Control Theory (035188)
lecture no. 13

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT

Outline

Sampled-data controllers

Analog redesign: Part Il

Discrete-time design

Discretized plant and its properties

Classical methods for discrete systems (mostly stability)

!utllne

Sampled-data controllers

Sampled-data controllers

The controller

AYaYal S pp— il A W\/
B e R T

We now know that in the frequency domain

Sidi causes aliasing by folding ultra-wy frequencies of Y (jw) to [—wy, wy]
of Y(el®M)

C acts as a standard LTI filter, U(el®h) = C(el®h) Y (el®h)

Hzon clones [—wy, wy] frequency interval of U(ej“’h) to all R and filters the
result by the low-pass Fy(jw) = (1 — e ") /(jo)

In other words,

1— e—ja)h

(i) = ===

C(eM) Y Y (j(w + 2ni))

ieZ

Sampled-data controllers
Aliasing: example

Consider the analog controller

0 2 wy =27 w

— ()
— |C(jo)]

Sampled-data controllers
Aliasing: example (contd)

If aliased parts remain qualitatively unchanged, then aliasing is harmless

Sampled-data controllers

Aliasing: example (contd)

If aliased parts remain qualitatively unchanged, then aliasing is harmless

(red dotted lines correspond to the spectrum of Cy).

Sampled-data controllers

Once high-frequency components of y alias as low-frequency ones and blend
with low-frequency components of y,

— nothing can be done via a “better” processing by C(z).

Sampled-data controllers

Once high-frequency components of y alias as low-frequency ones and blend
with low-frequency components of y,

— nothing can be done via a “better” processing by C(z).

The only way to cope with this phenomenon is to
— filter out those frequencies in continuous time, before sampling

(kill them while they're young). Low-pass filters doing that are known as
— anti-aliasing filters.

Sampled-data controllers

Anti-aliasing filtering: non-control examples

w/o anti-aliasing filter | with anti-aliasing filter

minnn mInnn

where anti-aliasing filters used are

— noncausal low-pass filters with the bandwidth wy.

Ideal choice, performance-wise, is
— the ideal low-pass filter with the bandwidth wp, = wy,

but it's hard to implement.

Sampled-data controllers

Anti-aliasing filters in feedback loops

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ S e

Additional considerations:

— must be causal,
|Fa(jo)| < 1 for all @ > wy,
— avoid adding a substantial phase lag around the crossover.

Sampled-data controllers

Anti-aliasing filters in feedback loops

Additional considerations:
— must be causal,
— |FR(jo)| < 1 for all v > wy,

— avoid adding a substantial phase lag around the crossover.

We already know (Lecture 1) that in finite-dimensional low-pass filters
— the phase lags before the magnitude starts to decay.

Hence,
— the bandwidth wy of F; should be well below wy

and, as a result

— the choice of the Nyquist frequency should be conservative

(conventional wisdom has it that wy > 10 =+ 30 wc, where w. is the analog crossover)

Sampled-data controllers
Aliasing: example (contd)

Let)
Fals) b

Wy
=N _-04
Wp 5 Y4

- 52 —i—\@a)bs—i-wg’
(second-order Butterworth with |Fa(jw)| = 1/4/1 + (@/wp)*). In this case

Sampled-data controllers

Discretizing C: general bilinear transformation

Given y > 0, consider the mapping (Tustin corresponds to y = 2/h)

z—1 y+s
< Z —
z+1 y—s

s—=y
between s and z complex planes. Every s = ¢ + jw is mapped to

: 2 2
L)/~|—(0—|—J.a)) gt = ()/-1-(7)24-6()2'
y — (0 +jo) (y—o)y+o
Hence,)
2 Yo
B el A
2 (y —0)?+w?
and we end up with the relations

— |z| <1 <= 0 =Res<0
— |z|>1 <= 0 =Res>0

— |z|=1 <= 0 =Res=0

Sampled-data controllers

Discretizing C: general bilinear transformation (contd)

Ims z-1
SV

Imz
Res Rez
+
z— ;7;
Thus,

— any “stable” s is mapped to a “stable” z

— any ‘“unstable” s is mapped to a “unstable” z

— any “borderline” s is mapped to a “borderline” z
Moreover,

— any CT frequency @ is mapped to the DT frequency 6 = 2 arctan(w/y)

(i.e. bilinear transformations squeeze the whole jR to T, with no folding effects)
— the lowest w = 0 is mapped to the lowest § =0
— the highest w = 00 is mapped to the highest 6 = £x

Sampled-data controllers

Discretizing C: more about Tustin

C(z) = C(s)|s_22-1.

h z+1

then

— C(z) is stable iff C(s) is stable,

— C(z) is unstable iff C(s) is unstable,

— the number of integrators in C(z) equals that in C(s),

— C(z) is bi-proper, unless C(s) has either poles or zeros at s = 2/h

— C(z) has a zero at z = —1 of multiplicity m iff C(s) is strictly proper
and its pole excess is m,

Sampled-data controllers
Discretizing C: Tustin with pre-warping

Ims
0 = 2arctan(w/y)

niy

Imz
Res Rez
= ytan(6/2)

The nonlinear warping of the frequency mapping is not ideal. We would be
happier with € = wh in low frequencies (if folding effects are insignificant).
This happens only at @ = 0 and the frequency wnowarp € (0. wy), at which

Wnowarp

w h 2
2 arctan = Wnowarph <= ¥ = Wnowarp COt WP ¢ <O. 7>.

Y 2 h
The bilinear transformation with y as above for a given wnowarp € (0, wy) is

known! as Tustin with pre-vvarping_. As wnowarp — 0, the ordinary Tustin for
¥ = 2/h is recovered, for which dC(el?)/df|g_o = dC(w)/dw]|w—o as well.

IMATLAB: c2d(C,h,c2d0ptions(’Method’, ’tustin’, ’PrewarpFrequency’,w0)).

Sampled-data controllers

Effects of H oy

We know that
— Himp clones U(ej‘“h) in [—on + 2wyi, oy + 2wyi] for each i € Z

— Fg is a low-pass filter, which quite effectively filters out those clones

(especially because normally |C(e!®")| — 0 as w — wn)

Sampled-data controllers

Effects of H oy

We know that
— Himp clones U(ej‘“h) in [—on + 2wyi, oy + 2wyi] for each i € Z

— Fg is a low-pass filter, which quite effectively filters out those clones

(especially because normally |C(e!®")| — 0 as w — wn)

The low-pass Fy introduces a phase lag, linear in for 0 < o < wy:

. 2/;:\
F¢ (Jw) —wh/2 _

. wh
= SINC — ¢ 0 wy 2wy 3wy 1%
h 2

—n/2

which is inevitable.

!utllne

Analog redesign: Part Il

Analog redesign: Part Il

The redesign problem

n

Starting point:

— “good” analog controller C (designed by whatever method)
Goal:

— find C such that HCS ~ C.

Analog redesign: Part Il

The redesign problem: a step back

Now we know that
— an anti-aliasing filter F, must be used, i.e. we shall assume § = Siq/F;
— H = H,on contains its own low-pass filter, Fy(s) = (1 —e~*)/s
both of which add phase lag. It thus makes sense to

— take those low-pass filters into account in the design of C.

Analog redesign: Part Il

The redesign problem: a step back

Now we know that
— an anti-aliasing filter F, must be used, i.e. we shall assume § = Siq/F;
— H = H,on contains its own low-pass filter, Fy(s) = (1 —e~*)/s
both of which add phase lag. It thus makes sense to

— take those low-pass filters into account in the design of C.

If wy % 10w, a good practice is to
— design C for the plant F, PFy,

where F, and Fy depend on the intended sampling period h (which, in turn,
should be chosen small enough, perhaps with wy > 10w.).

Analog redesign: Part Il

Accounting for Fy

The transfer function
1— e—sh
Fop(s) = ——
s(s) .
is irrational. This is not a problem in loop shaping, but might be in analytic
design methods (like state-space based). As such, it's often approximated:

F¢(S) ~ e—sh/2

approximates phase well

(classical rule of thumb: sampled-data systems with h & delay systems with e’Sh/2)

F¢(S) - 12
h ~ h2s2 + 6hs + 12

(more accurate than the pure delay and better suited to analytic design methods)

is its [1,2]-Padé approximant

Analog redesign: Part Il
Discretizing C via Tustin with pre-warping

Rule of thumb:

— choose Wnowarp slightly below @ of the analog design.

Perhaps the only exception is the integral action, or a Pl module, for which
the regular Tustin may be preferable to keep its velocity gain unchanged. A
possible sequence in this case:

1. split the analog C = Cp|Cem, where Cem contains no integral actions,
2. approximate Cp by the standard Tustin, to end up with Cpy,

3. approximate Crem by a Tustin with pre-warping, to end up with Crem,
4. construct C = 6p|(__}em.

!utllne

Discrete-time design

Discrete-time design

Three approaches to sampled-data control design

digital design

2. Discrete-time design

(discretize the problem first, then do your favorite discrete design)

Discrete-time design

What does C see?

Input:
é=S8r—8n—SPd - SPHu,

where & is its output (cf. the analog e = r — n — Pd — Pu).

Discrete-time design

What does C see?

Input:
é=S8r—8n—SPd - SPHu,
where & is its output (cf. the analog e = r — n — Pd — Pu). Observations:
— the discrete P, := SPH : il — ¥ is the plant from the viewpoint of C,
— sampled reference signal 7 := Sr replaces r,
— sampled noise signal i1 := Sn replaces n,
— SPd doesn't fit, unless we assume that d ~ H.d for some d

Discrete-time design

What does C see?

Input:
é=S8r—8n—SPd - SPHu,
where & is its output (cf. the analog e = r — n — Pd — Pu). Observations:
— the discrete P, := SPH : il — ¥ is the plant from the viewpoint of C,
— sampled reference signal 7 := Sr replaces r,
— sampled noise signal i1 := Sn replaces n,
— SPd doesn't fit, unless we assume that d ~ H.d for some d

In other words,
ExF—ii—SPHd—SPHi=F—i— Pyd— Ppi

(if d can be viewed as piecewise constant, like u, if H = Hzon).

Discrete-time design

What does C see? (contd)

d:
S — B, |- g). Eoal
ﬁ’é """""")-/m

meaning that C lives in a pure discrete (stroboscopic) world and this world

approximates the reality well if
— disturbance d may be approximated by a piecewise-constant Hond

— sampler § = Siq/F; and F, filters out ultra-Nyquist frequencies of n

!utllne

Discretized plant and its properties

Discretization

Discretization

Qur task is to find .

'Bh = SPHz0n = Sidi FaPHzon
for given LTI P and F,. Let

p. . x(t) = Ax(t) + Bu(t), x(0)=0
T () = (1)

(Pa(s) is always strictly proper, for so is F,(s)). Because
— having Hzou at the input implies that v = Hzon 0 for some discrete 4,
— having Sjg at the output implies that only y[i] = y(ih) is of interest,
finding Py is
— equivalent to finding the mapping o — .

Discretization

Discretization (contd)
Define x[i] := x(ih). For a given X[i],
(i+1)h
x[i + 1] = R[] + / Alhth=5) By (s)ds
ih
Because u(t) = ali] for all t € (ih, (i + 1)h], we have that
(i+1)h h
x[i + 1] = R[] + / Alth=s)qsBili] = eAhx[i] + / e™*dsBili]
ih 0
Because y[i] = y(ih) = CX]i], the mapping & — y satisfies the relation
5 %[t + 1] = Ax[t] + Ba[t], x[0]=0
h _ -
ylt] = Cx(t]
h

where A := M and B := / e”dsB.
0

Discretization

Discretization (contd)

The dynamics

_ [x[t+1] = Ax[t] + Ba[t], x[0] =0
P : _ _
{ y[t] = Cx[t]

is a standard LTI discrete system in state space. lts transfer function?,
Pw(z) = C(zl — A)7'B

is always strictly proper, for Pj(c0) = 0.

2MATLAB: Ph=c2d(P,h) or [Ad,Bd]=c2d(4A,B,h).

Discretization

Discretization: example 1

b
Pa(s) - s+ a

then A= —a, B=b, and C =1, so that

— _ h _ a—ah
A—=e? and B = / e %dsh = 1% b
0

(with well defined lim,_,o B = hb). As a result,

_ _ -1 (- e ?Mb/a
Pu(z) = C(zl —A)""B = e
It has

—ah and

— one pole, at e
— no zeros,

similarly to the continuous-time P,(s).

Discretization

Discretization: example 2

1 1 1
P = = - — —
a(s) s(s+1) s s+1
then by the linearity of the discretization procedure

- h l—e " (h+eh—1z+1—-(1+h)eh
Pn(z) = — - ——— = — —F
z—1 =z-—e (z—1)(z—e"h)

This transfer function
— has two poles, at €% =1 and e~ " and
— one zero, at —(1 — (1 + h)e™")/(h+e " —1)

While poles are still exponents of those of P,(s), the zero is an artefact.

Discretization

Discretization: example 3

Py(s) 2 1 2 n 1
s) =m—————— —m — — ——
@ s(s+1)(s+2) s s+1 s+2

then by the linearity of the discretization procedure

- h 2(1—eh) 12

P = —
h(z) z-1 z-eh 'z e
_ 2h—-3+ 4e=h — =2k (z—zn1)(z — znp)
N 2 (z=1)(z—eh)(z—e2h)
where 2.2755 h
[Zh,l } East!
Zh,2 - //’
—2-3

Poles follow the already familiar pattern, but now we have

— two zeros, one of which is nonminimum-phase for h < 2.2755

Discretization

Poles and zeros of Py(z)

Poles of Py(z) are simple. If P,(s) has a pole at s = p;, then

— Py(z) hasa poleat z=ePi" |ePf| <1 (=1) «—= Rep; <0(=0)

Discretization

Poles and zeros of Py(z)

Poles of Py(z) are simple. If P,(s) has a pole at s = p;, then

— Pp(z) hasa pole at z=ePi" [ePi"| <1 (=1) <= Rep; <0(=0)

Zeros of Pp(z) are a mess. We only know that

— the number of finite zeros of Py(z) is n — 1 for almost all h > 0

Discretization

Poles and zeros of Py(z)

Poles of Py(z) are simple. If P,(s) has a pole at s = p;, then
— Pp(z) has a pole at z = ePif

Zeros of Pp(z) are a mess. We only know that

— the number of finite zeros of Py(z) is n — 1 for almost all h > 0
— if Py(s) has m finite zeros at s =z, thenas h | 0
— m zeros of Py(z) approach e#”,

— the remaining n — m — 1 zeros, aka sampling zeros, approach the roots of
Euler—Frobenius polynomials Q,_,—1(z), independent of P,(s):

—m Qn—m—l(z)
2 z+1

3 22+4z+1
4
5

n

Z4+11224+11z+1
z* + 2623 + 6622 +26z+ 1

As Qk(z) = Zka(l/Z) and Qk(O) 75 0, Qk(Zo) =0 <— Qk(l/Z()) =0.
Therefore, Qx(z) has root(s) outside the closed unit disk for all k > 2.

Discretization

Discretization: example 4

If
Pis) = @ _ Jon/2 jon/2
2 s+ w2 s+jon Ss— jon
then
Pu(2) 1/1—ei@nh 1 gionh (1 —cos(wnh))(z +1)
z)== : : = :
h 2\ z—edonh 7z _ giwnh z%2 — 2cos(wph)z + 1
If

— cos(wnh) # %1, then Py(z) has two poles at eti®nf and a zero at —1,
— cos(wnh) = 1, then Py(z) =0,
— cos(wnh) = —1, then Py(z) =2/(z + 1).

Thus, even the order of P.(s) is not always preserved under discretization.

Discretization

When order drops?

Consider

“ h edh _ 1
b; _ _ _
where 3; := e®" and b; :=
1 Z — a; aj
I

b;.
Two pathological cases, where the order of Pp,(z) is smaller than n:
1. a; = aj, although a; # aj, which is equivalent to
e?h = 3" «— a;h = ajh + j2rk for some k € Z \ {0}

or aj — aj = J2wyk.

Discretization

When order drops?

Consider

h edh _ 1
b; _ _ _

where 3; := e®" and b; :=
Z — aj aj

b;.
i=1

Two pathological cases, where the order of Pp,(z) is smaller than n:

1. a; = aj, although a; # aj, which is equivalent to
e?h = 3" «— a;h = ajh + j2rk for some k € Z \ {0}

or aj — aj = J2wyk.
2. b; =0, although b; # 0, which is equivalent to

(" =1) A (aj #0) < ajh=j2nk for some k € Z \ {0}

or a; = j2wyk. But if the latter condition holds, then 3; # i such that
aj = —j2wyk. Hence, a; — aj = j2wy(2k) and this case is covered by 1.

Discretization

Pathological sampling

We say that sampling is pathological with respect to P, if there are at least
2 poles of P,(s), say p1 and py, such that

.2r)
Pl_P2:JTk:J20)Nk = < e
p2

for some k € Z \ {0}.

Discretization

Pathological sampling

We say that sampling is pathological with respect to P, if there are at least
2 poles of P,(s), say p1 and py, such that

.2r)
Pl_PZZJTk:JQO)Nk = < e
p2

for some k € Z \ {0}. If sampling is pathological, then
— some parts of dynamics of P are not visible by the discrete controller.

But these parts don't disappear, they are just in the blind spot of C, which
cannot counteract anything caused by them (e.g. instability or oscillations).

Discretization

Pathological sampling

We say that sampling is pathological with respect to P, if there are at least
2 poles of P,(s), say p1 and py, such that

.2r)
Pl_P2:JTk:J20)Nk = < e
p2

for some k € Z \ {0}. If sampling is pathological, then
— some parts of dynamics of P are not visible by the discrete controller.

But these parts don't disappear, they are just in the blind spot of C, which
cannot counteract anything caused by them (e.g. instability or oscillations).

As the minimum distance between poles for h being pathological is 2wy,

— “sufficiently fast” sampling is never pathological.

Discretization

Fundamental stability result

If sampling is pathological with respect to no unstable poles of Ps(s), then
C stabilizes

Classical discrete methods

Outline

Classical methods for discrete systems (mostly stability)

Classical discrete methods

Discrete unity feedback

We may now drop all signs of discretization and consider a discrete system,

for a given

bmz™ + bmflzm_l + -+ b1z + by B NP(Z)
Z”—{—an,12”71+--~+312—|—ao - DP(Z)

P(z) =

with b, # 0 and m < n (typically, m=n—1).

Classical discrete methods

Internal stability

The closed-loop system is said to be

— internally stable if all Gang of Four transfer functions

[i((zz)) 7;j((zz))] :1+P(1)C()[C(1)] [1 P(2)]
are stable,

i.e. the corresponding transfer function is proper and has no poles outside
the open unit disk D.

Classical discrete methods

Internal stability

The closed-loop system is said to be

— internally stable if all Gang of Four transfer functions

[i((zz)) 7;j((zz))] :1+P(1)C() [C(lz)] [1 P(2)]

are stable,

i.e. the corresponding transfer function is proper and has no poles outside
the open unit disk D.

Internal stability is the formalism helping to avoid unstable cancellations.

Classical discrete methods

Characteristic polynomial

n Y

If C(z) = N¢(z)/Dc(z) is proper, then the closed-loop system is internally
stable iff its characteristic polynomial

xa(z) = Np(2)Nc(2) + Dp(2)Dc(2)

has all roots in D (such polynomials are known as Schur).

Classical discrete methods

Root locus
The technique is exactly as in the continuous-time case. Start with writing
)(d(z) =0 <~ - = Gk(Z),

where k is a parameter to change, in (0, 00), and Gi(z) is a proper transfer
function. This representation is termed the root-locus form. All rules, which
we know from the continuous-time analysis, apply then literally.

Classical discrete methods

Root locus

The technique is exactly as in the continuous-time case. Start with writing
Xd(z) =0 <~ - = Gk(Z),

where k is a parameter to change, in (0, 00), and Gi(z) is a proper transfer
function. This representation is termed the root-locus form. All rules, which
we know from the continuous-time analysis, apply then literally.

What changes is the meaning of the results, because
— stability / performance areas become different.

For example, no asymptote remains in the stability area (D), which implies
that we can afford

— no high-gain feedback in discrete setting if P(z) is strictly proper,

which is normally the case.

Classical discrete methods
Root locus: example
Consider again -0 -0

_(h+e"—1)z+1-(1+h)e"
Fle) = C-De—eh)

which is the discretization of P(s) = 1/[s(s + 1)], and the “P" C(z) = k.

Classical discrete methods
Root locus: example
Consider again -0 -0

_(h+e"—1)z+1-(1+h)e"
Fle) = C-De—eh)

which is the discretization of P(s) = 1/[s(s + 1)], and the “P" C(z) = k.
— start: z=1and z = e~ " (poles of Gi(z) = P(2));

Classical discrete methods

Root locus: example
Consider again -0 -0

_(h+e"—1)z+1-(1+h)e"
Ple) = C-De—eh)

which is the discretization of P(s) = 1/[s(s + 1)], and the “P" C(z) = k.

— start: z=1and z = e~ " (poles of Gi(z) = P(2));

_ —h _
— end: z= —% € (—1,0) and z — —oo + j0, as the pole excess

is 1 (one asymptote, with the angle 180°);

Classical discrete methods

Root locus: example
Consider again -0 -0

_(h+e"—1)z+1-(1+h)e"
Ple) = C-De—eh)

which is the discretization of P(s) = 1/[s(s + 1)], and the “P" C(z) = k.

— start: z=1and z = e~ " (poles of Gi(z) = P(2));

_ —h _
— end: z= —% € (—1,0) and z — —oo + j0, as the pole excess

is 1 (one asymptote, with the angle 180°);

— real axis: between the poles and to the left of the zero

Classical discrete methods

Root locus: example

Consider again -0 -0

_(h+e"—1)z+1-(1+h)e"
Ple) = C-De—eh)

which is the discretization of P(s) = 1/[s(s + 1)], and the “P" C(z) = k.

start: z=1 and z = e~" (poles of Gx(z) = P(2));

end: z = —% € (—1,0) and z — —oo + jO, as the pole excess
is 1 (one asymptote, with the angle 180°);

real axis: between the poles and to the left of the zero

breakaway / break-in: by dP(z)/dz = 0 for real z,
I € e N - (1—e"Wh
" Vi—eh+vh Vi—eh+vh

with e < z; < 1 (breakaway) and z to the left of the zero (break-in)
and 20 < —1if 0 < h < 3.720754 and —1 < z; < 0 if h > 3.720754.

Classical discrete methods

Root locus: example (contd)

For various sampling periods,

h=1: Imz h = 3.720754: Imz h=5: Imz

FN A
N

z2

In all cases the system is stable only if k is sufficiently small. In fact, for

1—eh

k - - -
O<k<i=mrner

which can be derived by the Jury stability criterion (discrete counterpart of
the Routh criterion).

Classical discrete methods

Nyquist criterion

The same logic, as in the continuous-time case. The return difference

14+ L(z) = 1+ P(2)C(z) = ;:8

still has open-loop poles as its poles and closed-loop poles as its zeros. The
line of reasonings is then

1. define simple closed contour ', containing all C \ Dy;
2. determine the mapping I'; of I'; by the loop gain L(z);

3. count the number v of clockwise encirclings of (—1,0) by I';.

By the argument principle, V= #clsd—loop unstable poles — #opn—loop unstable poles-

Classical discrete methods

Nyquist contour

The contour encircling the unstable region C \ D; is cumbersome. A simple
workaround is to redefine z — 1/A. The unstable region in terms of A is D
and the contour around it is the unit circle, [} = T. Some observations:
— the (clockwise) T is mapped by L(1) as the frequency response L(ei?)
under increasing 6 (the frequency for A is —6);

Classical discrete methods
Nyquist contour

The contour encircling the unstable region C \ D; is cumbersome. A simple
workaround is to redefine z — 1/A. The unstable region in terms of A is D
and the contour around it is the unit circle, [}, = T. Some observations:

— the (clockwise) T is mapped by L(1) as the frequency response L(ei?)
under increasing 6 (the frequency for A is —6);

— if L(A), equivalently L(z), has poles at T, the contour is altered as

ImA ImA

.-)
NI NI

with the same completion rules as in the continuous-time case.

Classical discrete methods

Steady-state performance

Nothing changes vis-a-vis the continuous-time case, except replacing s =0
with z = 1. For example, if d[t] = 1[t], then by the Final Value Theorem

z

s = i e = iz = D To)D(E) = fm(e = 1)Tafe) 5 = To)

which is the static gain of (stable) T4. Moreover,
Ys =0 <= (P(1)=0)V(|C(1)] = o),

where the latter condition requires an integral action in C.

Classical discrete methods

Transient performance and poles

Messier, e.g. discrete 1-order systems can exhibit oscillations and the role of
zeros is not clear. So normally understood via discretized models.

Classical discrete methods

Transient performance and poles

Messier, e.g. discrete 1-order systems can exhibit oscillations and the role of
zeros is not clear. So normally understood via discretized models.

Because 1 = Hzonl, we have SigiG1 = G1, i.e. the
— step response of the discrete Gy, is the sampled version of that of G.
If G(s) = w?2/(s% + 2Lwns + @?) for ¢ € [0,1], then Gp(z) has its poles at

— 1 _£2
z = e S@nheEiV1-Emnh Constant ¢ and w,h contours are

Imz Imz

and

Classical discrete methods

Deadbeat control
Given n-order P(z) and nc-order C(z). If the attained

n—+nc

xa(z) =z

(it is Schur), we say that the response is deadbeat.

Classical discrete methods

Deadbeat control

Given n-order P(z) and nc-order C(z). If the attained

n—+nc

Xcl(z) =z

(it is Schur), we say that the response is deadbeat. In this case we have
— finite duration of transients, of at most n + n. steps,

We know it as the FIR (finite impulse response) property, impossible in the
finite-dimensional continuous-time LTI case.

Classical discrete methods

Deadbeat control
Given n-order P(z) and nc-order C(z). If the attained

n—+nc

Xcl(z) =z

(it is Schur), we say that the response is deadbeat. In this case we have
— finite duration of transients, of at most n + n. steps,

We know it as the FIR (finite impulse response) property, impossible in the
finite-dimensional continuous-time LTI case. For example, consider

1 . anrncZ'H-nc + bn+ncflzn+nc—l + -+ blZ + bO
1+ P(z2)C(2) 1a(@)
= bn+nc + bn—i—nc—lz_1 + -+ blzl_”—nc + boz_n_"c

S(z) =

Its impulse response
s[t] = bpynd[t] + -+ + b18[t — n — nc + 1] + boS[t — n — n]

indeed ends after at most n + n. steps.

Classical discrete methods

Deadbeat control: example

Consider 2
z+1
P(z) = ————
(2) =73 (z— 1)
which is the discretized 1/s2. With y.(z) = z3 we have (see Lecture 2)
1 0 0 0 (051 1 o1 1
-2 1 h?/2 0 @ | _ |0 _ e | _ 3/4
1 —2 h%/2 K22 [B| |0 B | | 5/(2h?)
0 1 0 h?2]|pBo 0 Bo —3/(2h?)
so that 9 57_3
7 —
@)= 113
In this case
_ (z—-1)*(4z+3) B 1 3
S(z) = e = e[t] =4]t] 48[t 1] 48[1.“ 2]

with r[t] = 1[t] (for which R(z) = -Z; and S(2)R(z) =1— 3zt —3272).

	Sampled-data controllers
	Analog redesign: Part II
	Discrete-time design
	Discretized plant and its properties
	Classical methods for discrete systems (mostly stability)

