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So far on state-space design

State feedback:

− pole placement rationale (Ackermann)

− optimization-based rationale (LQR)

State observer:

− pole placement rationale (Luenberger)

− optimization-based rationale (Kalman)

Output feedback:

− just combine state feedback with state observer

Common assumption:

− only initial conditions are uncertain
(i.e. no disturbances / noised beyond impulses or other white signals)
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Outline

Disturbance observers

Observer-based feedback with disturbance observers

Accounting for colored noise

Sampled-data systems
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Idea

Consider state reconstruction for{
ẋ(t) = Ax(t) + B(u(t) + d(t)); x(0) = x0;

y(t) = Cx(t);

If d(t)

− measurable, �̇(t) = AL�(t) and hence �(t) → 0

− unmeasurable, �̇(t) = AL�(t) + Bd(t) and hence �(t) ̸→ 0 in general

To overcome this problem, we may try to

− observe not only x(t) but also d(t),

which makes sense

− only if some information about d(t) available

(like the observation of x(t) makes sense only if a state model is available).

4/44



Disturbance generators

Possible model of (unmeasurable) d(t):{
ẋd(t) = Adxd(t); xd(0) = xd;0;

d(t) = Cdxd(t);

for known Ad and Cd (reflect our knowledge about d(t)) and unknown xd;0
(reflects uncertainty in d(t)). This system

− called disturbance generator

and typically Ad has all its eigenvalues on the j!-axis (persistent signals).
This model describes the family of signals, whose Laplace transforms

D(s) = Cd(sI − Ad)
−1xd;0

for some unknown xd;0.
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Examples of disturbance generators: step

Let
d(t) = d0 · 1(t)

for some unknown d0. Laplace transform of this signal is

D(s) =
d0
s
;

which corresponds to the following signal generator:{
ẋd(t) = 0 · xd(t); xd(0) = d0;

d(t) = 1 · xd(t);

i.e. with Ad = 0 and Cd = 1.
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Examples of disturbance generators: ramp

Let
d(t) = (d0 + dr · t) · 1(t)

for some unknown d0 and dr . Laplace transform of this signal is

D(s) =
d0s + dr

s2
;

which corresponds to the following signal generator:ẋd(t) =

[
0 1
0 0

]
xd(t); xd(0) =

[
d0
dr

]
;

d(t) =
[
1 0

]
xd(t);

i.e. with Ad =

[
0 1
0 0

]
and Cd =

[
1 0

]
.
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Examples of disturbance generators: harmonic signal

Let
d(t) = a sin(!t + �) · 1(t)

for some known ! and unknown a and �. Laplace transform of this signal is

D(s) =
a sin(�) s + a! cos(�)

s2 + !2
;

which corresponds to the following signal generator1:ẋd(t) =

[
0 !

−! 0

]
xd(t); xd(0) =

[
sin(�)
cos(�)

]
a;

d(t) =
[
1 0

]
xd(t);

i.e. with Ad =

[
0 !

−! 0

]
and Cd =

[
1 0

]
.

1Take the observer form and apply the similarity transformation with T =
[
1 0
0 !

]
.
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Combined system: plant + disturbance

Now we have two systems (assume minimality of both):{
ẋ(t) = Ax(t) + B(u(t) + d(t))

y(t) = Cx(t)
and

{
ẋd(t) = Adxd(t)

d(t) = Cdxd(t)

with corresponding initial conditions. This can be written as

Pa :

 �̇(t) =
[
A BCd

0 Ad

]
�(t) +

[
B
0

]
u(t); �(0) =

[
x0
xd;0

]
y(t) =

[
C 0

]
�(t);

with � ··=
[

x
xd

]
, with uncontrollable modes of Ad . Important is that

− the combined system has no unmeasurable inputs,

only unknown initial conditions. Hence, a Luenberger observer can be built
to asymptotically estimate both x and xd , if the realization is detectable.
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Combined system: observability

Consider the series

G (s) = C (sI − A)−1B · Cd(sI − Ad)
−1:

We know (Lecture 6) that its realization is

G :

 �̇(t) =
[
A BCd

0 Ad

]
�(t) +

[
0
I

]
u(t);

y(t) =
[
C 0

]
�(t);

and (Lecture 7) that it remains observable iff

− no modes of Ad are canceled by zeros of C (sI − A)−1B.

Because G and Pa have the same “A” and “C” parameters, we have that

− Pa is observable iff the plant has no zeros in spec(Ad),

which is reasonable.
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Observer for combined system

Straightforward use of known formulae:

˙̂
�(t) =

[
A BCd

0 Ad

]
�̂(t) +

[
B
0

]
u(t)−

[
L
Ld

] (
y(t)−

[
C 0

]
�̂(t)

)
=

([
A BCd

0 Ad

]
+

[
L
Ld

] [
C 0

])
�̂(t) +

[
B
0

]
u(t)−

[
L
Ld

]
y(t)

with �̂(0) = �̂0. In this case error �(t) ··= �(t)− �̂(t) satisfies

�̇(t) =

([
A BCd

0 Ad

]
+

[
L
Ld

] [
C 0

])
�(t); �(0) = �0 − �̂0;

and asymptotically converges to zero if L and Ld are chosen properly.

Because � =
[

x
xd

]
,

− �̂ reconstructs both x (plant state) and xd (disturbance state).
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Example

Return to the two-tank example from Lecture 8:

R1 R2

q

h1

h2

whose (linearized) model is[
ḣ1(t)

ḣ2(t)

]
=

[
−1 1
1 −2

][
h1(t)
h2(t)

]
+

[
1
0

]
q(t);

The goal is to

− reconstruct h2(t) from measured h1(t)

despite load disturbances of the form d = d01 for an unknown d0.
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Example (contd)

With q(t) = 0:5(sin(2t) + 1), d(t) = 0:251(t − 4), and

�̂cl(s) = (s2 + 2�!ns + !
2
n)(s + 7) for � = 0:8 and !n = {1; 5}

as the observer characteristic polynomial, we end up with

0 4 5.1 8.4

-0.09

0

0.5

0.75

0 4 5.1 8.4

0

0.25

0.43
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Idea

Consider controller design for{
ẋ(t) = Ax(t) + B(u(t) + d(t)); x(0) = x0;

y(t) = Cx(t);

If both x and d were measurable, we could use

u(t) = Kx(t)− d(t)

to stabilize the system and reject d (the reference signal can be handled by
the 2DOF architecture, so its addition changes nothing).

We know what to do when

− x is not measurable =⇒ observer-based feedback.

What if we use the same idea with a disturbance observer?
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Controller

Naturally,
˙̂
�(t) =

[
A BCd

0 Ad

]
�̂(t) +

[
B
0

]
u(t)−

[
L
Ld

] (
y(t)−

[
C 0

]
�̂(t)

)
u(t) =

[
K −Cd

]
�̂(t)

The state relation reads

˙̂
�(t) =

([
A BCd

0 Ad

]
+

[
B
0

][
K −Cd

]
+

[
L
Ld

][
C 0

])
�̂(t)−

[
L
Ld

]
y(t)

=

[
A+ BK + LC 0

LdC Ad

]
�̂(t)−

[
L
Ld

]
y(t)

and we end up with the controller

Cy (s) = −
[
K −Cd

](
sI −

[
A+ BK + LC 0

LdC Ad

])−1 [
L
Ld

]
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Closed-loop dynamics

Combining the plant of controller, the closed-loop state ẋ(t)
˙̂x(t)
˙̂xd(t)

 =

 A BK −BCd

−LC A+ BK + LC 0
−LdC LdC Ad

 x(t)
x̂(t)
x̂d(t)

+

 B
0
0

 d(t)

With the standard (by now) trick of replacing x̂ → �x ··= x − x̂ , ẋ(t)
�̇x(t)

− ˙̂xd(t)

 =

 A+ BK −BK BCd

0 A+ LC BCd

0 LdC Ad

 x(t)
�x(t)
−x̂d(t)

+

 B
B
0

 d(t)

which are stable, provided A+ BK and[
A+ LC BCd

LdC Ad

]
=

[
A BCd

0 Ad

]
+

[
L
Ld

] [
C 0

]
are Hurwitz (state feedback and observer dynamics are separated yet again).
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Disturbance response

If d is indeed generated by its model, then
ẋ(t)
�̇x(t)

− ˙̂xd(t)
ẋd(t)

 =


A+ BK −BK BCd BCd

0 A+ LC BCd BCd

0 LdC Ad 0
0 0 0 Ad




x(t)
�x(t)
−x̂d(t)
xd(t)


with some initial conditions. Introducing �d ··= xd − x̂d , these dynamics read

ẋ(t)
�̇x(t)
�̇d(t)

ẋd(t)

 =


A+ BK −BK BCd 0

0 A+ LC BCd 0
0 LdC Ad 0

0 0 0 Ad




x(t)
�x(t)
�d(t)

xd(t)

 ;


x(0)
�x(0)
�d(0)

xd(0)

 = : : :

Therefore,

− x is decoupled from xd =⇒ y = Cx is decoupled from d = Cdxx

meaning perfect asymptotic rejection of disturbances from a given class.
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Controller structure

Returning to

Cy (s) = −
[
K −Cd

](
sI −

[
A+ BK + LC 0

LdC Ad

])−1 [
L
Ld

]
its “A” matrix has all eigenvalues of Ad as its eigenvalues. Moreover, it can
be shown that

− eigenvalues of Ad are always poles of Cy (s)

(to this end we need to prove that all eigenvalues of Ad are both controllable
and observable in the realization above, which is true).

This is a version of the Internal Model Principle, roughly saying that

− disturbance model should be a part of the controller.

We are supposed to know it well for the case of Ad = 0 (integral action) . . .
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Example

For the two-tank example from Lecture 8 use the 2DOF control

h1,opt

qopt

q

d

h1

n

Cy (s)P1(s) -

for the time-optimal

qopt(t) =
t0 tsw tf

qmin

qmax

qss
and h1;opt(t) =

t0 tsw tf

hdes

under given bounds qmin and qmax.

Assuming that d = d01 for an unknown d0, we design an

− observer-based Cy (s) that contains an integral action.
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Example (contd)

With qmin = 0:2, qmax = 2, d(t) = 0:251(t − 4),

�cl(s) = s2 + 2�!ns + !
2
n for � = 0:8 and !n = {1; 2; 4}

as the state-feedback characteristic polynomial (independent of Wd), and

�̂cl(s) = (s2 + 2�!ns + !
2
n)(s + 7) for � = 0:8 and !n = 2

as the observer characteristic polynomial, we end up with

0 0.91 1.52 4 5.47 8.23

0

1

1.16

1.3

0 0.91 1.52 4 5.47 8.23

0

0.25

0.5

2
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Kalman filtering setup

Simple version:{
ẋ(t) = Ax(t) + Bu(t) + Bd(t); x(0) = 0;

y(t) = Cx(t) + n(t);

where d(t) and n(t) are white noise signals with intensities �d and �n.

More general formulation:{
ẋ(t) = Ax(t) + Bu(t) + Bww(t); x(0) = 0;

y(t) = Cx(t) + Dww(t);

where each element of w(t) is a white unit-intensity noise.
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Is white noise assumption realistic?

The white noise assumption might not reflect our knowledge of properties of
d(t) and n(t).

− Low-frequency harmonics typically dominate spectrum of d(t). In this
case, it might be more natural to assume that

|D(!)|2 = Φd(!)

for some Φd(!) ≥ 0 (power spectral density), large at low frequencies
and small at high frequencies (like a2=(!2 + a2), a ̸= 0).

− High-frequency harmonics typically dominate spectrum of n(t). In this
case, it might be more natural to assume that

|N(!)|2 = Φn(!)

for some Φn(!) ≥ 0 (power spectral density), small at low frequencies
and large at high frequencies (like !2=(!2 + a2), a ̸= 0).

Kalman filtering assumptions do not account for such situations explicitly.
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Spectral factorization

Situation is not hopeless though. Fundamental is the following result:

Theorem (spectral factorization)

If Φx(!) ̸≡ 0 is real-rational and such that Φx(!) ≥ 0, then there is Wx(s)
having no poles and zeros in Re s > 0 and satisfying

Φx(!) = Wx(−j!)Wx(j!) = |Wx(j!)|2:

If 0 < Φx(!) <∞, then Wx(s) is stable and minimum-phase and is called
the spectral factor of Φx(!).

Examples:

− Φx(!) =
a2

!2 + a2
=⇒ Wx(s) =

a

s + a
as Φx(!) =

a2

−s2 + a2

∣∣∣
s=j!

− Φx(!) =
!2

!2 + a2
=⇒ Wx(s) =

s

s + a

− Φx(!) =
1

!2
=⇒ Wx(s) =

1

s
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Whitening signals / “colorifying” white noise

If x is such that |X (!)|2 = Φx(!), then the signal

− x̃ ··=
1

Wx(s)
x is white with unit intensity.

Indeed,

|X̃ (!)|2 = |X (!)|2
|Wx(j!)|2

=
Φx(!)

|Wx(j!)|2
≡ 1

Hence, the term “whitening filter” for 1=Wx . Important implication is that

− signal with any spectrum can be generated by white noise

with the use of shaping filter (cf. signal generator for disturbance observer),

x = Wx(s)x̃
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Example: Dryden gusts

A widely used spectral model of the lateral wind turbulence for an aircraft
flying at a (constant) speed V through a frozen turbulence field is

Φv (!) =
�2
v LvV

�

3L2v!
2 + V 2

(L2v!
2 + V 2)2

= ;

where �v and Lv represent turbulence intensity and scale length, resp. As

a21!
2 + a20 = −a21s

2 + a20|s=j! = (−a1s + a0)(a1s + a0)|s=j! ;

we end up with the following spectral factor:

Wv (s) = �v

√
LvV

�

√
3Lv s + V

(Lv s + V )2
;

which is an LPF. Similar models exist for longitudinal and vertical gusts.
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Colorifying disturbances

Let shaping filter for d , Wd(s), have (minimal) state space realization{
ẋd(t) = Adxd(t) + Bdwd(t)

d(t) = Cdxd(t)

where wd is white. State-space realization of plant and filter is then
[
ẋ(t)
ẋd(t)

]
=

[
A BCd

0 Ad

] [
x(t)
xd(t)

]
+

[
B
0

]
u(t) +

[
0
Bd

]
wd(t)

y(t) =
[
C 0

] [ x(t)
xd(t)

]
+ n(t)

This fits the general Kalman filtering formulation under

[
A Bw

C Dw

]
=

 A BCd 0 0
0 Ad Bd

√
�wd

0

C Cn 0
√
�n

 and w(t) =

[√
1=�wd

wd(t)√
1=�n n(t)

]
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Colorifying measurement noise

Now, let shaping filter for n, Wn(s), have (minimal) state space realization{
ẋn(t) = Anxn(t) + Bnwn(t)

n(t) = Cnxn(t) + Dnwn(t)

where wn is white. Joint state-space realization:
[
ẋ(t)
ẋn(t)

]
=

[
A 0
0 An

] [
x(t)
xn(t)

]
+

[
B
0

]
u(t) +

[
B 0
0 Bn

] [
d(t)
wn(t)

]
y(t) =

[
C Cn

] [ x(t)
xn(t)

]
+
[
0 Dn

] [ d(t)
wn(t)

]
This fits the general Kalman filtering formulation under

[
A Bw

C Dw

]
=

 A 0 B
√
�d 0

0 An 0 Bn
√
�wn

C Cn 0 Dn
√
�wn

 and w(t) =

[ √
1=�d d(t)√
1=�wn wn(t)

]
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Example 1: high-frequency measurement noise

Consider againẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) +

[
0
1

]
d(t)

y(t) =
[
1 0

]
x(t) + n(t);

and now assume that n is a high-pass signal with the power spectral density

Φn(!) =
!2

!2 + 104
=

100

=
−j!

−j! + 100

j!

j! + 100
;

so that Wn(s) = s=(s + 100) or, equivalently,{
ẋn(t) = −100xn(t)− 100wn(t)

n(t) = xn(t) + wn(t)

for a white wn(t).
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Example 1: frequency responses

Bode plots of Gv̂y (s) for different choices of �wn :

For each �wn the filter is more aggressive than in the case of white n. Why?
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Example 1: insight

Now our assumed measurement signal is

y =
1

s2
d +

s

s + 100
wn =·· ys + yn:

Its signal to noise ratio

SNR(!) ··=
|Ys(j!)|
|Yn(j!)|

=

√
�d

√
1 + 1002=!2

√
�wn !

2
>

√
�d√

�wn !
2

especially for ! < 100. But the quality of measurements returns to that of
the white n with the intensity �wn as ! goes beyond 100.
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Example 1: insight (contd)

In our case, with �d = 1,

SNR(!) = 1 ⇐⇒ ! = {4:6433; 6:8182; 10:0167; 14:7306}

vs. ! = {1; 1:7783; 3:1623; 5:6234} under white n.
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Example 2: measurement noise at 10Hz

Assume now that n(t) has dominant harmonic at !0 = 20� . A way to model
this is to assume the power spectral density

Φn(!) =
!4 + !4

0

(!2 − !2
0)

2
=

!0

=
!2 + j

√
2!0! − !2

0

!2 − !2
0

!2 − j
√
2!0! − !2

0

!2 − !2
0

;

so that

Wn(s) =
s2 +

√
2!0s + !

2
0

s2 + !2
0

or, equivalently,ẋn(t) =

[
0 !0

−!0 0

]
xn(t) +

[√
2!0

0

]
wn(t)

n(t) =
[
1 0

]
xn(t) + wn(t)

for a white wn(t).
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Example 2: measurement noise at 10Hz (contd)

The filters Gv̂y (s) for different choices of �wn ,

have the notch property at ! = 20�[rad/sec], imposed (implicitly) via the
model of n(t), because the assumed SNR(!) = 0 at ! = !0.
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Example 2: time responses with n(t) = 0:2 sin(20�t)
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Computer-controller systems

P(s)y

ȳ ū

u

Control laws are often implemented on digital computers. Feedback loops
in this case contain

− analog plant, having analog i/o signals

− digital controller, having digital i/o signals (digital sequences)

We, therefore, need to provide analog/digital and digital/analog interfaces.
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A/D conversion (sampling)

S yȳ

By sampler (A/D converter) we understand

− any device transforming analog signal into digital sequence.

Constant h > 0 called the sampling period.

For example:

− ideal sampler: ȳ [k] = y(kh); k ∈ Z+,

− averaging sampler: ȳ [k] =
1

h

∫ kh

(k−1)h
y(t)dt; k ∈ Z+,

− . . .
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D/A conversion (hold)

H ūu

By hold device (D/A converter) we understand

− any device transforming digital sequence into analog signal.

For example (formulae below are for all k ∈ Z+ and � ∈ [0; h)):

− zero-order hold: u(kh + �) = ū[k],

− first-order hold: u(kh + �) = �
h ū[k + 1] + h−�

h ū[k] (non-causal)

− delayed first-order hold: u(kh + �) = �
h ū[k] +

h−�
h ū[k − 1] (causal)

− predictive first-order hold: u(kh + �) = �+h
h ū[k]− �

h ū[k − 1]

− . . .
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Sampled-data systems systems

y

ȳ ū

uP(s)

A/D D/A

P(s)

C̄ (z)

S H

y

ȳ ū

u

Thus, general sampled-data control system consists of

1. continuous-time plant P(s),

2. digital part of the controller C̄ (z),

3. A/D converter (sampler) S,
4. D/A converter (hold) H.

We assume that the

− last three devices are synchronized, with sampling period h.
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Why sampled-data systems?

P(s)

C̄ (z)

S H

y

ȳ ū

u

− Progress in computer technology

− Sampling due to measurements
(e.g. radar measurements, economic systems, visual systems, etc)

− Sampling due to pulsed operation
(e.g. internal-combustion engines, particle accelerator, etc)
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Pros and cons of sampled-data control

Digital equipment is

¨̂ more flexible

¨̂ more reliable

¨̂ cheaper

than its analog counterpart. Consequently,

¨̂ more sophisticated control algorithms can be implemented.

On the other hand,

_̈ in intersample time control system is open loop;

_̈ control signals are waveform limited (e.g. piecewise constant);

_̈ rigorous analysis of sampled-data systems is more complicated

comparing with their continuous-time counterparts.
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Three approaches to sampled-data control design

P(s)

C̄ (z)

S H

y

ȳ ū

u
analog design

discretization

discretization

digital design

sampled-data design

P

P̄

C

C̄

1. Digital redesign of analog controllers
(do your favorite analog design first, then discretize the resulting controller)

2. Discrete-time design
(discretize the problem first, then do your favorite discrete design)

3. Direct digital (sampled-data) design
(design discrete-time controller C̄(z) directly for analog specs)

In this course we address mainly the first approach . . .
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