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Disturbance response of state feedback

(sI − A)−1BC

K

vu
d

xy

If ẋ = Ax + B(u + d) and u = Kx + v , then

Tyd(s) = C (sI − AK )
−1B and Tud(s) = K (sI − AK )

−1B

The effect of K is not immediate, although (remember Vieta’s formulae)

|Tyd(0)| =
|NP(0)|
|�cl(0)|

=
|NP(0)|∏

i |�i |

where �i are roots of �cl(s). Hence,

− faster poles =⇒ smaller steady-state effects of d = 1
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Two-tank example: state feedback and disturbances

Input disturbance could be caused by an external leakage in the first tank.

With d(t) = 0:051(t − 4),
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Thus,

− faster poles =⇒ smaller the effect of d
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State observer and disturbances

If {
ẋ(t) = Ax(t) + B(u(t) + d(t)); x(0) = x0

ym(t) = Cx(t) + n(t)

the estimator is still

˙̂x(t) = Ax̂(t) + Bu(t)− L(ym(t)− Cx̂(t)); x̂(0) = x̂0

(we use all information available), but the estimation error,

�̇(t) = AL�(t) + Bd(t) + Ln(t); �(0) = x0 − x̂0

includes both d and n.
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Two-tank example: state observer and disturbances

Returning to our two-tank system,

d(t) = 0:051(t − 4) and n(t) = 0 d(t) = 0 and n(t) = 0:025 sin(10t)

0 4 8 9

0

0 8 9

0

and observations no longer converge to h2(t), with

− faster poles =⇒ higher gain L =⇒ smaller effect of d

− slower poles =⇒ lower gain L =⇒ smaller effect of n

(but be careful with generalizing that).
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Closed-loop system with observer-based controller

Taking into account that � = x − x̂ , it can be shown that
[
ẋ(t)
�̇(t)

]
=

[
AK −BK
0 AL

][
x(t)
�(t)

]
+

[
B
0

]
v(t) +

[
B
B

]
d(t) +

[
0
L

]
n(t)[

y(t)
u(t)

]
=

[
C 0
K −K

][
x(t)
�(t)

]
+

[
0
1

]
v(t)

with initial conditions
[ x0
x0−x̂0

]
.

Hence (check it),

Tyd(s) =

state-feedbackTyd (s)︷ ︸︸ ︷
C (sI − AK )

−1B (1− K (sI − AL)
−1B)

and

Tyn(s) = −C (sI − AK )
−1BK (sI − AL)

−1L

and effects of K and L on the closed-loop behavior are not transparent.



Effects of disturbances on state feedback and observers Disturbance observers Internal model principle

Closed-loop system with observer-based controller

Taking into account that � = x − x̂ , it can be shown that
[
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Idea

Consider state reconstruction for{
ẋ(t) = Ax(t) + B(u(t) + d(t)); x(0) = x0;

y(t) = Cx(t);

If d is

− measurable, �̇(t) = AL�(t) and hence �(t) → 0

− unmeasurable, �̇(t) = AL�(t) + Bd(t) and hence �(t) ̸→ 0 in general

To overcome this problem, we may try to

− observe not only x , but also d ,

feasible only if some information about d , like the waveform of its dominant
components, is available. This information is normally

− cast as a model of the disturbance signal, aka exosystem.
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Disturbance generators (exosystem)

Possible model of (unmeasurable) d :{
ẋd(t) = Adxd(t); xd(0) = xd;0;

d(t) = Cdxd(t);

for known Ad and Cd , reflecting our knowledge about d , and unknown xd;0,
reflecting uncertainty in d . This system

− called disturbance generator

and typically Ad has all its eigenvalues on the j!-axis, generating persistent
signals. This model describes the family of signals,

d(t) = Cd e
Ad txd;0 ⇐⇒ D(s) = Cd(sI − Ad)

−1xd;0

for some unknown xd;0.
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Examples of disturbance generators: step

If
d(t) = d0 · 1(t) =

t0

d0

for some unknown d0, then

D(s) =
d0
s
:

The corresponding signal generator is{
ẋd(t) = 0 · xd(t); xd(0) = d0;

d(t) = 1 · xd(t);

i.e. Ad = 0 and Cd = 1.
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Examples of disturbance generators: ramp

If
d(t) = (d0 + dr · t) · 1(t) =

t0

d0

for some unknown d0 and dr , then

D(s) =
d0s + dr

s2
;

The corresponding signal generator isẋd(t) =

[
0 1
0 0

]
xd(t); xd(0) =

[
d0
dr

]
;

d(t) =
[
1 0

]
xd(t);

i.e. Ad =

[
0 1
0 0

]
and Cd =

[
1 0

]
.
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Examples of disturbance generators: harmonic signal

If
d(t) = a sin(!t + �) · 1(t) =

t

a

for some known ! and unknown a and �, then

D(s) =
a sin(�) s + a! cos(�)

s2 + !2
;

The corresponding signal generator1 isẋd(t) =

[
0 !

−! 0

]
xd(t); xd(0) =

[
sin(�)
cos(�)

]
a;

d(t) =
[
1 0

]
xd(t);

i.e. Ad =

[
0 !

−! 0

]
and Cd =

[
1 0

]
.

1Take the observer form and apply the similarity transformation with T =
[
1 0
0 1=!

]
.
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Augmented system: plant + disturbance

Now we have two systems (assume minimality of both):{
ẋ(t) = Ax(t) + B(u(t) + d(t))

y(t) = Cx(t)
and

{
ẋd(t) = Adxd(t)

d(t) = Cdxd(t)

with corresponding initial conditions. This can be written as

Pa :

 �̇(t) =
[
A BCd

0 Ad

]
�(t) +

[
B
0

]
u(t); �(0) =

[
x0
xd;0

]
y(t) =

[
C 0

]
�(t);

with � ··=
[

x
xd

]
, with uncontrollable modes of Ad . Important is that

− the combined system has no unmeasurable inputs,

only unknown initial conditions. Hence, a Luenberger observer can be built
to asymptotically estimate both x and xd , if the realization is detectable.
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Augmented system: observability

A key question:

− is the pair

([
C 0

]
;

[
A BCd

0 Ad

])
observable (at least, detectable)?

If � ∈ spec(A) ∪ spec(Ad) is an unobservable mode, then by PBH A− �I BCd

0 Ad − �I
C 0

[
�1
�2

]
= 0; for some

[
�1
�2

]
̸= 0:

Equivalently, 
(�I − Ad)�2 = 0

(�I − A)�1 = BCd�2

C�1 = 0

Two cases:

1. � ̸∈ spec(Ad) =⇒ �2 = 0
obs. of (C ;A)

=⇒ �1 = 0 =⇒ contradiction
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Augmented system: observability (contd)

2. if � ∈ spec(Ad) \ spec(A), then
(�I − Ad)�2 = 0

(�I − A)�1 = BCd�2

C�1 = 0

�1=(�I−A)−1BCd�2
=⇒

{
(�I − Ad)�2 = 0

C (�I − A)−1B︸ ︷︷ ︸
P(�)

Cd�2 = 0

Thus, �2 is an eigenvector of Ad and Cd�2 ̸= 0 (by the observability of
(Cd ;Ad)). Hence, P(�)Cd�2 = 0 ⇐⇒ P(�) = 0.

Therefore,

−
([

C 0
]
;

[
A BCd

0 Ad

])
is observable iff P(s) has no zeros in spec(Ad)

which is logical.
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Augmented system: observability (contd)
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−
([

C 0
]
;

[
A BCd

0 Ad

])
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2This is true also if spec(A) ∩ spec(Ad) ̸= ∅, but proving is beyond our toolset.
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Observer for combined system

Straightforward use of known formulae:

˙̂
�(t) =

[
A BCd

0 Ad

]
�̂(t) +

[
B
0

]
u(t)−

[
L
Ld

] (
y(t)−

[
C 0

]
�̂(t)

)
=

([
A BCd

0 Ad

]
+

[
L
Ld

] [
C 0

])
�̂(t) +

[
B
0

]
u(t)−

[
L
Ld

]
y(t)

with �̂(0) = �̂0. In this case error �(t) ··= �(t)− �̂(t) satisfies

�̇(t) =

([
A BCd

0 Ad

]
+

[
L
Ld

] [
C 0

])
�(t); �(0) = �0 − �̂0;

and asymptotically converges to zero if L and Ld are chosen properly.

Because � =
[

x
xd

]
,

− �̂ reconstructs both x (plant state) and xd (disturbance state).
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Two-tank example

With q(t) = 0:5(sin(2t) + 1), d(t) = 0:251(t − 4), and

�̂cl(s) = (s2 + 2�̂!̂ns + !̂
2
n)(s + 7) for �̂ = 0:8 and !̂n = {1; 5}

as the observer characteristic polynomial, we end up with

0 4 5.1 8.4

-0.09

0

0.5

0.75

0 4 5.1 8.4

0

0.25

0.43
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Idea

Consider controller design for{
ẋ(t) = Ax(t) + B(u(t) + d(t)); x(0) = x0;

y(t) = Cx(t);

If both x and d were measurable, we could use

u(t) = Kx(t)− d(t) + v(t)

to stabilize the system and reject d .

We know what to do when

− x is not measurable =⇒ observer-based feedback.

What if we use the same idea with a disturbance observer?
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Controller

If v = 0, then
˙̂
�(t) =

[
A BCd

0 Ad

]
�̂(t) +

[
B
0

]
u(t)−

[
L
Ld

] (
y(t)−

[
C 0

]
�̂(t)

)
u(t) =

[
K −Cd

]
�̂(t)

where

A+ BK and

[
A BCd

0 Ad

]
+

[
L
Ld

] [
C 0

]
=

[
A+ LC BCd

LdC Ad

]
are Hurwitz. The state relation reads

˙̂
�(t) =

([
A BCd

0 Ad

]
+

[
B
0

][
K −Cd

]
+

[
L
Ld

][
C 0

])
�̂(t)−

[
L
Ld

]
y(t)

=

[
A+ BK + LC 0

LdC Ad

]
�̂(t)−

[
L
Ld

]
y(t)
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Closed-loop dynamics

Combining the plant and controller, the closed-loop state ẋ(t)
˙̂x(t)
˙̂xd(t)

 =

 A BK −BCd

−LC A+ BK + LC 0
−LdC LdC Ad

 x(t)
x̂(t)
x̂d(t)

+

 B
0
0

 d(t)

With the standard (by now) trick of replacing x̂ → �x ··= x − x̂ , ẋ(t)
�̇x(t)

− ˙̂xd(t)

 =

 A+ BK −BK BCd

0 A+ LC BCd

0 LdC Ad

 x(t)
�x(t)
−x̂d(t)

+

 B
B
0

 d(t)

which are stable.
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Disturbance response

If d is indeed generated by its model, then
ẋ(t)
�̇x(t)

− ˙̂xd(t)
ẋd(t)

 =


A+ BK −BK BCd BCd

0 A+ LC BCd BCd

0 LdC Ad 0
0 0 0 Ad




x(t)
�x(t)
−x̂d(t)
xd(t)


with some initial conditions. Introducing �d ··= xd − x̂d , these dynamics read

ẋ(t)
�̇x(t)
�̇d(t)

ẋd(t)

 =


A+ BK −BK BCd 0

0 A+ LC BCd 0
0 LdC Ad 0

0 0 0 Ad




x(t)
�x(t)
�d(t)

xd(t)

 ;


x(0)
�x(0)
�d(0)

xd(0)

 = : : :

Therefore,

− x is decoupled from xd =⇒ y = Cx is decoupled from d = Cdxx

meaning perfect asymptotic rejection of disturbances from a given class.
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ẋ(t)
�̇x(t)

− ˙̂xd(t)
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Controller structure

Controller Cy : y 7→ u has the transfer function

Cy (s) = −
[
K −Cd

](
sI −

[
A+ BK + LC 0

LdC Ad

])−1 [
L
Ld

]
whose “A” matrix has all eigenvalues of Ad as its eigenvalues. Moreover, it
can be shown that

− eigenvalues of Ad are always poles of Cy (s)

(to this end we need to prove that all eigenvalues of Ad are both controllable
and observable in the realization above, which is true).

This is a version of the Internal Model Principle, roughly saying that

− disturbance model should be a part of the controller.

We are supposed to know it well for the case of Ad = 0 (integral action) . . .
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Controller structure

Controller Cy : y 7→ u has the transfer function

Cy (s) = −
[
K −Cd

](
sI −

[
A+ BK + LC 0

LdC Ad

])−1 [
L
Ld

]
whose “A” matrix has all eigenvalues of Ad as its eigenvalues. Moreover, it
can be shown that

− eigenvalues of Ad are always poles of Cy (s)

(to this end we need to prove that all eigenvalues of Ad are both controllable
and observable in the realization above, which is true).

This is a version of the Internal Model Principle, roughly saying that

− disturbance model should be a part of the controller.

We are supposed to know it well for the case of Ad = 0 (integral action) . . .
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Two-tank example

Use the 2DOF control architecture

h1,opt

qopt

q

d

h1

n

CyP1 -

for the time-optimal

qopt(t) =
t0 tsw tf

qmin

qmax

qss
and h1;opt(t) =

t0 tsw tf

hdes

under given bounds qmin and qmax.

Assuming that d = d01 for an unknown d0, we design an

− observer-based Cy with the disturbance model

which therefore contains an integral action.
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Two-tank example (contd)

With qmin = 0:2, qmax = 2, d(t) = 0:251(t − 4),

�cl(s) = s2 + 2�!ns + !
2
n for � = 0:8 and !n = {1; 2; 4}

as the state-feedback characteristic polynomial (independent of Wd), and

�̂cl(s) = (s2 + 2�̂!̂ns + !̂
2
n)(s + 7) for �̂ = 0:8 and !̂n = 2

as the observer characteristic polynomial, we end up with

0 0.91 1.52 4 5.47 8.23

0

1

1.16

1.3

0 0.91 1.52 4 5.47 8.23

0

0.25

0.5

2
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Two-tank example (contd)

With qmin = 0:2, qmax = 2, d(t) = 0:251(t − 4),

�cl(s) = s2 + 2�!ns + !
2
n for � = 0:8 and !n = {1; 2; 4}

as the state-feedback characteristic polynomial (independent of Wd), and

�̂cl(s) = (s2 + 2�̂!̂ns + !̂
2
n)(s + 7) for �̂ = 0:8 and !̂n = 5

as the observer characteristic polynomial, we end up with

0 0.91 1.52 4 5.63 7.72

0

1

1.12

1.3

0 0.91 1.52 4 5.63 7.72

0

0.25

0.5

2


	Effects of disturbances on state feedback and observers
	Disturbance observers
	Observer-based feedback with disturbance observers

