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Controllability

Controllability: definition and criterion

Consider
x(t) = Ax(t) + Bu(t), x(0) = xo.
This system (or the pair (A, B)) is said to be
— controllable if for every xp and xq, 3t; and u(t) : [0, t1] — R such that
X(tl) = X1.



Controllability

Controllability: definition and criterion

Consider
x(t) = Ax(t) + Bu(t), x(0) = xo.
This system (or the pair (A, B)) is said to be
— controllable if for every xp and xq, 3t; and u(t) : [0, t1] — R such that
X(tl) = X1.

Matrix
M. = [B AB --. A"‘lB] e R™"

called the controllability matrix.

Theorem
(A, B) is controllable if and only if det M. # 0.



Controllability
Preliminary simplifying observation

Without loss of generality we can take xp = 0. Indeed,

t1
x(t) = efixg —i—/ A=) By(s)ds
implies 0

t1
(1) = x(tr) — et = / eAB=5) By (5 ds.
0

Thus, moving x(t) from x(0) = xo to x(t1) = x1 is equivalent to moving it
from x(0) = 0 to x(t1) = X(t1). |If every X(t1) is reachable from x(0) =0,
then every x; = %(t1) + e”fixg is reachable from x(0) = xo.

Remark Alternatively, we may take x; = 0, based on the relation
"
0=e"(x— e *x(t1)) + / (179 By (s)ds,
Jo

which is possible because e’ is always invertible.



Controllability

Outline of the proof
Remember, eAt = 37"} g;(t)A’. Taking x(0) = 0,

X(tl):/ot Alti=t) g ( t)dt—/ (ZAg, t1—t>Bu(t)dt
—ZAB/ gi(t1 — t)u t)dt—ZABn,

- Cn:

t1
where n; := / gi(t1 — t)u(t)dt.
0



Controllability

Outline of the proof
Remember, eAt = 37"} g;(t)A’. Taking x(0) = 0,

X(tl):/ot Alti=t) g ( t)dt—/ (ZAg, t1—t>Bu(t)dt
—ZAB/ gi(t1 — t)u t)dt—ZABn,

- Cn:

t1
where n; := / gi(t1 — t)u(t)dt. We have:
0

1. If det M. = 0, then 3x; such that x; = M7 is not solvable in 7, hence
this x; is not reachable by u(t).



Controllability

Outline of the proof

Remember, eAt = 37"} g;(t)A’. Taking x(0) = 0,

X(tl):/ot Alti=t) g ( t)dt—/ (ZAg, t1—t>Bu(t)dt
_ZAB/ gi(t1 — t)u t)dt—ZABn,

- Cn:

t1
where n; := / gi(t1 — t)u(t)dt. We have:
0

1. If det M. = 0, then 3x; such that x; = M7 is not solvable in 7, hence

this x; is not reachable by u(t).

2. If det M. # 0, then any xq is reachable with n = M 1x;. It can then be

shown that n equations n; = fotl gi(ty — t)u(t)dt are always solvable in
u(t) (because of linear independence of gj(t)). O



Controllability

Controllability and similarity
If A= TAT ! and B = TB for some nonsingular T, then

M.:=[B AB ... A"1B|=T[B AB --- AlB]

— controllability is not affected by similarity transformations.



Controllability

Controllability: some other tests

Theorem
The following statements are equivalent:

1. (A, B) is controllable;
2. det M. #0;

t
3. det W,(t) # 0 for all t > 0, where W((t) := / " BB'e”'*ds € R™";
0

4. [A—Al B] e C™™1 has full row rank VA € C (PBH test);
5. B # 0 for every left eigenvector ij of A;
6. eigenvalues of A+ BK can be freely assigned by K € R1*".



Controllability

Matrix Wc(t) and control law for 0 = xp — x;

Consider
u(t) = umin(t) := BN O W(1)] 1.

Then

t1 t l
x(t1) = / eA(trs)Bu(s)ds = / Alti=s) BB/ A (tlis)[Wc(tl)]flxlds
0 0

t1 ,
= / e BB e 5ds [W,(11)] 1x1 = xq.
0



Controllability

Matrix Wc(t) and control law for 0 = xp — x;

Consider
u(t) = tmin(t) := BN OO [W (1)) x.
Then

t1 t l
x(t1) = / eA(trs)Bu(s)ds = / Alti=s) BB/ A (tl—s)[Wc(tl)],lxlds
0 0

t1 ,
= / e BB e 5ds [W,(11)] 1x1 = xq.
0
In fact, umin has

t
— minimal energy, E, ::/ U (t)u(t)dt,
0

among all control laws bringing x(t) from 0 to xj.



Controllability

Minimum energy proof

If u(t) = umin(t) + ug(t), then, by linearity,

t1
x(t1) = x1 +/ eAt1=5) B (s)ds.
0

Hence, x(t1) = xy iff ug(t) satisfies

t1
/ eAt=9) Byg(s)ds = 0.
0



Controllability

Minimum energy proof

If u(t) = umin(t) + ug(t), then, by linearity,
t1
x(t1) = x1 +/ eAt1=5) B (s)ds.

0

Hence, x(t1) = xy iff ug(t) satisfies
t1
/ eAt=9) Byg(s)ds = 0.
0

Now,

E, = /0 (tmin(t) + 05 (6)) (umin(£) + (1)) d
= Eypn + Eug + 22X [We(t)] ™ /h A=) Bug (1) dt
0



Controllability

Minimum energy proof

If u(t) = umin(t) + ug(t), then, by linearity,
t1
x(t1) = x1 +/ eAt1=5) B (s)ds.

0

Hence, x(t1) = xy iff ug(t) satisfies
t1
/ eAt=9) Byg(s)ds = 0.
0

Now,

Fu= /tl(“min(t) + us (1)) (umin(t) + us(t))dt
0

(51
= Ey + Eug + 2x1[vvc(t1)]—1/ A=t By (t)dt = E,,, + Eu
0

(remember Pythagoras).



Controllability

Minimum energy proof

If u(t) = umin(t) + ug(t), then, by linearity,
t1
x(t1) = x1 +/ eAt1=5) B (s)ds.

0

Hence, x(t1) = xy iff ug(t) satisfies
t1
/ eAt=9) Byg(s)ds = 0.
0

Now,

E, = / (tmin(t) + 05 (6)) (umin(£) + (1)) d
0

(51
= Ey + Eus + 2x{[Wc(t1)]_1/ e
0

Alt=1) Bug(t)dt = E,

Umin

+ Eyg

(remember Pythagoras). As E, > 0, the minimum is attained by ug(t) = 0.



Controllability

Uncontrollable modes

If (A, B) not controllable, PBH test doesn't hold for some A; € C for which
rank [A—)L,‘I B] < n.
These A; are eigenvalues of A. Indeed, if PBH fails, 37; # 0 such that

A= A
H[A-Ail B] =0« T L
;B8 =0

i.e. this #j; is a left eigenvector of A.



Controllability

Uncontrollable modes

If (A, B) not controllable, PBH test doesn't hold for some A; € C for which
rank [A—)L,‘I B] < n.
These A; are eigenvalues of A. Indeed, if PBH fails, 37; # 0 such that

HA= A
MIA=Al B] =0 « {17720
;B8 =0
i.e. this 7j; is a left eigenvector of A. A;’s at which PBH fails called
— uncontrollable modes of (A, B).



Controllability

Uncontrollable modes

If (A, B) not controllable, PBH test doesn't hold for some A; € C for which
rank [A—)L,‘I B] < n.
These A; are eigenvalues of A. Indeed, if PBH fails, 37; # 0 such that

A= A
H[A-Ail B] =0« T L
;B8 =0

i.e. this 7j; is a left eigenvector of A. A;’s at which PBH fails called
— uncontrollable modes of (A, B).

Uncontrollable modes are eigenvalues of A+ BK for every K. Indeed,
ii(A+ BK) = ii;A = A,

which proves that A; is always an eigenvalue of A + BK.



Controllability
Stabilizability
Pair (A, B) is said to be

— stabilizable if all its uncontrollable modes are stable (in open LHP).



Controllability

Stabilizability
Pair (A, B) is said to be

— stabilizable if all its uncontrollable modes are stable (in open LHP).

Stabilizability means that there exists K € R1*" such that
Ak :=A+ BK

is Hurwitz (all eigenvalues are in the open LHP).



Example

Outline

Example: 2-mass system (controllability)



Example

Setup
Consider the following 2-mass system:
71 U3
C
[F
m = 1 AAAAAAAAAA m = 1
T o

with external forces u; and uy. It is described by the following equations:

- 211 5 -



Example

State-space model

Possible realization (non-unique):

yl(t) 0 0 1 0 yl(t) 00

ot | | 0 0 0 1 | ly(t)] |00

nwt)| |-k k —c ¢ y1(t) 10

ya(t) k —k ¢ —c|[yf(t) 01

x(t) A x(t) B
(1)
|:y1(t) :| |:1 000 :| yg(t)
ya(t) 0100 yi(t)
¢ ya(t)
System has 4 modes (eigenvalues of A):
— A1=X=0 rigid body motion

— A4 =—c++Vc2 -2k spring-damper dynamics



Example

Controllability

If u1 = u and up = Bu for some input v and constant 8, then

0 0 1 0 0

. 0 0 o0 1 0

X(t) = —k k —c ¢ X(t)+ 1 U(t)
k —k ¢ —c B

Controllability matrix:

0 1 «(B-1) KB
w_ |0 —c(f-1) (- K)(p -
Tl1 eB-1) K1) ac(— k)~

B —c(B-1) (2c—k)(B—1) —4c(c®—k)(B

with det M. = —k?(B82 — 1)2. Thus, the system is
— uncontrollable for § = £1.

1)
1)

1)
1)



Example

Controllability

If u1 = u and up = Bu for some input v and constant 8, then

0 0 1 0 0

. 0 0 o0 1 0

X(t) = —k k —c ¢ X(t)+ 1 U(t)
k —k ¢ —c B

Controllability matrix:

0 1 c(B—1) —(2c? — k)(B —1)

v |0 B (-1 (k-1
‘ 1 c(B-1) —(2c2—k)(B—-1) 4c(c>—k)(B-1)
B —c(B-1) (22 —k)(B—-1) —dc(c®—k)(B-1)

with det M. = —k?(B82 — 1)2. Thus, the system is
— uncontrollable for § = £1.
What could it mean?



Example

Controllability: B =1 (u1 = wp)

u u
C
[F
m=1| m=1
h Y
PBH test:
—-A 0 1 0 0
0 - 0 1 0
rank —k k —c—2A c 1 =3
k —k c —-c—A1 1 P>

(rank lost at uncontrollable modes of A).



Example

Controllability: B =1 (u1 = wp)

u u
C
[F
m=1| m=1
h Y
PBH test:
—-A 0 1 0 0
0 - 0 1 0
rank —k k —c—2A c 1 =3
k —k c —-c—A1 1 P>

(rank lost at uncontrollable modes of A). This agrees with our intuition that

— if equal forces applied to each mass, oscillations not excited.



Example

Controllability: 8 = —1 (u; = —uw)

u u
C
[F
m=1| m=1
h Y
PBH test:
-1 0 1 0 0
rank 0o - 0 1 0 _
—k k —c—2A c -1 o
k —k c —c—A 1

(rank lost at uncontrollable mode of A).



Example

Controllability: 8 = —1 (u; = —uw)

u u
C
[F
m=1| m=1
h Y
PBH test:
-1 0 1 0 0
0o - 0 1 0
rank —k k —c—2A c -1 =3
k —k c —c—A 1

A=0

(rank lost at uncontrollable mode of A). This agrees with our intuition that

— if opposite forces applied to each mass, oscillations excited around the
motion with zero acceleration.



Example

Transfer functions for uy = v and u, = Bu

AAAAAAAAAA
vvvvvvvvvv

Transfer function from u to y;:

s>+ c(B+1)s+k(B+1)

Pi(s) =
1(s) s2(s2 + 2c¢s + 2k)

and transfer function from u to y»:

Bs® +c(B+1)s+ k(B +1)

Py(s) =
2(s) s2(s? + 2¢s + 2k)

(both obtained via C(s/ — A)~!B).



Example

Transfer functions for u; = v and u, = Bu (contd)

u u
! c .t
F
m = 1 AAAAAAAAAA m = 1
k
P P
1 Y2
then
1



Example

Transfer functions for u; = v and u, = Bu (contd)

p=-1
u u
Ll c i
F
m:1 AAAAAAAAAA m:1
k
e P
Y1 Y2
then

1
Pi(s) = —Pals) = s?+2cs+ 2k’



Example

Transfer functions for u; = v and u, = Bu (contd)

=1 p=-1
N 0 —Y u____
C C
5 IS
m=1 m=1 m=1 m=1
n 7 n 7
then then
Pi(s) = Pa(s) = — Pi(s) = —Pa(s) =
s) = Py(s) = —=. s) = —Py(s) = )
1 2 52 ! 2 52 4+ 2¢cs + 2k

In both cases we have pole/zero cancellations (of different modes though).



Example

Extensions
— If masses are different, controllability is lost at = —1 and g = 72:
u u u ﬁfu
—t c A — P
I3 I3
m mp m my
P P P -

N Y2 » 2



Example

Extensions
— If masses are different, controllability is lost at = —1 and g = 72:
u u u ﬁfu
R c a4, R c —m
IS IS
my my my my
P P P —
N Y2 » 2
— If there are 3 masses, like in
u au Bu
L c P2 c . B
E IS
m =1 my =m my=1
e e —
N Y2 ¥3

the controllability is lost at
2
=1 a+pf=-1, and —a—-f=
m

Try to explain. ..



Observability



Observability

Observability: definition
Consider
x(t) = Ax(t) + Bu(t), x(0) = xo,
y(t) = Cx(t) + Du(t).
This system (or the pair (C, A)) is said to be

— observable if any initial state xg can be reconstructed from time history
of u(t) and y(t) in interval [0, t1] for every t; > 0 and u(t).



Observability

Observability: definition

Consider
x(t) = Ax(t) + Bu(t), x(0) = xo,
y(t) = Cx(t) + Du(t).

This system (or the pair (C, A)) is said to be

— observable if any initial state xg can be reconstructed from time history
of u(t) and y(t) in interval [0, t1] for every t; > 0 and u(t).

Simplifying observation:

— Without loss of generality we can assume that u(t) = 0. Indeed, as
t
y(t) = Ce*'xo + Duf(t) + C / A=) By(s)ds,
0

xo reconstructable from time history of y(t), u(t) iff it reconstructable
from time history of y(t) := y(t) — Du(t) — Cfot eA(t=5) By(s)ds.



Observability
Observability and observability matrix

Matrix
C

CA
M, = , e R™"
can-1

called the observability matrix.

Theorem
Pair (C, A) is observable if and only if det M, # 0.



Observability

Proof
If u(t) =0, then y(t) = Ce’txg and



Observability

Proof
If u(t) =0, then y(t) = Ce’txg and

= MOXO.
y(=D(0)

We have:
1. If det M, # 0, xo can be obtained from n — 1 derivatives of y(t) at 0.



Observability

Proof

If u(t) =0, then y(t) = Ce’txg and

= MOXO.
y(=D(0)

We have:
1. If det M, # 0, xp can be obtained from n — 1 derivatives of y(t) at 0.

2. If det My = 0, then dv # 0 such that Myv =0, i.e. that CAiv = 0 for
all i=0,...,n—1. Then, by Cayley-Hamilton,

CAlv =0, Viezt — Ce*v=0.

Therefore, if xo = v, then y(t) = Ce’txy = 0 and this initial condition
is indistinguishable from x(0) = 0. O



Observability

Observability and similarity
If A= TAT ! and € = CT ! for some nonsingular T, then

¢ C
N CA CA
Mo = . = . T_l
CAn-1 CAn-1
=M, T

ie.

— observability is not affected by similarity transformations.



Observability

Ovservability: some other tests

Theorem
The following statements are equivalent:

1. (C,A) is observable;
2. det M, # 0;

t
3. det W,(t) # 0 for all t > 0, where Wy(t) ::/ N CeMds e R™7;
0

A—Al
C
5. Cn # 0 for every right eigenvector n of A;

] € C"1X1 has full column rank YA € C (PBH test);

6. eigenvalues of A+ LC can be freely assigned by L € R";
7. (A, C") is controllable.



Observability

Ovservability: some other tests

Theorem
The following statements are equivalent:

1. (C,A) is observable;
2. det M, # 0;

t
3. det Wy(t) # 0 for all t > 0, where W,(t) ::/ N CeMds e R™7;
0

A—Al
C
5. Cn # 0 for every right eigenvector n of A;

] € C™1X1 has full column rank YA € C (PBH test);
6. eigenvalues of A+ LC can be freely assigned by L € R";
7. (A, C") is controllable.

The last statement shows

— duality between observability and controllability properties.



Observability

Ovservability: some useful facts

The following observations/definitions are important:

— W,(t)-test leads to a derivative-free reconstruction algorithm. Let

2(t) = [v\/c,(tl)]—l/0 e~ C'y(s)ds.

In this case

t1 ,
(t) = [Wo(tl)]_l/ A5 €1 CeMoxods = xo.
0



Observability

Ovservability: some useful facts

The following observations/definitions are important:

— If (C, A) is not observable, the PBH test fails for some A; € C. These
A; are eigenvalues of A and called unobservable modes of (C, A).



Observability

Ovservability: some useful facts

The following observations/definitions are important:

— If (C, A) is not observable, the PBH test fails for some A; € C. These
A; are eigenvalues of A and called unobservable modes of (C, A).

— If X is an unobservable mode of (C, A), then it is eigenvalue of A+ LC
for any L.



Observability

Detectability
Pair (C, A) is said to be

— detectable if all its unobservable modes are stable (in open LHP).



Observability

Detectability
Pair (C, A) is said to be

— detectable if all its unobservable modes are stable (in open LHP).

Detectability means that there exists L € R” such that
A=A+ LC

is Hurwitz (all eigenvalues are in the open LHP).



!utllne

Example: 2-mass system (observability)



Consider again

with

Example
Setup
7] us
Cc
[F
m = 1 llllllllll m = 1
k
h o
0 0 1



Example

Observability

If y =y1 + yy» for some y, then output equation reads
y(£)=[1 y 0 0]x(t)

Observability matrix:

1 y 0 0
M. — 0 0 1 14
| k(y—1)  —k(y-1) c(y —1) —c(y - 1)

~2ck(y —1) 2ck(y —1) (k—2¢2)(y —1) —(k—2c?)(y — 1)

with det M, = —k?(y? — 1)%. Thus, the system is

— unobservable for y = +1.



Example

Observability

If y =y1 + yy» for some y, then output equation reads
y(£)=[1 y 0 0]x(t)

Observability matrix:

1 y 0 0
M. — 0 0 1 14
| k(y—1)  —k(y-1) c(y —1) —c(y - 1)

~2ck(y —1) 2ck(y —1) (k—2¢2)(y —1) —(k—2c?)(y — 1)

with det M, = —k?(y? — 1)%. Thus, the system is
— unobservable for y = +1.
What could it mean?



Example

Observability: y =1 (y = y1 + y»)

_31 c _32
[F
m=1| m=1
)—}/72
PBH test:
-2 0 1 0
0 —-A 0 1
rank | —k k —c—A c
k —k c —c—A
11 0 0 Jhe crve=

(rank lost at unobservable modes of A).



Example

Observability: y =1 (y = y1 + y»)

uy up
.U c .U
E
m=1| m=1
)—}/72
PBH test:
—-A 0 1 0
0o - 0 1
rank | —k k —c—2A c =3,
k —k c —c—A
i 0 0 Il cive=

(rank lost at unobservable modes of A). This agrees with our intuition that

— oscillations cannot be seen via the center of mass.



Example

Observability: y = =1 (y = y1 — y»)

Uy c up
E
m=1| m=1
L ""'k'"" |
™ y -
PBH test:
—-A 0 1 0
0 —-A 0 1
rank | —k k —c—A c =3,

k —k c —c—A
1 -1 0 0 Ao

(rank lost at unobservable mode of A).



Example

Observability: y = =1 (y = y1 — y»)

u c . up
E
m=1| m=1
L ""'k'"" |
™ y -
PBH test:
—-A 0 1 0
0 —-A 0 1
rank | —k k —c—A c =3,
k —k c —c—A
1 -1 0 0

A=0
(rank lost at unobservable mode of A). This agrees with our intuition that

— rigid body motion cannot be seen via relative position of the masses.



Example

Transfer functions for y = y1 + yy»

u U
— ——
c
I3
m=1 m=1
..........
........
k
P P
n Y2

Transfer function from u; to y:

s2+c(y+1)s+k(y +1)
s2(s% 4 2cs + 2k)

Pl(S) =

and transfer function from uy to y:

_ys?4c(y +1)s+ k(y +1)

P
2(s) s2(s2 + 2cs + 2k)

(both obtained via C(s/ — A)~!B).



Example

Transfer functions for y = y; + yy» (contd)

y =1
u 24}
— c —
[F
m:1 AAAAAAAAAA m:1
k
y/2
then



Example

Transfer functions for y = y; + yy» (contd)

y=-—1L
U U
— c —
{E
m:1 AAAAAAAAAA m:1
k
o y
then

1

Pi(s) = —Py(s) = .
1(s) 2(s) s2 4 2¢s + 2k



Example

Transfer functions for y = y; + yy» (contd)

y =1 y=-—1L
uy 73 uy U2
— c o— — c —
IS I
m=1( m=1 m=1 m=1
T2 - y
then then
Pi(s) = Pals) = 5 PL(S) = —Pals) = 5
S W)= 2 ™ 2 o 2k

In both cases we have pole/zero cancellations (of different modes though).



Minimality and cancellations

Outline

Minimality and pole/zero cancellations



Minimality and cancellations

Minimal state-space realization

Example
Let G(s) = SJ%I The following are its state-space realizations:
$=-x+u x(0=0 k=—[§9]%+ [§]u. %(0)=0,
an
y=x y=[10]x

The first of them has state dimension n = 1, while the second one—n = 2.
This indicates that there is redundancy in X (it accumulates somebody else
history as well).



Minimality and cancellations

Minimal state-space realization

Example
Let G(s) = SJ%I The following are its state-space realizations:
$=-x+u x(0=0 k=—[§9]%+ [§]u. %(0)=0,
an
y=x y=[10]x

The first of them has state dimension n = 1, while the second one—n = 2.
This indicates that there is redundancy in X (it accumulates somebody else
history as well).

We may be interested to avoid redundancy. To this end, the notion of

— minimal state-space realization, i.e. a realization with minimal possible
dimension,

plays a key role.



Minimality and cancellations
Minimality criterion

Theorem
Realization

x(t) = Ax(t) + Bu(t), x(0) =0,
y(t) = Cx(t) + Du(t)

is minimal iff it is both controllable and observable.



Minimality and cancellations
Minimality criterion

Theorem
Realization

y(t) = Cx(t) + Du(t)

is minimal iff it is both controllable and observable.

{)’((t) = Ax(t) + Bu(t), x(0) =0,

Explanations:
— uncontrollable part of x cannot be affected by input u(t),

— unobservable part of x is invisible from output y(t).



Minimality and cancellations
Minimality criterion

Theorem
Realization

y(t) = Cx(t) + Du(t)

is minimal iff it is both controllable and observable.

{)’((t) = Ax(t) + Bu(t), x(0) =0,

Explanations:
— uncontrollable part of x cannot be affected by input u(t),

— unobservable part of x is invisible from output y(t).

Important fact:
— every two minimal realizations of the same system are similar

(i.e. there is a similarity transformation between them).



Minimality and cancellations

Minimality and poles

Theorem
If

. x(t) = Ax(t) + Bu(t), x(0) =0,
| y(t) = Cx(t) + Du(t)

is minimal, then A € C is a pole of G(s) = D + C(sl — A)"1B iffit is an
eigenvalue of A.



Minimality and cancellations

Minimality of the cascade connection

We already saw that the state-space realization of G = GG is
f(z(t) . A B (G Xz(t) 0
[Xl(t):| o |: 0 A1 Xl(t) + Bl u(t)
_ x(t)
=16 0] [0

(the order of the state is swapped comparing to what we saw in Lecture 6).
The question is:

— if the realizations of Gy and G, are minimal, when so is that of G?



Minimality and cancellations

Pole-zero cancellations & state space: |

e Cles

Let « be pole of Gi(s) and not pole of Gy(s). Assuming that all realizations
are minimal, « is an eigenvalue of A; and not that of A;. Define

Voi— |:(O[I — A2)7182C1

/ } Vo, where (¢l — Ap)vg =0

(note that minimality means that Civg # 0). Then,

Ay B, = (Az((xl — Az)il + /)B2C]_
0 A - A1

Vg = QV

and
[CZ 0 ] v = C2(Oll — Ag)*leClva = Gz(Ol)Clva.



Minimality and cancellations

Pole-zero cancellations & state space: | (contd)
e Cles

[CQ O]VZO < GQ(Ot)ZO

Thus,

and « is unobservable mode of G,G; iff it is zero of Gy(s).



Minimality and cancellations

Pole-zero cancellations & state space: | (contd)
e Cles

[C2 O]VZO < Gz(Ot)ZO

Thus,

and « is unobservable mode of GG iff it is zero of Gy(s). In other words,

— any mode of Gj is unobservable from y iff it's canceled by a zero of Gj.



Minimality and cancellations

Pole-zero cancellations & state space: |l

e Cles

Let B be pole of Gy(s) and not pole of G;(s). Assuming that all realizations
are minimal, § is an eigenvalue of Ay and not that of A;. Define

Vo= Vl’g [1 BGi(Bl — A1)t ], where vé(ﬂl —A)=0

(note that minimality means that vz B; # 0). Then,

/ A2 BQCl , , 1 /
v {0 A }: [vﬂAz vﬂBgCl(l+(lBI_A1) A1) | = Bv

and
0 _
v/ {Bl ] = vgBaGi(Bl — A1) ' B1 = v BaGi(B).



Minimality and cancellations

Pole-zero cancellations & state space: Il (contd)
e Cles

v’[gl]—o s Gy(B) =0

and f is uncontrollable mode of G, G iff it is zero of Gi(s).

Thus,



Minimality and cancellations

Pole-zero cancellations & state space: Il (contd)
e Cles

v’[gl]—o s Gy(B) =0

Thus,

and B is uncontrollable mode of G,G; iff it is zero of Gi(s). In other words,

— any mode of G, is uncontrollable by v iff it's canceled by a zero of Gj.



Canonical realizations

Outline

Controllability and observability of canonical realizations



Canonical realizations

Controllability of the companion form

In this case
0 1 0 0
A= Ag:= : : : and B = Bg:=
0 0 1
—ag —ai —danp—1 1

and we have:

Theorem
A realization in the companion form is always controllable.

Remark: It can be shown that

ai a -+ ap-1 1

an as - 1 0
o . . . . . _(_1\ln/2]
M. s = : o . : — det M. s = ( ].) .



Canonical realizations

Controllability of the companion form: proof

IFK=[k ki -+ ko1 ], then
Ak = A + BiK

[0 1 ... 0 0

= : + [ ko ki kn—1 |

0 0 1

_—ao —ai —dan—1 1
[ 0 1 0

a 0 0 1
| —(a0 — ko) —(a1 — k1) -+ —(an-1— kn-1)

is still a companion form. Hence,
XAK(S) =5s"+ (an-1 — kn—l)sn_1 + -+ (a1 — ki)s + (a0 — ko)

can be made arbitrary by a choice of K = controllability. O



Canonical realizations

Observability of the observer form

In this case
—ap1 1 -0

A=Agi=| = = il and C=Cyi=[10 - 0].
_al 0 ... 1
—ap 0 --- 0

and we have (prove it yourselves):

Theorem
A realization in the observer form is always observable.

Remark: It can be shown that

—1

1 0 --- 0 O
an—1 1 e 0 O
Moof = e det Mo of = 1.
a az - 1 0 J
ai a -+ ap.1 1
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