s) =$ _____, because

Question 10

Is the system $P(s) = (s - 10)^3 / (s + 1)^5$ strongly stabilizable?

yes / no, because

Question 11

 $Can R(s) = \frac{-s^5 + s^4 + s^3 + s^2 - s + 1}{s^5 + s^4 - s^3 + s^2 + s + 1} \text{ be a Padé approximant of } e^{-sh} \text{ for some } h > 0?$

yes / no, because

Question 12

Can R(s) = $\frac{-s^3 + 6s^2 - 6s + 1}{s^3 + 3s^2 + 3s + 1}$ be a Padé approximant of e^{-sh} for some h > 0?

yes / no, because_____

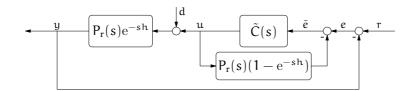


Figure 4: Dead-time system

What is the complementary sensitivity function (from r to y) for the system in Fig. 4, where $P_r(s) = \frac{s+8}{s(s+4)}$, $\tilde{C}(s) = \frac{s+4}{s+8}$, and h = 0.1?

T(s) = -----

Question 14

Is the system in Fig. 4 internally stable under $P_r(s) = \frac{(s+3)^2+4}{(s-1)(s+3)}$, $\tilde{C}(s) = 10$, and h = 0.2?

yes / no, because

Question 15

Is the system in Fig. 4 internally stable under $P_r(s)=\frac{7}{s(s+3)^2},$ $\tilde{C}(s)=$ 10, and $h=0.2\,?$

yes / no, because

Question 16

Which one of the transfer functions below does not correspond to an FIR system:

$$G_1(s) = \frac{1 - e^{-2\pi s}}{s^2}, \quad G_2(s) = \frac{1 - e^{-2\pi s}}{s^2 + 1}, \qquad \text{and} \quad G_3(s) = \frac{1 - 2\pi s - e^{-2\pi s}}{s^2}?$$

G_(s), because

Question 17

For what α_1 and α_2 the impulse response of $G(s) = \frac{1 + \alpha_1 e^{-2s} + \alpha_2 e^{-3s}}{2s^2}$ is $g(t) = \underbrace{1 + \alpha_1 e^{-2s} + \alpha_2 e^{-3s}}_{2s^2}$?

 $\alpha_1 =$ and $\alpha_2 =$, because

Given P(s) = 1/s, what is the control signal u(t), which causes the output to move from y(0) = 0 to $y(t_f) = 10$ in minimum time under $|u(t)| \le 1$?

u(t) =

, because

Question 19

Given $P(s) = (s - 1)/(s^2 + 3s + 2)$. Is there a stabilizing controller such that the resulting complementary sensitivity function is $T(s) = 4/((s + 30)(s^2 + 2\sqrt{2}s + 4))$? If there is, what is it?

yes / no, because

Question 20

Suppose that the open-loop transfer function L(s) is stable and satisfis the relation

$$\frac{L(j\omega)}{L_0(j\omega)} - 1 \bigg| \leqslant \frac{|\omega|}{3}, \quad \forall \omega$$

for a known $L_0(s)$. Under what conditions the closed-loop system is stable for all such L(s)? (no need to explain)

Question 21

Given a plant P(s) belonging to the uncertainty set $\mathfrak{P}_{\omega} = \left\{ P(j\omega) : \left| \frac{P(j\omega)}{P_0(j\omega)} - 1 \right| \leq \ell_P(\omega) \right\}$ for the nominal plant $P_0(s) = 1/(s(s+1)^2)$ and uncertainty radius $\ell_P(\omega) \geq 0$. Is there a stabilizing controller C(s), for which the complementary sensitivity function T(s) = P(s)C(s)/(1 + P(s)C(s)) belongs to the uncertainty set

$$\mathfrak{T}_{\omega} = \left\{ \mathsf{T}(j\omega) : \left| \frac{\mathsf{T}(j\omega)}{\mathsf{T}_0(j\omega)} - 1 \right| \leqslant \ell_{\mathsf{T}}(\omega) \right\}$$

for $T_0(s) = P_0(s)C(s)/(1 + P_0(s)C(s))$ and $\ell_T(\omega) \leqslant \ell_P(\omega)$ for all ω ?

yes / no, because

Question 22

Fig. 5 presents a control system with the controller $C(s) = \frac{1}{s-1}$ and an anti-windup mechanism. What is the admissible range of the gain k_{awu} ?

 $k_{awu} \in \qquad \qquad \text{, because}$

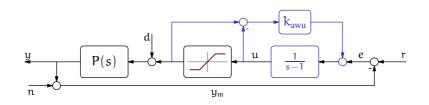


Figure 5: Control system with anti-windup

Part II State space

Question 23

Is $(A - I)^4 = 0$ for $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 1 \end{bmatrix}$? yes / no, because

Question 24

Could it be true that $\exp\left(\begin{bmatrix} -1 & 1\\ 2 & 2 \end{bmatrix} t\right) = \begin{bmatrix} e^{-t} & e^{2t} - e^{-t}\\ 0 & e^{2t} \end{bmatrix}$? yes / no, because

Question 25

Calculate $\Phi(t) = \exp\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} t\right)$. No need to explain.

$$\Phi(t) = \Bigg[$$

Question 26

Is the matrix $M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} > 0$? yes / no, because

Question 27

Is the matrix $M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} > 0?$ yes / no, because

Question 28

What is the pole excess of $G(s)$, whose state-space realization is $G : \mathcal{A}$	$\dot{\mathbf{x}}(t) =$	4	5	6	$\mathbf{x}(t) +$	1	u(t)	
						0]?	
	y(t) =	[1	0	0]	$\mathbf{x}(\mathbf{t})$			
	l							

(

[1 2 3] [0]

n - m =____, because

Question 29

Given G : $\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$. Derive a state-space realization of 2G + 1 whose dimension matches that of G.

Question 30

Given $G : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + 2u \end{cases}$. Derive a state-space realization of $(G - 1)^{-1}$ whose dimension matches that of G.

Is the system $\dot{x}_1 = x_2$, $\dot{x}_2 = u$ stable?

yes / no, because

Question 32

Consider a second-order system of the form $\dot{x}(t) = Ax(t) + Bu(t)$ and assume that there is a control law attaining $x(5) = \begin{bmatrix} 1\\1 \end{bmatrix}$ from all x(0). Is the system controllable?

yes / no, because

Question 33

Consider a second-order system of the form $\dot{x}(t) = Ax(t) + Bu(t)$ and assume that there is a control law attaining $x(5) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ from x(0) = 0. Is the system controllable?

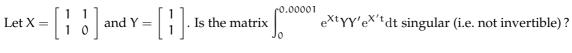
yes / no, because

Question 34

Is the system $\dot{x}(t) = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$ controllable?

yes / no, because_____

Question 35



singular / nonsingular, because

Question 36

What mode of $\left(\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$ is uncontrollable?

 $\lambda =$, because

Question 37

Is the realization with $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$ minimal?

yes / no, because

Question 38

Find a minimal realization for the system $\begin{cases} \dot{x} = \begin{bmatrix} 3 & 0 \\ 0 & 8 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\ y = \begin{bmatrix} 0 & 1 \end{bmatrix} x.$

Is the system $\dot{x} = \begin{bmatrix} -1 & 4.5 & 1 & 9 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & -0.5 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} u$ stabilizable?

yes / no, because

Ouestion 40

Design the state-feedback gain assigning all closed-loop eigenvalues at -1 for the system

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

K = , because

Question 41

Can $T_{ur}(s) = 1/(s+1)^3$ be the closed-loop transfer function for a stabilizing state feedback for $P(s) = (s+2)/s^4$?

yes / no, because

Question 42

Can $T_{ur}(s) = 1/(s+2)^4$ be the closed-loop transfer function for a stabilizing state feedback for $P(s) = (s+2)/s^4$?

yes / no, because

Ouestion 43

The standard Luenberger observer for the system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = x_0, \\ y(t) = Cx(t) \end{cases}$$

is

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y(t) - C\hat{x}(t)), \quad \hat{x}(0) = 0.$$

It is known to render the estimation error $\epsilon(t) \doteq x(t) - \hat{x}(t)$ independent of the control signal u(t) and the convergence of the error can be affected by the choice of the gain L, provided (C, A) is observable. Suggest an observer to the system

$$\begin{cases} \dot{x}(t) = Ax(t), & x(0) = x_0, \\ y(t) = Cx(t) + Du(t) \end{cases}$$

with the same properties (estimation error is independent of u(t) and its convergence can be affected by a design parameter). Prove that via presenting the dynamic equation for $\epsilon(t)$.

Is $\bar{X} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ the stabilizing solution to the Riccati equation

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \bar{X} + \bar{X} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \bar{X} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \bar{X} = 0?$$

yes / no, because

Question 45

Is $\bar{X} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ the stabilizing solution to the Riccati equation

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \bar{X} + \bar{X} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \frac{1}{2} \bar{X} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \bar{X} = 0?$$

yes / no, because_____

Question 46

Is there a similarity transformation between the realizations

$$\begin{cases} \dot{x}_{2}(t) = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} x_{2}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x_{2}(t) \end{cases} \text{ and } \begin{cases} \dot{x}_{1}(t) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_{1}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x_{1}(t) \end{cases}$$

If yes, find its transformation matrix T.

yes / no, because

Question 47

Is there a similarity transformation between the realizations

$$\begin{cases} \dot{x}_2(t) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_2(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) & \text{and} \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x_2(t) & y(t) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} x_1(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) & y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x_1(t) \end{cases}$$

If yes, find its transformation matrix T.

yes / no, because_____

Question 48

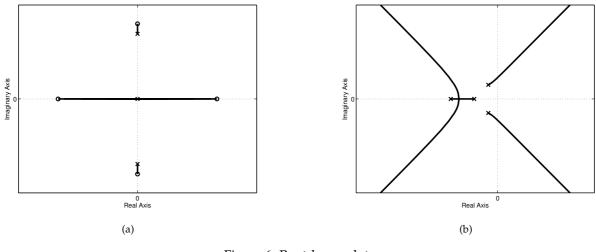
The loop transfer function for a state feedback, u = Kx, designed by LQR with S = 0 is $L(s) = -K(sI - A)^{-1}B$. Can $L(s) = 1/(s + 1)^2$ be such a transfer function?

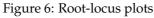
yes / no, because

Question 49

The loop transfer function for a state feedback, u = Kx, designed by LQR with S = 0 is $L(s) = -K(sI - A)^{-1}B$. Can $L(s) = (s - 1)/(s + 1)^2$ be such a transfer function ?

yes / no, because





Is a third-order state-space realization of L(s) = P(s)C(s), where $P(s) = 1/(s^2+2s+1)$ and C(s) = (2s+2)/(s+4) (a lead controller), minimal?

yes / no, because

Question 51

Can the root locus in Fig. 6(a) belong to $1 + \frac{1}{r}P(-s)QP(s) = 0$ under r > 0 and $Q \ge 0$?

yes / no, because

Question 52

Can the root locus in Fig. 6(b) belong to $1 + \frac{1}{r}P(-s)QP(s) = 0$ under r > 0 and $Q \ge 0$?

yes / no, because

Question 53

Consider the plant $P(s) = 1/(s^2 - a^2)$ for a < 0. Write its state-space realization and design the state feedback law u(t) = Kx(t) minimizing $\int_0^\infty u^2(t) dt$.

Question 54

Write a quadratic cost function, whose minimization for an LTI plant with a measured state guarantees that closed-loop poles are in $\{s \mid \operatorname{Re} s < -2\}$.

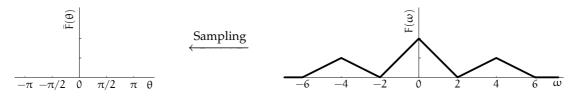
Question 55

The return-difference equality for the LQR problem is $1 + \frac{1}{r}B'(-j\omega I - A')^{-1}Q(j\omega I - A)^{-1}B = |1 + L(j\omega)|^2$, where $L(s) = -K(sI - A)^{-1}B$ is the loop transfer function. Prove that the LQR controller guarantees a phase margin of at least 60°.

Part III Sampled-data systems

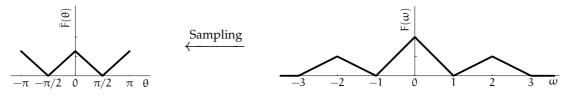
Question 56

The figure below presents the spectrum of an analog signal f(t). Draw the spectrum of its sampled version $\bar{f}[i] = f(ih)$ under the sampling period $h = \frac{\pi}{4}$ (assume that the axes of $F(\omega)$ and $\bar{F}(\theta)$ are compatible).



Question 57

The spectra of an analog signal f(t) and its sampled version $\bar{f}[i] = f(ih)$ are presented below. What is the sampling period h?



Question 58

Frequency range of an adult human ear is $20 \div 20,000$ Hz. Choose the bandwidth of the ideal anti-aliasing filter to be placed in a microphone before converting a record to a digital form. Explain briefly.

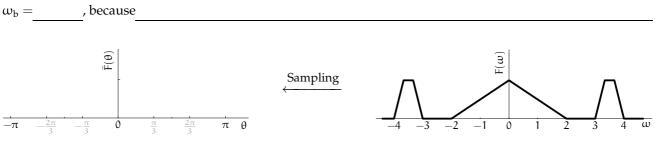


Figure 7: Spectrum of f(t)

Question 59

Fig. 7 depicts the spectrum of an analog signal f(t). What is the maximal sampling period h for which f(t) can be perfectly reconstructed from its sampling $\bar{f}[i] = f(ih)$? Draw the spectrum of $\bar{f}[i]$ for the chosen h.

 $h_{max} =$, because

Question 60

Can $\overline{C}(z) = (z^2 + z + 1)/(z^2 + 4z + 4)$ be the Tustin approximant of $C(s) = (s+1)/(s^2 + 3s + 1)$ for some sampling period?

yes / no, because

Can $\overline{C}(z) = (z^2 + z + 1)/(z - 1)^2$ be the Tustin approximant of $C(s) = (s + 1)/s^2$ for some sampling period ? yes / no, because

Question 62

Can $\overline{C}(z) = (z+1)^4/(3z-1)^4$ be the Tustin approximant of $C(s) = (s+1)^3/(s+2)^4$ for some sampling period ?

yes / no, because

Question 63

Can $\overline{P}(z) = (z+1)^4/(3z-1)^4$ be the discretization of $P(s) = (s+2)^3/(s+1)^4$ for some sampling period?

yes / no, because_____

Question 64

Can $\overline{P}(z) = (z+1)^3/(z-1)^4$ be the discretization of $P(s) = (s+2)^3/(s+1)^4$ for some sampling period?

yes / no, because_____

Question 65

Under what conditions on a the system $x[t+1] = \frac{4}{3+4\alpha^2}x[t] + \pi^8 u[t]$ is stable?

 $|\mathfrak{a}|\in$, because

Question 66

Is there a sampling period h for which the discrete system below is the discretization of the analog system below under $\bar{x}[k] = x(kh)$?

$$\dot{x}(t) = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) \longrightarrow \bar{x}[i+1] = \begin{bmatrix} 0.5 & 0.3 \\ 0 & 0.25 \end{bmatrix} \bar{x}[i] + \begin{bmatrix} 1.72 \\ 0 \end{bmatrix} \bar{u}[i]$$

yes / no, because_____

Question 67

What sampling period h is pathological for a system with the transfer function $G(s) = s/(s^2 - 1)$?

h = , because_____

Formulae¹

- Constants: e = 2.7182818284590452354, $\pi = 3.1415926535897932385$
- Power series: $F(s) = F(0) + \frac{F'(0)}{1!}s + \frac{F''(0)}{2!}s^2 + \frac{F'''(0)}{3!}s^3 + \cdots$
- Bode's sensitivity integral (provided the pole excess of L(s) is at least 2):

$$\int_{-\infty}^{\infty} \ln|S(j\omega)| = \begin{cases} 0 & \text{if } L(s) \text{ is stable} \\ \pi \sum_{i} \operatorname{Re} p_{i} & \text{otherwise} \end{cases}$$

- Ackermann's formula: $F = \left[\begin{array}{ccc} 0 & \cdots & 0 & 1 \end{array} \right] M_c^{-1} \chi_{cl}(A).$
- Continuous-time optimal LQR control law $u(t) = -R^{-1}(S' + B'\bar{X})x(t)$, where $\bar{X} = \bar{X}' \ge 0$ is the stabilizing solution to the ARE

$$A'\bar{X} + \bar{X}A + Q - (S + \bar{X}B)R^{-1}(S' + B'\bar{X}) = 0, \text{ where } R > 0 \text{ and } \begin{bmatrix} Q & S \\ S' & R \end{bmatrix} \ge 0$$

• Discretization:

$$\dot{x}(t) = Ax(t) + Bu(t) \quad \rightarrow \quad \bar{x}[i+1] = e^{Ah}\bar{x}[i] + \int_0^h e^{At} \mathrm{d}t B \,\bar{u}[i]$$

¹Don't pavlov on their use.