Control Theory (035188) lecture no. 11

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

X

Outline

Disturbance observers

Observer-based feedback with disturbance observers

Accounting for colored noise

Sampled-data systems

So far on state-space design

State feedback:

- pole placement rationale (Ackermann)
- optimization-based rationale (LQR)

State observer:

- pole placement rationale (Luenberger)
- optimization-based rationale (Kalman)

Output feedback:

 $-\;$ just combine state feedback with state observer

Common assumption:

- only initial conditions are uncertain
 - (i.e. no disturbances / noised beyond impulses or other white signals)

Idea

Consider state reconstruction for

$$\dot{x}(t) = Ax(t) + B(u(t) + d(t)), \quad x(0) = x_0,$$

 $y(t) = Cx(t),$

If d(t)

- $-\;$ measurable, $\dot{\epsilon}(t)=A_L\epsilon(t)$ and hence $\epsilon(t)\rightarrow 0$
- unmeasurable, $\dot{\epsilon}(t) = A_L \epsilon(t) + B d(t)$ and hence $\epsilon(t)
 eq 0$ in general

To overcome this problem, we may try to

- observe not only x(t) but also d(t),

which makes sense

- only if some information about d(t) available

(like the observation of x(t) makes sense only if a state model is available).

4/4

Disturbance generators

Possible model of (unmeasurable) d(t):

$$\begin{cases} \dot{x}_d(t) = A_d x_d(t), \quad x_d(0) = x_{d,0}, \\ d(t) = C_d x_d(t), \end{cases}$$

for known A_d and C_d (reflect our knowledge about d(t)) and unknown $x_{d,0}$ (reflects uncertainty in d(t)). This system

called disturbance generator

and typically A_d has all its eigenvalues on the j ω -axis (persistent signals). This model describes the family of signals, whose Laplace transforms

$$D(s) = C_d(sI - A_d)^{-1} x_{d,0}$$

for some unknown $x_{d,0}$.

Examples of disturbance generators: ramp

Let

$$d(t) = (d_0 + d_r \cdot t) \cdot \mathbb{1}(t)$$

for some unknown d_0 and d_r . Laplace transform of this signal is

$$D(s) = \frac{d_0 s + d_r}{s^2},$$

which corresponds to the following signal generator:

$$\begin{cases} \dot{x}_d(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x_d(t), \quad x_d(0) = \begin{bmatrix} d_0 \\ d_r \end{bmatrix}, \\ d(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x_d(t), \end{cases}$$

i.e. with $A_d = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $C_d = \begin{bmatrix} 1 & 0 \end{bmatrix}.$

Examples of disturbance generators: step

Let

$$d(t) = d_0 \cdot \mathbb{1}(t)$$

for some unknown d_0 . Laplace transform of this signal is

$$D(s)=\frac{d_0}{s},$$

which corresponds to the following signal generator:

 $\left\{ egin{aligned} \dot{x}_d(t) &= 0 \cdot x_d(t), \quad x_d(0) &= d_0, \ d(t) &= 1 \cdot x_d(t), \end{aligned}
ight.$

i.e. with $A_d = 0$ and $C_d = 1$.

Examples of disturbance generators: harmonic signal

Let

$$d(t) = a\sin(\omega t + \phi) \cdot \mathbb{1}(t)$$

for some known ω and unknown a and ϕ . Laplace transform of this signal is

$$D(s) = rac{a\sin(\phi) s + a\omega\cos(\phi)}{s^2 + \omega^2}$$

which corresponds to the following signal generator¹:

$$\begin{cases} \dot{x}_d(t) = \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix} x_d(t), \quad x_d(0) = \begin{bmatrix} \sin(\phi) \\ \cos(\phi) \end{bmatrix} a, \\ d(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x_d(t), \end{cases}$$

i.e. with $A_d = \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix}$ and $C_d = \begin{bmatrix} 1 & 0 \end{bmatrix}.$

¹Take the observer form and apply the similarity transformation with $T = \begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix}$

Combined system: plant + disturbance

Now we have two systems (assume minimality of both):

$$\begin{cases} \dot{x}(t) = Ax(t) + B(u(t) + d(t)) \\ y(t) = Cx(t) \end{cases} \text{ and } \begin{cases} \dot{x}_d(t) = A_d x_d(t) \\ d(t) = C_d x_d(t) \end{cases}$$

with corresponding initial conditions. This can be written as

$$P_{a}:\begin{cases} \dot{\xi}(t) = \begin{bmatrix} A & BC_{d} \\ 0 & A_{d} \end{bmatrix} \xi(t) + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t), \quad \xi(0) = \begin{bmatrix} x_{0} \\ x_{d,0} \end{bmatrix} \\ y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \xi(t), \end{cases}$$

with $\xi := \begin{bmatrix} x \\ x_d \end{bmatrix}$, with uncontrollable modes of A_d . Important is that

- the combined system has no unmeasurable inputs,

only unknown initial conditions. Hence, a Luenberger observer can be built to asymptotically estimate both x and x_d , if the realization is detectable.

Observer for combined system

Straightforward use of known formulae:

$$\dot{\hat{\xi}}(t) = \begin{bmatrix} A & BC_d \\ 0 & A_d \end{bmatrix} \hat{\xi}(t) + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t) - \begin{bmatrix} L \\ L_d \end{bmatrix} (y(t) - \begin{bmatrix} C & 0 \end{bmatrix} \hat{\xi}(t))$$
$$= \left(\begin{bmatrix} A & BC_d \\ 0 & A_d \end{bmatrix} + \begin{bmatrix} L \\ L_d \end{bmatrix} \begin{bmatrix} C & 0 \end{bmatrix} \right) \hat{\xi}(t) + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t) - \begin{bmatrix} L \\ L_d \end{bmatrix} y(t)$$

with $\hat{\xi}(0) = \hat{\xi}_0$. In this case error $\epsilon(t) := \xi(t) - \hat{\xi}(t)$ satisfies

$$\dot{\epsilon}(t) = \left(\begin{bmatrix} A & BC_d \\ 0 & A_d \end{bmatrix} + \begin{bmatrix} L \\ L_d \end{bmatrix} \begin{bmatrix} C & 0 \end{bmatrix} \right) \epsilon(t), \quad \epsilon(0) = \xi_0 - \hat{\xi}_0$$

and asymptotically converges to zero if L and L_d are chosen properly. Because $\xi = \begin{bmatrix} x \\ x_d \end{bmatrix}$,

 $-\hat{\xi}$ reconstructs both x (plant state) and x_d (disturbance state).

Combined system: observability

Consider the series

$$G(s) = C(sI - A)^{-1}B \cdot C_d(sI - A_d)^{-1}.$$

We know (Lecture 6) that its realization is

$$G:\begin{cases} \dot{\xi}(t) = \begin{bmatrix} A & BC_d \\ 0 & A_d \end{bmatrix} \xi(t) + \begin{bmatrix} 0 \\ I \end{bmatrix} u(t),\\ y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \xi(t), \end{cases}$$

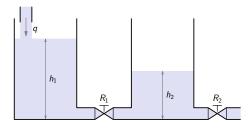
and (Lecture 7) that it remains observable iff

- no modes of A_d are canceled by zeros of $C(sI - A)^{-1}B$.

Because G and P_a have the same "A" and "C" parameters, we have that $-P_a$ is observable iff the plant has no zeros in spec (A_d) , which is reasonable.

Example

Return to the two-tank example from Lecture 8:



whose (linearized) model is

$$\left[egin{array}{c} \dot{h}_1(t) \ \dot{h}_2(t) \end{array}
ight] = \left[egin{array}{c} -1 & 1 \ 1 & -2 \end{array}
ight] \left[egin{array}{c} h_1(t) \ h_2(t) \end{array}
ight] + \left[egin{array}{c} 1 \ 0 \end{array}
ight] q(t),$$

The goal is to

11/44

- reconstruct $h_2(t)$ from measured $h_1(t)$

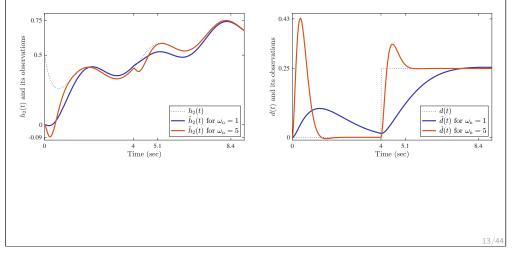
despite load disturbances of the form $d = d_0 \mathbb{1}$ for an unknown d_0 .

Example (contd)

With $q(t) = 0.5(\sin(2t) + 1)$, d(t) = 0.251(t - 4), and

$$\hat{\chi}_{\mathsf{cl}}(s) = (s^2 + 2\zeta\omega_{\mathsf{n}}s + \omega_{\mathsf{n}}^2)(s+7)$$
 for $\zeta = 0.8$ and $\omega_{\mathsf{n}} = \{1,5\}$

as the observer characteristic polynomial, we end up with



Idea

Consider controller design for

$$\begin{cases} \dot{x}(t) = Ax(t) + B(u(t) + d(t)), & x(0) = x_0, \\ y(t) = Cx(t), \end{cases}$$

If both x and d were measurable, we could use

$$u(t) = Kx(t) - d(t)$$

to stabilize the system and reject d (the reference signal can be handled by the 2DOF architecture, so its addition changes nothing).

We know what to do when

-x is not measurable \implies observer-based feedback.

What if we use the same idea with a disturbance observer?

Outline	
Observer-based feedback with disturbance observers	
	14/44

Controller

Naturally,

15/44

$$\begin{cases} \dot{\hat{\xi}}(t) = \begin{bmatrix} A & BC_d \\ 0 & A_d \end{bmatrix} \hat{\xi}(t) + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t) - \begin{bmatrix} L \\ L_d \end{bmatrix} (y(t) - \begin{bmatrix} C & 0 \end{bmatrix} \hat{\xi}(t)) \\ u(t) = \begin{bmatrix} K & -C_d \end{bmatrix} \hat{\xi}(t) \end{cases}$$

The state relation reads

$$\dot{\hat{\xi}}(t) = \left(\begin{bmatrix} A & BC_d \\ 0 & A_d \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} \begin{bmatrix} K & -C_d \end{bmatrix} + \begin{bmatrix} L \\ L_d \end{bmatrix} \begin{bmatrix} C & 0 \end{bmatrix} \right) \hat{\xi}(t) - \begin{bmatrix} L \\ L_d \end{bmatrix} y(t)$$

$$= \begin{bmatrix} A + BK + LC & 0 \\ L_d C & A_d \end{bmatrix} \hat{\xi}(t) - \begin{bmatrix} L \\ L_d \end{bmatrix} y(t)$$

and we end up with the controller

$$C_{y}(s) = -\begin{bmatrix} K & -C_{d} \end{bmatrix} \left(sI - \begin{bmatrix} A + BK + LC & 0 \\ L_{d}C & A_{d} \end{bmatrix} \right)^{-1} \begin{bmatrix} L \\ L_{d} \end{bmatrix}$$

Closed-loop dynamics

Combining the plant of controller, the closed-loop state

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\hat{x}}(t) \\ \dot{\hat{x}}_{d}(t) \end{bmatrix} = \begin{bmatrix} A & BK & -BC_{d} \\ -LC & A + BK + LC & 0 \\ -L_{d}C & L_{d}C & A_{d} \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \\ \hat{x}_{d}(t) \end{bmatrix} + \begin{bmatrix} B \\ 0 \\ 0 \end{bmatrix} d(t)$$

With the standard (by now) trick of replacing $\hat{x}
ightarrow \epsilon_x := x - \hat{x}$,

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\epsilon}_{x}(t) \\ -\dot{\hat{x}}_{d}(t) \end{bmatrix} = \begin{bmatrix} A + BK & -BK & BC_{d} \\ 0 & A + LC & BC_{d} \\ 0 & L_{d}C & A_{d} \end{bmatrix} \begin{bmatrix} x(t) \\ \epsilon_{x}(t) \\ -\hat{x}_{d}(t) \end{bmatrix} + \begin{bmatrix} B \\ B \\ 0 \end{bmatrix} d(t)$$

which are stable, provided A + BK and

$$\begin{bmatrix} A + LC & BC_d \\ L_d C & A_d \end{bmatrix} = \begin{bmatrix} A & BC_d \\ 0 & A_d \end{bmatrix} + \begin{bmatrix} L \\ L_d \end{bmatrix} \begin{bmatrix} C & 0 \end{bmatrix}$$

are Hurwitz (state feedback and observer dynamics are separated yet again).

Controller structure

Returning to

$$C_{y}(s) = -\begin{bmatrix} K & -C_{d} \end{bmatrix} \left(sI - \begin{bmatrix} A + BK + LC & 0 \\ L_{d}C & A_{d} \end{bmatrix} \right)^{-1} \begin{bmatrix} L \\ L_{d} \end{bmatrix}$$

its "A" matrix has all eigenvalues of A_d as its eigenvalues. Moreover, it can be shown that

- eigenvalues of A_d are always poles of $C_y(s)$

(to this end we need to prove that all eigenvalues of A_d are both controllable and observable in the realization above, which is true).

This is a version of the Internal Model Principle, roughly saying that

- disturbance model should be a part of the controller.

We are supposed to know it well for the case of $A_d = 0$ (integral action)...

Disturbance response

If d is indeed generated by its model, then

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\epsilon}_{x}(t) \\ -\dot{x}_{d}(t) \\ \dot{x}_{d}(t) \end{bmatrix} = \begin{bmatrix} A + BK & -BK & BC_{d} & BC_{d} \\ 0 & A + LC & BC_{d} & BC_{d} \\ 0 & L_{d}C & A_{d} & 0 \\ 0 & 0 & 0 & A_{d} \end{bmatrix} \begin{bmatrix} x(t) \\ \epsilon_{x}(t) \\ -\hat{x}_{d}(t) \\ x_{d}(t) \end{bmatrix}$$

with some initial conditions. Introducing $\epsilon_d := x_d - \hat{x}_d$, these dynamics read

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\epsilon}_{x}(t) \\ \dot{\epsilon}_{d}(t) \\ \dot{x}_{d}(t) \end{bmatrix} = \begin{bmatrix} A + BK & -BK & BC_{d} & 0 \\ 0 & A + LC & BC_{d} & 0 \\ 0 & L_{d}C & A_{d} & 0 \\ 0 & 0 & 0 & A_{d} \end{bmatrix} \begin{bmatrix} x(t) \\ \epsilon_{x}(t) \\ \dot{\epsilon}_{d}(t) \\ \dot{x}_{d}(t) \end{bmatrix}, \quad \begin{bmatrix} x(0) \\ \epsilon_{x}(0) \\ \dot{\epsilon}_{d}(0) \\ \dot{x}_{d}(0) \end{bmatrix} = \dots$$

Therefore,

- x is decoupled from $x_d \implies y = Cx$ is decoupled from $d = C_d x_x$ meaning perfect asymptotic rejection of disturbances from a given class.

Example

19/4

For the two-tank example from Lecture 8 use the 2DOF control

for the time-optimal

$$q_{\rm opt}(t) = \underbrace{\begin{array}{c} q_{\rm max} \\ q_{\rm ss} \\ 0 \end{array}}_{0 \quad t_{\rm sw} \quad t_{\rm f} \quad t} \quad \text{and} \quad h_{1,{\rm opt}}(t) = \underbrace{\begin{array}{c} h_{\rm des} \\ 0 \end{array}}_{0 \quad t_{\rm sw} \quad t_{\rm f} \quad t}$$

under given bounds q_{\min} and q_{\max} .

Assuming that $d = d_0 \mathbb{1}$ for an unknown d_0 , we design an

– observer-based $C_y(s)$ that contains an integral action.

Example (contd)

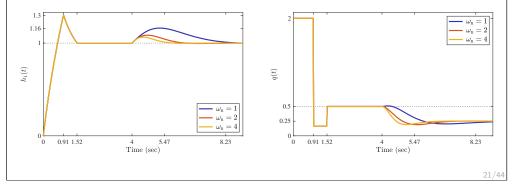
With $q_{\min} = 0.2$, $q_{\max} = 2$, d(t) = 0.251(t - 4),

$$\chi_{\mathsf{cl}}(s) = s^2 + 2\zeta \omega_{\mathsf{n}} s + \omega_{\mathsf{n}}^2$$
 for $\zeta = 0.8$ and $\omega_{\mathsf{n}} = \{1, 2, 4\}$

as the state-feedback characteristic polynomial (independent of W_d), and

$$\hat{\chi}_{\mathsf{cl}}(s) = (s^2 + 2\zeta \omega_{\mathsf{n}} s + \omega_{\mathsf{n}}^2)(s+7)$$
 for $\zeta = 0.8$ and $\omega_{\mathsf{n}} = 2$

as the observer characteristic polynomial, we end up with



Kalman filtering setup

Simple version:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + Bd(t), \quad x(0) = 0, \\ y(t) = Cx(t) + n(t), \end{cases}$$

where d(t) and n(t) are white noise signals with intensities σ_d and σ_n .

More general formulation:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + B_w w(t), & x(0) = 0, \\ y(t) = Cx(t) + D_w w(t), \end{cases}$$

where each element of w(t) is a white unit-intensity noise.

Outline Disturbance observers Observer-based feedback with disturbance observers Accounting for colored noise Sampled-data systems

Is white noise assumption realistic?

The white noise assumption might not reflect our knowledge of properties of d(t) and n(t).

- Low-frequency harmonics typically dominate spectrum of d(t). In this case, it might be more natural to assume that

$$|D(\omega)|^2 = \Phi_d(\omega)$$

for some $\Phi_d(\omega) \ge 0$ (power spectral density), large at low frequencies and small at high frequencies (like $a^2/(\omega^2 + a^2)$, $a \ne 0$).

- High-frequency harmonics typically dominate spectrum of n(t). In this case, it might be more natural to assume that

$$|N(\omega)|^2 = \Phi_n(\omega)$$

for some $\Phi_n(\omega) \ge 0$ (power spectral density), small at low frequencies and large at high frequencies (like $\omega^2/(\omega^2 + a^2)$, $a \ne 0$).

24/44

Kalman filtering assumptions do not account for such situations explicitly.

Spectral factorization

Situation is not hopeless though. Fundamental is the following result:

Theorem (spectral factorization)

If $\Phi_x(\omega) \neq 0$ is real-rational and such that $\Phi_x(\omega) \geq 0$, then there is $W_x(s)$ having no poles and zeros in Re s > 0 and satisfying

 $\Phi_{x}(\omega) = W_{x}(-j\omega)W_{x}(j\omega) = |W_{x}(j\omega)|^{2}.$

If $0 < \Phi_x(\omega) < \infty$, then $W_x(s)$ is stable and minimum-phase and is called the spectral factor of $\Phi_x(\omega)$.

Examples: $- \Phi_{x}(\omega) = \frac{a^{2}}{\omega^{2} + a^{2}} \implies W_{x}(s) = \frac{a}{s + a} \quad \text{as } \Phi_{x}(\omega) = \frac{a^{2}}{-s^{2} + a^{2}}\Big|_{s=j\omega}$ $- \Phi_{x}(\omega) = \frac{\omega^{2}}{\omega^{2} + a^{2}} \implies W_{x}(s) = \frac{s}{s + a}$ $- \Phi_{x}(\omega) = \frac{1}{\omega^{2}} \implies W_{x}(s) = \frac{1}{s}$ 25/4

Example: Dryden gusts

A widely used spectral model of the lateral wind turbulence for an aircraft flying at a (constant) speed V through a frozen turbulence field is

$$\Phi_{\nu}(\omega) = \frac{\sigma_{\nu}^{2}L_{\nu}V}{\pi} \frac{3L_{\nu}^{2}\omega^{2} + V^{2}}{(L_{\nu}^{2}\omega^{2} + V^{2})^{2}} =$$

where σ_v and L_v represent turbulence intensity and scale length, resp. As

$$a_1^2\omega^2 + a_0^2 = -a_1^2s^2 + a_0^2|_{s=j\omega} = (-a_1s + a_0)(a_1s + a_0)|_{s=j\omega},$$

we end up with the following spectral factor:

$$W_{v}(s) = \sigma_{v} \sqrt{rac{L_{v}V}{\pi}} rac{\sqrt{3}L_{v}s + V}{(L_{v}s + V)^{2}}$$

which is an LPF. Similar models exist for longitudinal and vertical gusts.

Whitening signals / "colorifying" white noise If x is such that $|X(\omega)|^2 = \Phi_x(\omega)$, then the signal $-\tilde{x} := \frac{1}{W_x(s)}x$ is white with unit intensity. Indeed.

$$| ilde{X}(\omega)|^2 = rac{|X(\omega)|^2}{|W_x(\mathrm{j}\omega)|^2} = rac{\Phi_x(\omega)}{|W_x(\mathrm{j}\omega)|^2} \equiv 1$$

Hence, the term "whitening filter" for $1/W_x$. Important implication is that - signal with any spectrum can be generated by white noise with the use of shaping filter (cf. signal generator for disturbance observer),

$$x = W_x(s)\tilde{x}$$

Colorifying disturbances

Let shaping filter for d, $W_d(s)$, have (minimal) state space realization

$$\begin{cases} \dot{x}_d(t) = A_d x_d(t) + B_d w_d(t) \\ d(t) = C_d x_d(t) \end{cases}$$

where w_d is white. State-space realization of plant and filter is then

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \dot{x}_{d}(t) \end{bmatrix} = \begin{bmatrix} A & BC_{d} \\ 0 & A_{d} \end{bmatrix} \begin{bmatrix} x(t) \\ x_{d}(t) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} 0 \\ B_{d} \end{bmatrix} w_{d}(t) \\ y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_{d}(t) \end{bmatrix} + n(t) \end{cases}$$

This fits the general Kalman filtering formulation under

$$\begin{bmatrix} A & B_w \\ C & D_w \end{bmatrix} = \begin{bmatrix} A & BC_d & 0 & 0 \\ 0 & A_d & B_d \sqrt{\sigma_{w_d}} & 0 \\ C & C_n & 0 & \sqrt{\sigma_n} \end{bmatrix} \text{ and } w(t) = \begin{bmatrix} \sqrt{1/\sigma_{w_d}} w_d(t) \\ \sqrt{1/\sigma_n} n(t) \end{bmatrix}$$

Colorifying measurement noise

Now, let shaping filter for n, $W_n(s)$, have (minimal) state space realization

$$\begin{cases} \dot{x}_n(t) = A_n x_n(t) + B_n w_n(t) \\ n(t) = C_n x_n(t) + D_n w_n(t) \end{cases}$$

where w_n is white. Joint state-space realization:

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \dot{x}_{n}(t) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_{n} \end{bmatrix} \begin{bmatrix} x(t) \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} B & 0 \\ 0 & B_{n} \end{bmatrix} \begin{bmatrix} d(t) \\ w_{n}(t) \end{bmatrix} \\ y(t) = \begin{bmatrix} C & C_{n} \end{bmatrix} \begin{bmatrix} x(t) \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} 0 & D_{n} \end{bmatrix} \begin{bmatrix} d(t) \\ w_{n}(t) \end{bmatrix}$$

This fits the general Kalman filtering formulation under

$$\begin{bmatrix} A & B_w \\ C & D_w \end{bmatrix} = \begin{bmatrix} A & 0 & B\sqrt{\sigma_d} & 0 \\ 0 & A_n & 0 & B_n\sqrt{\sigma_{w_n}} \\ C & C_n & 0 & D_n\sqrt{\sigma_{w_n}} \end{bmatrix} \text{ and } w(t) = \begin{bmatrix} \sqrt{1/\sigma_d} & d(t) \\ \sqrt{1/\sigma_{w_n}} & w_n(t) \end{bmatrix}$$
^{29/4}

Example 1: frequency responses Bode plots of $G_{\hat{v}y}(s)$ for different choices of σ_{w_n} : $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0$

Example 1: high-frequency measurement noise

Consider again

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} d(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + n(t), \end{cases}$$

and now assume that n is a high-pass signal with the power spectral density

$$\Phi_n(\omega) = \frac{\omega^2}{\omega^2 + 10^4} = \boxed{\frac{100}{-j\omega + 100}} = \frac{-j\omega}{-j\omega + 100} \frac{j\omega}{j\omega + 100},$$

so that $W_n(s) = s/(s+100)$ or, equivalently,

$$\begin{cases} \dot{x}_n(t) = -100x_n(t) - 100w_n(t) \\ n(t) = x_n(t) + w_n(t) \end{cases}$$

for a white $w_n(t)$.

Example 1: insight

Now our assumed measurement signal is

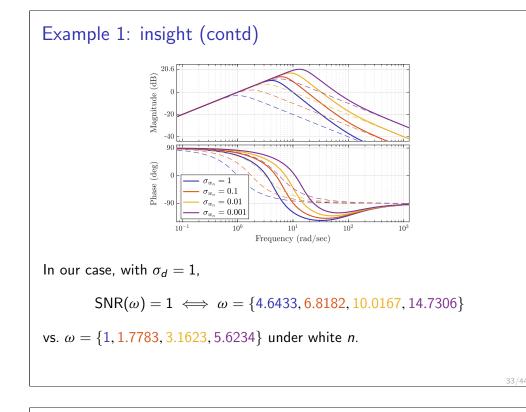
$$y = \frac{1}{s^2}d + \frac{s}{s+100}w_n =: y_s + y_n.$$

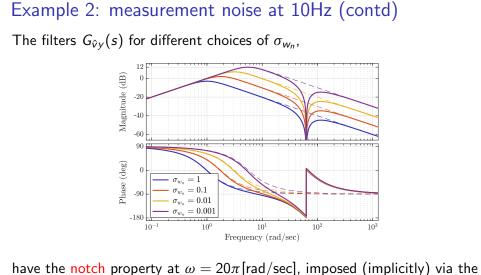
Its signal to noise ratio

31/44

$$\mathsf{SNR}(\omega) := \frac{|Y_{\mathsf{s}}(\mathsf{j}\omega)|}{|Y_{\mathsf{n}}(\mathsf{j}\omega)|} = \frac{\sqrt{\sigma_d}\sqrt{1+100^2/\omega^2}}{\sqrt{\sigma_{w_n}}\,\omega^2} > \frac{\sqrt{\sigma_d}}{\sqrt{\sigma_{w_n}}\,\omega^2}$$

especially for $\omega < 100$. But the quality of measurements returns to that of the white *n* with the intensity σ_{w_n} as ω goes beyond 100.





have the notch property at $\omega = 20\pi [rad/sec]$, imposed (implicitly) via the model of n(t), because the assumed SNR(ω) = 0 at $\omega = \omega_0$.

Example 2: measurement noise at 10Hz

Assume now that n(t) has dominant harmonic at $\omega_0 = 20\pi$. A way to model this is to assume the power spectral density

$$\Phi_n(\omega) = \frac{\omega^4 + \omega_0^4}{(\omega^2 - \omega_0^2)^2} = \left| \underbrace{\int_{\omega_0}}_{\omega_0} = \frac{\omega^2 + j\sqrt{2}\omega_0\omega - \omega_0^2}{\omega^2 - \omega_0^2} \frac{\omega^2 - j\sqrt{2}\omega_0\omega - \omega_0^2}{\omega^2 - \omega_0^2}, \right|$$

so that

35/44

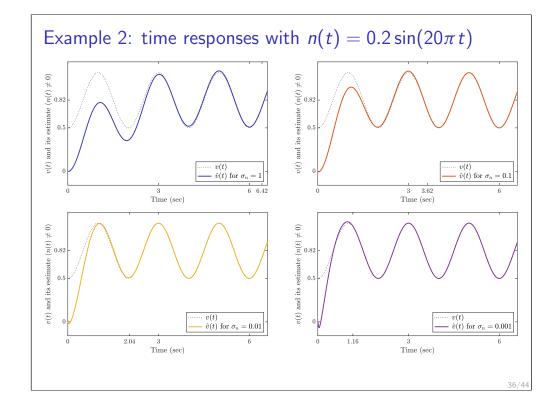
$$W_n(s) = rac{s^2 + \sqrt{2}\omega_0 s + \omega_0^2}{s^2 + \omega_0^2}$$

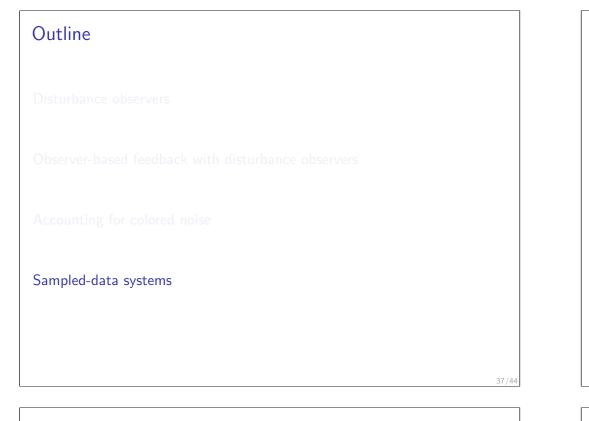
or, equivalently,

$$\begin{cases} \dot{x}_n(t) = \begin{bmatrix} 0 & \omega_0 \\ -\omega_0 & 0 \end{bmatrix} x_n(t) + \begin{bmatrix} \sqrt{2}\omega_0 \\ 0 \end{bmatrix} w_n(t) \\ n(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x_n(t) + w_n(t) \end{cases}$$

34/44

for a white $w_n(t)$.





A/D conversion (sampling)

 $-\frac{\psi^{\dagger}_{\mu}}{y} - \frac{y}{y} - \frac{y}{$

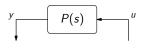
By sampler (A/D converter) we understand

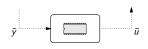
- any device transforming analog signal into digital sequence. Constant h > 0 called the sampling period.

For example:

ideal sampler:
$$\bar{y}[k] = y(kh), \quad k \in \mathbb{Z}^+,$$
averaging sampler: $\bar{y}[k] = \frac{1}{h} \int_{(k-1)h}^{kh} y(t) dt, \quad k \in \mathbb{Z}^+,$
...

Computer-controller systems

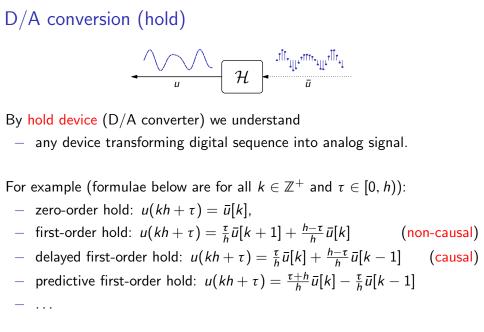




Control laws are often implemented on digital computers. Feedback loops in this case contain

- $-\,$ analog plant, having analog i/o signals
- digital controller, having digital i/o signals (digital sequences)

We, therefore, need to provide analog/digital and digital/analog interfaces.



Sampled-data systems systems y = P(s) = U/A A/D = D/A $y = \overline{C(z)} = \overline{U}$ Thus, general sampled-data control system consists of 1. continuous-time plant P(s),

- 2. digital part of the controller $\bar{C}(z)$,
- 3. A/D converter (sampler) S,
- 4. D/A converter (hold) \mathcal{H} .

We assume that the

- last three devices are synchronized, with sampling period h.

Pros and cons of sampled-data control

Digital equipment is

- $\ddot{\}$ more flexible
- ∴ more reliable

∵ cheaper

than its analog counterpart. Consequently,

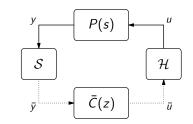
 $\ddot{\smile}\,$ more sophisticated control algorithms can be implemented.

On the other hand,

- $\ddot{\hfill}$ in intersample time control system is open loop;
- $\ddot{\frown}$ control signals are waveform limited (e.g. piecewise constant);

 $\ddot{-}$ rigorous analysis of sampled-data systems is more complicated comparing with their continuous-time counterparts.

Why sampled-data systems?

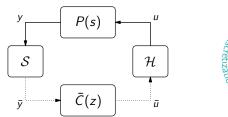


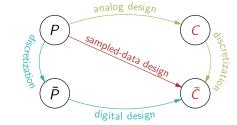
- Progress in computer technology

- Sampling due to measurements

 (e.g. radar measurements, economic systems, visual systems, etc)
- Sampling due to pulsed operation (e.g. internal-combustion engines, particle accelerator, etc)

Three approaches to sampled-data control design





- Digital redesign of analog controllers

 (do your favorite analog design first, then discretize the resulting controller)
- 2. Discrete-time design

(discretize the problem first, then do your favorite discrete design)

3. Direct digital (sampled-data) design

(design discrete-time controller $\bar{C}(z)$ directly for analog specs)

In this course we address mainly the first approach \ldots