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Setup

Plant: 
ẋ(t) = Ax(t) + B(u(t) + d(t)); x(0) = x0

y(t) = Cx(t)

ym(t) = Cx(t) + n(t)

for known A ∈ Rn×n, B ∈ Rn, and C ∈ R1×n such that (A;B) is stabilizable
and (C ;A) is detectable.

Uncertainty:

− initial condition x0 ∈ Rn

− load disturbance d(t) ∈ R

− measurement noise n(t) ∈ R

Control goals:

− stabilize

− reduce the effect of uncertainty on x(t)

− track a known reference signal r(t) by y(t)
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Outline

State feedback (no uncertainty)

State observer (only the past is uncertain)

Observer-based output feedback (only the past is uncertain)

Effect of disturbances

2DOF state feedback (for curious)
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State feedback

With {
ẋ(t) = Ax(t) + Bu(t); x(0) = x0

y(t) = Cx(t)

control law
u(t) = kr r(t) + Kx(t)

is called state feedback. Equivalently,

(sI − A)−1BC

K

kr
ruxy
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State feedback (contd)

(sI − A)−1BC

K

kr
ruxy

The closed-loop state-space realization{
ẋ(t) = AKx(t) + Bkr r(t); x(0) = x0

y(t) = Cx(t)

where AK ··= A+ BK . The closed-loop transfer function from r to y :

Tyr (s) = C (sI − AK )
−1Bkr

(assuming x0 = 0). Closed-loop characteristic polynomial:

�cl(s) = det(sI − AK ):

If (A;B) stabilizable, then �cl(s) can be made Hurwitz by a choice of K .
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State feedback and system zeros

(sI − A)−1BC

K

kr
ruxy

Let P(s) = C (sI − A)−1B = NP(s)
DP(s)

, then

u = kr r + K (sI − A)−1Bu ⇐⇒ u =

Tur (s)︷ ︸︸ ︷
1

1− K (sI − A)−1B
kr r :

Because [1 + C (sI − A)−1B]−1 = 1− C (sI − (A− BC ))−1B,

Tur (s) =
1

1− K (sI − A)−1B
kr =

DP(s)

sn + ˛n−1sn−1 + · · ·+ ˛1s + ˛0
kr

= (1 + K (sI − AK )
−1B)kr =

sn + ˇn−1s
n−1 + · · ·+ ˇ1s + ˇ0
�cl(s)

kr

Hence, Tur (s) = krDP(s)=�cl(s) (mind that Tur (∞) = kr ).
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State feedback and system zeros (contd)

(sI − A)−1BC

K

kr
ruxy

Thus,

Tyr (s) = P(s)Tur (s) =
NP(s)

DP(s)

DP(s)

�cl(s)
kr =

NP(s)

�cl(s)
kr :

This means that

− state feedback does not move zeros

(stable zeros may be canceled by roots of �cl(s) though).
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State feedback and system zeros (contd)
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K

kr
ruxy
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State feedback and steady-state error

(sI − A)−1BC

K

kr
ruxy

Steady-state error to a step r ,

ess ··= limt→∞|r(t)− y(t)| = |1− Tyr (0)| = |1 + CA−1
K Bkr |:

To render it zero, we have to choose

kr = − 1

CA−1
K B

=
�cl(0)

NP(0)
:

Note that

− AK is invertible because it is Hurwitz

− kr exists (is finite) iff NP(0) ̸= 0, i.e. plant has no zeros at the origin



State feedback State observer Observer-based feedback Effect of disturbances 2DOF state feedback

State feedback and steady-state error

(sI − A)−1BC

K

kr
ruxy

Steady-state error to a step r ,

ess ··= limt→∞|r(t)− y(t)| = |1− Tyr (0)| = |1 + CA−1
K Bkr |:

To render it zero, we have to choose

kr = − 1

CA−1
K B

=
�cl(0)

NP(0)
:

Note that

− AK is invertible because it is Hurwitz

− kr exists (is finite) iff NP(0) ̸= 0, i.e. plant has no zeros at the origin



State feedback State observer Observer-based feedback Effect of disturbances 2DOF state feedback

Pole placement: companion form

Let’s start with (A;B) in the companion form:

A = Acf ··=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a0 −a1 · · · −an−1

 and B = Bcf ··=


0
...
0
1

 :
Select a desired closed-loop characteristic polynomial, say

�cl(s) = sn + �n−1s
n−1 + · · ·+ �1s + �0

for some coefficients �i . We already know (Lect. 7) that the state feedback
gain

K = Kcf ··=
[
a0 − �0 a1 − �1 · · · an−1 − �n−1

]
renders �A+BK (s) = �cl(s).
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Pole placement: arbitrary realization

Conceptually, all we need to do is to

− transform (A;B) into the companion form by similarity transformation.

Indeed, for any controllable (A;B) there is (we’ll show this by construction)
nonsingular T such that

Acf = TAT−1 and Bcf = TB :

Then A = T−1AcfT , B = T−1Bcf, and

K = KcfT

does the job:

A+ BK = T−1AcfT + T−1BcfKcfT = T−1(Acf + BcfKcf)T :

Elegant algorithm to construct required KcfT w/o explicit calculation of T
is offered by Ackermann’s formula.



State feedback State observer Observer-based feedback Effect of disturbances 2DOF state feedback

Pole placement: arbitrary realization

Conceptually, all we need to do is to

− transform (A;B) into the companion form by similarity transformation.

Indeed, for any controllable (A;B) there is (we’ll show this by construction)
nonsingular T such that

Acf = TAT−1 and Bcf = TB :

Then A = T−1AcfT , B = T−1Bcf, and

K = KcfT

does the job:

A+ BK = T−1AcfT + T−1BcfKcfT = T−1(Acf + BcfKcf)T :

Elegant algorithm to construct required KcfT w/o explicit calculation of T
is offered by Ackermann’s formula.



State feedback State observer Observer-based feedback Effect of disturbances 2DOF state feedback

Ackermann’s formula: preliminaries

1. by the Cayley–Hamilton theorem, �ol(Acf) = 0, so that

�cl(Acf) = An
cf + �n−1A

n−1
cf + · · ·+ �1Acf + �0I

= −an−1A
n−1
cf − · · · − a1Acf − a0I

+ �n−1A
n−1
cf + · · ·+ �1Acf + �0I

= (�n−1 − an−1)A
n−1
cf + · · ·+ (�1 − a1)Acf + (�0 − a0)I :

2. if ei is the ith standard basis in Rn, then ∀i = 1; : : : ; n − 1,

e ′iAcf = e ′i+1 or, equivalently, e ′1A
i
cf = e ′i+1;

3. if Acf = TAT−1 and Bcf = TB, then

Mc,cf = TMc ⇐⇒ T = Mc,cfM
−1
c :
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Ackermann’s formula: preliminaries (contd)

4. Combining 1 and 2:

Kcf =
[
a0 − �0 a1 − �1 · · · an−1 − �n−1

]
= (a0 − �0)e ′1 + (a1 − �1)e ′2 + · · ·+ (an−1 − �n−1)e

′
n

= (a0 − �0)e ′1 + (a1 − �1)e ′1Acl + · · ·+ (an−1 − �n−1)e
′
1A

n−1
cl

= −e ′1�cl(Acf)

5. By 2 (and the fact that Bcf = en):

e ′1Mc,cf = e ′1
[
Bcf AcfBcf · · · An−1

cf Bcf

]
= e ′n
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Ackermann’s formula: derivation

We have:

Kcf = −e ′1�cl(Acf) by item 4

= −e ′1�cl(TAT
−1) = −e ′1T�cl(A)T

−1

= −e ′1Mc,cfM
−1
c �cl(A)T

−1 by item 3

= −e ′nM
−1
c �cl(A)T

−1 by item 5

Now it is time to return to the original coordinates:

K = KcfT = −e ′nM
−1
c �cl(A)T

−1T

= −e ′nM
−1
c �cl(A);

voilà!
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Ackermann’s formula

The feedback gain assigning the closed-loop poles to the roots of �cl(s) is

K = −
[
0 · · · 0 1

]
M−1

c �cl(A);

where
Mc =

[
B AB · · · An−1B

]
and

�cl(A) = An + �n−1A
n−1 + · · ·+ �1A+ �0I :

This gain K is called Ackermann’s formula and indeed depends only on the
original (controllable) realization.
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Example: two-tank system

˛ ˇ

q

h1

h2

Here:

− q is the control flow,

− h1 and h2 are fluid heights,

− ˛ is the resistance to the valve between the tanks,

− ˇ is the resistances of the output valve,

− crossing areas of each tank is � .
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Example: two-tank system (contd)

˛ ˇ

q

h1

h2

Its nonlinear dynamics (provided h1 > h2)

�

[
ḣ1(t)

ḣ2(t)

]
=

[
−˛

√
h1(t)− h2(t) + q

˛
√

h1(t)− h2(t)− ˇ
√

h2(t)

]
The equilibria are

h2;eq =
˛2

˛2 + ˇ2
h1;eq < h1;eq and qeq =

√
˛2ˇ2

˛2 + ˇ2
h1;eq

for any h1;eq > 0.
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Example: two-tank system (contd)

˛ ˇ

q

h1

h2

With xi = hi − hi ;eq and u = q − qeq, the linearized dynamics are[
ẋ1(t)
ẋ2(t)

]
=
˛
√
1 + (˛=ˇ)2

2�
√

h1;eq

[
−1 1
1 −1− (ˇ=˛)2

][
x1(t)
x2(t)

]
+

1

�

[
1
0

]
u(t)

with negative real poles at

s1;2 = −˛
√

1 + (˛=ˇ)2

2�
√

h1;eq

2˛2 + ˇ2 ±
√

4˛4 + ˇ4

2˛2
:
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Example: two-tank system (contd)

Let � = 1, ˛ = ˇ = 1 and choose

h1;eq = 1=2 =⇒ h2;eq = 1=4 and qeq = 1=2:

If h1(0) = h2(0) = 0, then x1(0) = −1=2 and x2(0) = −1=4 and we have[
ẋ1(t)
ẋ2(t)

]
=

[
−1 1
1 −2

][
x1(t)
x2(t)

]
+

[
1
0

]
u(t);

[
x1(0)
x2(0)

]
= −

[
1=2
1=4

]
:

with modes at s1 = −2:618 and s2 = −0:382 and

P1(s) =
s + 2

(s + 2:618)(s + 0:382)
and P2(s) =

1

(s + 2:618)(s + 0:382)

as the transfer functions u 7→ x1 and u 7→ x2, respectively.

Our goal is to

− regulate x from x(0) to limt→∞ x(t) = 0 in a desired matter

(regulator problem), which is effectively the set-point tracking of heq.



State feedback State observer Observer-based feedback Effect of disturbances 2DOF state feedback

Example: two-tank system (contd)

Let � = 1, ˛ = ˇ = 1 and choose

h1;eq = 1=2 =⇒ h2;eq = 1=4 and qeq = 1=2:

If h1(0) = h2(0) = 0, then x1(0) = −1=2 and x2(0) = −1=4 and we have[
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Example: state feedback

Controllability matrix

Mc =

[
1 −1
0 1

]
=⇒ M−1

c =

[
1 1
0 1

]
:

Let’s choose
�cl(s) = s2 + 2�!ns + !

2
n :

Ackermann’s formula K = −
[
0 · · · 0 1

]
M−1

c �cl(A) reads then

K = −
[
0 1

] [ 1 1
0 1

]([
−1 1
1 −2

]2
+ 2�!n

[
−1 1
1 −2

]
+ !2

n

[
1 0
0 1

])
= −

[
0 1

] [ 2− 2�!n + !
2
n −3 + 2�!n

−3 + 2�!n 5− 4�!n + !
2
n

]
= −

[
−3 + 2�!n 5− 4�!n + !

2
n

]
(the absolute values of both components of K grow with !n).
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Example: simulations

The control law

u(t) = Kx(t) =⇒ q(t) = Kx(t) + qeq − Kheq:

With � = 1, ˛ = ˇ = 1, � = 0:8, and !n = {1; 2; 5},

0 1.35 2.81 5.89 8

0

0.5

0.65

0 1.35 2.81 5.89 8

0

0.35

0.5

1.25

under K = −
[
−1:4 2:8

]
, K = −

[
0:2 2:6

]
, K = −

[
3:4 8:2

]
. Thus,

− faster poles =⇒ faster response & larger control effort

− faster poles =⇒ large overshoot (why?)
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Example: simulations (contd)

The reason can be seen in the pole-zero map:

0 1.35 2.81 5.89 8

0

0.5

0.65

-4 -2 0

-3

-2

-1

0

1

2

3

Because system zeros are not moved,

− when poles move left, zero at −2 becomes dominant.
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State reconstruction

Consider state equation{
ẋ(t) = Ax(t) + Bu(t); x(0) = x0;

y(t) = Cx(t):

If the state vector cannot be measured (this is what typically happens), then
it could be reconstructed from measurements of y(t). Such reconstructor is
called state observer or simply observer.
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Näıve observer

A possible approach is to construct virtual plant, like

˙̂x(t) = Ax̂(t) + Bu(t); x̂(0) = x̂0;

for some initial guess x̂0. Define observation error �(t) ··= x(t)− x̂(t). Then

�̇(t) = A�(t); �(0) = x0 − x̂0:

Good news:

− if A is stable, limt→∞ �(t) = 0, i.e. x̂(t) → x(t) asymptotically
(no matter what u(t) is, provided we know it, of course)

Bad news:

− we cannot affect error dynamics,

− if A is unstable, x̂(t) doesn’t converge to x(t).
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Luenberger observer

Both problems can be resolved by the following modification, which uses y :

˙̂x(t) = Ax̂(t) + Bu(t)− L(y(t)− Cx̂(t)); x̂(0) = x̂0

= (A+ LC )x̂(t) + Bu(t)− Ly(t); x̂(0) = x̂0

i.e. by adding correction term with observer gain L. In this case,

�̇(t) = (A+ LC︸ ︷︷ ︸
AL

)�(t); �(0) = x0 − x̂0:

Now we can

− affect its dynamics (more precisely, observable modes of (C ;A)) and

− stabilize it, provided (C ;A) is detectable.

Although y(t)− Cx̂(t) = C�(t) depends only on a part of �(t),

− detectability ensures that Cx̂(t) → y(t) =⇒ x̂(t) → x(t).
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= (A+ LC )x̂(t) + Bu(t)− Ly(t); x̂(0) = x̂0

i.e. by adding correction term with observer gain L. In this case,

�̇(t) = (A+ LC︸ ︷︷ ︸
AL

)�(t); �(0) = x0 − x̂0:

Now we can

− affect its dynamics (more precisely, observable modes of (C ;A)) and

− stabilize it, provided (C ;A) is detectable.

Although y(t)− Cx̂(t) = C�(t) depends only on a part of �(t),

− detectability ensures that Cx̂(t) → y(t) =⇒ x̂(t) → x(t).
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Transfer functions of Luenberger observer

The observer is a dynamical system having u(t) and y(t) as its inputs and
x̂(t) as its output. Under zero initial conditions, the transfer functions from
u to x̂ and from y to x̂ are (here AL ··= A+ LC )

Gx̂u(s) = (sI − AL)
−1B and Gx̂y (s) = −(sI − AL)

−1L;

respectively.

Remark: If we are interested to reconstruct only a part of the state, e.g.

z(t) = Czx(t);

the transfer functions from u to ẑ ··= Cz x̂ and from y to ẑ are

Gẑu(s) = Cz(sI − AL)
−1B and Gẑy (s) = −Cz(sI − AL)

−1L;

respectively.
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Luenberger observer: choice of L

Let (C ;A) be observable, then for an arbitrary polynomial

�̂cl(s) = sn + �̂n−1s
n−1 + · · ·+ �̂1s + �̂0

there exists observer gain L such that �̂cl(s) is characteristic polynomial of
observer error, i.e. �̂cl(s) = det(sI − AL).

The choice of L leading to a required �̂cl(s) is

− easy if (C ;A) are in the observer canonical form

− done by the counterpart of Ackermann’s formula:

L = −�̂cl(A)M−1
o


0
...
0
1

 :
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The choice of L leading to a required �̂cl(s) is

− easy if (C ;A) are in the observer canonical form
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L = −�̂cl(A)M−1
o


0
...
0
1

 :
1Consider its derivation a homework assignment.
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Example: two-tank system (contd)

Suppose that fluid height only in the first tank can be measured, i.e.
[
ẋ1(t)
ẋ2(t)

]
=

[
−1 1
1 −2

][
x1(t)
x2(t)

]
+

[
1
0

]
u(t);

[
x1(0)
x2(0)

]
= −

[
1=2
1=4

]
y(t) =

[
1 0

] [ x1(t)
x2(t)

]
(here y = h1 − h1;eq). To reconstruct x2(t) we build state observer (virtual
sensor) in the form[

˙̂x1(t)
˙̂x2(t)

]
=

[
−1 1
1 −2

] [
x̂1(t)
x̂2(t)

]
+

[
1
0

]
u(t)−

[
l1
l2

] (
y(t)− x̂1(t)

)
where

L =

[
l1
l2

]
= −�̂cl(A)

[
1 0
1 1

] [
0
1

]
= −

[ −3 + 2�̂!̂n

5− 4�̂!̂n + !̂n

]
for a desired �̂cl(s) = s2 + 2�̂!̂ns + !̂

2
n .
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Example: simulations

With u(t) = q(t)− qeq = 0:5 sin(2t), �̂ = 0:8, and !̂n = {1; 5},

0 8 9

0

0.25

under L =

[
1:4
−2:8

]
and L = −

[
6:6
21:8

]
.
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Outline

State feedback (no uncertainty)

State observer (only the past is uncertain)

Observer-based output feedback (only the past is uncertain)

Effect of disturbances

2DOF state feedback (for curious)
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Output feedback: näıve approach

Consider {
ẋ(t) = Ax(t) + Bu(t); x(0) = x0

y(t) = Cx(t)

in which the state vector x(t) is not measured. Therefore, state feedback
cannot be used. Under this circumstance, we may try to

− combine state feedback and state observer

instead, i.e. to use observed state in control law as if it were the true state.

This results to the following control law:{
˙̂x(t) = Ax̂(t) + Bu(t)− L(y(t)− Cx̂(t)); x̂(0) = x̂0

u(t) = kr r(t) + Kx̂(t)

which called observer-based controller.



State feedback State observer Observer-based feedback Effect of disturbances 2DOF state feedback

Output feedback: näıve approach
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Observer-based controller

Observer-based control law can be rewritten as{
˙̂x(t) = (A+ BK + LC )x̂(t)− Ly(t) + Bkr r(t); x̂(0) = x̂0

u(t) = Kx̂(t) + kr r(t)

which is a dynamical system having y(t) and r(t) as its inputs and u(t) as
its output. Under zero initial conditions, transfer function from y to u is

Cy (s) = −K
(
sI − (A+ BK + LC )

)−1
L

and from r to u is

Cr (s) =
(
1 + K

(
sI − (A+ BK + LC )

)−1
B
)
kr :
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Closed-loop system

State equation of the closed-loop system, from r to y = Cx is:
[
ẋ(t)
˙̂x(t)

]
=

[
A BK

−LC A+ BK + LC

] [
x(t)
x̂(t)

]
+

[
Bkr
Bkr

]
r(t)

y(t) =
[
C 0

] [ x(t)
x̂(t)

]
with initial conditions

[ x0
x̂0

]
. Let’s now change state vector to[

x(t)
�(t)

]
=

[
I 0
I −I

] [
x(t)
x̂(t)

]
;

i.e. apply similarity transformation with

T =

[
I 0
I −I

]
= T−1:
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Closed-loop system (contd)

We have:

Ãcl = TAclT
−1 =

[
I 0
I −I

] [
A BK

−LC A+ BK + LC

] [
I 0
I −I

]
=

[
AK −BK
0 AL

]

B̃cl = TBcl =

[
I 0
I −I

] [
Bkr
Bkr

]
=

[
Bkr
0

]
C̃cl = CclT

−1 =
[
C 0

] [ I 0
I −I

]
=

[
C 0

]
:
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Closed-loop system (contd)

Thus, we end up with the closed-loop system
[
ẋ(t)
�̇(t)

]
=

[
AK −BK
0 AL

][
x(t)
�(t)

]
+

[
B
0

]
kr r(t);

[
x(0)
�(0)

]
=

[
x0

x0 − x̂0

]
y(t) =

[
C 0

][ x(t)
�(t)

]

Thus, closed-loop characteristic polynomial is

�cl(s) = det(sI − AK ) det(sI − AL);

which is stable provided

− matrix AK = A+ BK Hurwitz (i.e. state feedback is stabilizing) and

− matrix AL = A+ LC Hurwitz (i.e. state observer is stable)

(separation principle).
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Closed-loop system (contd)
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− matrix AK = A+ BK Hurwitz (i.e. state feedback is stabilizing) and

− matrix AL = A+ LC Hurwitz (i.e. state observer is stable)
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Closed-loop transfer function from r to y

In
[
ẋ(t)
�̇(t)

]
=

[
AK −BK
0 AL

] [
x(t)
�(t)

]
+

[
B
0

]
kr r(t);

[
x(0)
�(0)

]
=

[
x0

x0 − x̂0

]
y(t) =

[
C 0

][ x(t)
�(t)

]
:

all modes of AL are uncontrollable (check it with PBH). This means that if
initial guess x̂0 is correct, these modes are not excited and can be excluded.
Indeed,

�̇(t) = AL�(t); �(0) = x0 − x̂0

which we already know (observer). Hence, if x0 = x̂0, then � ≡ 0 and

ẋ(t) = AKx(t)− BK�(t) + Bkr r(t) = AKx(t) + Bkr r(t); x(0) = x0

is independent on the dynamics of the observer.
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Closed-loop transfer function from r to y (contd)

Another way to see this is via direct calculation of

Tyr (s) =
[
C 0

](
s

[
I 0
0 I

]
−
[
AK −BK
0 AL

])−1 [
B
0

]
kr

= C (sI − AK )
−1Bkr ;

which is exactly as in the state-feedback case. It uses the relation[
A11 A12

0 A22

]−1

=

[
A−1
11 −A−1

11 A12A
−1
22

0 A−1
22

]
:
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Disturbance response of state feedback

(sI − A)−1BC

K

kr
ru

d
xy

If ẋ(t) = Ax(t) + B(u(t) + d(t)) and u(t) = Kx(t), then

Tyd(s) = C (sI − AK )
−1B

The effect of K is not immediate, although (remember Vieta’s formulae)

Tyd(0) =
NP(0)

�cl(0)
=

NP(0)∏
i |�i |

where �i are roots of �cl(s). Hence,

− faster poles =⇒ smaller steady-state effects of d(t) = 1(t)
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Example: simulations (contd)

With d(t) = 0:051(t − 4),

0 1.35 2.81 4 5.89 8

0

0.5

0.65

0 1.35 2.81 4 5.89 8

0

0.35

0.5

1.25

Thus,

− faster poles =⇒ smaller the effect of d
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Luenberger observer and disturbances

If {
ẋ(t) = Ax(t) + B(u(t) + d(t)); x(0) = x0

y(t) = Cx(t) + n(t)

the estimator is still

˙̂x(t) = Ax̂(t) + Bu(t)− L(y(t)− Cx̂(t)); x̂(0) = x̂0

(we use all information available), but the estimation error,

�̇(t) = AL�(t) + Bd(t) + Ln(t); �(0) = x0 − x̂0

includes both d(t) and n(t).
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Example: simulations (contd)

Returning to our two-tank system,

d(t) = 0:051(t − 4) and n(t) = 0 d(t) = 0 and n(t) = 0:025 sin(10t)

0 4 8 9

0

0 8 9

0

and observations no longer converge to h2(t), with

− faster poles =⇒ higher gain L =⇒ smaller effect of d

− slower poles =⇒ lower gain L =⇒ smaller effect of n

(but be careful with generalizing that).



State feedback State observer Observer-based feedback Effect of disturbances 2DOF state feedback

Closed-loop system with observer-based controller

Then the closed-loop system is
[
ẋ(t)
�̇(t)

]
=

[
AK −BK
0 AL

][
x(t)
�(t)

]
+

[
B
0

]
kr r(t) +

[
B
B

]
d(t) +

[
0
L

]
n(t)

y(t) =
[
C 0

][ x(t)
�(t)

]
with initial conditions

[ x0
x0−x̂0

]
.

In this case

Tyd(s) =

state-feedbackTyd (s)︷ ︸︸ ︷
C (sI − AK )

−1B (1− K (sI − AL)
−1B)

and

Tyn(s) = −C (sI − AK )
−1BK (sI − AL)

−1L

and the effect of K and L on the closed-loop behavior is quite complicated.
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Architecture

(sI − A)−1BC

Kxdes

urequ
d

xy

-

As usual, two requirements

1. xdes and ureq are bounded stability

2. xdes = (sI − A)−1Bureq consistency

In this case

u = ureq + K ((sI − A)−1Bu − xdes) =⇒ u =
ureq − Kxdes

1− K (sI − A)−1B
= ureq

and x = (sI − A)−1Bu = xdes, regardless K (provided it is stabilizing).

Generating xdes: ydes → ureq =
ydes

C (sI − A)−1B
→ xdes = (sI −A)−1Bureq
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Example: time-optimal response

We may chose ydes as the

− fastest filling of tank 1 to x1 = x1;f under u(t) ∈ [umin; umax]

for some −qeq ≤ umin < umax. The optimal bang-bang

uopt(t) =
ttsw tfumin

umax

uss

has

Uopt(s) =
umax − (umax − umin)e

−stsw + (x1;f=P1(0)− umin)e
−stf

s
;

where tsw and tf are chosen to render P1(s)Uopt(s) FIR. In this case

xdes;1(t) =

t0 tsw tf

x1,f

and xdes;2(t) =

t0 tsw tf

x2,f
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Example: simulations (contd)

(sI − A)−1BC

Kxdes

urequ
d

xy

-

With x1;f = 0:5, umin = −0:5 = −qeq, umax = 1:5, and ureq = uopt,

0 0.7 1 4 8

0

0.5

1

1.29

0 0.7 1 4 8

0

0.5

0.75

2

where the disturbance d(t) = 0:051(t − 4).
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