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Three approaches to sampled-data control design

digital design

(do your favorite analog design first, then discretize the resulting controller)



Outline

Analog redesign: Part |

Discrete signals in time and frequency domains

A/D conversion in frequency domain

D/A conversion in frequency domain

The Sampling Theorem (Whittaker-Kotel nikov-Shannon)
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Analog redesign: Part |

The redesign problem

n

Starting point:
— “good” analog controller C (designed by whatever method)
Goal:
— find C such that HCS =~ C
(we consider § = Sigi, H = Hzon, and periodic sampling with given h > 0).
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Discrete transfer functions

Continuous-time systems

Discrete-time systems

Laplace transform

s is the derivative in the time domain
Left-half plane in the s-plane :

Jw-axis
Static gain is G(s)|s=0 = G(0)

Integral action: pole at s =0

Z-transform

z is the shift in the time domain
: Unit disk in the z-plane

Unit circle
Static gain is G(z)|,=1 = G(1)

Integral action: pole at z=1
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Choice of C(z)
Philosophy is to

— imitate C(s) in low-frequency and crossover ranges.

Often based on numerical differentiation rules, like

ooy X(ih+h)—x(ih) — z—1
x(ih) = p = s~ —
ooy x(ih) —x(ih—h) _z—1
x(ih) ~ P = SN
Tustinl: x(ih + h) + x(ih) - x(ih 4+ h) — x(ih) e em 2z-1
2 h hz+1

making sense if h is “small enough.”

!MATLAB: ¢2d(C,h, *tustin’), where C is a continuous-time system.
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Choice of C(z)
Philosophy is to

— imitate C(s) in low-frequency and crossover ranges.
Often based on numerical differentiation rules, like

ooy X(ih+h)—x(ih) — z—1
x(ih) =~ - = s~ —
L x(ih) — x(ih — h) z—1
h) ~ —_— ~
x(ih) P s o
Tustinl: x(ih + h) + x(ih) - x(ih 4+ h) — x(ih) e em 2z-1
2 h hz+1

making sense if h is “small enough.”

Example
If C(s) =1/(s+1), then
E(z) = C(5)) 2 o1 ! hiz +1)

s==%

ien 2/h-(z—1)/(z+1)+1 (h+1l)z+h—1

!MATLAB: ¢2d(C,h, *tustin’), where C is a continuous-time system.
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Example: DC motor

A DC motor from Lecture 1, controlled in closed loop

Requirements:
— closed-loop stability (of course)
— zero steady-state error for a step in r always holds
— zero steady-state error for a step in d integrator in C(s)

good stability margins
— ¢ =~ 2[rad/sec]
Design:

— LQG loop shaping, with a Pl weight W (like in Lecture 10)
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Example: analog design
Weight:
1
W(s)=506(1+ g)
Controller:

B _ 23.081(s + 2.075)(s + 0.5346)
C(s) = W()G(8) = =26 1555 + 17.44)

(a pole of C,(s) cancels the zero of W(s) at s = 1). The actual crossover
is w. = 1.4248 and the closed-loop bandwidth is wp, = 2.8155.
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Example: analog design (contd)

401

Open-Loop Gain (dB)
B

-270 -180 -141.2
Open-Loop Phase (deg)

0 T T T

107! 10 10!
Frequency, w [rad/sec]

-80.6

10° 10! 10%
Frequency, w [rad/sec]

10° 10! 10
Frequency, w [rad/sec]
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Example: controller discretization

Using Tustin, the discretized controllers are
~0.11337(z + 1)(z — 0.9795)(z — 0.9947)

h=0.01: C(z) = (z — 1)(22 — 1.939z + 0.9403)
b 0: Cz) — 298777z + 1)(z — 0812)(z — 0.9479)
: (z — 1)(22 — 1.415z + 0.5445)
Both

— preserve integral actions (pole at s =0 — pole at z = 1)

which is a general property of the Tustin transformation.
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Example: d(t) = 1(t) and n(t) =0
Responses with h = 0.01:

T T T T T 0 T T T T
03 —— Continuous-time controller b —— Continuous-time controller
—— Sampled-data controller, h = 0.01 —— Sampled-data controller, h = 0.01
= El
: 3
El B -1p
= 3
= K
0 o
-1.43
0.1k . .
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Time (sec) Time (sec)

sampled-data response ~~ analog response

4

adequate sampling rate
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Example: d(t) = 1(t) and n(t) =0

Now the same with h = 0.1:

0.32F
0.3

—— Continuous-time controller 1
—— Sampled-data controller, h = 0.1

Plant output, y

0 1 2 3 4 5 6 7
Time (sec)

—— Continuous-time controller
—— Sampled-data controller, h = 0.1

Time (sec)

sampled-data response starts getting worse than analog response

sampling rate starts to become problematic

(further increase of h eventually results in an unstable closed-loop system).
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Example: d(t) = 1(t) and n(t) = sin(20zt + 0.1)
Responses with h = 0.01:

031 —— Continuous-time controller 1 s 0637
—— Sampled-data controller, h = 0.01 %
— H
= 2. H
= g
H e
& g4
g E
= 2
E g
7
SIS £
g
3
3
]
@
01k . . . . . . o SL3TE . .
0 1 2 3 4 5 6 7 6.9 7 71
Time (sec) Time (sec)

sampled-data response ~~ analog response

4

adequate sampling rate
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Example: d(t) = 1(t) and n(t) = sin(20zt + 0.1)

Now the same with h = 0.1:

031 —— Continuous-time controller 1 s 0637 1

—— Sampled-data controller, h = 0.1 %
= B
= a
=018 g
=l =
2 £

E g !
5 8
= 2
E 2
~ ?
0 &
s
3
]
@

0.1 : T . .
0 1 2 3 4 5 6 7 6.9 7 71
Time (sec) Time (sec)
Oops,

— sampled-data response is qualitatively different from analog response
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Example: d(t) = 1(t) and n(t) = sin(20zt + 0.1)

Now the same with h = 0.1:

03} —— Continuous-time controller b . 063 b
—— Sampled-data controller, h = 0.1
018} i .
-1
SR v ‘ v

0 1 2 3 4 5 6 7 6.9 7 7.1
Time (sec) Time (sec)

Plant output, y(t)
Steady-state control input, u(t

Oops,

— sampled-data response is qualitatively different from analog response

(steady-state error is nonzero, the harmonic of measurement noise disappears)

Why? It seems that we lack understanding of what's going on here. ..
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Sampled-data controllers
Consider

A S yp— “NTJ.MTNHTM A W\/

(dubbed sample-and-hold circuit if C = 1). Our goal below is to understand
the relation between Y (jw) and U(jw). That might not be easy because

— sampled-data controllers are not time invariant
with all consequences of that:
— no convolution representation
— no transfer function / frequency response as multiplication

— harmonic inputs might not remain harmonic at the output



Discrete signals

Outline

Discrete signals in time and frequency domains



Signals

reflect evolving information:

4.2469 | € to I representative exchange rates in Feb—Mar, 2020

-y meWHWHMHWH

7 91113151 192 23252 293133353 39 41 3 547 49 51 53 55 57 59 61
Apr1

Mar 15



Discrete signals

Signals

reflect evolving information:

4.2469 | € to I representative exchange rates in Feb—Mar, 2020

eIl 0y

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
1 Feb 15 Mar 15 Apr 1

Fel

Mathematically, signals are
— functions of independent variables, like time
— discrete signals are functions Z — R”

— denoted as f[t] (square brackets differentiate from analog signals)



Discrete signals

Examples of discrete signals

Some are discretized versions of analog signals:

Campus temperatures on Feb 9, 2020 afternoon (coldest in 9"wn)

iizZEOMHUHHUHHlU[HUH[[UJH[UjmUZH[[USHTrTJJTTTTGTOTTHTJGTMT?TZ

Some are intrinsically discrete:

Israeli legislative elections turnout
86.88%

ssvss%MHHHHHHMMMHM

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1049 1951 1955 1950 1961 1965 1969 1073 1977 1981 1984 1988 1992 1996 1999 2003 2006 2009 2013 2015 2019 2019 2020 2021



Discrete signals

Basic discrete signals

— pulse: f[t] =6[t] = T
~ step: f[t] = 1[f] = iR TARRRRTARRRRRA]

le ..... if [A| <1
— exponential: f[t] = A'1[t] =

] -
— ramp: f[t] = t1[t] = ceeerzenntt T

— sinusoid?: f[t] = sin[wt + ¢] = h‘lml Tmm‘l“l 'TmT. A

o
—
—]
Pu—
pa—
—

2Periodic, not necessarily with T = 27/w, only if ® = 27« for some o € Q (rational).



Discrete signals

Energy and power
Energy of signal f[t] is the quantity
Er= > I[P
t=—00

It can be viewed as a

— measure of size of f for a decaying f or f having a finite support

Power of signal f[t] is defined as averaged energy per unit time:

M

1
Pr=li Flt]1?
f MTOO2M+1t_ZM‘ g

It can be viewed as a

— measure of size of f for a persistent f



Discrete signals

Discrete-time harmonic signals

where 6 is the frequency, |y| is the amplitude, and ¢ = argy is the initial
phase, is called the discrete harmonic signal. By Euler’'s formula,

Re(yel?) = |y|cos[0t +¢] and Im(yel®t) = |y|sin[0t + ¢].

Hence, the discrete harmonic signal may be thought of as a plain sinusoid.



Discrete signals

Discrete-time harmonic signals

where 6 is the frequency, |y| is the amplitude, and ¢ = argy is the initial
phase, is called the discrete harmonic signal. By Euler’'s formula,

Re(yel?) = |y|cos[0t +¢] and Im(yel®t) = |y|sin[0t + ¢].

Hence, the discrete harmonic signal may be thought of as a plain sinusoid.

Two qualitative deviations from the continuous-time case:
— yel®t might not be periodic (if 277/6 is irrational);
— because
ej(9+2ni)t _ ejOtej2zrit _ ejet, VieZ

we may only consider 6 € [—m, 7] and the highest frequency is |6| = 7.



Discrete signals

Pace of harmonic signals

The difference operator A, for which
(AF)[t] := [t + 1] — f[t],

may be viewed as the discrete counterpart of the derivative. A size of Af is
then a measure of the pace of f.

If £[t] = yelt, then

. . ]
|f[t+1]—f[t]|:|ye19t(e19—1)\:|y]\/2—2cos = Sy 4
-7 T 0

Because this is a strictly increasing function of |6| € [0, 7], we conclude that
— yel®it s faster than yel®t if |6;] > |6

provided both 6; and 65 are in [—x, ]). Thus, the fastest discrete harmonic
signal is .
yetint = y (1)



Discrete signals

Discrete-time Fourier transform (DTFT)

Given f : Z — ", its discrete-time Fourier transform

F{f} = F(el?):= > fle]e ",

teZ

for the angular frequency 6 € [—x, ] (in radians per step).

If the range of 6 is extended to the whole R, then F(e?) is 27-periodic as
a function of 6, F(el(0+27)) = F(ef).



Discrete signals

Discrete-time Fourier transform (DTFT)

Given f : Z — ", its discrete-time Fourier transform

F{f} = F(el?):= > fle]e ",

teZ

for the angular frequency 6 € [—, 7] (in radians per step).

If the range of 6 is extended to the whole R, then F(e?) is 27-periodic as
a function of 6, F(el(0+27)) = F(ef).

Strictly speaking, §{f} exists as a function of 6 only if

— Y If[t]] < oo (or Ef < o0, if a weaker convergence is used).



Discrete signals

Discrete-time Fourier transform (DTFT)

Given f : Z — ", its discrete-time Fourier transform

F{f} = F(el?):= > fle]e ",

teZ
for the angular frequency 6 € [—, 7] (in radians per step).

If the range of 6 is extended to the whole R, then F(e?) is 27-periodic as
a function of 6, F(el(0+27)) = F(ef).

Strictly speaking, §{f} exists as a function of 6 only if

— Y If[t]] < oo (or Ef < o0, if a weaker convergence is used).

Inverse DTFT: 1 /7 o
FUFY =f[t] = 2/ F(el?)eltdo.
T

—TT



Discrete signals

DTFT: interpretation

It follows from
L /ﬂ F(e?)e?'do
flt] = .
=5, | FEe

that f[t] is a superposition of elementary harmonic signals e®t. The signal
— F(el) is the frequency-domain representation (or spectrum) of f[t].
F(ei%) quantifies the contribution of el to f[t].

Hence, spectrum offers a

— viewpoint on f, where fast and slow components are separated.



Discrete signals

DTFT: interpretation (contd)

“slow” f[t] (Ear = 0.0188): “fast” f[t] (Epnr = 0.425):

flt]

o]

ft]

[ .

S I



Discrete signals

DTFT: interpretation (contd)

“slow” f[t] (Ear = 0.0188):

“fast” f[t] (Epnr = 0.425):

fld flt]
...-*TTI{ {ITT*-.. .t I I 1.
Sl
i (i
Iy \F(eﬂ) /




Discrete signals

DTFTs of some discrete signals

Assuming 6 € [—m, ],

1] F(ei?) condition
L e — 1
. 1
1] = eI L o)
t — WJ_T_T_T_T_Y_V_Lu #
elfot — %‘y\_; 278(0 — 6o) bo € [~ 7]



Discrete signals

Some properties of DTFT (assuming transforms exist)

Linearity: for all constants o1 and ay,
Sloafi +oh} = a1§{h} + 2S{h},
Time shift: if gf[t] := f[t + 1], then for every t € Z,
§la°f) = 75 (f}
Time reversal: if g[t] = f[—t], then

F{e} (&) = F{FHe ™).



Discrete signals

Some properties of DTFT (assuming transforms exist)

Linearity: for all constants o1 and ay,
$loafy + aoho} = a1F{fi} + w2F{fa},
Time shift: if gf[t] := f[t + 1], then for every t € Z,
§la ) = P75 {r)
Time reversal: if g[t] = f[—t], then
F{e} () = F{fHe ).
Convolution: for all f and g,
5{f g}t =3{f}5{e}

where (f x g)[t] := >z f[t — slgls] = 2 ez flslglt — .



Discrete signals

Parseval's theorem

If f[t] is a finite energy signal, then

E —l/ﬂ\F(eje)FdG — L
= o _x o

i.e. the energy of f[t] equals that of its DTFT F(ei?), modulo the factor
1/(27), exactly like in the continuous-time case.

Implications:
— |F(ei?)| shows the contribution of the harmonic it to Ef
— reduction any parts of |F(el)| reduces the power of f[t]
— harmonics with highest |F(e?)| dominate the behavior of f[t]



Discrete signals

Discrete systems in time and frequency domains

Any LTI system y = Gu can be described as

vt = (g )t = 3 glt - slulsl = 3" glslult o]

seZ seZ

convolution form , where t) is the ilnpulse response of G. ence,
( g H
Y(eje) = G(GJG)U(EJQ)

where
— G(e%) = F{g} the frequency response of G
(and G(e1) = G(2)|,_ui6)-



Discrete signals

Discrete systems in time and frequency domains

Any LTI system y = Gu can be described as

vt = (g xu)lt] = 3 glt — sluls] = > glslult —

seZ seZ

convolution form , where t) is the ilnpulse response of G. ence,
( g H
Y(eje) = G(EJO)U(EJO)

where
— G(e%) = F{g} the frequency response of G
(and G(e?) = G(2)|,_.i¢). Because

ult] =t = (Gu)[t] = g[s]el’ ) = G(el?)el?
seZ
at each frequency 0 € [—7, 7]

— G(ej'g) characterizes how the harmonic ei?t processed by the system G.



A/D in frequency domain

Outline

A/D conversion in frequency domain



A/D in frequency domain

What do we lose by sampling analog signals?
1“”HJHML'MHT"l /\/WW/\\/
-Sidl

From the time-domain relation
ylil = y(ih)
we know that all intersample information about y(t) is lost. But

— to what extent is it important (if at all) ?

To answer this kind of questions, frequency-domain analysis is indispensable.



A/D in frequency domain

Key question
How can we squeeze the spectrum of a continuous-time signal y(t),

Y (je)

Y(jw) =

Do, —, 0 o, 20, @

(with @ € R) into the spectrum of its sampled version y[i] = y(ih),

V()

D
Y (elf) =

(with 0 € [, 7]) 7



A/D in frequency domain

A weird function

Consider an analog signal y(t) with the spectrum Y (jw), e.g.

Y (je)

(i)

where ws := 27/h (in rad/sec). Note that the mapping Y — Y} is linear.



A/D in frequency domain
A weird function: Fourier series

Ya(jw)

OV N\ S

—2ws —ws w5 205 @

As Yp(jw) is ws-periodic, we can bring in its Fourier series expansion
.277-[. . .
= g cielws'? = E ci eI
icz icz

where Fourier coefficients are calculated as

w5/2
= / W(jw)e M dg.
ws/2



A/D in frequency domain

A weird function: Fourier coefficients

With some extra efforts:

kez / —ws/2
1 ws/2+wsk L
= — / Y (jo)e M dw
27 kez ) —ws/2+wsk
1

- 1/ :
Y(jo)e ®Mdw  (remember, y(t) = / Y (jw)e!®tdw)
R Jr

:E 27

= y(=ih).



A/D in frequency domain

A weird function: Fourier series (contd)
Thus, we end up with
Yi(jw) = Zy eJ“’h’ Zy(ih)e*j‘“h".
icz icz
Compare it with the DTFT of y = Siqiy,

V() = "ylile™® =" y(in)e .

i€eZ i€eZ



A/D in frequency domain

A weird function: Fourier series (contd)
Thus, we end up with
Ya(jo) = > y(—ih)el®" =" y(ih)e H.
ieZ ieZ
Compare it with the DTFT of y = Siqiy,
V() = "ylile™® =" y(in)e .
ieZ ez
We can therefore say that
2
Yi(jw) = Z Y(j(w 4+ wsi)), where ws = TN (the sampling frequency)
IEZ
is the DTFT of the sampled signal y modulo scaling, 0 = wh, i.e.
_ 1
V() = 5 D Y((0/h+ wsi)) = Ya(i0/h).

i€z



A/D in frequency domain

Spectrum of sampled signal

We thus end up with

7 (") v(e)
%
""""""""""" S e T
The frequency
w. VA
oni= g =

is called the Nyquist frequency associated with the sampling period h (it is
measured in rad/sec if h is in sec).



A/D in frequency domain

Spectrum of sampled signal: aliasing

Y (e*h) ¥ (eiooh)

Thus, the spectrum of y at each frequency 8y = wph is a

— blend of analog frequency responses at w; := wg + wsi, Vi € Z.
In other words,

— every discrete frequency 6y € [—m, ] is an alias of all w;, i € Z.

This phenomenon is dubbed aliasing, with respect to the base frequency wyg.



A/D in frequency domain

Spectrum of sampled signal: aliasing

¥ (efoh) ¥ (eiooh)

Thus, the spectrum of y at each frequency 8y = wph is a

— blend of analog frequency responses at w; := wg + wsi, Vi € Z.
In other words,

— every discrete frequency 6y € [, ] is an alias of all w;, i € Z.

This phenomenon is dubbed aliasing, with respect to the base frequency wyg.

Aliasing means information loss, we can no longer tell Y(jow;) from Y (jw;)
in their effect on Y (el%) (unless we know their dependencies).



A/D in frequency domain
Aliasing: example

Consider signals yi(t) = sin(%t) sampled at h = 1:




A/D in frequency domain
Aliasing: example

Consider signals yo(t) = sin(—7t) sampled at h = 1:




A/D in frequency domain

Aliasing: example

1£1

Consider signals y1(t) = sin(%t) and y»(t) = sin(—Ft) sampled at h = 1:

Sampling frequency is ws = 27, so that

T T .
— both wg = 1 and w_1 = 7 = wo — ws have aliases at 6y = wq

and, consequently, produce the same sampled signal.



A/D in frequency domain

Aliasing: non-control examples

Wagon-wheel effect: ‘/ @ (shot with 12 FPS frame rate)



A/D in frequency domain

Aliasing: non-control examples

Wagon-wheel effect: ‘/ @ (shot with 12 FPS frame rate)

.y ;- downsampling
Moiré pattern: |}




A/D in frequency domain

Aliasing: control implications

L L fﬁ MWW\A

- v L&J Y "T y

Let y(t) = const be measured via a noisy sensor with n(t) = sin(2wyt + ¢)
(their spectra are well separated). But the sampled measured signal

ylil = y(ih) + sin(¢)

is offset, with no way to separate y from n (cf. Example in the first section).



A/D in frequency domain

Aliasing: control implications

L L ﬁ MWW\A

- v &j Y "T y

Let y(t) = const be measured via a noisy sensor with n(t) = sin(2wyt + ¢)
(their spectra are well separated). But the sampled measured signal

ylil = y(ih) + sin(¢)

is offset, with no way to separate y from n (cf. Example in the first section).
Such phenomena might have acute consequences on feedback designs that
are hinged upon spectra separation between r(t)/d(t) and n(t). The

— spectrum of sampled n might interweave with those of r/d,
confusing the controller. And this cannot be corrected by a digital C(z).



A/D in frequency domain

Frequency folding

If Y(jw) = Y(—jw) € R, Yo, the spectrum of its sampled version, Y (el?),
can be constructed also via the following folding procedure:

Y (j) TN e

/ -~ Cu ¥ (o)
Y (jo_ ’ .
Y(io_») // \\ Y (w1) P ?/(J‘”*l)

w_> w_1 0 @ [ %) 0 6 =w

0 o 20y 3wn lowl



A/D in frequency domain

Instability of the ideal sampler

Let y(t) be a signal with

V2

w241

1 2
E,=— | - do=1,
Y 27t/mw2+1w

so y is unit-energy (so, bounded) signal. Frequency response of y = Siqy is

Y(jo) =

By Parseval,

5
j0 _
V() Z\/Q/h+2n/h: E\/9+2m TR

i€eZ i€eZ

for every 0 € [—m, ).



A/D in frequency domain

Instability of the ideal sampler

Let y(t) be a signal with

V2
w2+ 1

1 2
E,=— | - do=1,
Y 27t/[Ra)2+1w

so y is unit-energy (so, bounded) signal. Frequency response of y = Siqy is

Y(jo) =

By Parseval,

5
j0 _
V() Z\/Q/h+2n/h: Z\/9+27r1 TR

i€eZ i€eZ

for every 6 € [—m, w]. This means that y is unbounded, i.e. that

— the ideal sampler Siqi is unstable in the Ly sense

Remark: Siqi does produce finite-energy discrete signals from analog inputs, whose spectra
decay faster than 1/|w| at high frequencies.



D/A in frequency domain

Outline

D/A conversion in frequency domain



D/A in frequency domain

The impulsive hold

Acts as

u(t) =Y 8(t — in)ai]
i€eZ

(known as the impulse train).



D/A in frequency domain

The impulsive hold

Acts as
u(t) =Y 8(t — in)ai]
iez
(known as the impulse train). Not quite practical by itself, but is the base
for many other holds via the series with LTI filters:



D/A in frequency domain

The impulsive hold

Acts as

u(t) =Y 8(t — in)ai]

iez
(known as the impulse train). Not quite practical by itself, but is the base
for many other holds via the series with LTI filters:

For example,
1—e™ —sh

(t)—ﬂ(t—h): [ (soitisFIR).

0 h t

— Hzou corresponds to Fy(s) =
) =

whose impulse response is f4(t



D/A in frequency domain

Spectrum of signals reconstructed by Himp

The Fourier transform of this u(t) is

U(jw) = /OO u(t)e @tdt = /OO > 8(t — ih)alile*tdt

B X jez
= Z/ §(t — in)e i®tdtali] = Z a[i]ei(@h)i
i€z v > i€z
= 0" = U(¢)]g=an-



D/A in frequency domain

Spectrum of signals reconstructed by Himp

The Fourier transform of this u(t) is

U(jw) = /OO u(t)e @tdt = /Oo > 8(t — ih)alile*tdt

B X jez
= Z/ §(t — in)e i®tdtali] = Z a[i]ei(@h)i
jez ’ —>® ieZ
= 0(&") = U(e”) g-an-
Because U(el®") is a (27/h)-periodic function of w,

— Himp merely clones the spectrum of i,

whose frequency 6-axis in [—, 7] is scaled to fit the w-axis in [—wy, wy].



D/A in frequency domain

Spectrum of signals reconstructed by H oy

W J].L‘.WMLWL“JW ‘m'm"m"WHW
u o kS

Just in two steps, again:
1. apply the analysis above to derive U(jw)
2. filter u;; by the LTI Fy to end up with
1— e—ja)h

U(jw) = Fp(jo) Ui (jw) = Ta(ejwh)

Fatioll = TN

0 Wy 2wy

Note that

so this Fy is a low-pass filter, whose (normalized) bandwidth w}, ~ 0.886wy.



The Sampling Theorem

Outline

The Sampling Theorem (Whittaker-Kotel nikov-Shannon)



The Sampling Theorem

Spectrum of sampled bandlimited signal

An analog signal y(t) is said to be bandlimited if its spectrum, Y (jw), has
support in [—wp, wp] for some wy, > 0 (bandwidth), like

Y (jo)

Y(jo) =

—2w; —ws —wy Wy [o8 205 »

If w, < wy, shifted Y(j(w + wsi)) are mutually non-overlapping, so that

Y (eloh)

V(ej“’h) =

—wy ®

and there is no frequency blending in Y(el®"), i.e. no information is lost. In
fact, Y (el®") = 1 Y(jw) for every w € [~wy, wy] and we may expect that y
is reconstructable from y.



The Sampling Theorem

How to reconstruct bandlimited signal
Let y(t) be bandlimited, with wp, < wy. Then Y (jo) = hY (ei®") and
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where sincy(t) := sin(wyt) _ m
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The Sampling Theorem

The Sampling Theorem

Theorem (Whittaker-Kotel'nikov-Shannon)

Let y(t) be analog bandlimited signal with bandwidth wp. If wp < wy, y(t)
can be perfectly reconstructed from its sampled measurements y[i] = y(ih)
via the (non-causal) sinc-interpolator

y(t) = sincy(t — ih)y(ih).

i€eZ
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The sinc-interpolator acts as
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The Sampling Theorem

sinc-interpolator in the frequency domain

Readily seen that

(e}

y(t) = sincy(t — ih)y(ih) :/ sincy(t — s)yie(s)ds
icZ >
where the impulse train yit(t) = > ;.7 8(t — ih)y[i]. Thus, we have
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where

Faljo) = §{sinca} = h(1(w + on) — W@ — on)) =

0 Wy ®

is the ideal low-pass filter with the bandwidth wy. This is intuitive (why?).
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