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Controllability

Controllability: definition and criterion

Consider
x(t) = Ax(t) + Bu(t), x(0) = xo.
This system (or the pair (A, B)) is said to be
— controllable if for every xo and xq, 3t; and u(t) : [0, t1] — R such that
X(tl) = X1.

Matrix
Mc:=[B AB - A""1B]eR™"

called the controllability matrix.

Theorem
(A, B) is controllable if and only if det M. # 0.

Preliminary simplifying observation

Without loss of generality we can take xp = 0. Indeed,

t1
x(t1) = efixg +/ Al=9)By(s)ds
0

implies

[5}
(1) = x(t1) — eAtixg = / eAB=9) By (5)ds.
0

Thus, moving x(t) from x(0) = xg to x(t1) = x1 is equivalent to moving it
from x(0) = 0 to x(t1) = X(t1). If every X(t1) is reachable from x(0) = 0,
then every x; = %(t1) + e*xg is reachable from x(0) = xo.

Remark Alternatively, we may take x; = 0, based on the relation

by
0 = e (xo — e Mix(tr)) + / A9 By(s) ds,
Jo

Aty

which is possible because ™" is always invertible.




Outline of the proof
Remember, e”t = "7} g;(t)A’. Taking x(0) = 0,

t1
X(tl):/ A= By(¢) dt—/ (ZA’g, tl_t)Bu(t)dt
0
n—1 )
:ZA'B/ gi(t1 — t)u dt_ZABn,
o 0

- Cr”

t1
where 7n; := / gi(t1 — t)u(t)dt. We have:
0

1. If det M. = 0, then dx; such that x; = M.n is not solvable in 1, hence
this xq is not reachable by u(t).

2. If det M. # 0, then any xj is reachable with n = Mc_lxl. It can then be
shown that n equations 7; = fotl gi(t1 — t)u(t)dt are always solvable in
u(t) (because of linear independence of g;(t)). O

Controllability and similarity
If A= TAT ! and B = TB for some nonsingular T, then
Mc:=[B AB ... A"1B]=T[B AB .- A"lB]
= TM,,

i.e.

— controllability is not affected by similarity transformations.

Controllability: some other tests

Theorem
The following statements are equivalent:

1. (A, B) is controllable;
2. det M. #£0;

t
3. det W,(t) # 0 for all t > 0, where W,(t) := / e BB'e**ds € R™";
0

4. [A—=Al B] e C™" has full row rank VA € C (PBH test);
i’ B # 0 for every left eigenvector ij of A;
6. eigenvalues of A+ BK can be freely assigned by K € R1*".

Matrix Wc(t) and control law for 0 = xp — x;

Consider
u(t) = tmin(t) := BN O [W. ()] 1x1.

Then
t1 t /
X(tl) = / eA(t1*s)Bu(S)dS — / eA(tlfS)BB/eA (tlfs)[Wc(tl)],lx:ldS
0 0
t1 ,
= / e BB eV ds [W.(t1)] Ix = x1.
0

In fact, umin has
51

— minimal energy, E, ::/ J(t)u(t)dt,
0

among all control laws bringing x(t) from 0 to x;.




Minimum energy proof

If u(t) = umin(t) + ug(t), then, by linearity,
t1
x(t1) = x1 +/ eAt1=%) Bug (s)ds.
0
Hence, x(t1) = x1 iff ug(t) satisfies

t1
/ A=) Bys(s)ds = 0.
0

N

Fu= /tl(“min(t) + s (£)) (umin(t) + us(t))dt

0 t
E,. +Esy+ 2x1[wc(t1)]—1/ A0 By (1)dt — E
0

+ Eys

Umin

(remember Pythagoras). As E, > 0, the minimum is attained by ug(t) = 0.

Uncontrollable modes

If (A, B) not controllable, PBH test doesn't hold for some A; € C for which
rank [A—)L,-/ B ] <n.
These A; are eigenvalues of A. Indeed, if PBH fails, 37; # 0 such that

A = A,

ii[A=Ail B]=0 < {F;j-B:O

i.e. this 7; is a left eigenvector of A. A;'s at which PBH fails called
— uncontrollable modes of (A, B).

Uncontrollable modes are eigenvalues of A + BK for every K. Indeed,

i(A+ BK) = fliA = A;ff;.

]

which proves that A; is always an eigenvalue of A+ BK.

Stabilizability
Pair (A, B) is said to be

— stabilizable if all its uncontrollable modes are stable (in open LHP).

Stabilizability means that there exists K € R1*" such that
Ay = A+ BK

is Hurwitz (all eigenvalues are in the open LHP).
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Example: 2-mass system (controllability)




Setup State-space model
Consider the following 2-mass system: Possible realization (non-unique):
_ Uy . w2 vi(t) 0 0 1 o0 yi(t) 00
< :
m=1| =~ |Im=1 w(t) | ] 0 0 0 1 fy()] |00 [m(t) }
v"vv/;"u y]_(t) _k k —C C y]_(t) 1 O U2(t)
s, — o (1) k —k ¢ —c | [(t) 01
x(t) A x(t) B
with external forces u; and uy. It is described by the following equations: yi(t)
. : t 1000 t
O e ][0T £ ][] <[] 2O =16 80 0] |k
}'/'2(1') —Cc C )'/2(1') -k k y2(t) Uz(t) . (t)
\ ¢ 7
System has 4 modes (eigenvalues of A):
— A1 =A2=0 rigid body motion
— A3a=—-cEtVc? -2k spring-damper dynamics
Controllability Controllability: B =1 (11 = wp)
If u1 = u and up = Bu for some input v and constant §, then u u
—t PR —
0O 0 1 O 0 m=1 t m=1
0 0 0 1 ol ... 1
x(t) = x(t) + u(t) k
-k k —c c 1 — %
k —k ¢ —c B
PBH test:
Controllability matrix:
—A 0 1 0 0
01 c(B-1)  —@—k(p-1) o 01 o ,
v |0 B —c(f -1 (2¢® —k)(p ~1) —k k —c—x ¢ 1 e
L c(B-1) (22— k)(B—1) 4c(c®—k)(B-1) k —k ¢ —c—a1
A=—cH+V/c2-2k
B —c(B-1) (2®—k)(B—-1) —4c(c*—k)(B-1)
_ o ) _ (rank lost at uncontrollable modes of A). This agrees with our intuition that
with det Mc = —k%(B° — 1)°. Thus, the system is — if equal forces applied to each mass, oscillations not excited.
— uncontrollable for f = +1.
What could it mean?




Controllability: 8 = —1 (u; = —u»)

P u____
C
[F
m=1( m=1
}—;1 }—5/2
PBH test:
—A 0 1 0 0
0 -2 0 1 0
e R =3
k —k c —c—A 1

A=0

(rank lost at uncontrollable mode of A). This agrees with our intuition that

— if opposite forces applied to each mass, oscillations excited around the
motion with zero acceleration.

Transfer functions for u; = u and u, = Bu

u Bu
N c .2
=
m=1 m=1
..........
........
k
P P
1 Y2

Transfer function from u to y;:

s+ c(B+1)s+k(B+1)
s2(s% + 2cs + 2k)

Pl(S) =

and transfer function from u to y»:

_ BsP+c(B+1)s+k(B+1)
B s2(s% + 2c¢s + 2k)

PQ(S)

(both obtained via C(s/ — A)~1B).

Transfer functions for u; = v and u, = Bu (contd)

g =1 g =-1
u u u u
Cc C
I3 [
m=1| m=1 m=1( m=1
Tn Ty Tn 7
then then
Pi(s) = Pa(s) = Pi(s) = —Pa(s) =
s) = Py(s) = =. s) = —Py(s) = .
! 2 s2 ! 2 s2 + 2¢s + 2k

In both cases we have pole/zero cancellations (of different modes though).

Extensions
— If masses are different, controllability is lost at = —1 and f = 72
u u u u
— c — — c
- M
LN I
my my my my
k k
N Y2 n Y2

u au Bu
C C
I 2
m =1 m; =m m3 = 1
k k
e | e
i Y2 3

the controllability is lost at
=1 aoa+B=-1, and —a—p=
m

Try to explain. ..
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Observability

Observability: definition

Consider

y(t) = Cx(t) + Du(t).
This system (or the pair (C, A)) is said to be

— observable if any initial state xg can be reconstructed from time history
of u(t) and y(t) in interval [0, t;] for every t; > 0 and u(t).

{)'((t) = Ax(t) + Bu(t), x(0) = xo,

Simplifying observation:

— Without loss of generality we can assume that u(t) = 0. Indeed, as
t
y(t) = Cexo + Du(t) + C/ eA(t_s)Bu(s)ds,
0

Xo reconstructable from time history of y(t), u(t) iff it reconstructable
from time history of y(t) := y(t) — Du(t) — Cfot eAt=5) By(s)ds.

Observability and observability matrix

Matrix
C
CA
M, = ) e R™"

CA-n—l

called the observability matrix.

Theorem

Pair (C, A) is observable if and only if det M, # 0.

Proof
If u(t) =0, then y(t) = Ce*txg and
y(0)
y(0)
. — 0X0-
y("=1(0)
We have:

1. If det M, # 0, xp can be obtained from n — 1 derivatives of y(t) at 0.

2. If det M, = 0, then 3v # 0 such that Myv = 0, i.e. that CA'v = 0 for
all i=0,...,n—1. Then, by Cayley-Hamilton,

CAlv=0, Viezt — ceMv=0.

Therefore, if xo = v, then y(t) = Ce”txp = 0 and this initial condition
is indistinguishable from x(0) = 0. ]




Observability and similarity
If A= TAT ! and C = CT! for some nonsingular T, then

¢ C
. CA CA
Mo = . = . T_l
CAn—1 CAr—1
=M, T !

i.e.

— observability is not affected by similarity transformations.

Ovservability: some other tests

Theorem
The following statements are equivalent:

1. (C,A) is observable;
2. det M, #0;

t
3. det W,(t) # 0 for all t > 0, where W,(t) ::/ A C'CeMds € R,
0

A—Al
s [ .
5. Cn # 0 for every right eigenvector 1 of A;

] € C"1%" has full column rank YA € C (PBH test);

6. eigenvalues of A+ LC can be freely assigned by L € R";
7. (A, C") is controllable.

The last statement shows

— duality between observability and controllability properties.

Ovservability: some useful facts

The following observations/definitions are important:

—  W,(t)-test leads to a derivative-free reconstruction algorithm. Let

t
R(t) :== [Wo(tl)]_l/ A5 C'y(s)ds.
0
In this case
t1 ,
2(t) = [Wo(tl)]_l/ A5 C! CePoxods = xo.
0

— If (C, A) is not observable, the PBH test fails for some A; € C. These
A; are eigenvalues of A and called unobservable modes of (C, A).

— If X is an unobservable mode of (C, A), then it is eigenvalue of A+ LC
for any L.

Detectability

Pair (C, A) is said to be
— detectable if all its unobservable modes are stable (in open LHP).

Detectability means that there exists L € R” such that
A[_ =A+LC

is Hurwitz (all eigenvalues are in the open LHP).
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Example: 2-mass system (observability)

Observability

If y = y1 + yy» for some y, then output equation reads

y(H)=[1y 0 0]x()

Observability matrix:

1 y 0 0
M. — 0 0 1 y
| kiy—-1) —k(y-1) c(y —1) —c(y —1)

—2ck(y —1) 2ck(y —1) (k—2c*)(y —1) —(k—2c%)(y - 1)

with det M, = —k?(y? — 1)2. Thus, the system is
— unobservable for y = +£1.
What could it mean?

Setup
Consider again un U
m=1( m=1
T oy
with
([(t) 0 0 1 0 7[xn@ 00
P | _| 0 0 0 1 ||{w@]|, |00 {ul(r)}
i) | = |~k k —c ||| 710 [uw
ya(t) k —k ¢ —c|[yn() 01
x(t) A x(t) B
yi(t)
|:y1(t):| |:1 00 O] yz(t)
ya(t) 010 0] |nl()
\ ¢ ya(t)
Observability: y =1 (y = y1 + »»)
uy 25}
Cc
F
m=1( m=1
S y/2
PBH test:
-1 0 1 0
0 -2 0 1
rank | —k k —c—2A c =3,
k —k c —c—A
1 1 0 0 A=—cE+Vc2-2k

(rank lost at unobservable modes of A). This agrees with our intuition that

— oscillations cannot be seen via the center of mass.




Observability: y = =1 (y = y1 — y»)

uy u
C
[F
m=1| m=1
L ""'/;"" |
™~ y 1
PBH test:
—-A 0 1 0
0 —A 0 1
rank | —k k —c—A c =3,
k —k c —c—A
1 -1 0 0

A=0
(rank lost at unobservable mode of A). This agrees with our intuition that

— rigid body motion cannot be seen via relative position of the masses.

Transfer functions for y = y1 + y»

uy 253
C
F
m=1 m=1
..........
........
k
e -
n Y2

Transfer function from u; to y:

s2+c(y+1)s+k(y +1)
s2(s% + 2c¢s + 2k)

Pl(S) =

and transfer function from u, to y:

ys?+c(y +1)s+ k(y + 1)

Py(s) =
2(s) s2(s2 4 2c¢s + 2k)

(both obtained via C(s/ — A)~1B).

Transfer functions for y = y; + yy» (contd)

y =1 y =-—1:
uy up u U2
U c 0 . c .
F [F
m: 1 AAAAAAAAAA m: 1 m: 1 AAAAAAAAAA m: 1
k k
y/2 ‘ y ‘
then then
1 1

Pl(S) = PQ(S) = 57 Pl(S) = —PQ(S)

- s2 4+ 2¢cs + 2k’

In both cases we have pole/zero cancellations (of different modes though).

Outline

Minimality and pole/zero cancellations




Minimal state-space realization

Example
Let G(s) = ;11 The following are its state-space realizations:

{k:—x+u, x(0)=0 and {

y =X

The first of them has state dimension n = 1, while the second one—n = 2.
This indicates that there is redundancy in X (it accumulates somebody else
history as well).

We may be interested to avoid redundancy. To this end, the notion of

— minimal state-space realization, i.e. a realization with minimal possible
dimension,

plays a key role.

Minimality criterion

Theorem
Realization

y(t) = Cx(t) + Du(t)

is minimal iff it is both controllable and observable.

{)'((t) = Ax(t) + Bu(t), x(0) =0,

Explanations:
— uncontrollable part of x cannot be affected by input u(t),

— unobservable part of x is invisible from output y(t).

Important fact:
— every two minimal realizations of the same system are similar

(i.e. there is a similarity transformation between them).

Minimality and poles

(t

c. ¥

y(t)

is minimal, then A € C is a pole of G(s) = D + C(sl — A)~'B iff it is an
eigenvalue of A.

Theorem
If

Ax(t) + Bu(t), x(0)=0,
Cx(t) 4+ Du(t)

Minimality of the cascade connection

pGinGie

We already saw that the state-space realization of G = GG is
][ s 2]+ w
o= le ol [

(the order of the state is swapped comparing to what we saw in Lecture 6).
The question is:

— if the realizations of Gy and G, are minimal, when so is that of G ?




Pole-zero cancellations & state space: |

piambin

Let  be pole of Gi(s) and not pole of Gy(s). Assuming that all realizations
are minimal, « is an eigenvalue of A; and not that of A. Define

e |:(Ol/ — A2)7132C1

| } Vo, Where (¢l —A1)vy =0

(note that minimality means that Cyvy # 0). Then,

Vg = XV

Ay B Ly — (AQ(O[/ — AQ)_I + I)BzCl
0 A - Ap

and
[Cg 0 ] v = Cz(()t/ - Az)_lBgclva = Gz(Ol)Clva.

Pole-zero cancellations & state space: | (contd)
: ”

[CQ O]VZO <~ GQ(OZ):O

Thus,

and « is unobservable mode of Gy G; iff it is zero of Gy(s). In other words,

— any mode of Gj is unobservable from y iff it's canceled by a zero of G,.

Pole-zero cancellations & state space: |l

mpGinGise

Let B be pole of Gy(s) and not pole of Gi(s). Assuming that all realizations
are minimal, B is an eigenvalue of A and not that of A;. Define

vii=vp [ ByGi(Bl— A1) ], where vg(Bl — A2) =0

(note that minimality means that v}g By #0). Then,

A BCG | T, / -1  a
v {0 o ]_[vﬂAz vBaGi(l + (B1 — A) 7 A1) | = B

and
0 _
V/ |:Bl :| = VéB2C]_(IBI - Al) 181 = V[/,}B2G]_(ﬂ).

Pole-zero cancellations & state space: Il (contd)

v'[o}:o — G(B)=0

Thus,

By

and B is uncontrollable mode of G, G iff it is zero of Gi(s). In other words,

— any mode of Gy is uncontrollable by u iff it's canceled by a zero of Gj.
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Controllability and observability of canonical realizations

Controllability of the companion form

In this case
0 1 0 0
A=Ay i= : and B =By :=
0 0 1
—ap —ar -+ —ap-1 1

and we have:

Theorem
A realization in the companion form is always controllable.

Remark: It can be shown that

" ar  a an—1 1 -|
a az - 1 0
[ S Ln/2]
Mc,cf — : : o : : — det Mcvcf = (71) .
an-1 1 --- 0 O
1 0 --- 0 O

Controllability of the companion form: proof
If K = [k() ki kn—1 ], then

Ak = At + BiK

0 1 ... 0 0
_ : : . : + | [ko ky --- knil]
0 o - 1 0
| —@ —a1 -+ —ap-1 1
I 0 1 0
a 0 0 1
| —(a0 — ko) —(a1— ki) -+ —(an-1 — kn-1)

is still a companion form. Hence,
XAK(S) =s"+(ap-1— kn—l)sni1 + -+ (a1 — k1)s + (a0 — ko)

can be made arbitrary by a choice of K = controllability. ]

Observability of the observer form

In this case
—a,.1 1 -0
A=Agi=| = 7 | and C=Cyi=[10
—a; 0 ---
—ap 0 --- 0

and we have (prove it yourselves):

Theorem
A realization in the observer form is always observable.

Remark: It can be shown that

1 0o --- 0 O
ap—-1 1 --- 0 O
Mo, of = { W —  det Moo = 1.
a a - 1 0
L ai a -+ anp-1 1J
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