Control Theory (035188) lecture no. 12

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Ñ

Outline

Analog redesign: Part I

Discrete signals in time and frequency domains

A/D conversion in frequency domain

D/A conversion in frequency domain

The Sampling Theorem (Whittaker-Kotel'nikov-Shannon

Three approaches to sampled-data control design

Goal:

- find \bar{C} such that $\mathcal{H}\bar{C}\mathcal{S}\approx C$

(we consider $S = S_{idl}$, $H = H_{ZOH}$, and periodic sampling with given h > 0).

Discrete transfer functions	
Continuous-time systems	Discrete-time systems
Laplace transform	\mathcal{Z} -transform
<i>s</i> is the derivative in the time domain	z is the shift in the time domain
Left-half plane in the <i>s</i> -plane :	: Unit disk in the <i>z</i> -plane
j <i>w</i> -axis	Unit circle
Static gain is $G(s) _{s=0} = G(0)$	Static gain is $G(z) _{z=1} = G(1)$
Integral action: pole at $s = 0$	Integral action: pole at $z = 1$
	5 (50

Example: DC motor

A DC motor from Lecture 1, controlled in closed loop

Requirements:

- closed-loop stability (of course)
- zero steady-state error for a step in r
- zero steady-state error for a step in d
- $\hspace{0.1 cm} \text{good stability margins}$
- $\ \omega_{\rm c} \approx 2 \, [{\rm rad/sec}]$

Design:

- LQG loop shaping, with a PI weight W (like in Lecture 10)

Choice of $\overline{C}(z)$

Philosophy is to

- imitate C(s) in low-frequency and crossover ranges.

Often based on numerical differentiation rules, like

forward Euler: $\dot{x}(ih) \approx \frac{x(ih+h) - x(ih)}{h} \implies s \approx \frac{z-1}{h}$ backward Euler: $\dot{x}(ih) \approx \frac{x(ih) - x(ih-h)}{h} \implies s \approx \frac{z-1}{hz}$ Tustin¹: $\frac{\dot{x}(ih+h) + \dot{x}(ih)}{2} \approx \frac{x(ih+h) - x(ih)}{h} \implies s \approx \frac{2}{h} \frac{z-1}{z+1}$

making sense if h is "small enough."

Example If C(s) = 1/(s+1), then

$$\bar{C}(z) = C(s)|_{s=\frac{2}{h}\frac{z-1}{z+1}} = \frac{1}{2/h \cdot (z-1)/(z+1)+1} = \frac{h(z+1)}{(h+1)z+h-1}.$$
¹MATLAB: c2d(C,h,'tustin'), where C is a continuous-time system.

Example: analog design

Weight:

_

$$W(s) = 5.06 \left(1 + \frac{1}{s}\right)$$

Controller:

$$C(s) = W(s)C_{a}(s) = \frac{23.081(s + 2.075)(s + 0.5346)}{s(s^{2} + 6.155s + 17.44)}$$

(a pole of $C_a(s)$ cancels the zero of W(s) at s = 1). The actual crossover is $\omega_c = 1.4248$ and the closed-loop bandwidth is $\omega_b = 2.8155$.

always holds

integrator in C(s)

8/5

Using Tustin, the discretized controllers are

$$h = 0.01: C(z) = \frac{0.11337(z+1)(z-0.9795)(z-0.9947)}{(z-1)(z^2-1.939z+0.9403)}$$
$$h = 0.1: \bar{C}(z) = \frac{0.96777(z+1)(z-0.812)(z-0.9479)}{(z-1)(z^2-1.415z+0.5445)}$$

Both

- preserve integral actions (pole at $s = 0 \rightarrow$ pole at z = 1) which is a general property of the Tustin transformation.

Sampled-data controllers

Consider

$$\underbrace{\mathcal{H}_{\mathsf{ZOH}}}_{u} \underbrace{\mathcal{H}_{\mathsf{ZOH}}}_{\mathbf{U}} \underbrace{\mathcal{H}_{\mathsf{I}}|_{v}}^{\mathcal{H}_{\mathsf{I}}|_{v}} \underbrace{\mathcal{H}_{\mathsf{I}}|_{v}}_{\overline{u}} \underbrace{\mathcal{H}_{\mathsf{I}}|_{v}} \underbrace{\mathcal{H}_{\mathsf{I}}|_{v}} \underbrace{\mathcal{H}_{\mathsf{I}}|_{v}} \underbrace{\mathcal{H}_{\mathsf$$

(dubbed sample-and-hold circuit if $\overline{C} = 1$). Our goal below is to understand the relation between $Y(j\omega)$ and $U(j\omega)$. That might not be easy because

- sampled-data controllers are not time invariant

with all consequences of that:

- no convolution representation
- $-\,$ no transfer function / frequency response as multiplication
- $-\,$ harmonic inputs might not remain harmonic at the output

Outline Analog redesign: Part I Discrete signals in time and frequency domains A/D conversion in frequency domain D/A conversion in frequency domain The Sampling Theorem (Whittaker-Kotel'nikov-Shannon)

Energy and power Energy of signal f[t] is the quantity

$$E_f = \sum_{t=-\infty}^{\infty} |f[t]|^2$$

It can be viewed as a

- measure of size of f for a decaying f or f having a finite support

Power of signal f[t] is defined as averaged energy per unit time:

$$P_f = \lim_{M \to \infty} \frac{1}{2M+1} \sum_{t=-M}^{M} |f[t]|^2$$

It can be viewed as a

- measure of size of f for a persistent f

Discrete-time harmonic signals

Signal

$$f[t] = \gamma e^{j\theta t} = \underbrace{\int_{\mathbb{R}} \frac{1}{t^{n}} \int_{\mathbb{R}} \frac{1}{t^{n}} \int_{\mathbb{R$$

where θ is the frequency, $|\gamma|$ is the amplitude, and $\phi = \arg \gamma$ is the initial phase, is called the discrete harmonic signal. By Euler's formula,

$$\operatorname{\mathsf{Re}}(\gamma \mathrm{e}^{\mathrm{j} heta t}) = |\gamma| \cos[heta t + \phi]$$
 and $\operatorname{\mathsf{Im}}(\gamma \mathrm{e}^{\mathrm{j} heta t}) = |\gamma| \sin[heta t + \phi]$

Hence, the discrete harmonic signal may be thought of as a plain sinusoid.

Two qualitative deviations from the continuous-time case:

- $\gamma e^{j\theta t}$ might not be periodic (if $2\pi/\theta$ is irrational);

- because

$$e^{j(\theta+2\pi i)t} = e^{j\theta t}e^{j2\pi it} = e^{j\theta t}, \quad \forall i \in \mathbb{Z}$$

we may only consider $\theta \in [-\pi, \pi]$ and the highest frequency is $|\theta| = \pi$.

Discrete-time Fourier transform (DTFT)

Given $f : \mathbb{Z} \to \mathbb{F}^n$, its discrete-time Fourier transform

$$\mathfrak{F}{f} = F(\mathrm{e}^{\mathrm{j} heta}) := \sum_{t \in \mathbb{Z}} f[t] \mathrm{e}^{-\mathrm{j} heta t}$$

for the angular frequency $\theta \in [-\pi, \pi]$ (in radians per step).

If the range of θ is extended to the whole \mathbb{R} , then $F(e^{j\theta})$ is 2π -periodic as a function of θ , $F(e^{j(\theta+2\pi)}) = F(e^{j\theta})$.

Strictly speaking, $\mathfrak{F}{f}$ exists as a function of θ only if - $\sum_t |f[t]| < \infty$ (or $E_f < \infty$, if a weaker convergence is used).

Inverse DTFT:

$$\mathfrak{F}^{-1}\{F\} = f[t] = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\mathrm{e}^{\mathrm{j}\theta}) \mathrm{e}^{\mathrm{j}\theta t} \mathrm{d}\theta.$$

Pace of harmonic signals

The difference operator Δ , for which

$$(\Delta f)[t] := f[t+1] - f[t]$$

may be viewed as the discrete counterpart of the derivative. A size of Δf is then a measure of the pace of f.

If
$$f[t] = \gamma e^{j\theta t}$$
, then

$$|f[t+1] - f[t]| = |\gamma e^{j\theta t} (e^{j\theta} - 1)| = |\gamma| \sqrt{2 - 2\cos\theta} = \underbrace{\frac{2|\gamma|}{\pi}}_{\pi}$$

Because this is a strictly increasing function of $|\theta| \in [0, \pi]$, we conclude that $-\gamma e^{j\theta_1 t}$ is faster (slower) than $\gamma e^{j\theta_2 t}$ if $|\theta_1| > |\theta_2|$ ($|\theta_1| < |\theta_2|$),

provided both θ_1 and θ_2 are in $[-\pi, \pi]$). Thus, the fastest discrete harmonic signal is

$$\gamma e^{\pm j\pi t} = \gamma (-1)^t.$$

22/5

DTFT: interpretation

It follows from

$$f[t] = rac{1}{2\pi} \int_{-\pi}^{\pi} F(\mathrm{e}^{\mathrm{j}\theta}) \mathrm{e}^{\mathrm{j}\theta t} \mathrm{d}\theta.$$

that f[t] is a superposition of elementary harmonic signals $e^{j\theta t}$. The signal $-F(e^{j\theta})$ is the frequency-domain representation (or spectrum) of f[t]. $F(e^{j\theta_0})$ quantifies the contribution of $e^{j\theta_0 t}$ to f[t].

Hence, spectrum offers a

- viewpoint on f, where fast and slow components are separated.

Some properties of DTFT (assuming transforms exist) Linearity: for all constants α_1 and α_2 ,

$$\mathfrak{F}\{\alpha_1f_1+\alpha_2f_2\}=\alpha_1\mathfrak{F}\{f_1\}+\alpha_2\mathfrak{F}\{f_2\},$$

Time shift: if qf[t] := f[t+1], then for every $\tau \in \mathbb{Z}$,

$$\mathfrak{F}\{q^{\tau}f\} = \mathrm{e}^{\mathrm{j}\theta\tau}\mathfrak{F}\{f\}$$

Time reversal: if g[t] = f[-t], then

$$\mathfrak{F}{g}(e^{j\theta}) = \mathfrak{F}{f}(e^{-j\theta}).$$

Convolution: for all f and g,

$$\mathfrak{F}{f * g} = \mathfrak{F}{f} \mathfrak{F}{g}$$
where $(f * g)[t] := \sum_{s \in \mathbb{Z}} f[t - s]g[s] = \sum_{s \in \mathbb{Z}} f[s]g[t - s].$

DTFTs of some discrete signals

Assuming $\theta \in [-\pi, \pi]$,

Parseval's theorem

If f[t] is a finite energy signal, then

$$E_f = rac{1}{2\pi} \int_{-\pi}^{\pi} |F(\mathrm{e}^{\mathrm{j} heta})|^2 \mathrm{d} heta =: rac{1}{2\pi} E_F$$

i.e. the energy of f[t] equals that of its DTFT $F(e^{j\theta})$, modulo the factor $1/(2\pi)$, exactly like in the continuous-time case.

Implications:

- $|F(e^{j\theta})|$ shows the contribution of the harmonic $e^{j\theta t}$ to E_f
- reduction any parts of $|F(e^{j\theta})|$ reduces the power of f[t]
- harmonics with highest $|F(e^{j\theta})|$ dominate the behavior of f[t]

Discrete systems in time and frequency domains

Any LTI system y = Gu can be described as

$$y[t]=(gst u)[t]=\sum_{s\in\mathbb{Z}}g[t-s]u[s]=\sum_{s\in\mathbb{Z}}g[s]u[t-s]u[s]$$

(convolution form), where g(t) is the impulse response of G. Hence,

$$Y(e^{j\theta}) = G(e^{j\theta})U(e^{j\theta})$$

where

 $-G(e^{j\theta}) = \mathfrak{F}{g}$ the frequency response of G (and $G(e^{j\theta}) = G(z)|_{z=e^{j\theta}}$). Because $u[t] = e^{j\theta t} \implies (Gu)[t] = \sum_{s \in \mathbb{Z}} g[s] e^{j\theta(t-s)} = G(e^{j\theta}) e^{j\theta t}$ at each frequency $\theta \in [-\pi, \pi]$ - $G(e^{j\theta})$ characterizes how the harmonic $e^{j\theta t}$ processed by the system G.

What do we lose by sampling analog signals?

 $\underbrace{ \begin{array}{c} \underset{\tau \in \mathcal{T}_{i}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}_{i}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}_{i}}{\overset{\tau \in \mathcal{T}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}}}{\overset{\tau \in T}}}{\overset{\tau \in \mathcal{T}_{i}}}{\overset{\tau \in \mathcal{T}}}{\overset{\tau \in T}}}{\overset{\tau \in \mathcal{T}}}{\overset{\tau \in T}}}{\overset{\tau \in \mathcal{T}}}{\overset{\tau \in T}}}{\overset{\tau \in \mathcal{T}}}{\overset{\tau \in T}}}{\overset{\tau \in T}}}{\overset{\tau \in T}}{\overset{\tau \in T}}}{\overset{\tau \in T}}{\overset{\tau \in T}}}{\overset{\tau \in T}}{\overset{\tau \in T}}}{\overset{\tau \in T}}}{\overset{\tau \in T}}}{\overset{\tau \in T}}}{\overset{\tau \in T}}}{\overset{\tau \in T}}}{\overset{\tau$

From the time-domain relation

 $\bar{y}[i] = y(ih)$

we know that all intersample information about y(t) is lost. But

- to what extent is it important (if at all)?

To answer this kind of questions, frequency-domain analysis is indispensable.

Outline

A/D conversion in frequency domain

Key question How can we squeeze the spectrum of a continuous-time signal y(t), $Y(j\omega) =$ (with $\omega \in \mathbb{R}$) into the spectrum of its sampled version $\bar{y}[i] = y(ih)$, $\bar{Y}(e^{j\theta}) =$ (with $\theta \in [\pi, \pi]$)?

2ω, ω

A weird function Consider an analog signal y(t) with the spectrum $Y(j\omega)$, e.g. $Y'(j\omega) = \underbrace{\gamma'(\omega)}_{2\omega_s} \underbrace{\gamma'(\omega)}_{2\omega_s} \underbrace{\gamma'(\omega)}_{\omega_s} \underbrace{\gamma'(\omega)}_{\omega_s}$

A weird function: Fourier coefficients

With some extra efforts:

$$\begin{aligned} \mathbf{c}_{i} &= \frac{1}{\omega_{s}} \int_{-\omega_{s}/2}^{\omega_{s}/2} \frac{1}{h} \sum_{k \in \mathbb{Z}} Y(\mathbf{j}(\omega + \omega_{s}k)) e^{-\mathbf{j}\omega h \mathbf{i}} d\omega \\ &= \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \int_{-\omega_{s}/2}^{\omega_{s}/2} Y(\mathbf{j}(\omega + \omega_{s}k)) e^{-\mathbf{j}(\omega + \omega_{s}k)h \mathbf{i}} d\omega \\ &= \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \int_{-\omega_{s}/2 + \omega_{s}k}^{\omega_{s}/2 + \omega_{s}k} Y(\mathbf{j}\omega) e^{-\mathbf{j}\omega h \mathbf{i}} d\omega \\ &= \frac{1}{2\pi} \int_{\mathbb{R}} Y(\mathbf{j}\omega) e^{-\mathbf{j}\omega h \mathbf{i}} d\omega \quad (\text{remember, } y(t) = \frac{1}{2\pi} \int_{\mathbb{R}} Y(\mathbf{j}\omega) e^{\mathbf{j}\omega t} d\omega) \\ &= y(-\mathbf{i}h). \end{aligned}$$

A weird function: Fourier series $\underbrace{f_{n}(j\omega)}_{-2\omega_{n}} \underbrace{f_{n}(j\omega)}_{-\omega_{n}} \underbrace{f_{n$

where Fourier coefficients are calculated as

$$c_i = rac{1}{\omega_{
m s}} \int_{-\omega_{
m s}/2}^{\omega_{
m s}/2} Y_h({
m j}\omega) {
m e}^{-{
m j}\omega\,hi} {
m d}\omega.$$

34/5

36/5

A weird function: Fourier series (contd)

Thus, we end up with

$$Y_h(j\omega) = \sum_{i \in \mathbb{Z}} y(-ih) e^{j\omega hi} = \sum_{i \in \mathbb{Z}} y(ih) e^{-j\omega hi}.$$

Compare it with the DTFT of $\bar{y} = S_{idl}y$,

$$ar{Y}(\mathsf{e}^{\mathsf{j} heta}) = \sum_{i\in\mathbb{Z}}ar{y}[i]\mathsf{e}^{-\mathsf{j} heta i} = \sum_{i\in\mathbb{Z}}y(ih)\mathsf{e}^{-\mathsf{j} heta i}.$$

We can therefore say that

$$Y_h(j\omega) = \frac{1}{h} \sum_{i \in \mathbb{Z}} Y(j(\omega + \omega_s i)), \text{ where } \omega_s = \frac{2\pi}{h} \text{ (the sampling frequency)}$$

is the DTFT of the sampled signal \bar{y} modulo scaling, $\theta = \omega h$, i.e.

$$\bar{Y}(\mathrm{e}^{\mathrm{j} heta}) = rac{1}{h}\sum_{i\in\mathbb{Z}}Y(\mathrm{j}(\theta/h+\omega_{\mathrm{s}}i)) =: Y_h(\mathrm{j}\theta/h)$$

Let y(t) = const be measured via a noisy sensor with $n(t) = \sin(2\omega_N t + \phi)$ (their spectra are well separated). But the sampled measured signal

$$\bar{y}[i] = y(ih) + \sin(\phi$$

is offset, with no way to separate y from n (cf. Example in the first section). Such phenomena might have acute consequences on feedback designs that are hinged upon spectra separation between r(t)/d(t) and n(t). The

- spectrum of sampled *n* might interweave with those of r/d,

confusing the controller. And this cannot be corrected by a digital $\overline{C}(z)$.

Instability of the ideal sampler

Let y(t) be a signal with

$$Y(j\omega) = \frac{\sqrt{2}}{\sqrt{\omega^2 + 1}}.$$

By Parseval,

$$E_y = rac{1}{2\pi}\int_{\mathbb{R}}rac{2}{\omega^2+1}\mathrm{d}\omega = 1,$$

so y is unit-energy (so, bounded) signal. Frequency response of $\bar{y} = S_{idl}y$ is

$$\bar{Y}(e^{j\theta}) = \frac{1}{h} \sum_{i \in \mathbb{Z}} \frac{\sqrt{2}}{\sqrt{(\theta/h + 2\pi/h\,i)^2 + 1}} = \sum_{i \in \mathbb{Z}} \frac{\sqrt{2}}{\sqrt{(\theta + 2\pi\,i)^2 + h^2}} = \infty$$

for every $\theta \in [-\pi, \pi]$. This means that \bar{y} is unbounded, i.e. that - the ideal sampler S_{idl} is unstable in the L_2 sense

Remark: $\mathcal{S}_{\rm idl}$ does produce finite-energy discrete signals from analog inputs, whose spectra decay faster than $1/|\omega|$ at high frequencies.

Frequency folding

If $Y(j\omega) = Y(-j\omega) \in \mathbb{R}$, $\forall \omega$, the spectrum of its sampled version, $\overline{Y}(e^{j\theta})$, can be constructed also via the following folding procedure:

Outline

41/52

43/52

Analog redesign: Part I

Discrete signals in time and frequency domains

A/D conversion in frequency domain

 D/A conversion in frequency domain

The Sampling Theorem (Whittaker-Kotel'nikov-Shannon)

The impulsive hold

$$-\frac{\mathrm{ill_{u}}}{u} \mathcal{H}_{\mathrm{imp}} - \frac{\mathrm{ill_{u}}}{\bar{u}}$$

Acts as

$$u(t) = \sum_{i \in \mathbb{Z}} \delta(t - ih) \overline{u}[i]$$

(known as the impulse train). Not quite practical by itself, but is the base for many other holds via the series with LTI filters:

For example,

-
$$\mathcal{H}_{ZOH}$$
 corresponds to $F_{\phi}(s) = \frac{1 - e^{-sh}}{s}$,
whose impulse response is $f_{\phi}(t) = \mathbb{I}(t) - \mathbb{I}(t-h) = __{0-h-t}^{1}$ (so it is FIR).

Just in two steps, again:

- 1. apply the analysis above to derive $U_{it}(j\omega)$
- 2. filter u_{it} by the LTI F_{ϕ} to end up with

$$U(j\omega) = F_{\phi}(j\omega)U_{it}(j\omega) = \frac{1 - e^{-j\omega h}}{j\omega}\overline{U}(e^{j\omega h})$$

Note that

$$|F_{\phi}(j\omega)| = \frac{h}{\frac{1}{\sqrt{2}h}} \int_{0}^{h} \frac{1}{\frac{1}{\sqrt{2}h}} \int_{0}^{0} \frac{1}{\frac{1}{\sqrt{2}h}} \frac{1}{\frac{1}{\sqrt{2}h}} \int_{0}^{\infty} \frac{1}{\frac{1}{\sqrt{2}h}} \frac{1}{\sqrt{2}h} \int_{0}^{\infty} \frac{1}{\sqrt{2}h} \frac{1}{\sqrt{2}h} \int_{0}^{\infty} \frac{1}{\sqrt{2}h$$

so this F_{ϕ} is a low-pass filter, whose (normalized) bandwidth $\omega_{\rm b} \approx 0.886 \omega_{\rm N}$.

47/5

Spectrum of signals reconstructed by \mathcal{H}_{imp}

$$\underbrace{\mathcal{H}_{\mathrm{inp}}}_{u} \underbrace{\mathcal{H}_{\mathrm{inp}}}_{u} \underbrace{\mathcal{H}_{\mathrm{inp}}}_{u} \underbrace{\mathcal{H}_{\mathrm{inp}}}_{\overline{u}} \underbrace{\mathcal{H}_{\mathrm{inp}}}_{\overline{u}} \underbrace{\mathcal{H}_{\mathrm{inp}}}_{\overline{u}} \underbrace{\mathcal{H}_{\mathrm{inp}}}_{\overline{u}}$$

The Fourier transform of this u(t) is

$$U(j\omega) = \int_{-\infty}^{\infty} u(t) e^{-j\omega t} dt = \int_{-\infty}^{\infty} \sum_{i \in \mathbb{Z}} \delta(t - ih) \bar{u}[i] e^{-j\omega t} dt$$
$$= \sum_{i \in \mathbb{Z}} \int_{-\infty}^{\infty} \delta(t - ih) e^{-j\omega t} dt \bar{u}[i] = \sum_{i \in \mathbb{Z}} \bar{u}[i] e^{-j(\omega h)i}$$
$$= \bar{U}(e^{j\omega h}) = \bar{U}(e^{j\theta})|_{\theta = \omega h}.$$

Because $\overline{U}(e^{j\omega h})$ is a $(2\pi/h)$ -periodic function of ω ,

 $-\mathcal{H}_{imp}$ merely clones the spectrum of \bar{u} ,

whose frequency θ -axis in $[-\pi, \pi]$ is scaled to fit the ω -axis in $[-\omega_N, \omega_N]$.

Spectrum of sampled bandlimited signal

An analog signal y(t) is said to be bandlimited if its spectrum, $Y(j\omega)$, has support in $[-\omega_b, \omega_b]$ for some $\omega_b > 0$ (bandwidth), like

$$Y(j\omega) = \int_{-2\omega_{s}}^{Y(j\omega)} \int_{-\omega_{b}}^{Y(j\omega)} \int_{-\omega_{b}}^{\varphi(j\omega)} \int_$$

If $\omega_{\rm b} \leq \omega_{\rm N}$, shifted $Y(j(\omega + \omega_{\rm s}i))$ are mutually non-overlapping, so that

and there is no frequency blending in $\bar{Y}(e^{j\omega h})$, i.e. no information is lost. In fact, $\bar{Y}(e^{j\omega h}) = \frac{1}{h}Y(j\omega)$ for every $\omega \in [-\omega_N, \omega_N]$ and we may expect that y is reconstructable from \bar{y} .

The Sampling Theorem

Theorem (Whittaker-Kotel'nikov-Shannon)

Let y(t) be analog bandlimited signal with bandwidth ω_b . If $\omega_b \leq \omega_N$, y(t) can be perfectly reconstructed from its sampled measurements $\bar{y}[i] = y(ih)$ via the (non-causal) sinc-interpolator

$$y(t) = \sum_{i \in \mathbb{Z}} \operatorname{sinc}_h(t - ih)y(ih).$$

The sinc-interpolator acts as

How to reconstruct bandlimited signal

Let y(t) be bandlimited, with $\omega_b \leq \omega_N$. Then $Y(j\omega) = h\bar{Y}(e^{j\omega h})$ and

$$y(t) = \frac{1}{2\pi} \int_{\mathbb{R}} Y(j\omega) e^{j\omega t} d\omega$$

$$= \frac{h}{2\pi} \int_{-\omega_{N}}^{\omega_{N}} \bar{Y}(e^{j\omega h}) e^{j\omega t} d\omega = \frac{h}{2\pi} \int_{-\omega_{N}}^{\omega_{N}} \sum_{i \in \mathbb{Z}} y(ih) e^{-j\omega hi} e^{j\omega t} d\omega$$

$$= \sum_{i \in \mathbb{Z}} y(ih) \frac{1}{2\omega_{N}} \int_{-\omega_{N}}^{\omega_{N}} e^{j\omega(t-ih)} d\omega = \sum_{i \in \mathbb{Z}} y(ih) \frac{1}{2\omega_{N}} \frac{e^{j\omega(t-ih)}}{j(t-ih)} \Big|_{-\omega_{N}}^{\omega_{N}}$$

$$= \sum_{i \in \mathbb{Z}} y(ih) \frac{e^{j\omega_{N}(t-ih)} - e^{-j\omega_{N}(t-ih)}}{2j\omega_{N}(t-ih)} = \sum_{i \in \mathbb{Z}} y(ih) \frac{\sin(\omega_{N}(t-ih))}{\omega_{N}(t-ih)}$$

$$= \sum_{i \in \mathbb{Z}} \operatorname{sinc}_{h}(t-ih)y(ih)$$

where $\operatorname{sinc}_{h}(t) := \frac{\sin(\omega_{N}t)}{\omega_{N}t} = \underbrace{\int_{h=0}^{1} \frac{1}{h} \underbrace{\int_{h=0}^{1} \frac{1}{h}}_{h=0} \underbrace{\int_{h=0}^{1} \frac{1}{h} \underbrace{\int_{h=0}^{1} \frac{1}{h}}_{h=0} \underbrace{$

sinc-interpolator in the frequency domain

Readily seen that

$$y(t) = \sum_{i \in \mathbb{Z}} \operatorname{sinc}_h(t - ih)y(ih) = \int_{-\infty}^{\infty} \operatorname{sinc}_h(t - s)y_{it}(s)ds$$

where the impulse train $y_{it}(t) = \sum_{i \in \mathbb{Z}} \delta(t - ih) \bar{y}[i]$. Thus, we have

$$-\underbrace{F_{\phi}}_{y_{\text{it}}} \underbrace{III_{\eta p^{\text{stits}},\eta p^{$$

where

$$F_{\phi}(j\omega) = \mathfrak{F}\{\operatorname{sinc}_{h}\} = h(\mathfrak{1}(\omega + \omega_{N}) - \mathfrak{1}(\omega - \omega_{N})) = \int_{0}^{h} \prod_{\omega_{N}} \frac{1}{\omega_{N}} d\omega_{N}$$

is the ideal low-pass filter with the bandwidth ω_N . This is intuitive (why?).