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Preliminaries: linear algebra

Linear algebra, notation and terminology

A matrix A € R™™M is an n X m table of real numbers,

ai1 di2 - dim
a a2 - dim

A= | T 7 . = [aj],
dnl an2 - dmm

accompanied by their manipulation rules (addition, multiplication, etc). The
number of linearly independent rows (or columns) in A is called its rank and
denoted rank A. A matrix A € R"*™ is said to

— have full row (column) rank if rank A = n (rank A = m)
— besquareif n=m, tallif n> m, and fat if n <m
— be diagonal (A = diag{a;}) if it is square and a;; = 0 whenever | # j
— be lower (upper) triangular if a;j = 0 whenever i > j (i < j)
— be symmetric if A= A’, where the transpose A’ := [ajj]
The identity matrix /, := diag{1} € R™" (if the dimension is clear, just /).
It is a convention that A® = | for every nonzero square A.

Block matrices

Let A€ R"™™ and let 27:1 n;j = n and Zﬁ:l m; = n for some n;, m; € N.
Then A can be formally split as

Al A - A
Ay Ax - A

A= : 1 : :M = [Aj]
Avl Av2 e Avu

for Ajj = [a,-j,k/] € R">™ with entries ajj, i = apq, where p = Z'r;ll ny+ k
and g = er;ll m, + . For example, we may present

9 101112

for A11 = [% %], A12 = [%], A13 = [g], A21 = [9 10], A22 =11, A23 =12.
This split is not unique and is normally done merely for convenience.




Block matrices (contd)

We say that a block matrix A = [Aj] is
— block-diagonal (A = diag{A;}) if v = u and Aj; = 0 whenever | # j
— block lower (upper) triangular if A;j = 0 whenever i > j (i <)

If A is square, i.e. n = m, a natural split is with n; = m; for all i. Then all
A;; are square too.

Operations on block matrices are performed in terms of their blocks, like

{All A1 } n {311 B2 } _ {An + B11 Az + Brio }
Ao A Bo1 Bao A1+ Boi Axp+ B |

[An A12 } {511 B> ] B [A11B11 + A12B21 A11Bio + A12Bx }

As1 A Boi By | | AviBi1 4+ AxBoi As1Bio + AnBoo

Sum, product, inverse of block-diagonal (block-triangular) matrices remain
block-diagonal (block-triangular).

Eigenvalues & eigenvectors
Given a square matrix A € R™*", its eigenvalues are the solutions A € C to
xa(A) :=det(Al —A)=A"+ y, A" 4+ A F g0 =0

(characteristic equation). There are n (not necessarily different) eigenvalues
of A and spec(A) denotes their set. If A; € spec(A) is such that Im4; # 0,
then A; € spec(A) too. Also, A; € spec(A) = A;t € spec(At), Vt € R.

Right and left eigenvectors associated with A; € spec(A) are nonzero vectors
n; and 7;, respectively, such that

(Ail =A)p; =0 and (Al — A) =0,
respectively. Note that
Afpi =ik and  §iAK = AKi, ke N

so A; € spec(A) = Ak € spec(AK), keeping left and right eigenvectors.

Eigenvalues & eigenvectors of block-triangular matrices

Let A= [A(}l 25] Because

A=A —Ap nl _ | (AM—=Au)n
0 Al — Ay 0| 0 ’

every eigenvalue of Aj; is that of A (its right eigenvector is [7(’)’]) Because

L [AM=Ay A i
Nnﬂ{ Ollﬂ_iJz[owM—@gy

every eigenvalue of Ay, is that of A (its left eigenvector is [0 7 ]). Thus

— Ajis an eigenvalue of A iff it is an eigenvalue of A1 or Ax.

The same arguments

— work for block-lower-triangular and block-diagonal matrices too.

Cayley—Hamilton

In essence: each square matrix satisfies its own characteristic equation:
XA(A) = A" + Xn_lAn_l R XlA + X()/n =0.

Important consequences:

— Ak for all k > nis a linear combination of A", i =0,...,n—1, like
A" = —xp A" = — 1A= xoln
An+1 _ *XI771A”*"'*X1A2*XOA
— lefl(Xl771An ! + -+ XlA + XO/n) — s — XlAQ — X()A

= (2 = an2)A" e (fne1x1 — X0)AF Xn_1X0ln

— A7l if exists, is also a linear combination of A", i =0,...,n—1:

1
(1l + -+ xn1 AT 2+ A1),

Al=_—
X0




Matrix functions

Let f(x) = Y22, fix' be analytic. Its matrix version f(A) is defined as
FA):=> FA.
i=0

It is readily seen that f(A)n; = n;f(A;) for all eigenvalue-eigenvector pairs.
By Cayley—Hamilton, we know that dg;, i =0,...,n — 1 such that

n—1
FA) =D gA'.
i=0

This does not imply that f(x) = g(x) := Z;’;Ol gix' for all x, but still

dg(x)

X=A; dXJ

&/ f(x)

f(/\,) = g(l,') and de

. Vi=1,...,ui—1
.y J K

for each eigenvalue A; of A having multiplicity u;. These equations can be
used to calculate all n coefficients g; and, hence, f(A).

Matrix functions (contd)

If all n eigenvalues of A are different,

n—1 ) A],-
fA)=> &M =1[g & - &n-1]|
J=0 A‘n.—l
Thus, [go &1 -+ &1 ]V =[f(A1) f(A2) --- f(An) ], where
1 1 1

Arl1—1 /\127—1 An—l

n

is the Vandermonde matrix (with det V' = [];;_;<,(4; — A;) # 0). Hence,

(g0 & - &n1]=[f(A) f(A2) -~ f(Aa) ] VL

Matrix exponential

The matrix exponential is defined (here t € R, we shall need it later on) as

1 1
exp(At) = et := | + At + E(At)2 + i(Atﬁ 4

Example
Let A= [_01 %] with eigenvalues A; = —1 and A = 2. Then

eoaeq[1 1] got) = fe " + 3¢
[o(t) &u(t) | =[e™" € ][_1 2} = {gl(t):iée_t—iée%

and hence

exp<[_01 ;]t) :go(f){é (1)] +g1(t)[_01 ;] — [eot %,(e%e; o

Note, the exponential of this triangular matrix is triangular too (general).

Similar matrices

Let Ac R"*" and T € R™" with det T # 0. The matrices
A and TAT !

are said to be similar and A — TAT 1 is called a similarity transformation.
Similarity transformations do not affect characteristic equations:

x7aT-1(5) = det(Al — TAT 1) = det(T(A — A)T 1)
= det(T)det(Al — A)det(T 1) = det(A/ — A)
= xa(s).

Some definitions / facts:
— a matrix A € R™" is said to be diagonalizable if there isa T € R"*"
such that TAT ! = diag{A;};
— symmetric matrices are always diagonalizable;
— f(TAT 1) = Tf(A)T ! for any analytic function f(x)
follows by the very fact that (TAT 1) = TAKT~! for all k € N




Sign-definite matrices

A symmetric matrix A= A’ € R"™*" is said to be
— positive definite (A > 0) if x’Ax > 0 for all x # 0,
— positive semidefinite (A > 0) if x’Ax > 0 for all x,
— negative definite (A < 0) if xX’Ax < 0 for all x # 0 (or if —A > 0),
— negative semidefinite (A < 0) if x¥’Ax < 0 for all x (or —A > 0).

Clearly, A>0 = det A # 0. In fact,

— A>0 (> 0) iff all its eigenvalues are positive (nonnegative)

Given two matrices A= A" € R"™" and B = B’ € R"™*", we say
— A>BifA—-B >0,

— A>BifA-B>0,

— A< B if B—A> 0 (equivalently, A— B <0),

— A< Bif B—AZ>0 (equivalently, A— B <0).

Sign-definite matrices (contd)
Example

If A= [_“1 ]1] for some a € R, then

1 1 X2
= (a — 1)x12 + (x1 — x2)2

X' Ax = [xl x2] [fl _1} {Xl} :axf—2x1x2+x22

Sign-definite block matrices

Let

} for square A11 and Aa»

be symmetric, i.e. A1 and Ay are symmetric and Ajp = A%;. In this case

0
0

A>0 — A1 >0 as [X{O]A[xl} :X{Anxl > 0 for all xq 750
A22 >0 as [0 X2/:|A|:X2} :X£A22X2 > 0 for all X2 750

Then (this technique is known as completing the square)

x'Ax = xj A11x1 + x1A12x2 + x5A21x1 + XA
= X{(All — A12A;21A21)X1 + X{A12A£21A21X1 + 2X£A21X1 + X£A22X2
= Xi(All — A12A2_21A21)X1 + (X{A12A2_21 + Xé)AQQ(A521A2]_X]_ + X2)

Thus, A>0 <= (Ax >0) A (A1 — A Ayt Axy > 0). We can see, by
similar arguments, that A > 0 <= (A3 > 0) A (Ax — At At AL > 0).

and if
a > 1 then xX’Ax > 0 unless x; = x, = 0, for which XAx =0 = A>0
a =1 then x’Ax > 0 unless x; = xo, for which xX’Ax =0 = A>0
o < 1 then x’Ax might be both positive (e.g. if x; = 0 # x2)
and negative (e.g. if x; = xp # 0) = AZ0
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State-space models




Spring-mass-damper system 1

c

[F u = force
—

MAMAMAL
VWYYV

Dynamics,

my(t) + cy(t) + ky(t) = u(t),

can be rewritten as

X(t) = [_ko/m o } x(t) + {1/0m} u(t)
y(t)=1[1 0]x(¢)

o= [

is the state vector, having clear physical meaning.

where

Spring-mass-damper system 2

c
[
m
MAMAAML
VYVVYVVVYY
k

—_— . —
u = position y

Dynamics,

my(t) + cy(t) + ky(t) = cu(t) + ku(t),
can be rewritten as

x(t) = {_ko/m _Cl/m ] x(t) + [‘1)] u(t)

y(t) = [k/m c/m ]x(t)

where
x(t) i= Mg} for ¥(t) = u(t) — y(t)

is the state vector, having no clear physical meaning.

State-space realizations
A state-space description (realization) of a linear SISO system G : u y is
. x(t) = Ax(t) + Bu(t), x(0)=xo
| y(t) = Cx(t) + Du(t),

where
— u(t) € R is an input signal,
— y(t) € R is an output signal,

— x(t) € R" is a state vector (internal variable) with initial condition xg.

State and realization are not unique. For example, let X := Tx, then

c. x(t) = TAT(t) + TBu(t), £(0) = Txo,
| y(t) = CT1%(t) + Du(t)

describes the very same mapping u — y (similarity transformation).

Solution of the state equation

The evolution of the state vector x(t) at t > 0 is
t
x(t) = e*txg +/ A=) By(s)ds.
0
Substituting this expression into the output equation, we end up with
t
y(t) = Cexo + Du(t) + C / At=9) Bu(s)ds.
0

This solution prompts the following interpretation of the state vector:

— the state vector x(t) is a history accumulator: there is no need to know
input history to calculate future outputs, the knowledge of the current
state and future inputs is sufficient.

Indeed, given any tg, then for all t > tg

t
y(t) = CeAlt=0)x(ty) + Du(t) + C / At=%) Bu(s)ds.
to

history (up to tp) future (from to and up to t)




Impulse response via state-space realizations

The response to u(t) = §(t) and zero initial conditions xp = 0 is

t
y(t) = Ds(t)+ C / A=) B§(s)ds = DS(t) + Ce™B.
0

If D =0, this response is reminiscent of that to initial condition. Namely,
_ Atp At —
y(t) = Ce™B = Ce™xy whenever xg = B.

This implies that

— the effect of initial conditions can also be expresses as the effect of
external signal

(Dirac delta in this case).

From state space to transfer functions

The transfer function is the Laplace transform of the impulse response (with
zero initial conditions). Hence,

G(s) = £{Ds(t) + CeMB} = D + C(sl — A)7'B.
This can also be seen via rewriting the state model in the s-domain:

sX(s) = AX(s) + BU(s) . X(s) = (sl — A)"1BU(s)
Y (s) = CX(s) + DU(s) Y (s) = CX(s) + DU(s)

Because
Cadj(sl — A)B

D+ C(sl —A)'B=D+ det(sl — A)

where adj(s/ — A) is the adjugate matrix having polynomial entries,
— poles of D + C(sl — A)~!B are the eigenvalues of A, i.e. in spec(A)

(it's a bit more complicated, we'll study that later on in the course).

Properness

Because

lim C(sl —A)'B= lim 1C(1-1A)"'B = lim z2C(/ —zA)'B =0

|s|—00 |s|]—00 ° |z|—0

we have that
lim D+ C(sl —A)"*B=D.

|s|—o0
Compare
bys" + by_15""t + -+ + bys + by

[im I =b
|s|s00 ST4+ ap_18"" 4+ ---+a15+ ag

Thus, the transfer function

— D+ C(sl — A)~1B is strictly proper iff D = 0 (or bi-proper iff D # 0).

The parameter D is called the feed-through term of the realization.

Pole excess and high-frequency gain

Let
bms™ + bm_15™ L+ -+ + bys + by

G(S) = n n—1
s"+ap_1s +---+ais+ao

be strictly proper (i.e.n > m). lts pole excess, n — m, can be interpreted as

— the minimum k € N such that s¥G(s) is bi-proper.

Now, because
s(sl — AL =14+ A(sl — AL,

we have that

sC(sl —A)"1B = CB + CA(sl — A)"'B
s°C(sl — A)"'B = sCB + CAB + CA*(sl — A)'B

. k—1
sKC(sl — A) 1B =) s'CA* 1B+ CA* 1B + CA¥(sl - A)'B
i=1




Pole excess and high-frequency gain (contd)

Thus, given G(s) = D+ C(sl — A)~1B for! D =0, its
— pole excess is the minimum k € N such that CA“~1B #£ 0.

The quantities CA*"1B, k € N, are known as Markov parameters of G(s).

The high-frequency gain of G(s),
bm = lim s""MG(s).
|s| =00

In state space,
s""MC(sl — A)TIB = CA"™ 1B + CA" (sl — A)T1B.
Hence, the high-frequency gain of G(s) = C(sl — A)"!B is
bm = CA™™1B,

where n is the dimension of A and n — m is the pole excess of G(s).

LIf D # 0, then the pole excess is always zero.

From transfer functions to state space

bn_lsn_l + -+ b1s+ bg
s"+a, 15" 1+ .-+ a5+ ag
— companion form

Let G(s) = . Its state-space realization in

0 1 0 0
AB]_ -
C'D 0 0 1 0
' A TaL ... “an-1:1
| bo b1 b,—1 0

— observer form

bns"+bn_15" "1 tby (bn—1—bnan—1)s"" 4+ +bo—bnag —
If by # 0, sM+ap_1s"14+-+ag bn + s"+ap—15""14-+ag & D = by.
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System interconnections in terms of state-space realizations

Problem

We know how to carry out parallel, cascade, and feedback interconnections
in terms of transfer functions Gi(s) and Gx(s). Indeed:
— parallel: Gi(s) + Ga(s)
— series: G(s)Gi(s)
Gi(s)
1 + Gl(S)GQ(S)
The question is: how this can be done in state space?

— feedback:

We assume that

G - Xl(t) = A1X1(t) + Blul(t) and G - Xg(t) = A2X2(t) + BQUg(t)
Y ya(t) = Coxa(t) + Drun(t) 27 ) ya(t) = Goxa(t) + Daun(t)

A possible way of interconnecting systems is to
— determine what inputs / outputs to equate

— unite state vectors




Parallel interconnection

G

y% u
G

This corresponds to

— = =u

—y=yity
20118 AL+ [ w

Then
=[G G |2 |+ o1+ Dl

We already know (spectrum of block-diagonal matrices) that

G:

— poles of G(s) are spec(A1) U spec(Az)

Series / cascade interconnection

i
I

This corresponds to

— m=u
- =y
- Yy=x
Then
(] =Toe A (260 + [ ]

y(t)=[D:G G [Xl(t)]+Dleu(t)

X2(t)

We already know (spectrum of block-triangular matrices) that

— poles of G(s) are spec(A1) U spec(Az)

Feedback interconnection

Y Gl n u
Gy
)
This corresponds to
— unu=uty
— =n
—Yy=n

Then, assuming that D; = 0 for simplicity (enough for our purposes),

] - [Ma =g ] (a0 ][5 ]

016 0] [24]

Xz(t)

G:

Inversion

Let

. x(t) = Ax(t) + Bu(t)
| y(t) = Cx(t) + Du(t)

be bi-proper (i.e. D # 0). Its inverse is the system mapping y — u. Then

u(t) = =D 1Cx(t) + D 1y(1)

and
x(t) = Ax(t) + B(=D1Cx(t) + D7 ty(t))

Therefore,

x(t) = (A= BD71C)x(t) + BD ty(t)
u(t) = —D71Cx(t) + DLy (t)

and zeros of G(s) (= poles of G1(s)) are in spec(A — BD1C).
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