Control Theory (035188) lecture no. 7

Leonid Mirkin

Faculty of Mechanical Engineering Technion — IIT

Outline

Controllability

Example: 2-mass system (controllability)

Observability

Example: 2-mass system (observability)

Minimality and pole/zero cancellations

Controllability and observability of canonical realizations

Outline

Controllability

Example: 2-mass system (controllability)

Observability

Example: 2-mass system (observability)

Minimality and pole/zero cancellations

Controllability and observability of canonical realizations

Controllability: definition and criterion

Consider

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0.$$

This system (or the pair (A, B)) is said to be

controllable if for every x_0 and x_1 , $\exists t_1$ and $u(t): [0, t_1] \to \mathbb{R}$ such that $x(t_1) = x_1$.

Controllability: definition and criterion

Consider

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0.$$

This system (or the pair (A, B)) is said to be

- controllable if for every x_0 and x_1 , $\exists t_1$ and $u(t): [0, t_1] \to \mathbb{R}$ such that $x(t_1) = x_1$.

Matrix

$$M_{c} := \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} \in \mathbb{R}^{n \times n}$$

called the controllability matrix.

Theorem

(A, B) is controllable if and only if det $M_c \neq 0$.

Preliminary simplifying observation

Without loss of generality we can take $x_0 = 0$. Indeed,

$$x(t_1) = e^{At_1}x_0 + \int_0^{t_1} e^{A(t_1-s)}Bu(s)ds$$

implies

$$\tilde{x}(t_1) := x(t_1) - e^{At_1}x_0 = \int_0^{t_1} e^{A(t_1-s)}Bu(s)ds.$$

Thus, moving x(t) from $x(0) = x_0$ to $x(t_1) = x_1$ is equivalent to moving it from x(0) = 0 to $x(t_1) = \tilde{x}(t_1)$. If every $\tilde{x}(t_1)$ is reachable from x(0) = 0, then every $x_1 = \tilde{x}(t_1) + e^{At_1}x_0$ is reachable from $x(0) = x_0$.

Remark Alternatively, we may take $x_1 = 0$, based on the relation

$$0 = e^{At_1}(x_0 - e^{-At_1}x(t_1)) + \int_0^{t_1} e^{A(t_1 - s)}Bu(s)ds,$$

which is possible because e^{At_1} is always invertible.

Outline of the proof

Remember, $e^{At} = \sum_{i=0}^{n-1} g_i(t) A^i$. Taking x(0) = 0,

$$\begin{split} x(t_1) &= \int_0^{t_1} \mathrm{e}^{A(t_1-t)} B u(t) \mathrm{d}t = \int_0^{t_1} \left(\sum_{i=0}^{n-1} A^i g_i(t_1-t) \right) B u(t) \mathrm{d}t \\ &= \sum_{i=0}^{n-1} A^i B \int_0^{t_1} g_i(t_1-t) u(t) \mathrm{d}t = \sum_{i=0}^{n-1} A^i B \, \eta_i \\ &= M_c \eta, \end{split}$$

where
$$\eta_i := \int_0^{t_1} g_i(t_1-t)u(t)\mathrm{d}t.$$

Outline of the proof

Remember, $e^{At} = \sum_{i=0}^{n-1} g_i(t) A^i$. Taking x(0) = 0,

$$x(t_1) = \int_0^{t_1} e^{A(t_1-t)} Bu(t) dt = \int_0^{t_1} \left(\sum_{i=0}^{n-1} A^i g_i(t_1-t) \right) Bu(t) dt$$

$$= \sum_{i=0}^{n-1} A^i B \int_0^{t_1} g_i(t_1-t) u(t) dt = \sum_{i=0}^{n-1} A^i B \eta_i$$

$$= M_c \eta,$$

where $\eta_i := \int_{0}^{t_1} g_i(t_1-t)u(t)\mathrm{d}t$. We have:

1. If det $M_c = 0$, then $\exists x_1$ such that $x_1 = M_c \eta$ is not solvable in η , hence this x_1 is not reachable by u(t).

Remember, $e^{At} = \sum_{i=0}^{n-1} g_i(t) A^i$. Taking x(0) = 0,

$$\begin{aligned} x(t_1) &= \int_0^{t_1} \mathrm{e}^{A(t_1 - t)} B u(t) \mathrm{d}t = \int_0^{t_1} \left(\sum_{i=0}^{n-1} A^i g_i(t_1 - t) \right) B u(t) \mathrm{d}t \\ &= \sum_{i=0}^{n-1} A^i B \int_0^{t_1} g_i(t_1 - t) u(t) \mathrm{d}t = \sum_{i=0}^{n-1} A^i B \, \eta_i \\ &= M_c \eta, \end{aligned}$$

where
$$\eta_i := \int_0^{t_1} g_i(t_1-t)u(t) dt$$
. We have:

- 1. If det $M_c = 0$, then $\exists x_1$ such that $x_1 = M_c \eta$ is not solvable in η , hence this x_1 is not reachable by u(t).
- 2. If det $M_c \neq 0$, then any x_1 is reachable with $\eta = M_c^{-1} x_1$. It can then be shown that n equations $\eta_i = \int_0^{t_1} g_i(t_1 - t) u(t) dt$ are always solvable in u(t) (because of linear independence of $g_i(t)$).

Controllability and similarity

If $\hat{A} = TAT^{-1}$ and $\hat{B} = TB$ for some nonsingular T, then

$$\begin{split} \hat{M}_{c} &:= \left[\begin{array}{cccc} \hat{B} & \hat{A}\hat{B} & \cdots & \hat{A}^{n-1}\hat{B} \end{array} \right] = T \left[\begin{array}{ccccc} B & AB & \cdots & A^{n-1}B \end{array} \right] \\ &= TM_{c}, \end{split}$$

i.e.

controllability is not affected by similarity transformations.

Controllability: some other tests

Theorem

The following statements are equivalent:

- 1. (A, B) is controllable;
- 2. det $M_c \neq 0$;
- 3. $\det W_c(t) \neq 0$ for all t > 0, where $W_c(t) := \int_0^t e^{As} BB' e^{A's} ds \in \mathbb{R}^{n \times n}$;
- 4. $\begin{bmatrix} A \lambda I & B \end{bmatrix} \in \mathbb{C}^{n \times n + 1}$ has full row rank $\forall \lambda \in \mathbb{C}$ (PBH test);
- 5. $\tilde{\eta}'B \neq 0$ for every left eigenvector $\tilde{\eta}$ of A;
- 6. eigenvalues of A + BK can be freely assigned by $K \in \mathbb{R}^{1 \times n}$.

Consider

$$u(t) = u_{\min}(t) := B' e^{A'(t_1 - t)} [W_c(t_1)]^{-1} x_1.$$

Then

$$x(t_1) = \int_0^{t_1} e^{A(t_1 - s)} Bu(s) ds = \int_0^{t_1} e^{A(t_1 - s)} BB' e^{A'(t_1 - s)} [W_c(t_1)]^{-1} x_1 ds$$
$$= \int_0^{t_1} e^{As} BB' e^{A's} ds [W_c(t_1)]^{-1} x_1 = x_1.$$

In tact, u_{min} has

— minimal energy, $E_u := \int_{\mathbb{R}^n} u'(t)u(t)dt$,

among all control laws bringing x(t) from 0 to x_1 .

Consider

$$u(t) = u_{\min}(t) := B' e^{A'(t_1 - t)} [W_c(t_1)]^{-1} x_1.$$

Then

$$x(t_1) = \int_0^{t_1} e^{A(t_1 - s)} Bu(s) ds = \int_0^{t_1} e^{A(t_1 - s)} BB' e^{A'(t_1 - s)} [W_c(t_1)]^{-1} x_1 ds$$
$$= \int_0^{t_1} e^{As} BB' e^{A's} ds [W_c(t_1)]^{-1} x_1 = x_1.$$

In fact, u_{min} has

- minimal energy, $E_u := \int_0^{t_1} u'(t)u(t) dt$,

among all control laws bringing x(t) from 0 to x_1 .

If $u(t) = u_{\min}(t) + u_{\delta}(t)$, then, by linearity,

$$x(t_1) = x_1 + \int_0^{t_1} e^{A(t_1-s)} Bu_{\delta}(s) ds.$$

Hence, $x(t_1) = x_1$ iff $u_{\delta}(t)$ satisfies

$$\int_0^{t_1} e^{A(t_1-s)} Bu_\delta(s) ds = 0.$$

Now,

 $E_u = \int_{\mathbb{R}} (u_{\min}(t) + u_{\delta}(t))'(u_{\min}(t) + u_{\delta}(t)) dt$

 $= E_{u_{\min}} + E_{u_{\delta}} + 2x'_{1}[W_{c}(t_{1})]^{-1} \int_{0}^{-1} e^{A(t_{1}-t)}Bu_{\delta}(t) dt = E_{u_{\min}} + E_{u_{\delta}}$

(remember Pythagoras). As $E_n \geq 0$, the minimum is attained by $u_8(t) \equiv 0$.

Minimum energy proof

If $u(t) = u_{\min}(t) + u_{\delta}(t)$, then, by linearity,

$$x(t_1) = x_1 + \int_0^{t_1} e^{A(t_1-s)} Bu_{\delta}(s) ds.$$

Hence, $x(t_1) = x_1$ iff $u_{\delta}(t)$ satisfies

$$\int_0^{t_1} e^{A(t_1-s)} Bu_\delta(s) ds = 0.$$

Now,

$$E_{u} = \int_{0}^{t_{1}} (u_{\min}(t) + u_{\delta}(t))'(u_{\min}(t) + u_{\delta}(t)) dt$$

$$= E_{u_{\min}} + E_{u_{\delta}} + 2x'_{1}[W_{c}(t_{1})]^{-1} \int_{0}^{t_{1}} e^{A(t_{1}-t)} Bu_{\delta}(t) dt$$

If $u(t) = u_{\min}(t) + u_{\delta}(t)$, then, by linearity,

$$x(t_1) = x_1 + \int_0^{t_1} e^{A(t_1-s)} Bu_{\delta}(s) ds.$$

Hence, $x(t_1) = x_1$ iff $u_{\delta}(t)$ satisfies

$$\int_0^{\tau_1} e^{A(t_1-s)} Bu_{\delta}(s) ds = 0.$$

Now,

$$E_{u} = \int_{0}^{t_{1}} (u_{\min}(t) + u_{\delta}(t))'(u_{\min}(t) + u_{\delta}(t)) dt$$

 $= E_{u_{\min}} + E_{u_{\delta}} + 2x'_{1}[W_{c}(t_{1})]^{-1} \int_{0}^{t_{1}} e^{A(t_{1}-t)} Bu_{\delta}(t) dt = E_{u_{\min}} + E_{u_{\delta}}$

(remember Pythagoras).

If $u(t) = u_{\min}(t) + u_{\delta}(t)$, then, by linearity,

$$x(t_1) = x_1 + \int_0^{t_1} e^{A(t_1-s)} Bu_{\delta}(s) ds.$$

Hence, $x(t_1) = x_1$ iff $u_{\delta}(t)$ satisfies

$$\int_0^{t_1} e^{A(t_1-s)} Bu_{\delta}(s) ds = 0.$$

Now.

$$E_u = \int_0^{t_1} (u_{\mathsf{min}}(t) + u_{\delta}(t))'(u_{\mathsf{min}}(t) + u_{\delta}(t)) dt \ = E_{u_{\mathsf{min}}} + E_{u_{\delta}} + 2x_1'[W_{\mathsf{c}}(t_1)]^{-1} \int_0^{t_1} \mathrm{e}^{A(t_1 - t)} Bu_{\delta}(t) dt = E_{u_{\mathsf{min}}} + E_{u_{\delta}}$$

(remember Pythagoras). As $E_u \geq 0$, the minimum is attained by $u_\delta(t) \equiv 0$.

If (A, B) not controllable, PBH test doesn't hold for some $\lambda_i \in \mathbb{C}$ for which

$$rank [A - \lambda_i I B] < n.$$

These λ_i are eigenvalues of A. Indeed, if PBH fails, $\exists \tilde{\eta}_i \neq 0$ such that

$$\tilde{\eta}'_i [A - \lambda_i I \ B] = 0 \iff \begin{cases} \tilde{\eta}'_i A = \lambda_i \tilde{\eta}'_i \\ \tilde{\eta}'_i B = 0 \end{cases}$$

i.e. this $\tilde{\eta}_i$ is a left eigenvector of A.

Uncontrollable modes

If (A, B) not controllable, PBH test doesn't hold for some $\lambda_i \in \mathbb{C}$ for which

$$\operatorname{rank} \left[A - \lambda_i I \ B \right] < n.$$

These λ_i are eigenvalues of A. Indeed, if PBH fails, $\exists \tilde{\eta}_i \neq 0$ such that

$$\tilde{\eta}'_i [A - \lambda_i I \ B] = 0 \iff \begin{cases} \tilde{\eta}'_i A = \lambda_i \tilde{\eta}'_i \\ \tilde{\eta}'_i B = 0 \end{cases}$$

- i.e. this $\tilde{\eta}_i$ is a left eigenvector of A. λ_i 's at which PBH fails called
 - uncontrollable modes of (A, B).

Uncontrollable modes

If (A, B) not controllable, PBH test doesn't hold for some $\lambda_i \in \mathbb{C}$ for which

$$\operatorname{rank} \left[A - \lambda_i I \ B \right] < n.$$

These λ_i are eigenvalues of A. Indeed, if PBH fails, $\exists \tilde{\eta}_i \neq 0$ such that

$$\tilde{\eta}'_{i} [A - \lambda_{i}I \ B] = 0 \iff \begin{cases} \tilde{\eta}'_{i}A = \lambda_{i}\tilde{\eta}'_{i} \\ \tilde{\eta}'_{i}B = 0 \end{cases}$$

i.e. this $\tilde{\eta}_i$ is a left eigenvector of A. λ_i 's at which PBH fails called

- uncontrollable modes of (A, B).

Uncontrollable modes are eigenvalues of A + BK for every K. Indeed,

$$\tilde{\eta}_i'(A + BK) = \tilde{\eta}_i'A = \lambda_i\tilde{\eta}_i',$$

which proves that λ_i is always an eigenvalue of A + BK.

Stabilizability

Pair (A, B) is said to be

stabilizable if all its uncontrollable modes are stable (in open LHP).

Stabilizability means that there exists $K \in \mathbb{R}^{1 \times n}$ such that

 $A_K := A + BK$

is Hurwitz (all eigenvalues are in the open LHP)..

Stabilizability

Pair (A, B) is said to be

stabilizable if all its uncontrollable modes are stable (in open LHP).

Stabilizability means that there exists $K \in \mathbb{R}^{1 \times n}$ such that

$$A_K := A + BK$$

is Hurwitz (all eigenvalues are in the open LHP).

Outline

Controllability

Example: 2-mass system (controllability)

Observability

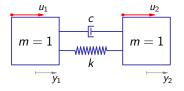
Example: 2-mass system (observability)

Minimality and pole/zero cancellations

Controllability and observability of canonical realizations

Setup

Consider the following 2-mass system:



with external forces u_1 and u_2 . It is described by the following equations:

$$\begin{bmatrix} \ddot{y}_1(t) \\ \ddot{y}_2(t) \end{bmatrix} + \begin{bmatrix} c & -c \\ -c & c \end{bmatrix} \begin{bmatrix} \dot{y}_1(t) \\ \dot{y}_2(t) \end{bmatrix} + \begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Possible realization (non-unique):

$$\begin{cases}
\begin{bmatrix}
\dot{y}_{1}(t) \\
\dot{y}_{2}(t) \\
\ddot{y}_{1}(t) \\
\ddot{y}_{2}(t)
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-k & k & -c & c \\
k & -k & c & -c
\end{bmatrix} \begin{bmatrix}
y_{1}(t) \\
y_{2}(t) \\
\dot{y}_{1}(t) \\
\dot{y}_{2}(t)
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
u_{1}(t) \\
u_{2}(t)
\end{bmatrix} \\
\xrightarrow{A} \qquad \qquad \times (t)$$

$$\begin{bmatrix}
y_{1}(t) \\
y_{2}(t) \\
\dot{y}_{1}(t) \\
\dot{y}_{2}(t)
\end{bmatrix} = \underbrace{\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}}_{C} \begin{bmatrix}
y_{1}(t) \\
y_{2}(t) \\
\dot{y}_{1}(t) \\
\dot{y}_{2}(t)
\end{bmatrix}}_{\dot{y}_{2}(t)}$$

System has 4 modes (eigenvalues of A):

$$\lambda_1=\lambda_2=0$$
 rigid body motion

$$- \lambda_{3,4} = -c \pm \sqrt{c^2 - 2k}$$

spring-damper dynamics

If $u_1 = u$ and $u_2 = \beta u$ for some input u and constant β , then

$$\dot{x}(t) = \left[egin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -k & k & -c & c \\ k & -k & c & -c \end{array}
ight] x(t) + \left[egin{array}{c} 0 \\ 0 \\ 1 \\ \beta \end{array}
ight] u(t)$$

Controllability matrix:

$$M_{c} = egin{bmatrix} 0 & 1 & c(eta-1) & -(2c^2-k)(eta-1) \ 0 & eta & -c(eta-1) & (2c^2-k)(eta-1) \ 1 & c(eta-1) & -(2c^2-k)(eta-1) & 4c(c^2-k)(eta-1) \ eta & -c(eta-1) & (2c^2-k)(eta-1) & -4c(c^2-k)(eta-1) \end{bmatrix}$$

with det $M_c = -k^2(\beta^2 - 1)^2$. Thus, the system is

- uncontrollable for $\beta = \pm 1$.

If $u_1 = u$ and $u_2 = \beta u$ for some input u and constant β , then

$$\dot{x}(t) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -k & k & -c & c \\ k & -k & c & -c \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \\ \beta \end{bmatrix} u(t)$$

Controllability matrix:

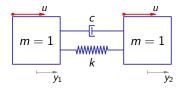
$$M_{c} = \left[egin{array}{cccc} 0 & 1 & c(eta-1) & -(2c^2-k)(eta-1) \ 0 & eta & -c(eta-1) & (2c^2-k)(eta-1) \ 1 & c(eta-1) & -(2c^2-k)(eta-1) & 4c(c^2-k)(eta-1) \ eta & -c(eta-1) & (2c^2-k)(eta-1) & -4c(c^2-k)(eta-1) \end{array}
ight]$$

with det $M_c = -k^2(\beta^2 - 1)^2$. Thus, the system is

- uncontrollable for $\beta = \pm 1$.

What could it mean?

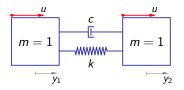
Controllability: $\beta = 1$ ($u_1 = u_2$)



PBH test:

$$\operatorname{rank} \begin{bmatrix} -\lambda & 0 & 1 & 0 & 0 \\ 0 & -\lambda & 0 & 1 & 0 \\ -k & k & -c - \lambda & c & 1 \\ k & -k & c & -c - \lambda & 1 \end{bmatrix} \bigg|_{\lambda = -c \pm \sqrt{c^2 - 2k}} = 3,$$

(rank lost at uncontrollable modes of A).



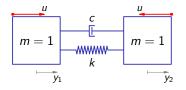
PBH test:

$${\rm rank} \begin{bmatrix} -\lambda & 0 & 1 & 0 & 0 \\ 0 & -\lambda & 0 & 1 & 0 \\ -k & k & -c - \lambda & c & 1 \\ k & -k & c & -c - \lambda & 1 \end{bmatrix} \bigg|_{\lambda = -c \pm \sqrt{c^2 - 2k}} = 3,$$

(rank lost at uncontrollable modes of A). This agrees with our intuition that

if equal forces applied to each mass, oscillations not excited.

Controllability: $\beta = -1$ $(u_1 = -u_2)$

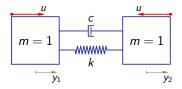


PBH test:

rank
$$\begin{bmatrix} -\lambda & 0 & 1 & 0 & 0 \\ 0 & -\lambda & 0 & 1 & 0 \\ -k & k & -c - \lambda & c & -1 \\ k & -k & c & -c - \lambda & 1 \end{bmatrix} = 3,$$

(rank lost at uncontrollable mode of A).

Controllability: $\beta = -1$ ($u_1 = -u_2$)



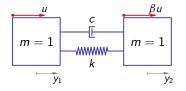
PBH test:

$$\text{rank} \begin{bmatrix} -\lambda & 0 & 1 & 0 & 0 \\ 0 & -\lambda & 0 & 1 & 0 \\ -k & k & -c - \lambda & c & -1 \\ k & -k & c & -c - \lambda & 1 \end{bmatrix} \bigg|_{\lambda=0} = 3,$$

(rank lost at uncontrollable mode of A). This agrees with our intuition that

 if opposite forces applied to each mass, oscillations excited around the motion with zero acceleration.

Transfer functions for $u_1 = u$ and $u_2 = \beta u$



Transfer function from u to y_1 :

$$P_1(s) = \frac{s^2 + c(\beta + 1)s + k(\beta + 1)}{s^2(s^2 + 2cs + 2k)}$$

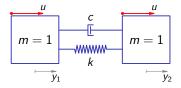
and transfer function from u to y_2 :

$$P_2(s) = \frac{\beta s^2 + c(\beta + 1)s + k(\beta + 1)}{s^2(s^2 + 2cs + 2k)}$$

(both obtained via $C(sI - A)^{-1}B$).

Transfer functions for $u_1 = u$ and $u_2 = \beta u$ (contd)

$$\beta = 1$$
:

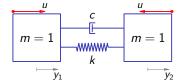


then

$$P_1(s) = P_2(s) = \frac{1}{s^2}.$$

Transfer functions for $u_1 = u$ and $u_2 = \beta u$ (contd)

$$\beta = -1$$
:

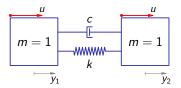


then

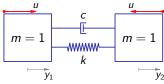
$$P_1(s) = -P_2(s) = \frac{1}{s^2 + 2cs + 2k}.$$

Transfer functions for $u_1 = u$ and $u_2 = \beta u$ (contd)

$$\beta = 1$$
:



$$\beta = -1$$
:



then

$$P_1(s) = P_2(s) = \frac{1}{s^2}.$$

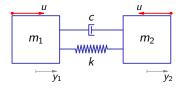
then

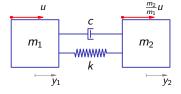
$$P_1(s) = -P_2(s) = \frac{1}{s^2 + 2cs + 2k}.$$

In both cases we have pole/zero cancellations (of different modes though).

Extensions

 $-\,$ If masses are different, controllability is lost at $\beta=-1$ and $\beta=\frac{m_2}{m_1}$:

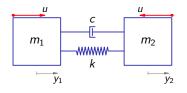


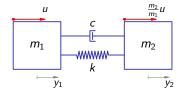


the controllability is lost at

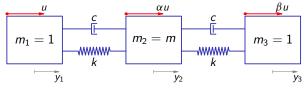
 $\beta = 1$, $\alpha + \beta = -1$, and $\frac{\pi}{m}\alpha - \beta = 1$

– If masses are different, controllability is lost at $\beta=-1$ and $\beta=\frac{m_2}{m_1}$:





If there are 3 masses, like in



the controllability is lost at

$$\beta=1, \quad \alpha+\beta=-1, \quad {\sf and} \quad \frac{2}{m}\alpha-\beta=1$$

Try to explain...

Outline

Controllability

Example: 2-mass system (controllability)

Observability

Example: 2-mass system (observability)

Minimality and pole/zero cancellations

Controllability and observability of canonical realizations

Observability: definition

Consider

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = x_0, \\ y(t) = Cx(t) + Du(t). \end{cases}$$

This system (or the pair (C, A)) is said to be

observable if any initial state x_0 can be reconstructed from time history of u(t) and y(t) in interval $[0, t_1]$ for every $t_1 > 0$ and u(t).

Simplifying observation:

 x_0 reconstructable from time history of y(t), u(t) iff it reconstructable from time history of $\tilde{v}(t) = v(t) - Du(t) - C \int_0^t e^{A(t-s)} Bu(s) ds$

Observability: definition

Consider

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = x_0, \\ y(t) = Cx(t) + Du(t). \end{cases}$$

This system (or the pair (C, A)) is said to be

- observable if any initial state x_0 can be reconstructed from time history of u(t) and y(t) in interval $[0, t_1]$ for every $t_1 > 0$ and u(t).

Simplifying observation:

- Without loss of generality we can assume that $u(t) \equiv 0$. Indeed, as

$$y(t) = Ce^{At}x_0 + Du(t) + C\int_0^t e^{A(t-s)}Bu(s)ds,$$

 x_0 reconstructable from time history of y(t), u(t) iff it reconstructable from time history of $\tilde{y}(t) := y(t) - Du(t) - C \int_0^t e^{A(t-s)} Bu(s) ds$.

Observability and observability matrix

Matrix

$$M_{\mathsf{o}} := \left[egin{array}{c} C \\ CA \\ \vdots \\ CA^{n-1} \end{array}
ight] \in \mathbb{R}^{n \times n}$$

called the observability matrix.

Theorem

Pair (C, A) is observable if and only if $\det M_o \neq 0$.

If $u(t) \equiv 0$, then $y(t) = Ce^{At}x_0$ and

$$\begin{bmatrix} y(0) \\ \dot{y}(0) \\ \vdots \\ y^{(n-1)}(0) \end{bmatrix} = M_{o}x_{0}.$$

If
$$u(t) \equiv 0$$
, then $y(t) = Ce^{At}x_0$ and

$$\begin{bmatrix} y(0) \\ \dot{y}(0) \\ \vdots \\ y^{(n-1)}(0) \end{bmatrix} = M_{o}x_{0}.$$

We have:

1. If det $M_0 \neq 0$, x_0 can be obtained from n-1 derivatives of y(t) at 0.

If $u(t) \equiv 0$, then $y(t) = Ce^{At}x_0$ and

$$\begin{bmatrix} y(0) \\ \dot{y}(0) \\ \vdots \\ y^{(n-1)}(0) \end{bmatrix} = M_{o}x_{0}.$$

We have:

- 1. If det $M_0 \neq 0$, x_0 can be obtained from n-1 derivatives of y(t) at 0.
- 2. If $\det M_0 = 0$, then $\exists v \neq 0$ such that $M_0 v = 0$, i.e. that $CA^i v = 0$ for all i = 0, ..., n - 1. Then, by Cayley-Hamilton,

$$CA^i v = 0, \quad \forall i \in \mathbb{Z}^+ \implies Ce^{At} v \equiv 0.$$

Therefore, if $x_0 = v$, then $y(t) = Ce^{At}x_0 \equiv 0$ and this initial condition is indistinguishable from x(0) = 0.

Observability and similarity

If $\hat{A} = TAT^{-1}$ and $\hat{C} = CT^{-1}$ for some nonsingular T, then

$$\hat{M}_{o} := \begin{bmatrix} \hat{C} \\ \hat{C}\hat{A} \\ \vdots \\ \hat{C}\hat{A}^{n-1} \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} T^{-1}$$
$$= M_{o}T^{-1}$$

i.e.

observability is not affected by similarity transformations.

Theorem

The following statements are equivalent:

- 1. (C, A) is observable;
- 2. det $M_o \neq 0$;
- 3. det $W_o(t) \neq 0$ for all t > 0, where $W_o(t) := \int_0^{\tau} e^{A's} C' C e^{As} ds \in \mathbb{R}^{n \times n}$;
- 4. $\begin{vmatrix} A \lambda I \\ C \end{vmatrix} \in \mathbb{C}^{n+1 \times n}$ has full column rank $\forall \lambda \in \mathbb{C}$ (PBH test);
- 5. $C\eta \neq 0$ for every right eigenvector η of A;
- 6. eigenvalues of A + LC can be freely assigned by $L \in \mathbb{R}^n$;
- 7. (A', C') is controllable.

duality between observability and controllability properties

Theorem

The following statements are equivalent:

- 1. (C, A) is observable;
- 2. det $M_0 \neq 0$;
- 3. det $W_o(t) \neq 0$ for all t > 0, where $W_o(t) := \int_0^{\tau} e^{A's} C' C e^{As} ds \in \mathbb{R}^{n \times n}$;
- 4. $\begin{vmatrix} A \lambda I \\ C \end{vmatrix} \in \mathbb{C}^{n+1 \times n}$ has full column rank $\forall \lambda \in \mathbb{C}$ (PBH test);
- 5. $C\eta \neq 0$ for every right eigenvector η of A;
- 6. eigenvalues of A + LC can be freely assigned by $L \in \mathbb{R}^n$;
- 7. (A', C') is controllable.

The last statement shows

duality between observability and controllability properties.

Ovservability: some useful facts

The following observations/definitions are important:

 $W_{\rm o}(t)$ -test leads to a derivative-free reconstruction algorithm. Let

$$\hat{x}(t) := [W_o(t_1)]^{-1} \int_0^t e^{A's} C' y(s) ds.$$

In this case

$$\hat{x}(t_1) = [W_o(t_1)]^{-1} \int_0^{t_1} e^{A's} C' C e^{As} x_0 ds = x_0.$$

Ovservability: some useful facts

The following observations/definitions are important:

- If (C, A) is not observable, the PBH test fails for some $\lambda_i \in \mathbb{C}$. These λ_i are eigenvalues of A and called unobservable modes of (C, A).

Ovservability: some useful facts

The following observations/definitions are important:

- If (C, A) is not observable, the PBH test fails for some $\lambda_i \in \mathbb{C}$. These λ_i are eigenvalues of A and called unobservable modes of (C, A).
- If λ is an unobservable mode of (C, A), then it is eigenvalue of A + LC for any L.

Detectability

Pair (C, A) is said to be

detectable if all its unobservable modes are stable (in open LHP).

Detectability means that there exists $L \in \mathbb{R}^n$ such that

 $A_L := A + LC$

is Hurwitz (all eigenvalues are in the open LHP).

Detectability

Pair (C, A) is said to be

detectable if all its unobservable modes are stable (in open LHP).

Detectability means that there exists $L \in \mathbb{R}^n$ such that

$$A_L := A + LC$$

is Hurwitz (all eigenvalues are in the open LHP).

Outline

Controllability

Example: 2-mass system (controllability)

Observability

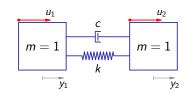
Example: 2-mass system (observability)

Minimality and pole/zero cancellations

Controllability and observability of canonical realizations

Setup

Consider again



with

$$\begin{cases}
\begin{bmatrix} \dot{y}_{1}(t) \\ \dot{y}_{2}(t) \\ \ddot{y}_{1}(t) \\ \ddot{y}_{2}(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -k & k & -c & c \\ k & -k & c & -c \end{bmatrix} \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ \dot{y}_{1}(t) \\ \dot{y}_{2}(t) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_{1}(t) \\ u_{2}(t) \end{bmatrix} \\
\begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{2}(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ \dot{y}_{1}(t) \\ \dot{y}_{2}(t) \end{bmatrix}$$

If $y = y_1 + \gamma y_2$ for some γ , then output equation reads

$$y(t) = \begin{bmatrix} 1 & \gamma & 0 & 0 \end{bmatrix} x(t)$$

Observability matrix:

$$M_{o} = \begin{bmatrix} 1 & \gamma & 0 & 0 \\ 0 & 0 & 1 & \gamma \\ k(\gamma - 1) & -k(\gamma - 1) & c(\gamma - 1) & -c(\gamma - 1) \\ -2ck(\gamma - 1) & 2ck(\gamma - 1) & (k - 2c^{2})(\gamma - 1) & -(k - 2c^{2})(\gamma - 1) \end{bmatrix}$$

with det $M_0 = -k^2(\gamma^2 - 1)^2$. Thus, the system is

- unobservable for $\gamma = \pm 1$.

What could it mean?

Observability

If $y = y_1 + \gamma y_2$ for some γ , then output equation reads

$$y(t) = \begin{bmatrix} 1 & \gamma & 0 & 0 \end{bmatrix} x(t)$$

Observability matrix:

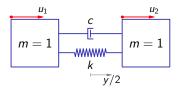
$$M_{o} = \begin{bmatrix} 1 & \gamma & 0 & 0 \\ 0 & 0 & 1 & \gamma \\ k(\gamma - 1) & -k(\gamma - 1) & c(\gamma - 1) & -c(\gamma - 1) \\ -2ck(\gamma - 1) & 2ck(\gamma - 1) & (k - 2c^{2})(\gamma - 1) & -(k - 2c^{2})(\gamma - 1) \end{bmatrix}$$

with det $M_0 = -k^2(\gamma^2 - 1)^2$. Thus, the system is

- unobservable for $\gamma = \pm 1$.

What could it mean?

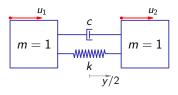
Observability: $\gamma = 1 \ (y = y_1 + y_2)$



PBH test:

(rank lost at unobservable modes of A).

Observability: $\gamma = 1$ $(y = y_1 + y_2)$

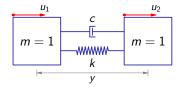


PBH test:

(rank lost at unobservable modes of A). This agrees with our intuition that

oscillations cannot be seen via the center of mass.

Observability: $\gamma = -1$ $(y = y_1 - y_2)$

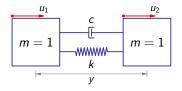


PBH test:

$$\operatorname{rank} \left[\begin{array}{cccc} -\lambda & 0 & 1 & 0 \\ 0 & -\lambda & 0 & 1 \\ -k & k & -c - \lambda & c \\ k & -k & c & -c - \lambda \\ 1 & -1 & 0 & 0 \end{array} \right] \bigg|_{\lambda=0} = 3,$$

(rank lost at unobservable mode of A).

Observability: $\gamma = -1 \ (y = y_1 - y_2)$

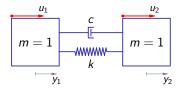


PBH test:

(rank lost at unobservable mode of A). This agrees with our intuition that

rigid body motion cannot be seen via relative position of the masses.

Transfer functions for $y = y_1 + \gamma y_2$



Transfer function from u_1 to y:

$$P_1(s) = \frac{s^2 + c(\gamma + 1)s + k(\gamma + 1)}{s^2(s^2 + 2cs + 2k)}$$

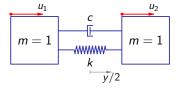
and transfer function from u_2 to y:

$$P_2(s) = \frac{\gamma s^2 + c(\gamma + 1)s + k(\gamma + 1)}{s^2(s^2 + 2cs + 2k)}$$

(both obtained via $C(sI - A)^{-1}B$).

Transfer functions for $y = y_1 + \gamma y_2$ (contd)

$$\gamma = 1$$
:

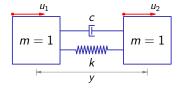


then

$$P_1(s) = P_2(s) = \frac{1}{s^2}.$$

Transfer functions for $y = y_1 + \gamma y_2$ (contd)

$$\gamma = -1$$
:

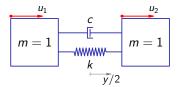


then

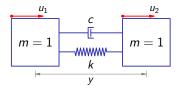
$$P_1(s) = -P_2(s) = \frac{1}{s^2 + 2cs + 2k}.$$

Transfer functions for $y = y_1 + \gamma y_2$ (contd)

$$\gamma = 1$$
:



$$\gamma = -1$$
:



then

$$P_1(s) = P_2(s) = \frac{1}{s^2}.$$

then

$$P_1(s) = -P_2(s) = \frac{1}{s^2 + 2cs + 2k}.$$

In both cases we have pole/zero cancellations (of different modes though).

Outline

Controllability

Example: 2-mass system (controllability)

Observability

Example: 2-mass system (observability)

Minimality and pole/zero cancellations

Controllability and observability of canonical realizations

Minimal state-space realization

Example

Let $G(s) = \frac{1}{s+1}$. The following are its state-space realizations:

$$\begin{cases} \dot{x} = -x + u, & x(0) = 0 \\ y = x \end{cases} \text{ and } \begin{cases} \dot{\hat{x}} = -\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u, & \hat{x}(0) = 0, \\ y = \begin{bmatrix} 1 & 0 \end{bmatrix} \hat{x}. \end{cases}$$

The first of them has state dimension n=1, while the second one—n=2. This indicates that there is *redundancy* in \hat{x} (it accumulates somebody else history as well).

We may be interested to avoid redundancy. To this end, the notion of

minimal state-space realization, i.e. a realization with minimal possible

plays a key role

Minimal state-space realization

Example

Let $G(s) = \frac{1}{s+1}$. The following are its state-space realizations:

$$\begin{cases} \dot{x} = -x + u, & x(0) = 0 \\ y = x \end{cases} \text{ and } \begin{cases} \dot{\hat{x}} = -\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u, & \hat{x}(0) = 0, \\ y = \begin{bmatrix} 1 & 0 \end{bmatrix} \hat{x}. \end{cases}$$

The first of them has state dimension n = 1, while the second one—n = 2. This indicates that there is *redundancy* in \hat{x} (it accumulates somebody else history as well).

We may be interested to avoid redundancy. To this end, the notion of

minimal state-space realization, i.e. a realization with minimal possible dimension.

plays a key role.

Minimality criterion

Theorem

Realization

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = 0, \\ y(t) = Cx(t) + Du(t) \end{cases}$$

is minimal iff it is both controllable and observable.

Minimality criterion

Theorem

Realization

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = 0, \\ y(t) = Cx(t) + Du(t) \end{cases}$$

is minimal iff it is both controllable and observable.

Explanations:

- uncontrollable part of x cannot be affected by input u(t),
- unobservable part of x is invisible from output y(t).

(i.e. there is a similarity transformation between them).

Minimality criterion

Theorem

Realization

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = 0, \\ y(t) = Cx(t) + Du(t) \end{cases}$$

is minimal iff it is both controllable and observable.

Explanations:

- uncontrollable part of x cannot be affected by input u(t),
- unobservable part of x is invisible from output y(t).

Important fact:

every two minimal realizations of the same system are similar
 (i.e. there is a similarity transformation between them).

Minimality and poles

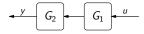
Theorem

lf

$$G:\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = 0, \\ y(t) = Cx(t) + Du(t) \end{cases}$$

is minimal, then $\lambda \in \mathbb{C}$ is a pole of $G(s) = D + C(sI - A)^{-1}B$ iff it is an eigenvalue of A.

Minimality of the cascade connection



We already saw that the state-space realization of $\mathcal{G}=\mathcal{G}_2\mathcal{G}_1$ is

$$\begin{cases} \begin{bmatrix} \dot{x}_2(t) \\ \dot{x}_1(t) \end{bmatrix} = \begin{bmatrix} A_2 & B_2 C_1 \\ 0 & A_1 \end{bmatrix} \begin{bmatrix} x_2(t) \\ x_1(t) \end{bmatrix} + \begin{bmatrix} 0 \\ B_1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} C_2 & 0 \end{bmatrix} \begin{bmatrix} x_2(t) \\ x_1(t) \end{bmatrix} \end{cases}$$

(the order of the state is swapped comparing to what we saw in Lecture 6). The question is:

- if the realizations of G_1 and G_2 are minimal, when so is that of G?

Pole-zero cancellations & state space: I

Let α be pole of $G_1(s)$ and not pole of $G_2(s)$. Assuming that all realizations are minimal, α is an eigenvalue of A_1 and not that of A_2 . Define

$$v := \begin{bmatrix} (\alpha I - A_2)^{-1} B_2 C_1 \\ I \end{bmatrix} v_{\alpha}, \text{ where } (\alpha I - A_1) v_{\alpha} = 0$$

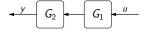
(note that minimality means that $C_1 v_{\alpha} \neq 0$). Then,

$$\begin{bmatrix} A_2 & B_2C_1 \\ 0 & A_1 \end{bmatrix} v = \begin{bmatrix} (A_2(\alpha I - A_2)^{-1} + I)B_2C_1 \\ A_1 \end{bmatrix} v_{\alpha} = \alpha v$$

and

$$[C_2 \ 0] v = C_2(\alpha I - A_2)^{-1} B_2 C_1 v_{\alpha} = G_2(\alpha) C_1 v_{\alpha}.$$

Pole-zero cancellations & state space: I (contd)



Thus,

$$\begin{bmatrix} C_2 & 0 \end{bmatrix} v = 0 \iff G_2(\alpha) = 0$$

and α is unobservable mode of G_2G_1 iff it is zero of $G_2(s)$.

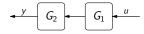
Pole-zero cancellations & state space: I (contd)

Thus,

$$\begin{bmatrix} C_2 & 0 \end{bmatrix} v = 0 \iff G_2(\alpha) = 0$$

and α is unobservable mode of G_2G_1 iff it is zero of $G_2(s)$. In other words,

- any mode of G_1 is unobservable from y iff it's canceled by a zero of G_2 .



Let β be pole of $G_2(s)$ and not pole of $G_1(s)$. Assuming that all realizations are minimal, β is an eigenvalue of A_2 and not that of A_1 . Define

$$v' := v'_{\beta} [I \ B_2 C_1 (\beta I - A_1)^{-1}], \text{ where } v'_{\beta} (\beta I - A_2) = 0$$

(note that minimality means that $v'_{B}B_{2} \neq 0$). Then,

$$v'\begin{bmatrix} A_2 & B_2C_1 \\ 0 & A_1 \end{bmatrix} = \begin{bmatrix} v'_{\beta}A_2 & v'_{\beta}B_2C_1(I + (\beta I - A_1)^{-1}A_1) \end{bmatrix} = \frac{\beta v'}{2}$$

and

$$v'\begin{bmatrix} 0 \\ B_1 \end{bmatrix} = v'_{\beta}B_2C_1(\beta I - A_1)^{-1}B_1 = v'_{\beta}B_2G_1(\beta).$$

Pole-zero cancellations & state space: II (contd)

$$G_2$$
 G_1 U

Thus,

$$v'\begin{bmatrix}0\\B_1\end{bmatrix}=0\iff G_1(\beta)=0$$

and β is uncontrollable mode of G_2G_1 iff it is zero of $G_1(s)$.

Pole-zero cancellations & state space: II (contd)

$$G_2$$
 G_1 U

Thus,

$$v' \begin{bmatrix} 0 \\ B_1 \end{bmatrix} = 0 \iff G_1(\beta) = 0$$

and β is uncontrollable mode of G_2G_1 iff it is zero of $G_1(s)$. In other words,

- any mode of G_2 is uncontrollable by u iff it's canceled by a zero of G_1 .

Outline

Controllability

Example: 2-mass system (controllability)

Observability

Example: 2-mass system (observability)

Minimality and pole/zero cancellations

Controllability and observability of canonical realizations

Controllability of the companion form

In this case

$$A = A_{cf} := \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix} \quad \text{and} \quad B = B_{cf} := \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}.$$

and we have:

Theorem

A realization in the companion form is always controllable.

Remark: It can be shown that

$$M_{\text{c,cf}} = \begin{bmatrix} a_1 & a_2 & \cdots & a_{n-1} & 1 \\ a_2 & a_3 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}^{-1} \implies \det M_{\text{c,cf}} = (-1)^{\lfloor n/2 \rfloor}.$$

Controllability of the companion form: proof

If $K = [k_0 \ k_1 \ \cdots \ k_{n-1}]$, then

$$A_{K} := A_{cf} + B_{cf}K$$

$$= \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ -a_{0} & -a_{1} & \cdots & -a_{n-1} \end{bmatrix} + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} k_{0} & k_{1} & \cdots & k_{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ -(a_{0} - k_{0}) & -(a_{1} - k_{1}) & \cdots & -(a_{n-1} - k_{n-1}) \end{bmatrix}$$

is still a companion form. Hence,

$$\chi_{A_K}(s) = s^n + (a_{n-1} - k_{n-1})s^{n-1} + \cdots + (a_1 - k_1)s + (a_0 - k_0)$$

can be made arbitrary by a choice of $K \implies$ controllability.

Observability of the observer form

In this case

$$A = A_{\text{of}} := \begin{bmatrix} -a_{n-1} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_1 & 0 & \cdots & 1 \\ -a_0 & 0 & \cdots & 0 \end{bmatrix} \quad \text{and} \quad C = C_{\text{of}} := \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}.$$

and we have (prove it yourselves):

Theorem

A realization in the observer form is always observable.

Remark: It can be shown that

$$M_{\text{o,of}} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ a_{n-1} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_2 & a_3 & \cdots & 1 & 0 \\ a_1 & a_2 & \cdots & a_{n-1} & 1 \end{bmatrix}^{-1} \implies \det M_{\text{o,of}} = 1.$$