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When is state feedback optimal ?

Theorem
If m = 1, (A;B) is controllable, and K ∈ R1×n satisfies

1. A+ BK is stable,

2. |1− K (j!I − A)−1B| ≥ 1 for all ! ∈ R,

then there is 0 ≤ Q = Q ′ ∈ Rn×n such that this K is LQR optimal for

J =

∫ ∞

0

[
x ′(t) u′(t)

][ Q 0
0 1

][
x(t)
u(t)

]
dt

If (A;B) is not controllable, then there is Q for which K (sI − A)−1B is the
optimal loop.

This result shows that LQR optimization is

− sufficiently rich, so that we won’t miss any “good” controller

by using Q and r as design parameter under S = 0.

3/44

When is state feedback optimal ? (contd)

The condition S = 0 is essential. If S can also be chosen freely, then

− all stabilizing state-feedback gains are LQR-optimal,

regardless the second condition. For example, the cost

J =

∫ ∞

0
(u(t)− K?x(t))

2dt

which corresponds to[
Q S
S ′ R

]
=

[
−K ′

?

I

] [
−K? I

]
=

[
K ′
?K? −K ′

?

−K? I

]
;

produces the optimal u(t) = K?x(t). in this case X̄ = 0 and Jopt = 0
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Closed-loop poles (m = 1 and S = 0)

Because 1 + Lsf(s) = �cl(s)=�ol(s),

(1 + Lsf(−s))(1 + Lsf(s)) = 1 +
1

r
B ′(−sI − A′)−1Q(sI − A)−1B

reads
�cl(−s)�cl(s)

�ol(−s)�ol(s)
= 1 +

1

r
G∗(s);

where
G∗(s) ··= B ′(−sI − A′)−1Q(sI − A)−1B

is such that G∗(−s) = G∗(s), so that its poles / zeros are symmetric about
the imaginary axis. If x ′Qx = y2, then Q = C ′C and G∗(s) = P(−s)P(s).
The solutions of

1 +
1

r
G∗(s) = 0 ⇐⇒ −r = G∗(s);

which is a root-locus form under k = 1=r , determine then both the roots of
�cl(s) (closed-loop LQR poles) and those of �cl(−s) (their reflection about
the j!-axis).
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Root locus with respect to k = 1=r

− has 2n loci symmetric about both real and imaginary axes

− starts for r = ∞ at roots of �ol(−s)�ol(s)

− ends as r ↓ 0 at zeros of G∗(s) or ∞ (depending on the cost)

− has an even number of asymptotes, whose centroid is at �c = 0

− if G∗(s) is strictly proper (even pole excess), then asymptotes angles
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half of them are in the LHP (and none on the imaginary axis).

− there are exactly n roots in the open LHP at each r ∈ (0;∞)
(because G∗(j!) ≥ 0, −r = G∗(j!) cannot be solved in r > 0)
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Example: design 1

LQR for J = 1 + ru has S = 0 and

G∗(s) = − (s + 2)(s − 2)

(s + 2:618)(s + 0:382)(s − 0:382)(s − 2:618)
= P1(−s)P1(s)

The root locus with respect to 1=r :

Closed-loop poles were at {−10:15;−1:97}, {−3:75;−1:71}, and {−2:7;−0:83}.
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Example: design 2

LQR for J = 2 + ru has S = 0 and

G∗(s) =
1

(s + 2:618)(s + 0:382)(s − 0:382)(s − 2:618)
= P2(−s)P2(s)

The root locus with respect to 1=r :

Closed-loop poles were at {−2:6± j1:81}, {−2:15;−1:54}, and {−2:59;−0:55}.
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Limiting behavior: cheap control

The LQR problem with the cost

J =

∫ ∞

0

[
x ′(t) u′(t)

][ Q 0
0 r

][
x(t)
u(t)

]
dt; r ↓ 0

is known as the cheap control LQR problem. By root-locus arguments, the
roots of �cl(s) for 1=r → ∞
− either approach the stable zeros of G∗(s)

− or go to Re s = −∞ along the LHP asymptotes
(it the pole excess of G∗(s) is larger than 2, then the damping ratio of the “worst”

asymptote is at most 1=
√
2)
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Limiting behavior: expensive control

We already know that the solution to the LQR for

J =

∫ ∞

0

[
x ′(t) u(t)

][ Q 0
0 r

][
x(t)
u(t)

]
dt

and

Jr =

∫ ∞

0

[
x ′(t) u(t)

][ Q=r 0
0 1

][
x(t)
u(t)

]
dt =

1

r
J

coincide. Thus, the LQR problem for the limiting case of r → ∞ effectively
corresponds to

J∞ =

∫ ∞

0
u2(t)dt or

[
Q S
S ′ R

]
=

[
0 0
0 1

]
:

This is the problem of

− stabilizing with the lowest control energy.
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Limiting behavior: expensive control (contd)

Assumptions:

A1: (A;B) is stabilizable

A2: R > 0 and Q − SR−1S ′ ≥ 0
for Q = 0, S = 0, and R = 1 obviously holds

A3: (A−BR−1S ′;Q −SR−1S ′) has no pure imaginary unobservable modes
for Q = 0, S = 0, and R = 1 equivalent to spec(A) ∩ jR = ∅

By root-locus arguments, the roots of �cl(s) for 1=r = 0 are the stable roots
of �ol(−s)�ol(s). In other words,

− if � is an OLHP root of �ol(s), then it is also a root of �cl(s),

− if � is an ORHP root of �ol(s), then −� is a root of �cl(s).

Thus, the optimal controller for this problem

− reflects unstable poles about the j!-axis and

− keeps stable poles untouched.
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Setup

Consider system{
ẋ(t) = Ax(t) + Bu(t) + Bd(t); x(0) = 0;

y(t) = Cx(t) + n(t);

where u(t) is known input, d(t) is (unknown) plant disturbance, and n(t)
is measurement noise.

Our purpose here is to reconstruct x(t) so that reconstruction error,

�(t) = x(t)− x̂(t);

is “small.”

Clearly, solution of such state estimation problem depends on

1. what our assumptions about d(t) and n(t) are,

2. what measure of the estimation error �(t) “smallness” is taken.
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(Sloppy) introduction to white noise signals

By white noise signal we understand

− signal f (t), whose frequency spectrum satisfies |F (!)|2 ≡ �f = const

with the quantity �f ≥ 0 called the intensity of f (t). In other words, white
noise signal

− has all harmonics equally represented in it.

We may interpret white noise signal as

− impulse response of any all-pass system—deterministic interpretation1.

It may be safe to say that white noise doesn’t exist in nature. It, however, is
a convenient abstraction used as a building block for many realistic signals.

1Conventionally, white noise is defined and interpreted from a stochastic point of view
(white random process). Yet such approach goes far beyond the scope of this course.
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Linear-quadratic state estimation problem

In this formulation we assume that in the system{
ẋ(t) = Ax(t) + Bu(t) + Bd(t); x(0) = 0;

y(t) = Cx(t) + n(t);

inputs d(t) and n(t) are white noise signals with intensities �d and �n. We
also assume that

A4: (C ;A) is detectable,

A5: �n > 0,

A6: (A;B�d) has no uncontrollable j!-axis modes.

Linear-quadratic estimation is formulated as reconstruction of x minimizing

J ··=
∫ ∞

0

(
x(t)− x̂(t)

)′(
x(t)− x̂(t)

)
dt;

where x̂(t) is the reconstruction of x(t).
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Interpretation of d and n

Plant disturbance,

− d(t), reflects inaccuracies of our model of x(t).

Thus, high intensity of d(t) means that we should correct our model-based
estimation more aggressively.

Measurement noise,

− n(t), reflects inaccuracies of our measurements.

As y(t) is the only available information about deviations of x(t) from its
“predicted” values, high intensity of n(t) means that we should rely more
upon model.
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Solution (steady-state Kalman filter)

Theorem
If A4–6 hold, then the unique optimal linear-quadratic estimator is

˙̂x(t) = Ax̂(t) + Bu(t) + �−1
n Ȳ C ′(y(t)− Cx̂(t)

)
; x̂(0) = 0;

where Ȳ = Ȳ ′ ≥ 0 is (unique) stabilizing solution of CARE

Ȳ A′ + AȲ + �dBB
′ − �−1

n Ȳ C ′CȲ = 0

such that AL = A+ LC is Hurwitz, where L = −�−1
n Ȳ C ′.
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Filtering CARE

The CARE
Ȳ A′ + AȲ + �dBB

′ − �−1
n Ȳ C ′CȲ = 0

is a special case of

Ā′X̄ + X̄ Ā+ Q̄ − (S̄ + X̄ B̄)R̄−1(S̄ ′ + B̄ ′X̄ ) = 0

with Ā = A′, B̄ = C ′, Q̄ = �dBB
′, R̄ = �u, and S̄ = 0. Here

− (C ;A) is detectable =⇒ (Ā; B̄) = (A′;C ′) is stabilizable

− (A;B�d) has no uncontrollable j!-axis modes and �u > 0 =⇒ Ā− j!I B̄
Q̄ S̄
S̄ ′ R̄

 =

 A′ − j!I C ′

�dBB
′ 0

0 �u


has full column rank ∀! ∈ R.

As such, it can be solved by icare(A’,C’,sigmad*B*B’,sigmau).
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Kalman filter transfer functions

The Kalman filter has two inputs, u and y , and one vector output, x̂ . The
transfer function from u to x̂ and from y to x̂ are

Gx̂u(s) = (sI − AL)
−1B and Gx̂y (s) = −(sI − AL)

−1L;

respectively, where L = −�−1
n Ȳ C ′ and AL = A+ LC . Both result from the

following form of the estimator equation:

˙̂x(t) = (A+ LC )x̂(t) + Bu(t)− Ly(t); x̂(0) = 0

which is a Luenberger observer under an optimization-based choice of L.
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Estimating incomplete state

In some situations we do not need to reconstruct all state vector but rather
only its part v(t) = Cvx(t). Performance measure is then

J ··=
∫ ∞

0

(
Cvx(t)− v̂(t)

)′(
Cvx(t)− v̂(t)

)
dt:

Remarkable property of Kalman filter is that in this case

v̂(t) = Cv x̂(t);

where x̂(t) is the optimal estimate of x(t). In other words, the whole x(t)
should be estimated anyway. The transfer functions of the filter are then

Gv̂u(s) = Cv (sI − AL)
−1B and Gv̂y (s) = −Cv (sI − AL)

−1L
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Example

Consider the processẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) +

[
0
1

]
d(t)

y(t) =
[
1 0

]
x(t) + n(t);

with x =
[
y
v

]
, which is double integrator with noisy output measurements.

Our purpose is

− to reconstruct v(t) from y(t) (i.e. Cv =
[
0 1

]
).

We assume that

− d(t) = ı(t) (i.e. that y(0) = 0 and v(0) = 1) �d = 1

− n(t) = 0:2 sin(20�t) �n is tuned

− u(t) = sin(�t).

We’ll be playing with �n, which is fictitious parameter.
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Example: results with d(t) = ı(t) & n(t) = 0
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Example: results with d(t) = ı(t) & n(t) = 0:2 sin(20�t)
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Example: frequency responses

Bode plots of the filter

Gv̂y (s) = −Cv (sI − AL)
−1L

for different choices of �n:

It starts as a differentiator (logical), but then cuts it off.
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Example: insight

Our assumed measurement signal,

y =
1

s2
d + n =·· ys + yn;

can be thought of as comprised

− the “signal” ys, which contains information about v (to be estimated),

− the “noise” yn, which contains no information about x .

Convenient measure of the “usefulness” of y is the signal to noise ratio:

SNR(!) ··=
|Ys(j!)|
|Yn(j!)|

=

√
�d√
�n !2

The estimator then

− imitates the differentiator at frequencies where SNR(!) ≫ 1

− does nothing at frequencies where SNR(!) ≪ 1

25/44

Example: insight (contd)

In our case, with �d = 1,

SNR(!) = 1 ⇐⇒ ! =
1

4
√
�n

= {1; 1:7783; 3:1623; 5:6234}

These frequencies agree with the breaks of tendency of |Gv̂y (j!)|.
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More general formulation

Let {
ẋ(t) = Ax(t) + Bu(t) + Bww(t); x(0) = 0;

y(t) = Cx(t) + Dww(t);

for an unmeasured w , each element of which is a white unit-intensity signal
independent of other elements of w , and under

A4: (C ;A) is detectable,

A5: Dw has full row rank,

A6:

[
A− j!I Bw

C Dw

]
has full row rank ∀! ∈ R

The previous formulation is its special case with

− w =

[
d
n

]
, Bw =

[
B
√
�d 0

]
, and Dw =

[
0

√
�n

]
.
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More general formulation: solution

Theorem
If A4–6 hold, then the unique optimal linear-quadratic estimator is

˙̂x(t) = Ax̂(t) + Bu(t) + (DwD
′
w )

−1(DwB
′
w + Ȳ C ′)

(
y(t)− Cx̂(t)

)
with x̂(0) = 0, where Ȳ = Ȳ ′ ≥ 0 is (unique) stabilizing solution of CARE

Ȳ A′ + AȲ + BwB
′
w − (BwD

′
w + Ȳ C ′)(DwD

′
w )

−1(DwB
′
w + CȲ ) = 0

such that AL = A− (DwD
′
w )

−1(DwB
′
w + Ȳ C ′)C is Hurwitz.

This corresponds to

− Luenberger observer with L = −(DwD
′
w )

−1(DwB
′
w + Ȳ C ′).

− CARE solution with Ā = A′, B̄ = C ′,

[
Q̄ S̄
S̄ ′ R̄

]
=

[
Bw

Dw

][
B ′
w D ′

w

]
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Problem formulation

Given system {
ẋ(t) = Ax(t) + Bu(t) + Bd(t); x(0) = 0;

y(t) = Cx(t) + n(t);

where

− u(t) ∈ R is the control input

− d(t) ∈ R is the load disturbance (white, with intensity �d ≥ 0)

− n(t) ∈ R is the measurement noise (white, with intensity �n > 0)

The LQG (Linear Quadratic Gaussian) problem is

− design a stabilizing u(t), which is a function of y(t), minimizing

J =

∫ ∞

0

[
x ′(t) u′(t)

][ Q S
S ′ R

][
x(t)
u(t)

]
dt

for some R > 0 and Q − SR−1S ′ ≥ 0.
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Solution structure

Because

− LQR optimal control is state feedback,

− Kalman filter optimal state estimator is a Luenberger observer,

it is obvious that

− LQR + Kalman results in a stabilizing observer-based controller, with

�cl(s) = det(sI − AF ) det(sI − AL)

Less obvious is that

− LQR + Kalman results in the LQG-optimal stabilizing controller

(the separation principle).
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Problem solution

Theorem
If A1–6 hold, then the unique LQG controller is given by controller{

˙̂x(t) = (A+ BK + LC )x̂(t)− Ly(t); x̂(0) = 0;

u(t) = Kx̂(t);

where K and L are the LQR and Kalman filter gains. The optimal cost

Jopt = tr(�d X̄BB ′ + Ȳ Q + X̄AȲ + Ȳ A′X̄ );

where X̄ = X̄ ′ ≥ 0 and Ȳ = Ȳ ′ ≥ 0 are the stabilizing solutions of the LQR
and filtering CAREs.

Properties:

− LQG controller is stabilizing, but not necessarily stable itself

− LQG controller always has a strictly proper transfer function

− stability margins of LQR are not achieved by LQG
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Think loop shaping, act LQG

Loop shaping:

− easy on the magnitude shaping

− might be intricate in the phase shaping around crossover

LQG:

− guarantees closed-loop stability

− not directly interpretable in terms of frequency-domain properties

Combine:

− shape loop magnitude (via frequency-dependent weights)

− solve some LQG to stabilize the shaped loop
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Magnitude shaping

low frequencies

high frequencies

0

M
ag
ni
tu
de

(d
B
)

!c

Conceptually simple,

− pick W such that |Pa(j!)|, where Pa = PW , is shaped appropriately
possible choices

− W (s) = kp to fix the crossover
− W (s) = kp!c=s (I) or W (s) = kp(1 + k i=s) (PI) to add integral action
− W (s) = kp=(�s + 1) to add low-pass filter

− whatever Ca designed for Pa is then implemented as C = WCa for P
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LQR

Bring in

Pa :

{
ẋa(t) = Aaxa(t) + Baua(t) + Bada(t); xa(0) = 0;

y(t) = Caxa(t) + n(t);

and consider a balanced LQG for it with the cost

J =

∫ ∞

0

(
y2(t) + u2a(t)

)
dt =

∫ ∞

0

[
x ′a(t) u′a(t)

][ C ′
aCa 0
0 1

][
xa(t)
ua(t)

]
dt

and unit intensities of da and n. In other words,

− cost puts equal importance to y and ua = (1=W )u,

− load disturbance da = (1=W )d and noise n are equally important.

Motivation:

− LQR shall just ensure stability =⇒ unsophisticated and balanced.
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Controller

The resulted controller is

C (s) = W (s)Ca(s):

Some of its properties:

− the degree of C (s), deg(C (s)) = deg(P(s)) + 2 deg(W (s))
unless some poles or zeros of W (s) are canceled by Ca(s)

− integrators of W (s) become integrators of C (s)

− any nonzero roll-off in W (s) increases that of C (s)

Success indicator:

� =
1√

1 + �max(X̄aȲa)
< 1;

where X̄a and Ȳa are solutions to CAREs for Pa. The level � ≥ 0:25 may be
regarded as adequate, � ≥ 0:5 is very good.
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Example: DC motor

A DC motor from Lecture 1, controlled in closed loop

C (s)
1

s(s + 2)

reu

d

y

ymn

−

Requirements:

− closed-loop stability (of course)

− zero steady-state error for a step in r always holds

− zero steady-state error for a step in d integrator in C (s)

− good stability margins

− !c is treated as a tuning parameter
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Example: !c = 0:5, P weight

Choose
W (s) = kp

where kp renders |Pa(j!c)| = 1. Resulting � = 0:6432, loops are

and the controller

C (s) =
0:52555(s + 2:022)

s2 + 2:924s + 2:275
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Example: !c = 5, P weight

Choose
W (s) = kp

where kp renders |Pa(j!c)| = 1. Resulting � = 0:4673, loops are

and the controller

C (s) =
239:04(s + 3:033)

s2 + 13:21s + 85:28
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Example: !c = 10, P weight

Choose
W (s) = kp

where kp renders |Pa(j!c)| = 1. Resulting � = 0:4276, loops are

and the controller

C (s) =
2224:8(s + 4:675)

s2 + 26:84s + 358:2
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Example: !c = 0:5, PI weight

Choose

W (s) = kp
(
1 +

1

s

)
where kp renders |Pa(j!c)| = 1. Resulting � = 0:4223, loops are

and the controller

C (s) =
0:59807(s + 2:001)(s + 1)(s + 0:1776)

s(s + 1:821)(s2 + 1:578s + 0:903)
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Example: !c = 5, PI weight

Choose

W (s) = kp
(
1 +

1

s

)
where kp renders |Pa(j!c)| = 1. Resulting loops of � = 0:4173, loops are
are

and the controller (zero of W (s) at s = −1 is canceled by a pole of Ca(s))

C (s) =
311:03(s + 2:658)(s + 0:8432)

s(s2 + 13:93s + 95:51)
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Example: !c = 10, PI weight

Choose

W (s) = kp
(
1 +

1

s

)
where kp renders |Pa(j!c)| = 1. Resulting � = 0:403, loops are

and the controller (zero of W (s) at s = −1 is canceled by a pole of Ca(s))

C (s) =
2556:5(s + 4:209)(s + 0:9569)

s(s2 + 27:7s + 382:1)
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