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Optimization-based design

The underlying idea:

− express requirements in terms of a size of a cost function

to be minimized by the control law.

Important to remember that

− no performance index can reflect all our requirements.

We therefore shall use

− optimization as design tool,

rather than the control goal per se. Every controller is optimal with respect
to some cost function. But not every optimal controller makes sense. Thus,
optimization methods should be judged by

− simplicity of their solutions

− simplicity of tuning their properties via weighting functions

− byproducts (what do we get for granted)
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Positive (semi)definite block matrices

Consider

A =

[
A11 A12

A21 A22

]
=

[
A′
11 A′

21

A′
12 A′

22

]
= A′

with A22 > 0 (hence, detA22 ̸= 0). Given

x =

[
x1
x2

]
we have, exactly like in Lect. 6,

x ′Ax = x ′1A11x1 + x ′1A12x2 + x ′2A21x1 + x ′2A22x2

= x ′1(A11 − A12A
−1
22 A21)x1 + x ′1A12A

−1
22 A21x1 + 2x ′2A21x1 + x ′2A22x2

= x ′1(A11 − A12A
−1
22 A21)x1 + (x ′2 + x ′1A12A

−1
22 )A22(x2 + A−1

22 A21x1)

Thus, if A22 > 0, then A ≥ 0 ⇐⇒ A11 − A12A
−1
22 A21 ≥ 0.
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CARE

Let A ∈ Rn×n, B ∈ Rn×m, Q = Q ′ ∈ Rn×n, R = R ′ ∈ Rm×m, and S ∈ Rn×m

be given. The matrix equation

A′X̄ + X̄A+ Q − (S + X̄B)R−1(S ′ + B ′X̄ ) = 0

is called the continuous-time algebraic Riccati equation (CARE). Its solution
X̄ ∈ Rn×n is said to be stabilizing if the matrix

AK ··= A− BR−1(S ′ + B ′X̄ )

is Hurwitz1. The stabilizing X̄ , if exists, is unique and satisfies X̄ = X̄ ′. We
are interested in CAREs for

R > 0 and

[
Q S
S ′ R

]
≥ 0

(the latter is equivalent to Q − SR−1S ′ ≥ 0).

1MATLAB: icare(A,B,Q,R,S) or icare(A,B,Q,R) if S = 0.
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CARE: example

Let A = a, B = b, Q = q ≥ 0, R = r > 0, and S = 0. The CARE reads

2aX̄ + q − b2

r
X̄ 2 = 0:

1. If b = 0, then the CARE becomes 2aX̄ + q = 0 and AK = a.

− if a ≥ 0, then no stabilizing solution exists
− if a < 0, then X̄ = −q=(2a) ≥ 0 is the stabilizing solution

2. If b ̸= 0, then the CARE above is quadratic, solvable by

X̄ =
ar ±

√
(a2r + b2q)r

b2
=⇒ AK = a− b2

r
X̄ = ∓

√
a2r + b2q√

r

and it is Hurwitz for “+”, unless a = q = 0. Thus, the stabilizing

X̄ =
ar +

√
(a2r + b2q)r

b2
> 0:
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CARE: existence

If

1. (A;B) is stabilizable,

2.

 A− j!I B
Q S
S ′ R

 has full column rank ∀! ∈ R,

then the stabilizing solution X̄ to

A′X̄ + X̄A+ Q − (S + X̄B)R−1(S ′ + B ′X̄ ) = 0

exists and is such that X̄ ≥ 0.

Remark Because A− j!I B
Q S
S ′ R

 =

 I 0 BR−1

0 I SR−1

0 0 I

 A− BR−1S − j!I 0
Q − SR−1S ′ 0

S ′ R

 ;
the second condition holds iff (A−BR−1S ;Q−SR−1S ′) has no pure imaginary unobservable
modes. If S = 0, unobservable modes of (A;Q) are verified.
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The LQR problem

Given
ẋ(t) = Ax(t) + Bu(t); x(0) = x0

find u(t) that

− stabilizes the systems (limt→∞ x(t) = 0),

− minimizes

J =

∫ ∞

0

[
x ′(t) u′(t)

][ Q S
S ′ R

][
x(t)
u(t)

]
dt:

Assumptions:

A1: (A;B) is stabilizable
necessary for a stabilizing controller to exist

A2: R > 0 and Q − SR−1S ′ ≥ 0
guarantees that the optimal u(t) is bounded and that J ≥ 0

A3: (A−BR−1S ;Q−SR−1S ′) has no pure imaginary unobservable modes
guarantees that the optimal u(t) exists and is unique
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Example: two-tank system from Lecture 8

˛ ˇ

q

h1

h2

With ˛ = ˇ = � = 1, heq =
[

0:5
0:25

]
, and qeq = 0:5, the linearized dynamics[

ẋ1(t)
ẋ2(t)

]
=

[
−1 1
1 −2

][
x1(t)
x2(t)

]
+

[
1
0

]
u(t);

[
x1(0)
x2(0)

]
= −

[
0:5
0:25

]
where xi = hi − hi ;eq and u = q − qeq.

Our goal is to

− regulate x from x(0) to limt→∞ x(t) = 0 in a desired matter

(regulator problem), which is effectively the set-point tracking of h(t) = heq.
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Example: LQR formulations

We may consider several quantities to penalize:

1. level deviation from the steady state, i ··=
∫ ∞

0
x2i (t)dt, for i = 1; 2

2. control effort, u ··=
∫ ∞

0
u2(t)dt

3. rate of level asynchronization, 12 ··=
∫ ∞

0

(
ẋ1(t)− 2ẋ2(t)

)
2dt

These goals are conflicting, e.g. faster response needs higher control effort,
so the design is

− the art of tradeoffs,

whose essence is to seek for a right blend of a number of them via weights.
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Example: building Q, R , and S

First, express each penalty via LQR quadratic forms. To this end, note that

xi =
[
Ci 0

][ x
u

]
; u =

[
0 1

][ x
u

]
; and ẋ1 − 2ẋ2 = C12

[
A B

][ x
u

]
where C1 ··=

[
1 0

]
, C2 ··=

[
0 1

]
, C12 ··= C1 − 2C2 =

[
1 −2

]
. Hence,

i =

∫ ∞

0

[
x ′(t) u′(t)

][ C ′
iCi 0
0 0

][
x(t)
u(t)

]
dt;

u =

∫ ∞

0

[
x ′(t) u′(t)

][ 0 0
0 1

][
x(t)
u(t)

]
dt;

and

12 =

∫ ∞

0

[
x ′(t) u′(t)

][ A′C ′
12C12A A′C ′

12C12B
B ′C ′

12C12A B ′C ′
12C12B

][
x(t)
u(t)

]
dt:
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Example: building Q, R , and S (contd)

Now we could easily mix them. For example, for every r > 0

i + ru =

∫ ∞

0

[
x ′(t) u′(t)

][ C ′
iCi 0
0 r

]
︸ ︷︷ ︸

≥ 0

[
x(t)
u(t)

]
dt:

which is a standard LQR cost.

Likewise, for every � ∈ (0; 1)

�i + (1− �)12 =
∫ ∞

0

[
x ′(t) u′(t)

][ Q S
S ′ R

][
x(t)
u(t)

]
dt;

where[
Q S
S ′ R

]
=

[
�C ′

iCi + (1− �)A′C ′
12C12A (1− �)A′C ′

12C12B
(1− �)B ′C ′

12C12A (1− �)B ′C ′
12C12B

]
≥ 0

because Q − SR−1S = �C ′
iCi ≥ 0 (note that R = C12B = 1 ̸= 0).



Mathematical preliminaries LQR: formulation LQR: solution LQR: solution properties

Outline

Mathematical preliminaries

Linear-Quadratic Regulator (LQR) problem: formulation

Linear-Quadratic Regulator (LQR) problem: solution

LQR: solution properties



Mathematical preliminaries LQR: formulation LQR: solution LQR: solution properties

Solution

Theorem
If A1–3 hold, then the unique stabilizing controller that minimizes

J =

∫ ∞

0

[
x ′(t) u′(t)

][ Q S
S ′ R

][
x(t)
u(t)

]
dt

is
u(t) = −R−1(S ′ + B ′X̄ )x(t);

where X̄ = X̄ ′ ≥ 0 is the stabilizing solution to the CARE

A′X̄ + X̄A+ Q − (S + X̄B)R−1(S ′ + B ′X̄ ) = 0:

The optimal cost is then
Jopt = x ′0X̄ x0:

Remark The optimal control law is a state feedback, with the gain K = −R−1(S ′+B ′X̄ ).
The closed-loop “A” matrix A+ BK is Hurwitz because X̄ is the stabilizing solution.
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Proof

Denote K ··= −R−1(S ′ + B ′X̄ ) and define

MX ··=
[
Q S
S ′ R

]
+

[
X̄
0

] [
A B

]
+

[
A′

B ′

] [
X̄ 0

]
=

[
Q + A′X̄ + X̄A S + X̄B

S ′ + B ′X̄ R

]
=

[
−K ′

I

]
R
[
−K I

]
because

Q +A′X̄ + X̄A = (S + X̄B)R−1(S ′ +B ′X̄ ) = K ′RK & S ′ +B ′X̄ = −RK

for every Riccati solution X̄ . Thus,[
Q S
S ′ R

]
=

[
−K ′

I

]
R
[
−K I

]
−
[
X̄
0

] [
A B

]
−

[
A′

B ′

] [
X̄ 0

]
(?)

which is a key relation.
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Proof (contd)

Now, the quadratic form in the cost J is

[
x ′(t) u′(t)

][ Q S
S ′ R

][
x(t)
u(t)

]
=

[
x ′(t) u′(t)

] [−K ′

I

]
R
[
−K I

] [ x(t)
u(t)

]
−
[
x ′(t) u′(t)

]([ X̄
0

] [
A B

]
+

[
A′

B ′

] [
X̄ 0

])[ x(t)
u(t)

]
=

(
u(t)− Kx(t)

)′
R
(
u(t)− Kx(t)

)
− x ′(t)X̄ ẋ(t)− ẋ ′(t)X̄ x(t)

=
(
u(t)− Kx(t)

)′
R
(
u(t)− Kx(t)

)
− d

dt

(
x ′(t)X̄ x(t)

)
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Proof (contd)

Thus,

J =

∫ ∞

0

((
u(t)− Kx(t)

)′
R
(
u(t)− Kx(t)

)
− d

dt

(
x ′(t)X̄ x(t)

))
dt

=

∫ ∞

0

(
u(t)− Kx(t)

)′
R
(
u(t)− Kx(t)

)
dt + x ′0X̄ x0 − lim

t→∞
x ′(t)X̄ x(t):

If u(t) is stabilizing, then limt→∞ x ′(t)X̄ x(t) = 0. Because R > 0,

J =

∫ ∞

0

(
u(t)− Kx(t)

)′
R
(
u(t)− Kx(t)

)
dt + x ′0X̄ x0 ≥ x ′0X̄ x0

whenever the system is asymptotically stable and the equality is attained by
u(t) = Kx(t), which is stabilizing (X̄ is the stabilizing solution).
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Example: design 1

Consider J = 1 + ru for various control energy weights r > 0. Results:

The gains and closed-loop eigenvalues are

K = −

 9:1264 0:7722

2:4595 0:4841

0:5316 0:1729


and {−10:15;−1:97}, {−3:75;−1:71}, and
{−2:7;−0:83}.
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Example: design 2

Consider J = 2 + ru for various control energy weights r > 0. Results:

The gains and closed-loop eigenvalues are

K = −

 2:2057 4:6384

0:6923 0:9320

0:1350 0:1441


and {−2:6 ± j1:81}, {−2:15;−1:54}, and
{−2:59;−0:55}.
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Example: design 3

Consider J = �2 + (1− �)12 for various weights � ∈ (0; 1). Results:

The gains and closed-loop eigenvalues are

K = −

 0:7417 4:5167

−1:5858 3:1716

−2:4655 4:0738


and {−1:87± j1:87}, {−0:71± j0:71}, and
{−0:27± j0:27}.
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Guaranteed exponential decay

Consider now the cost

J˛ =

∫ ∞

0
e2˛t

[
x ′(t) u′(t)

][ Q S
S ′ R

][
x(t)
u(t)

]
dt

for some ˛ ≥ 0. To render J˛ finite,

− x(t) and u(t) must decay faster than e−˛t .

The variables x˛(t) ··= e˛tx(t) and u˛(t) ··= e˛tu(t) satisfy

ẋ˛(t) = ˛e˛tx(t) + e˛t ẋ(t) = (˛I + A)x˛(t) + Bu˛(t)

and the cost in terms of them reads

J˛ =

∫ ∞

0

[
x ′˛(t) u′˛(t)

][ Q S
S ′ R

][
x˛(t)
u˛(t)

]
dt:

This is the original LQR, modulo the substitution A → ˛I +A in the CARE.
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∫ ∞
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Guaranteed exponential decay (contd)

Thus, the control law minimizing J˛ is

u(t) = K˛x(t);

where K˛ ··= −R−1(S ′ +B ′X̄˛) and X̄˛ = X̄ ′
˛ ≥ 0 is the stabilizing solution

(i.e. such that ˛I + A+ BK˛ is Hurwitz) to

(˛I + A)′X̄˛ + X̄˛(˛I + A) + Q − (S + X̄˛B)R
−1(S ′ + B ′X̄˛) = 0:

Moreover, because � ∈ spec(˛I + A) ⇐⇒ �− ˛ ∈ spec(A),

− ˛I + A+ BK˛ is Hurwitz iff spec(A+ BK˛) ∈ {s ∈ C | Re s < −˛}
and we end up with the property that

− minimizing J˛ ensures that closed-loop eigenvalues have Re�i < −˛.
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Example: design 1 with various ˛’s

Consider J = 1 + ru for various decay guarantees ˛ ≥ 0. Results:

The gains and closed-loop eigenvalues are

K = −

 2:4595 0:4841

4:8730 2

11:4128 25:8879


and {−3:75;−1:71}, {−5:59;−2:28}, and
{−8:6;−5:72}, to the left of −˛, indeed.
So beware, “more stable” ≠⇒ “better”.
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Scaling the cost J
Optimal solutions for [

Q S
S ′ R

]
and 

[
Q S
S ′ R

]
coincide. Indeed, the CARE for the latter reads

A′X̄ + X̄A+ Q − (S + X̄B)(R)
−1(S ′ + B ′X̄ ) = 0

or, equivalently,

A′(−1X̄) + (−1X̄)A+ Q − (S + (−1X̄)B)R
−1(S ′ + B ′(−1X̄)) = 0

Hence, X̄ =  X̄ and

K = −(R)−1(S ′ + B ′X̄ ) = −R−1(S ′ + B ′X̄ )

is independent of  . but the optimal cost is proportional to 
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CARE manipulations

By (?),

[
B ′(−sI − A′)−1 I

] [ Q S
S ′ R

] [
(sI − A)−1B

I

]
= (I − B ′(−sI − A′)−1K ′)R(I − K (sI − A)−1B)

+ B ′(−sI − A′)−1X̄
(
A(sI − A)−1 + I

)
B

+ B ′((−sI − A′)−1A′ + I
)
X̄ (sI − A)−1B

The last two terms above cancel each other, because (see Lect. 6, Slide 24)
A(sI − A)−1 + I = s(sI − A)−1 and (−sI − A′)−1A′ + I = −s(−sI − A′)−1.
Thus, we end up with the relation

[
B ′(−sI − A′)−1 I

] [ Q S
S ′ R

] [
(sI − A)−1B

I

]
= (I − B ′(−sI − A′)−1K ′)R(I − K (sI − A)−1B):
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CARE manipulations
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CARE manipulations
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Thus, we end up with the relation

[
B ′(−sI − A′)−1 I

] [ Q S
S ′ R

] [
(sI − A)−1B

I
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CARE manipulations: m = 1 and S = 0

Denote r = R (to emphasize that it is scalar) and rewrite the relation as

(1 + Lsf(−s))(1 + Lsf(s)) = 1 +
1

r
B ′(−sI − A′)−1Q(sI − A)−1B; (??)

where
Lsf(s) ··= −K (sI − A)−1B

is the loop transfer function in

(sI − A)−1BC

−K

kr
ruxy

-
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Return difference equality (m = 1 and S = 0)

If s = j!, then Lsf(−j!) = Lsf(−j!) and Eqn. (??) reads

|1 + Lsf(j!)|2 = 1 +
1

r
B ′(−j!I − A′)−1Q(j!I − A)−1B

known as the return difference equality.

Note that Q ≥ 0 implies that

B ′(−j!I − A′)−1Q(j!I − A)−1B = [(j!I − A)−1B]′Q[(j!I − A)−1B] ≥ 0

Hence, the return difference equality ensures that

|1 + Lsf(j!)|2 ≥ 1; ∀! ∈ R:



Mathematical preliminaries LQR: formulation LQR: solution LQR: solution properties

Return difference equality (m = 1 and S = 0)

If s = j!, then Lsf(−j!) = Lsf(−j!) and Eqn. (??) reads

|1 + Lsf(j!)|2 = 1 +
1

r
B ′(−j!I − A′)−1Q(j!I − A)−1B

known as2 the return difference equality.

Note that Q ≥ 0 implies that

B ′(−j!I − A′)−1Q(j!I − A)−1B = [(j!I − A)−1B]′Q[(j!I − A)−1B] ≥ 0

Hence, the return difference equality ensures that

|1 + Lsf(j!)|2 ≥ 1; ∀! ∈ R:

21 + Lsf(s) is the return-difference t.f., remember it from the Nyquist criterion proof.
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Return difference equality: implication

The inequality

|1 + Lsf(j!)|2 ≥ 1 ⇐⇒ |Ssf(j!)| ≤ 1; ∀! ∈ R

implies that the polar plot of Lsf(j!) is outside the open unit disk centered
at the critical point:

|Ssf(j!)| > 1|Ssf(j!)| < 1
Im

Re

Lsf(j!)

−1

Remark There is no conflict with Bode’s sensitivity integral∫ ∞

0

ln|Ssf(j!)|d! = �

m∑
i=1

Re pi :

It just means that the pole excess of Lsf(s) is exactly 1 (Lsf(s) is strictly proper).
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Stability margins of LQR (m = 1 and S = 0)

60
◦

Im

Re

Lsf(j!)

−1

! = !c

An immediate consequence is that LQR optimal loop guarantees

− gain margin �g = ∞ Lsf(j!) does not cross the real axis in [−1; 0)

− phase margin �ph ≥ 60◦ Lsf(j!) is further from −1 than −1
2 ± j

√
3
2

whenever the LQR parameter S = 0.
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