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State feedback

(sI − A)−1BC

K

vuxy

efficient in

− stabilizing

− shaping closed-loop modes

− optimizing quadratic cost function

− . . .

The elephant in the room:

− what if the state vector cannot be measured directly?
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State reconstruction

Consider state equation

{
ẋ(t) = Ax(t) + Bu(t); x(0) = x0;

y(t) = Cx(t):

If the state vector cannot be measured (this is what typically happens), then
it could be reconstructed from the measured y . Such reconstructor is called
state observer or simply observer.
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Näıve observer

A possible approach is to construct a virtual plant, like

˙̂x(t) = Ax̂(t) + Bu(t); x̂(0) = x̂0;

for some initial guess x̂0. The observation error � ··= x − x̂ satisfies

�̇(t) = A�(t); �(0) = x0 − x̂0

which are autonomous dynamics, driven only by the mismatch between x̂(0)
and x(0).

Good news:

− if A is Hurwitz, then limt→∞ �(t) = 0, i.e. x̂(t) → x(t) asymptotically
no matter what u is, provided we know it, of course

Bad news:

− we cannot affect error dynamics,

− if A is unstable, x̂ doesn’t converge to x .
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Luenberger observer

Näıve observer ignores the

− information about x , available in the measurement y .

Consider adding a function of measured mismatch y − Cx̂ (aka innovations
signal) in the form

˙̂x(t) = Ax̂(t) + Bu(t)− L(y(t)− Cx̂(t)); x̂(0) = x̂0

= (A+ LC )x̂(t) + Bu(t)− Ly(t); x̂(0) = x̂0

for a gain1 L ∈ Rn×1. In this case,

�̇(t) = (A+ LC︸ ︷︷ ︸
:=AL

)�(t); �(0) = x0 − x̂0:

Now we potentially

− can affect the error dynamics.

Q: what freedom we have in assigning spec(A+ LC ) by the choice of L?

1This L is for Luenberger.
6/38

Special case: observer form

Assume that

A =




−an−1 1 · · · 0
...

...
. . .

...
−a1 0 · · · 1
−a0 0 · · · 0


 and C =

[
1 0 · · · 0

]
:

Choosing

L =




ln−1
...
l1
l0


 =⇒ AL = A+ LC =




−(an−1 − ln−1) 1 · · · 0
...

...
. . .

...
−(a1 − l1) 0 · · · 1
−(a0 − l0) 0 · · · 0




is still an observer form (companion matrix) and its characteristic polynomial

�AL
(�) = �n + (an−1 − ln−1)�

n−1 + · · ·+ (a1 − l1)�+ (a0 − l0):
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Special case: observer form (contd)

Therefore, any desired observer characteristic polynomial, say

�̂(s) = sn + �̂n−1s
n−1 + · · ·+ �̂1s + �̂0

for some coefficients �̂i > 0, can be assigned by

L =




an−1 − �̂n−1
...

a1 − �̂1
a0 − �̂0


 =⇒ AL =




−�̂n−1 1 · · · 0
...

...
. . .

...
−�̂1 0 · · · 1
−�0 0 · · · 0




Q: under what condition this can be said about an arbitrary realization?
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Observability: definition

Consider {
ẋ(t) = Ax(t) + Bu(t); x(0) = x0;

y(t) = Cx(t) + Du(t):

This system (or the pair (C ;A)) is said to be

− observable if any initial state x0 can be reconstructed from time history
of u(t) and y(t) in interval [0; t1] for every t1 > 0 and u(t).

Simplifying observation:

− Without loss of generality we can assume that u(t) ≡ 0. Indeed, as

y(t) = C eAtx0 + Du(t) + C

∫ t

0
eA(t−s)Bu(s)ds;

x0 reconstructable from time history of y(t); u(t) iff it reconstructable
from time history of ỹ(t) ··= y(t)− Du(t)− C

∫ t
0 eA(t−s)Bu(s)ds.
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Observability and observability matrix

Matrix

Mo ··=




C
CA
...

CAn−1


 ∈ Rn×n

called the observability matrix.

Theorem
Pair (C ;A) is observable if and only if detMo ̸= 0.
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Proof

If u = 0, then y(t) = C eAtx0 and




y(0)
ẏ(0)
...

y (n−1)(0)


 = Mox0:

We have:

1. If detMo ̸= 0, x0 can be obtained from n− 1 derivatives of y at t = 0.

2. If detMo = 0, then ∃v ̸= 0 such that Mov = 0, i.e. that CAiv = 0 for
all i = 0; : : : ; n − 1. Then, by Cayley-Hamilton,

CAiv = 0; ∀i ∈ Z+ =⇒ C eAtv ≡ 0:

Therefore, if x0 = v , then y(t) = C eAtx0 ≡ 0 and this initial condition
is indistinguishable from x(0) = 0.
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Observability and similarity

If Ã = TAT−1 and C̃ = CT−1 for some nonsingular T , then

M̃o ··=




C̃

C̃ Ã
...

C̃ Ãn−1


 =




C
CA
...

CAn−1


T−1

= MoT
−1

i.e.

− observability is not affected by similarity transformations.
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Ovservability: some other tests

Theorem
The following statements are equivalent:

1. (C ;A) is observable;

2. detMo ̸= 0;

3. detWo(t) ̸= 0 for all t > 0, where Wo(t) ··=
∫ t

0
eA

′sC ′C eAs ds ∈ Rn×n;

4.

[
A− �I

C

]
∈ Cn+1×n has full column rank ∀� ∈ C (PBH test);

5. eigenvalues of A+ LC can be freely assigned by L ∈ Rn;

6. (A′;C ′) is controllable.

The last statement shows

− duality between observability and controllability properties.
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Ovservability: some useful facts

The following observations/definitions are important:

− Wo(t)-test leads to a derivative-free reconstruction algorithm. Let

x̃(t) ··= [Wo(t1)]
−1

∫ t

0
eA

′sC ′y(s)ds:

In this case

x̃(t1) = [Wo(t1)]
−1

∫ t1

0
eA

′sC ′C eAsx0ds = x0:

− If (C ;A) is not observable, the PBH test fails for some �i ∈ C. These
�i are eigenvalues of A and called unobservable modes of (C ;A).

− If � is an unobservable mode of (C ;A), then it is eigenvalue of A+ LC
for any L.
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Detectability

Pair (C ;A) is said to be

− detectable if all its unobservable modes are stable (in open LHP).

Detectability means that there exists L ∈ Rn such that

AL ··= A+ LC

is Hurwitz (all eigenvalues are in the open LHP).
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Setup

Consider again

m = 1 m = 1

k

c

y1 y2

u1 u2

with






ẏ1(t)
ẏ2(t)
ÿ1(t)
ÿ2(t)




︸ ︷︷ ︸
ẋ(t)

=




0 0 1 0
0 0 0 1
−k k −c c
k −k c −c




︸ ︷︷ ︸
A




y1(t)
y2(t)
ẏ1(t)
ẏ2(t)




︸ ︷︷ ︸
x(t)

+




0 0
0 0
1 0
0 1




︸ ︷︷ ︸
B

[
u1(t)
u2(t)

]

[
y1(t)
y2(t)

]
=

[
1 0 0 0
0 1 0 0

]

︸ ︷︷ ︸
C




y1(t)
y2(t)
ẏ1(t)
ẏ2(t)



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Observability under y = 
1y1 + 
2y2

In this case

y(t) =
[

1 
2

] [ y1(t)
y2(t)

]
=

[

1 
2 0 0

]
x(t)

Observability matrix (denoting ı
 ··= 
1 − 
2):

Mo =





1 
2 0 0
0 0 
1 
2

−kı
 kı
 −cı
 cı

2ckı
 −2ckı
 −(k − 2c2)ı
 (k − 2c2)ı





with detMo = −k2(
21 − 
22 )2. Thus, the system is

− unobservable for 
1 = ±
2.
What could it mean?
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Example 1: observability with 
1 = 
2, e.g. y = y1+y2
2

m = 1 m = 1

k

c

y

u1 u2

PBH test:

rank




−� 0 1 0
0 −� 0 1
−k k −c − � c
k −k c −c − �
1 1 0 0




∣∣∣∣∣∣∣∣∣∣
�=−c±

√
c2−2k

= 3;

(rank lost at unobservable modes of A). This agrees with our intuition that

− oscillations cannot be seen via the center of mass.
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Example 1: observability with 
1 = −
2, e.g. y = y1 − y2

m = 1 m = 1

k

c

y

u1 u2

PBH test:

rank




−� 0 1 0
0 −� 0 1
−k k −c − � c
k −k c −c − �
1 −1 0 0




∣∣∣∣∣∣∣∣∣∣
�=0

= 3;

(rank lost at unobservable mode of A). This agrees with our intuition that

− rigid body motion cannot be seen via relative position of the masses.
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Transfer functions for y = 
1y1 + 
2y2

m = 1 m = 1

k

c

y1 y2

u1 u2

Transfer function from u1 to y :

P1(s) =

1s

2 + c(
1 + 
2)s + k(
1 + 
2)

s2(s2 + 2cs + 2k)

and transfer function from u2 to y :

P2(s) =

2s

2 + c(
1 + 
2)s + k(
1 + 
2)

s2(s2 + 2cs + 2k)

(both obtained via C (sI − A)−1B).
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Transfer functions for y = 
1y1 + 
2y2 (contd)


1 = 
2:

m = 1 m = 1

k

c

y

u1 u2

then

P1(s) = P2(s) =

1

s2
:


1 = −
2:

m = 1 m = 1

k

c

y

u1 u2

then

P1(s) = −P2(s) =

1

s2 + 2cs + 2k
:

In both cases we have pole/zero cancellations (of different modes though).
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Minimal state-space realization

Example

Let G (s) = 1
s+1 . The following are its state-space realizations:

{
ẋ = −x + u; x(0) = 0

y = x
and

{
˙̃x = −

[
1 0
0 2

]
x̃ +

[
1
0

]
u; x̃(0) = 0;

y =
[
1 0

]
x̃ :

The first of them has state dimension n = 1, while the second one—n = 2.
This indicates that there is redundancy in x̃ (it accumulates somebody else
history as well).

We may be interested to avoid redundancy. To this end, the notion of

− minimal state-space realization, i.e. a realization with minimal possible
dimension,

plays a key role.
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Minimality criterion

Theorem
Realization {

ẋ(t) = Ax(t) + Bu(t); x(0) = 0;

y(t) = Cx(t) + Du(t)

is minimal iff it is both controllable and observable.

Explanations:

− uncontrollable part of x cannot be affected by input u,

− unobservable part of x is invisible from output y .

Important fact:

− every two minimal realizations of the same system are similar

(i.e. there is a similarity transformation between them).
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Minimality and poles

Theorem
If

G :

{
ẋ(t) = Ax(t) + Bu(t); x(0) = 0;

y(t) = Cx(t) + Du(t)

is minimal, then � ∈ C is a pole of G (s) = D + C (sI − A)−1B iff it is an
eigenvalue of A.
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Luenberger observer: choice of L

Let (C ;A) be observable, then for an arbitrary polynomial

�̂cl(s) = sn + �̂n−1s
n−1 + · · ·+ �̂1s + �̂0

there exists observer gain L such that �̂cl(s) is characteristic polynomial of
observer error, i.e. �̂cl(s) = det(sI − AL).

The gain L leading to a required �̂cl(s) can be chosen by the counterpart of
Ackermann’s formula2:

L = −�̂cl(A)M−1
o




0
...
0
1


 :

2Apply Ackermann’s formula to (A+ LC)′ = A′ + C ′L′ and then transpose the result.
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Example: two-tank system (contd)

Suppose that fluid height only in the first tank can be measured, i.e.




[
ẋ1(t)
ẋ2(t)

]
=

[
−1 1
1 −2

][
x1(t)
x2(t)

]
+

[
1
0

]
u(t);

[
x1(0)
x2(0)

]
= −

[
1=2
1=4

]

y(t) =
[
1 0

] [ x1(t)
x2(t)

]

(here y = h1 − h1;eq). To reconstruct x2(t) we build state observer (virtual
sensor) in the form

[
˙̂x1(t)
˙̂x2(t)

]
=

[
−1 1
1 −2

] [
x̂1(t)
x̂2(t)

]
+

[
1
0

]
u(t)−

[
l1
l2

] (
y(t)− x̂1(t)

)

where

L =

[
l1
l2

]
= −�̂cl(A)

[
1 0
1 1

] [
0
1

]
= −

[ −3 + 2�̂!̂n

5− 4�̂!̂n + !̂n

]

for a desired �̂cl(s) = s2 + 2�̂!̂ns + !̂
2
n .
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Example: simulations

With u(t) = q(t)− qeq = 0:5 sin(2t), �̂ = 0:8, and !̂n = {1; 5},

0 8 9

0

0.25

under L =

[
1:4
−2:8

]
and L = −

[
6:6
21:8

]
.
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Output feedback: näıve approach

Consider {
ẋ(t) = Ax(t) + Bu(t); x(0) = x0

y(t) = Cx(t)

in which the state vector x is not measured. Hence, state feedback cannot
be used. Under this circumstance, we may try to

− combine state feedback and state observer

instead, i.e. to use observed state in control law as if it were the true state.

This results to the following control law:

{
˙̂x(t) = Ax̂(t) + Bu(t)− L(y(t)− Cx̂(t)); x̂(0) = x̂0

u(t) = Kx̂(t) + v(t)

which is called observer-based controller.
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Observer-based controller

Observer-based control law can be rewritten as
{
˙̂x(t) = (A+ BK + LC )x̂(t)− Ly(t) + Bv(t); x̂(0) = x̂0

u(t) = Kx̂(t) + v(t)

which is a system having v and y as its inputs and u as its output:

vuy
P

[
Cv Cy

]

with

[
Cv (s) Cy (s)

]
=

[
1 0

]
+ K (sI − (A+ BK + LC )

)−1 [
B −L

]
;

where Cv : v 7→ u and Cy : y 7→ u. Note that

− controller −Cy is the state-space counterpart of the feedback controller

in the standard unity-feedback case with negative feedback.
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Closed-loop system

State equation of the closed-loop system v 7→ y = Cx is:





[
ẋ(t)
˙̂x(t)

]
=

[
A BK

−LC A+ BK + LC

] [
x(t)
x̂(t)

]
+

[
B
B

]
v(t)

y(t) =
[
C 0

] [ x(t)
x̂(t)

]

with initial conditions
[ x0
x̂0

]
. What can we say about its modes / stability ?

A key observation is that

− dynamics of the observer error � = x − x̂ do not depend on u.

So change the state vector to

[
x(t)
�(t)

]
=

[
I 0
I −I

] [
x(t)
x̂(t)

]
;

i.e. use the similarity transformation with T =
[
I 0
I −I

]
= T−1.
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Closed-loop system: similarity transformation

We have:

Ãcl = TAclT
−1 =

[
I 0
I −I

][
A BK

−LC A+ BK + LC

][
I 0
I −I

]
=

[
AK −BK
0 AL

]

B̃cl = TBcl =

[
I 0
I −I

][
B
B

]
=

[
B
0

]

C̃cl = CclT
−1 =

[
C 0

][ I 0
I −I

]
=

[
C 0

]

Note that

− the pair (Ãcl; B̃cl) has all modes of AL uncontrollable in it.

Indeed,

[
0 �̃′2

] [ AK − �I −BK B
0 AL − �I 0

]
=

[
0 �̃′2(AL − �I ) 0

]
= 0

for every right (nonzero) eigenvector �̃2 of AL, so PBH yields the conclusion.
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The separation

Thus, we end up with the closed-loop system





[
ẋ(t)
�̇(t)

]
=

[
AK −BK
0 AL

][
x(t)
�(t)

]
+

[
B
0

]
v(t);

[
x(0)
�(0)

]
=

[
x0

x0 − x̂0

]

y(t) =
[
C 0

][ x(t)
�(t)

]

The roots of the closed-loop characteristic polynomial

�cl(s) = det(sI − AK ) det(sI − AL)

are the union of the state-feedback and observer modes. Thus, all we need
to do to stabilize the system is to

− design stabilizing state feedback i.e. its gain K

− design stable observer i.e. its gain L

separately. This is known as the separation principle.
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Closed-loop system v 7→ y

The “�” part of the closed-loop behavior

�̇(t) = AL�(t); �(0) = x0 − x̂0 =⇒ �(t) = eALt(x0 − x̂0)

The “x” part is then

ẋ(t) = AKx(t) + Bv(t)− BK�(t) = AKx(t) + B
(
v(t)− K eALt(x0 − x̂0)

)

i.e. including an observer is

− equivalent to adding an exponentially decaying signal to v .

Moreover, if x0 = x̂0, then � = 0 and

ẋ(t) = AKx(t) + Bv(t); x(0) = x0

exactly like in the case of measured state.
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