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Three approaches to sampled-data control design
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1. Digital redesign of analog controllers
(do your favorite analog design first, then discretize the resulting controller)

2. Discrete-time design
(discretize the problem first, then do your favorite discrete design)

3. Direct digital (sampled-data) design
(design discrete-time controller C̄(z) directly for analog specs)

2/52

Outline

Analog redesign: Part I

Discrete signals in time and frequency domains

A/D conversion in frequency domain

D/A conversion in frequency domain

The Sampling Theorem (Whittaker-Kotel’nikov-Shannon)
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The redesign problem
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Starting point:

− “good” analog controller C (designed by whatever method)

Goal:

− find C̄ such that HC̄S ≈ C

(we consider S = Sidl, H = HZOH, and periodic sampling with given h > 0).
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Discrete transfer functions

Continuous-time systems Discrete-time systems

Laplace transform Z-transform

s is the derivative in the time domain z is the shift in the time domain

Left-half plane in the s-plane : : Unit disk in the z-plane

j!-axis Unit circle

Static gain is G (s)|s=0 = G (0) Static gain is G (z)|z=1 = G (1)

Integral action: pole at s = 0 Integral action: pole at z = 1
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Choice of C̄ (z)

Philosophy is to

− imitate C (s) in low-frequency and crossover ranges.

Often based on numerical differentiation rules, like

forward Euler: ẋ(ih) ≈ x(ih + h)− x(ih)

h
=⇒ s ≈ z − 1

h

backward Euler: ẋ(ih) ≈ x(ih)− x(ih − h)

h
=⇒ s ≈ z − 1

hz

Tustin1:
ẋ(ih + h) + ẋ(ih)

2
≈ x(ih + h)− x(ih)

h
=⇒ s ≈ 2

h

z − 1

z + 1
making sense if h is “small enough.”

Example

If C (s) = 1=(s + 1), then

C̄ (z) = C (s)
∣∣
s= 2

h
z−1
z+1

=
1

2=h · (z − 1)=(z + 1) + 1
=

h(z + 1)

(h + 1)z + h − 1
:

1MATLAB: c2d(C,h,’tustin’), where C is a continuous-time system.
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Example: DC motor

A DC motor from Lecture 1, controlled in closed loop

C (s)
1

s(s + 2)

reu

d

y

ymn

−

Requirements:

− closed-loop stability (of course)

− zero steady-state error for a step in r always holds

− zero steady-state error for a step in d integrator in C (s)

− good stability margins

− !c ≈ 2 [rad/sec]

Design:

− LQG loop shaping, with a PI weight W (like in Lecture 10)
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Example: analog design

Weight:

W (s) = 5:06
(
1 +

1

s

)
Controller:

C (s) = W (s)Ca(s) =
23:081(s + 2:075)(s + 0:5346)

s(s2 + 6:155s + 17:44)

(a pole of Ca(s) cancels the zero of W (s) at s = 1). The actual crossover
is !c = 1:4248 and the closed-loop bandwidth is !b = 2:8155.
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Example: analog design (contd)
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Example: controller discretization

Using Tustin, the discretized controllers are

h = 0:01: C (z) =
0:11337(z + 1)(z − 0:9795)(z − 0:9947)

(z − 1)(z2 − 1:939z + 0:9403)

h = 0:1: C̄ (z) =
0:96777(z + 1)(z − 0:812)(z − 0:9479)

(z − 1)(z2 − 1:415z + 0:5445)

Both

− preserve integral actions (pole at s = 0 → pole at z = 1)

which is a general property of the Tustin transformation.
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Example: d(t) = 1(t) and n(t) = 0

Responses with h = 0:01:

0 1 2 3 4 5 6 7

-0.1

0

0.3

0 1 2 3 4 5 6 7

-1.43

-1

0

sampled-data response ≈ analog response

⇓
adequate sampling rate
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Example: d(t) = 1(t) and n(t) = 0

Now the same with h = 0:1:

0 1 2 3 4 5 6 7

-0.1

0

0.3

0.32

0 1 2 3 4 5 6 7

-1.5

-1

0

sampled-data response starts getting worse than analog response

⇓
sampling rate starts to become problematic

(further increase of h eventually results in an unstable closed-loop system).
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Example: d(t) = 1(t) and n(t) = sin(20�t + 0:1)

Responses with h = 0:01:

0 1 2 3 4 5 6 7

-0.1

0

0.3

6.9 7 7.1

-1.37

-1

-0.63

sampled-data response ≈ analog response

⇓
adequate sampling rate
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Example: d(t) = 1(t) and n(t) = sin(20�t + 0:1)

Now the same with h = 0:1:

0 1 2 3 4 5 6 7

-0.1

0

0.18

0.3

6.9 7 7.1

-1.37

-1

-0.63

Oops,

− sampled-data response is qualitatively different from analog response
(steady-state error is nonzero, the harmonic of measurement noise disappears)

Why? It seems that we lack understanding of what’s going on here . . .
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Sampled-data controllers

Consider

SidlC̄HZOH yȳūu

(dubbed sample-and-hold circuit if C̄ = 1). Our goal below is to understand
the relation between Y (j!) and U(j!). That might not be easy because

− sampled-data controllers are not time invariant

with all consequences of that:

− no convolution representation

− no transfer function / frequency response as multiplication

− harmonic inputs might not remain harmonic at the output

15/52
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Analog redesign: Part I

Discrete signals in time and frequency domains

A/D conversion in frequency domain

D/A conversion in frequency domain

The Sampling Theorem (Whittaker-Kotel’nikov-Shannon)

16/52



Signals

reflect evolving information:

AC to ₪ representative exchange rates in Feb–Mar, 2020

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
Feb 1 Feb 15 Mar 1 Mar 15 Apr 1

3.6952

4.2469

Mathematically, signals are

− functions of independent variables, like time

− discrete signals are functions Z → Rn

− denoted as f [t] (square brackets differentiate from analog signals)
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Examples of discrete signals

Some are discretized versions of analog signals:

Campus temperatures on Feb 9, 2020 afternoon (coldest in (תש״ף

0
12:00

6
13:00

12
14:00

18
15:00

24
16:00

30
17:00

36
18:00

42
19:00

48
20:00

54
21:00

60
22:00

66
23:00

72
24:00

4.5◦C

9.2◦C

Some are intrinsically discrete:

Israeli legislative elections turnout

1
1949

2
1951

3
1955

4
1959

5
1961

6
1965

7
1969

8
1973

9
1977

10
1981

11
1984

12
1988

13
1992

14
1996

15
1999

16
2003

17
2006

18
2009

19
2013

20
2015

21
2019

22
2019

23
2020

24
2021

63.55%

86.88%
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Basic discrete signals

− pulse: f [t] = ı[t] =

− step: f [t] = 1[t] =

− exponential: f [t] = �t 1[t] =



if |�| < 1

if |�| > 1

− ramp: f [t] = t1[t] =

− sinusoid2: f [t] = sin[!t + �] =

2Periodic, not necessarily with T = 2�=!, only if ! = 2�˛ for some ˛ ∈ Q (rational).
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Energy and power

Energy of signal f [t] is the quantity

Ef =
∞∑

t=−∞
|f [t]|2

It can be viewed as a

− measure of size of f for a decaying f or f having a finite support

Power of signal f [t] is defined as averaged energy per unit time:

Pf = lim
M→∞

1

2M + 1

M∑
t=−M

|f [t]|2

It can be viewed as a

− measure of size of f for a persistent f
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Discrete-time harmonic signals

Signal

f [t] = ej�t = ;  ∈ C; � ∈ R

where � is the frequency, | | is the amplitude, and � = arg  is the initial
phase, is called the discrete harmonic signal. By Euler’s formula,

Re(ej�t) = | | cos[�t + �] and Im(ej�t) = | | sin[�t + �]:

Hence, the discrete harmonic signal may be thought of as a plain sinusoid.

Two qualitative deviations from the continuous-time case:

− ej�t might not be periodic (if 2�=� is irrational);

− because
ej(�+2� i)t = ej�tej2� it = ej�t ; ∀i ∈ Z

we may only consider � ∈ [−�; �] and the highest frequency is |� | = � .
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Pace of harmonic signals

The difference operator ∆, for which

(∆f )[t] ··= f [t + 1]− f [t];

may be viewed as the discrete counterpart of the derivative. A size of ∆f is
then a measure of the pace of f .

If f [t] = ej�t , then

|f [t + 1]− f [t]| = |ej�t(ej� − 1)| = | |
√
2− 2 cos � =

�−� �

2| |

Because this is a strictly increasing function of |� | ∈ [0; �], we conclude that

− ej�1t is faster (slower) than ej�2t if |�1| > |�2| (|�1| < |�2|),
provided both �1 and �2 are in [−�; �]). Thus, the fastest discrete harmonic
signal is

e±j�t = (−1)t :
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Discrete-time Fourier transform (DTFT)

Given f : Z → F n, its discrete-time Fourier transform

F{f } = F (ej� ) ··=
∑
t∈Z

f [t]e−j�t ;

for the angular frequency � ∈ [−�; �] (in radians per step).

If the range of � is extended to the whole R, then F (ej� ) is 2�-periodic as
a function of � , F (ej(�+2�)) = F (ej� ).

Strictly speaking, F{f } exists as a function of � only if

− ∑
t |f [t]| <∞ (or Ef <∞, if a weaker convergence is used).

Inverse DTFT:
F−1{F} = f [t] =

1

2�

∫ �

−�
F (ej� )ej�td�:
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DTFT: interpretation

It follows from

f [t] =
1

2�

∫ �

−�
F (ej� )ej�td�:

that f [t] is a superposition of elementary harmonic signals ej�t . The signal

− F (ej� ) is the frequency-domain representation (or spectrum) of f [t].

F (ej�0) quantifies the contribution of ej�0t to f [t].

Hence, spectrum offers a

− viewpoint on f , where fast and slow components are separated.
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DTFT: interpretation (contd)

“slow” f [t] (E∆f = 0:0188): “fast” f [t] (E∆f = 0:425):

f [t]

t

f [t]

t

⇕ ⇕

|F (ej� )|

�−� �

|F (ej� )|

�−� �
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DTFTs of some discrete signals

Assuming � ∈ [−�; �],

f [t] F (ej� ) condition

ı[t] = 1

1[t] =
1

1− e−j�
+ �ı(�)

�t1[t] =
1

1− �e−j�
|�| < 1

ej�0t = 2�ı(� − �0) �0 ∈ [−�; �]
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Some properties of DTFT (assuming transforms exist)

Linearity: for all constants ˛1 and ˛2,

F{˛1f1 + ˛2f2} = ˛1F{f1}+ ˛2F{f2};

Time shift: if qf [t] ··= f [t + 1], then for every � ∈ Z,

F{q� f } = ej��F{f }

Time reversal: if g [t] = f [−t], then

F{g}(ej� ) = F{f }(e−j� ):

Convolution: for all f and g ,

F{f ∗ g} = F{f }F{g}

where (f ∗ g)[t] ··=
∑

s∈Z f [t − s]g [s] =
∑

s∈Z f [s]g [t − s].
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Parseval’s theorem

If f [t] is a finite energy signal, then

Ef =
1

2�

∫ �

−�
|F (ej� )|2d� =··

1

2�
EF

i.e. the energy of f [t] equals that of its DTFT F (ej� ), modulo the factor
1=(2�), exactly like in the continuous-time case.

Implications:

− |F (ej� )| shows the contribution of the harmonic ej�t to Ef

− reduction any parts of |F (ej� )| reduces the power of f [t]

− harmonics with highest |F (ej� )| dominate the behavior of f [t]
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Discrete systems in time and frequency domains

Any LTI system y = Gu can be described as

y [t] = (g ∗ u)[t] =
∑
s∈Z

g [t − s]u[s] =
∑
s∈Z

g [s]u[t − s]

(convolution form), where g(t) is the impulse response of G . Hence,

Y (ej� ) = G (ej� )U(ej� )

where

− G (ej� ) = F{g} the frequency response of G

(and G (ej� ) = G (z)|z=ej� ). Because

u[t] = ej�t =⇒ (Gu)[t] =
∑
s∈Z

g [s]ej�(t−s) = G (ej� )ej�t

at each frequency � ∈ [−�; �]
− G (ej� ) characterizes how the harmonic ej�t processed by the system G .
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A/D conversion in frequency domain
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What do we lose by sampling analog signals ?

Sidl yȳ

From the time-domain relation

ȳ [i ] = y(ih)

we know that all intersample information about y(t) is lost. But

− to what extent is it important (if at all) ?

To answer this kind of questions, frequency-domain analysis is indispensable.
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Key question

How can we squeeze the spectrum of a continuous-time signal y(t),

Y (j!) =

Y (j!)

!0 !s−!s 2!s−2!s

(with ! ∈ R) into the spectrum of its sampled version ȳ [i ] = y(ih),

Ȳ (ej� ) =

Ȳ (ej�)

�0 �−�

(with � ∈ [�; �]) ?
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A weird function

Consider an analog signal y(t) with the spectrum Y (j!), e.g.

Y (j!) =

Y (j!)

!0 !s−!s 2!s−2!s

and define, for some h > 0, the function

Yh(j!) ··=
1

h

∑
i∈Z

Y (j(! + !si)) =

Yh(j!)

!0 !s−!s 2!s−2!s

where !s ··= 2�=h (in rad/sec). Note that the mapping Y 7→ Yh is linear.
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A weird function: Fourier series

Yh(j!)

!0 !s−!s 2!s−2!s

As Yh(j!) is !s-periodic, we can bring in its Fourier series expansion

Yh(j!) =
∑
i∈Z

ci e
j 2�
!s

i! =
∑
i∈Z

ci e
j!hi ;

where Fourier coefficients are calculated as

ci =
1

!s

∫ !s=2

−!s=2
Yh(j!)e

−j!hid!:
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A weird function: Fourier coefficients

With some extra efforts:

ci =
1

!s

∫ !s=2

−!s=2

1

h

∑
k∈Z

Y (j(! + !sk)) e
−j!hid!

=
1

2�

∑
k∈Z

∫ !s=2

−!s=2
Y (j(! + !sk))e

−j(!+!sk)hid!

=
1

2�

∑
k∈Z

∫ !s=2+!sk

−!s=2+!sk
Y (j!)e−j!hid!

=
1

2�

∫
R

Y (j!)e−j!hid! (remember, y(t) =
1

2�

∫
R

Y (j!)ej!td!)

= y(−ih):
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A weird function: Fourier series (contd)

Thus, we end up with

Yh(j!) =
∑
i∈Z

y(−ih)ej!hi =
∑
i∈Z

y(ih)e−j!hi :

Compare it with the DTFT of ȳ = Sidly ,

Ȳ (ej� ) =
∑
i∈Z

ȳ [i ]e−j� i =
∑
i∈Z

y(ih)e−j� i :

We can therefore say that

Yh(j!) =
1

h

∑
i∈Z

Y (j(! + !si)); where !s =
2�

h
(the sampling frequency)

is the DTFT of the sampled signal ȳ modulo scaling, � = !h, i.e.

Ȳ (ej� ) =
1

h

∑
i∈Z

Y (j(�=h + !si)) =·· Yh(j�=h):
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Spectrum of sampled signal

We thus end up with

Ȳ (ej!h)

!0 !s−!s 2!s−2!s !N−!N

→

Ȳ (ej� )

�0 �−�

The frequency

!N
··=

!s

2
=
�

h

is called the Nyquist frequency associated with the sampling period h (it is
measured in rad/sec if h is in sec).
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Spectrum of sampled signal: aliasing

Ȳ (ej!h)

!0 !N−!N

Ȳ (ej!0h)

!0 !2!−2 !1!−1

Thus, the spectrum of ȳ at each frequency �0 = !0h is a

− blend of analog frequency responses at !i ··= !0 + !si , ∀i ∈ Z.

In other words,

− every discrete frequency �0 ∈ [−�; �] is an alias of all !i , i ∈ Z.

This phenomenon is dubbed aliasing, with respect to the base frequency !0.

Aliasing means information loss, we can no longer tell Y (j!i ) from Y (j!j)
in their effect on Ȳ (ej�0) (unless we know their dependencies).
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Aliasing: example

Consider signals y1(t) = sin
(
�
4 t

)
and y2(t) = sin

(
−7�

4 t
)
sampled at h = 1:

0 1 2 3 4 5 6 7 8 9 10 → 0 1 2 3 4 5 6 7 8 9 10

Sampling frequency is !s = 2� , so that

− both !0 =
�

4
and !−1 = −7�

4
= !0 − !s have aliases at �0 = !0

and, consequently, produce the same sampled signal.
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Aliasing: non-control examples

Wagon-wheel effect:
83
rpm

(shot with 12 FPS frame rate)

Moiré pattern:
downsampling−−−−−−−−→
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Aliasing: control implications

Sidl yymȳ
n

Let y(t) = const be measured via a noisy sensor with n(t) = sin(2!Nt + �)
(their spectra are well separated). But the sampled measured signal

ȳ [i ] = y(ih) + sin(�)

is offset, with no way to separate y from n (cf. Example in the first section).
Such phenomena might have acute consequences on feedback designs that
are hinged upon spectra separation between r(t)/d(t) and n(t). The

− spectrum of sampled n might interweave with those of r/d ,

confusing the controller. And this cannot be corrected by a digital C̄ (z).
41/52

Frequency folding

If Y (j!) = Y (−j!) ∈ R, ∀!, the spectrum of its sampled version, Ȳ (ej� ),
can be constructed also via the following folding procedure:

0!−2

Y (j!−2)

!−1

Y (j!−1)

!0

Y (j!0)

!1

Y (j!1)

Y (j!)

!

0 !N 2!N 3!N |!| 0 !N 3!N

Y (j!−1)

Y (j!0)

.

.

.

hȲ (ej�0 )

0 ��0

→

↓

→

↑
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Instability of the ideal sampler

Let y(t) be a signal with

Y (j!) =

√
2√

!2 + 1
:

By Parseval,

Ey =
1

2�

∫
R

2

!2 + 1
d! = 1;

so y is unit-energy (so, bounded) signal. Frequency response of ȳ = Sidly is

Ȳ (ej� ) =
1

h

∑
i∈Z

√
2√

(�=h + 2�=h i)2 + 1
=

∑
i∈Z

√
2√

(� + 2� i)2 + h2
= ∞

for every � ∈ [−�; �]. This means that ȳ is unbounded, i.e. that

− the ideal sampler Sidl is unstable in the L2 sense

Remark: Sidl does produce finite-energy discrete signals from analog inputs, whose spectra
decay faster than 1=|!| at high frequencies.
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The impulsive hold

Himp ūu

Acts as
u(t) =

∑
i∈Z

ı(t − ih)ū[i ]

(known as the impulse train). Not quite practical by itself, but is the base
for many other holds via the series with LTI filters:

F� Himp ūuitu

For example,

− HZOH corresponds to F�(s) =
1− e−sh

s
,

whose impulse response is f�(t) = 1(t)− 1(t−h) =
t

1

0 h

(so it is FIR).
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Spectrum of signals reconstructed by Himp

Himp ūu

The Fourier transform of this u(t) is

U(j!) =

∫ ∞

−∞
u(t)e−j!tdt =

∫ ∞

−∞

∑
i∈Z

ı(t − ih)ū[i ]e−j!tdt

=
∑
i∈Z

∫ ∞

−∞
ı(t − ih)e−j!tdtū[i ] =

∑
i∈Z

ū[i ]e−j(!h)i

= Ū(ej!h) = Ū(ej� )|�=!h:

Because Ū(ej!h) is a (2�=h)-periodic function of !,

− Himp merely clones the spectrum of ū,

whose frequency � -axis in [−�; �] is scaled to fit the !-axis in [−!N; !N].
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Spectrum of signals reconstructed by HZOH

F� Himp ūuitu

Just in two steps, again:

1. apply the analysis above to derive Uit(j!)

2. filter uit by the LTI F� to end up with

U(j!) = F�(j!)Uit(j!) =
1− e−j!h

j!
Ū(ej!h)

Note that

|F�(j!)| =
!0

0.8859!N

!N 2!N

1√
2
h
h

so this F� is a low-pass filter, whose (normalized) bandwidth !b ≈ 0:886!N.
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Spectrum of sampled bandlimited signal

An analog signal y(t) is said to be bandlimited if its spectrum, Y (j!), has
support in [−!b; !b] for some !b > 0 (bandwidth), like

Y (j!) =

Y (j!)

!0 !s!b−!b−!s 2!s−2!s

If !b ≤ !N, shifted Y (j(! + !si)) are mutually non-overlapping, so that

Ȳ (ej!h) =

Ȳ (ej!h)

!0 !s!b−!s 2!s−2!s !N−!N

and there is no frequency blending in Ȳ (ej!h), i.e. no information is lost. In
fact, Ȳ (ej!h) = 1

hY (j!) for every ! ∈ [−!N; !N] and we may expect that y
is reconstructable from ȳ .
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How to reconstruct bandlimited signal

Let y(t) be bandlimited, with !b ≤ !N. Then Y (j!) = hȲ (ej!h) and

y(t) =
1

2�

∫
R

Y (j!)ej!td!

=
h

2�

∫ !N

−!N

Ȳ (ej!h)ej!td! =
h

2�

∫ !N

−!N

∑
i∈Z

y(ih)e−j!hiej!td!

=
∑
i∈Z

y(ih)
1

2!N

∫ !N

−!N

ej!(t−ih)d! =
∑
i∈Z

y(ih)
1

2!N

ej!(t−ih)

j(t − ih)

∣∣∣∣!N

−!N

=
∑
i∈Z

y(ih)
ej!N(t−ih) − e−j!N(t−ih)

2j!N(t − ih)
=

∑
i∈Z

y(ih)
sin(!N(t − ih))

!N(t − ih)

=
∑
i∈Z

sinch(t − ih)y(ih)

where sinch(t) ··=
sin(!Nt)

!Nt
=

t

1

−h 0 h

.
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The Sampling Theorem

Theorem (Whittaker-Kotel’nikov-Shannon)

Let y(t) be analog bandlimited signal with bandwidth !b. If !b ≤ !N, y(t)
can be perfectly reconstructed from its sampled measurements ȳ [i ] = y(ih)
via the (non-causal) sinc-interpolator

y(t) =
∑
i∈Z

sinch(t − ih)y(ih):

The sinc-interpolator acts as

ȳ [i ]

i−5 −4 −3 −2 −1 1 2 3 4 5

↓
y (t)

t−5h −4h −3h −2h −h h 2h 3h 4h 5h
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sinc-interpolator in the frequency domain

Readily seen that

y(t) =
∑
i∈Z

sinch(t − ih)y(ih) =

∫ ∞

−∞
sinch(t − s)yit(s)ds

where the impulse train yit(t) =
∑

i∈Z ı(t − ih)ȳ [i ]. Thus, we have

F� Himp ȳyity

where

F�(j!) = F{sinch} = h(1(! + !N)− 1(! − !N)) =
!0 !N

h

is the ideal low-pass filter with the bandwidth !N. This is intuitive (why?).
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