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State feedback

efficient in
— stabilizing
— shaping closed-loop modes

— optimizing quadratic cost function

The elephant in the room:

— what if the state vector cannot be measured directly?
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State observer

State reconstruction
Consider state equation

x(t) = Ax(t) + Bu(t), x(0) = xo,
y(t) = Cx(8).
If the state vector cannot be measured (this is what typically happens), then

it could be reconstructed from the measured y. Such reconstructor is called
state observer or simply observer.




Naive observer
A possible approach is to construct a virtual plant, like
X(t) = AX(t) + Bu(t), £(0) = %o.
for some initial guess Xg. The observation error € := x — X satisfies
é(t) = Ae(t), €(0) =x0— Xo
which are autonomous dynamics, driven only by the mismatch between X(0)
and x(0).

Good news:

— if Ais Hurwitz, then lim;_ €(t) =0, i.e. X(t) — x(t) asymptotically

no matter what u is, provided we know it, of course
Bad news:
— we cannot affect error dynamics,

— if Ais unstable, X doesn't converge to x.

Luenberger observer

Naive observer ignores the
— information about x, available in the measurement y.

Consider adding a function of measured mismatch y — CX (aka innovations
signal) in the form

%(t) = AR(t) + Bu(t) — L(y(t) — C&(1)). 2(0) = %
= (A+ LCO)X(t) + Bu(t) — Ly(t), %(0) = %o

for a gain® L € R™L. In this case,

(t) = (A+ LO)e(t),  €(0) = xo — Ro.

: AL
Now we potentially

— can affect the error dynamics.

Q: what freedom we have in assigning spec(A + LC) by the choice of L?

1This L is for Luenberger.

Special case: observer form

Assume that

—a,1 1 -0
A=| | and C=[10 - 0]
—a; 0 .-
—a 0 --- 0
Choosing
/n—l _(an—l_ln—l) 1---0
L=| = A=A+LC= 5 o
Il —(31—/1) o --- 1
o —(ao—h) 0 --- 0

is still an observer form (companion matrix) and its characteristic polynomial

xa(A) = A"+ (ap1 — lh—1)A" P+ + (a1 — h)A + (a0 — bo).

Special case: observer form (contd)

Therefore, any desired observer characteristic polynomial, say
F(s) ="+ fn-1s"""+ -+ J1s+ o

for some coefficients y; > 0, can be assigned by

anfl_)?nfl _)?n—l 1---0

L: : A — AL: .A : - :
ar— J1 -x1 0 -1

a0 — Xo —x0 0 -+ 0

Q: under what condition this can be said about an arbitrary realization?
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Observability

Observability: definition

Consider

y(t) = Cx(t) + Du(t).
This system (or the pair (C, A)) is said to be

— observable if any initial state xg can be reconstructed from time history
of u(t) and y(t) in interval [0, t;] for every t; > 0 and u(t).

{)'((t) = Ax(t) + Bu(t), x(0) = xo,

Simplifying observation:

— Without loss of generality we can assume that u(t) = 0. Indeed, as
t
y(t) = Cexo + Du(t) + C/ eA(t_s)Bu(s)ds,
0

Xo reconstructable from time history of y(t), u(t) iff it reconstructable
from time history of y(t) := y(t) — Du(t) — Cfot eAt=5) By(s)ds.

Observability and observability matrix

Matrix
C
CA
M, = ) e R™"

CA-n—l

called the observability matrix.

Theorem

Pair (C, A) is observable if and only if det M, # 0.

Proof
If u=0, then y(t) = Ce**xp and
y(0)
y(0)
. - 0X0-
y("=1(0)

We have:

1. If det My # 0, xo can be obtained from n — 1 derivatives of y at t = 0.

2. If det M, = 0, then 3v # 0 such that Myv = 0, i.e. that CA'v = 0 for
all i=0,...,n—1. Then, by Cayley-Hamilton,

CAlv=0, Viezt — ceMv=0.

Therefore, if xo = v, then y(t) = Ce’txp = 0 and this initial condition
is indistinguishable from x(0) = 0. ]




Observability and similarity
If A= TAT ! and € = CT ! for some nonsingular T, then

C C
. CA CA .
M, = = T
cirt] | can
= M, T}

i.e.

— observability is not affected by similarity transformations.

Ovservability: some other tests

Theorem
The following statements are equivalent:

1. (C,A) is observable;
2. det M, #0;

w

t
. det W,(t) # 0 for all t > 0, where W,(t) := / A C'CeMods € R,
0

A—Al
s { .
5. eigenvalues of A+ LC can be freely assigned by L € R";

6. (A, C") is controllable.

] € C"1%" has full column rank YA € C (PBH test);

The last statement shows

— duality between observability and controllability properties.

Ovservability: some useful facts

The following observations/definitions are important:

—  W,(t)-test leads to a derivative-free reconstruction algorithm. Let

t
X(t) :== [Wo(tl)]_l/ A C'y(s)ds.
0
In this case
t1 ,
(t) = [Wo(tl)]_l/ A5 C' CePoxods = xo.
0

— If (C, A) is not observable, the PBH test fails for some A; € C. These
A; are eigenvalues of A and called unobservable modes of (C, A).

— If X is an unobservable mode of (C, A), then it is eigenvalue of A+ LC
for any L.

Detectability

Pair (C, A) is said to be
— detectable if all its unobservable modes are stable (in open LHP).

Detectability means that there exists L € R” such that
A[_ =A+LC

is Hurwitz (all eigenvalues are in the open LHP).
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Example: 2-mass system (observability)

Setup

Consider again un U
m=1( m=1
Th Y
with
([ y1(2) 0 0 1 0 yi(t) 00
yt) | _| O O 0 1 y2(t) L1900 [Ul(t)}
yi(t) —k k —c ¢ yi(t) 10| [ uAt)
)'/'Q(t) k -k ¢ -—c }72(t) 01
x(t) A x(t) B
ya(t)
|:y1(t):| |:1 00 0] yz(t)
ya(t) 0100/ |t
\ ¢ ya(t)

Observability under y = y1y1 + Yoy

In this case

y()=1[n r] B;gg] =[y1 y2 0 0]x(t)

Observability matrix (denoting &, = y1 — y2):

Y1 y2 0 0
_| 0 0 Y1 y2

with det M, = —k?(y? — y3)%. Thus, the system is
— unobservable for y; = +y»5.
What could it mean?

uy Uz
C
[F
m=1| m=1
Yy
PBH test:
-1 0 1 0
0 -2 0 1
rank | —k k —c—A c =3,
k —k c —c—A
1 1 0 0 A=—c+Vc2-2k

(rank lost at unobservable modes of A). This agrees with our intuition that

— oscillations cannot be seen via the center of mass.




Example 1: observability with y; = —y», eg. y =y1 — o

uy u
C
[F
m=1| m=1
L ""'/;"" |
™~ y 1
PBH test:
—-A 0 1 0
0 —A 0 1
rank | —k k —c—A c =3,
k —k c —c—A
1 -1 0 0

A=0
(rank lost at unobservable mode of A). This agrees with our intuition that

— rigid body motion cannot be seen via relative position of the masses.

Transfer functions for y = y1y1 + 1oy

uy 253
C
F
m=1 m=1
..........
........
k
e -
n Y2

Transfer function from uy to y:

_ y182 + c(y1 + y2)s + k(y1 + y2)

P
1(s) s2(s% + 2c¢s + 2k)

and transfer function from u, to y:

252 + c(y1 + y2)s + k(y1 + 72)

V
Py(s) =
2(s) s2(s2 4 2c¢s + 2k)

(both obtained via C(sl — A)~1B).

Transfer functions for y = y1y1 + y2y» (contd)

Y1 = Y2 Y1i= —y2:
uy up u U2
. . c - . . c , .
[F [F
m=1 _ " m=1 m=1( - m=1
""'IL"" ! ""'k'"" |
’—’y r y 1
then then
V1 Y1
Pi(s) = Pa(s) = 5. Pi(s) = —Py(s) = 5———.
1(s) = Pa(s) = & () = ~P2s) = 3o

In both cases we have pole/zero cancellations (of different modes though).
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Minimality




Minimal state-space realization

Example

Let G(s) = ;11 The following are its state-space realizations:

{k:—x+u, x(0)=0 and {

y =X

The first of them has state dimension n = 1, while the second one—n = 2.
This indicates that there is redundancy in X (it accumulates somebody else
history as well).

We may be interested to avoid redundancy. To this end, the notion of

— minimal state-space realization, i.e. a realization with minimal possible
dimension,

plays a key role.

Minimality criterion

Theorem
Realization

x(t) = Ax(t) + Bu(t), x(0)=0,
y(t) = Cx(t) + Du(t)

is minimal iff it is both controllable and observable.

Explanations:
— uncontrollable part of x cannot be affected by input u,

— unobservable part of x is invisible from output y.

Important fact:
— every two minimal realizations of the same system are similar

(i.e. there is a similarity transformation between them).

Minimality and poles

(t

c. ¥

y(t)

is minimal, then A € C is a pole of G(s) = D + C(sl — A)~'B iff it is an
eigenvalue of A.

Theorem
If

Ax(t) + Bu(t), x(0)=0,
Cx(t) + Du(t)
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State observer: pole placement




Luenberger observer: choice of L

Let (C, A) be observable, then for an arbitrary polynomial

1

Ra(s) =s"+ Jn-18""" 4+ f15+ fo

there exists observer gain L such that j(s) is characteristic polynomial of
observer error, i.e. Jq(s) = det(s/ — AL).

The gain L leading to a required j.(s) can be chosen by the counterpart of
Ackermann'’s formula®:

L=—fa(AM;™ |
1

2Apply Ackermann'’s formula to (A+ LC) = A’ + C’L’ and then transpose the result.

Example: two-tank system (contd)

Suppose that fluid height only in the first tank can be measured, i.e.

201 2 Al Bl [28)--[22
x1(t)

y(t)=[1 0] [Xz(f)]

(here y = hy — h1,eq). To reconstruct xz(t) we build state observer (virtual
sensor) in the form

2813 ][0 ] wo-[i]vo-ne

TRl 1o0][0o] —3+28a,
-[a]= w132 [T

for a desired f(s) = s2 + 28dns + O2.

Example: simulations
With u(t) = g(t) — g.q = 0.5sin(2t), £ = 0.8, and @, = {15},

ha(t)
0 — hy(t) for w, = 1|
—_ ;l2(t) for w, =6

hy(t) and its observations

0 8 9
Time (sec)

1.4 6.6
under L = [—2.8] and L = — {21.8}

Outline

Observer-based feedback




Output feedback: naive approach

Consider

y(t) = Cx(t)

in which the state vector x is not measured. Hence, state feedback cannot
be used. Under this circumstance, we may try to

{)'((t) = Ax(t) + Bu(t), x(0) = xo

— combine state feedback and state observer

instead, i.e. to use observed state in control law as if it were the true state.

This results to the following control law:

{&(t) = AR(t) + Bu(t) — L(y(t) — CX(t)), %(0) = %o
u(t) = KX(t) + v(t)

which is called observer-based controller.

Observer-based controller

Observer-based control law can be rewritten as

{&(t) = (A4 BK + LO)%(t) — Ly(t) + Bv(t). %(0) = %o
u(t) = KX(t) + v(t)

which is a system having v and y as its inputs and u as its output:

S S a=

with
[C(s) C(s)]=[1 0]+K(sl—(A+BK+LC) '[B L],

where C, : v uand C, : y — u. Note that
— controller —C, is the state-space counterpart of the feedback controller

in the standard unity-feedback case with negative feedback.

Closed-loop system

State equation of the closed-loop system v — y = Cx is:

[im - [—?C A+BBI?+LC] KE;” * {g]V(t)
-t o]

X0

with initial conditions [;(O] What can we say about its modes / stability ?

A key observation is that
— dynamics of the observer error ¢ = x — X do not depend on wu.

So change the state vector to

o =l A5 )

i.e. use the similarity transformation with T =[] 9] = T~

Closed-loop system: similarity transformation

| vt i B el
o [ %]2] 2

c oy o ~[c o]

We have:

Ay = TAGT 1

Ccl = Ccl Til

Note that

— the pair (Ad, éd) has all modes of A; uncontrollable in it.
Indeed,

- Ax—Al —BK B -
[0 77,2][ KO AL — Al 0}:[ 77/2(AL_AI) 0}:0

for every right (nonzero) eigenvector #j of Ay, so PBH yields the conclusion.




The separation

Thus, we end up with the closed-loop system

-1 2 oo (28] L)
po=te o]
The roots of the closed-loop characteristic polynomial
za(s) = det(sl — A) det(sl — A)

are the union of the state-feedback and observer modes. Thus, all we need
to do to stabilize the system is to

— design stabilizing state feedback i.e. its gain K
— design stable observer i.e. its gain L

separately. This is known as the separation principle.

Closed-loop system v — y

The “€" part of the closed-loop behavior

E(t)=Ae(t), €(0)=x—% = €(t)=eM(x— %)

The “x" part is then
x(t) = Akx(t) + Bv(t) — BKe(t) = Axx(t) + B(v(t) — Ke"'(xo — %))

i.e. including an observer is
— equivalent to adding an exponentially decaying signal to v.

Moreover, if xg = X, then ¢ = 0 and
x(t) = Akx(t) + Bv(t), x(0) = xo

exactly like in the case of measured state.
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