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Preliminaries: linear algebra

Linear algebra, notation and terminology

A matrix A € R™™ is an n x m table of real numbers,

dil1 412 - dim
ax a2 -+ dim

A=1 7T | = lagls
dnl dn2 - dnm

accompanied by their manipulation rules (addition, multiplication, etc). The
number of linearly independent rows (or columns) in A is called its rank and
denoted rank A. A matrix A € R™" is said to

— have full row (column) rank if rank A= n (rank A = m)

— besquareif n=m, tallif n> m, and fatif n <m

— be diagonal (A = diag{a;}) if it is square and a;; = 0 whenever | # j
be lower (upper) triangular if aj = 0 whenever i > j (i < j)

be symmetric if A= A’, where the transpose A" := [a;]

The identity matrix /, := diag{1} € R"*" (if the dimension is clear, just /).
It is a convention that A® = / for every nonzero square A.



Preliminaries: linear algebra

Block matrices

Let A€ R™™ and let Z}’Zl nj = n and Z#:l m; = n for some n;, m; € N.
Then A can be formally split as

A A - A
Ay Axp - Ag

A= : : :M = [Ai]
Avl Av2 Avu,

for Aj = [a,J k/] € R"*Mi with entries ajj i = apq, where p = Zr 11n, + k
and g = ZJ 1 mr + 1. For example, we may present

for A11 = [5 6] A12 = [%], A13 = [g], A21 = [9 10], A22 =11, A23 =12.
This split is not unique and is normally done merely for convenience.
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Block matrices (contd)

We say that a block matrix A = [Aj] is
— block-diagonal (A = diag{A;}) if v = u and Aj; = 0 whenever i # j
— block lower (upper) triangular if A;j =0 whenever i > j (i < j)

If Ais square, i.e. n = m, a natural split is with n; = m; for all i. Then all
A;; are square too.

Operations on block matrices are performed in terms of their blocks, like

[All A1 n Bii Bz | _ [Aun+Bu A+ B
Ao A Bo1 Bao A1+ Bor A+ By |’

{An A1 ] [311 Bi> ] _ [A11311 + A12B21 A11B12 + A12B2 }
Ax1 Ax B>1 Bao A21Bi1 + A Bo1 AxiBio + AxBy |

Sum, product, inverse of block-diagonal (block-triangular) matrices remain
block-diagonal (block-triangular).



Preliminaries: linear algebra
Eigenvalues & eigenvectors
Given a square matrix A € R™ " its eigenvalues are the solutions A € C to
xa(d) :==det(Al —A) = A"+ yn 1 A" 4 1A+ 20 =0

(characteristic equation). There are n (not necessarily different) eigenvalues
of A and spec(A) denotes their set. If A; € spec(A) is such that ImA; # 0,
then A; € spec(A) too. Also, A; € spec(A) = A;t € spec(At), Vt € R.
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Eigenvalues & eigenvectors
Given a square matrix A € R™ " its eigenvalues are the solutions A € C to
xa(A) ==det(M —A) = A"+ xp A" P A 0 =0

(characteristic equation). There are n (not necessarily different) eigenvalues
of A and spec(A) denotes their set. If A; € spec(A) is such that ImA; # 0,
then A; € spec(A) too. Also, A; € spec(A) = A;t € spec(At), Vt € R.

Right and left eigenvectors associated with A; € spec(A) are nonzero vectors
n; and #;, respectively, such that

(/\,'/ — A)n,' =0 and 77]1(1,/ — A) = 0,
respectively. Note that
Akni=nidk and  GLAK = Ak, Vke N

so A; € spec(A) = AKX € spec(A¥), keeping left and right eigenvectors.
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Eigenvalues & eigenvectors of block-triangular matrices

Let A= [A(}l ﬁ; } Because

A=A A n| _ | (A —=Au)n
0 Al — Ay 0| 0 ’

every eigenvalue of Ay; is that of A (its right eigenvector is [ ]). Because

Al - Ay A 3
[0 n’][ 0 /\llAZzJ =0 7RI~ Az) ],

every eigenvalue of Ay, is that of A (its left eigenvector is [0 7 ]). Thus
— A;is an eigenvalue of A iff it is an eigenvalue of Aj1 or Ax.

The same arguments

— work for block-lower-triangular and block-diagonal matrices too.
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Cayley—Hamilton

In essence: each square matrix satisfies its own characteristic equation:
xa(A) = A" + An—1A" 4 1A+ yol, = 0.

Important consequences:

— Ak for all k > n'is a linear combination of A, i =0,...,n—1, like
A" = _Xn—lAni1 — XlA - XO/n
An+l - 7)(!771/4” o X1A2 - )(OA
— anl(anlAnil + e+ XlA + XO/n) o X1A2 o )(OA

= (Xo_1— xn—2)A"""+ 4 (Xn-121 — X0)A+ Xn-1X0ln

— A7l if exists, is also a linear combination of A", i=0,...,n—1:

1
(xal+-+ + xn1AT 2+ AT,

Al=_—
X0
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Matrix functions

Let f(x) = Y%, fix' be analytic. Its matrix version f(A) is defined as
F(A) =Y fA.
i=0

It is readily seen that f(A)n; = n;f(A;) for all eigenvalue-eigenvector pairs.
By Cayley—Hamilton, we know that Jg;, i = 0,...,n — 1 such that

n—1
FA) =) g
i=0

This does not imply that f(x) = g(x) := 27:_(} gix' for all x, but still

dg(x)

&/ f(x
L) = g(A: -
(AI) g(AI) and dXJ

x=A; dXJ

. Vi=1,...pui—1
BRI Wi

for each eigenvalue A; of A having multiplicity ;. These equations can be
used to calculate all n coefficients g; and, hence, f(A).
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Matrix functions (contd)

If all n eigenvalues of A are different,

f(Ai)

Thus, [go g -

n—1 ] ji

Zzgi)tj,-Z[go g - &1 | :
j=0 -
ATt

g1 |V =[f(A1) f(A2) --- f(An) |, where

1 1 1
A A An
V= .1 :2 :
Ag—l Ag—l . Azfl

is the Vandermonde matrix (with det V' = [];;;<,(4; — 4;) # 0). Hence,

(&0 &

gn-1]=[f(A1) f(R2) -+ f(An) ]V L



Preliminaries: linear algebra

Matrix exponential

The matrix exponential is defined (here t € R, we shall need it later on) as

exp(At) = =1+ At+ — (At) At)® +

3|(



Preliminaries: linear algebra

Matrix exponential

The matrix exponential is defined (here t € R, we shall need it later on) as

exp(At) = =1+ At+ — (At) At)® +

3'(

Example
Let A= [ H with eigenvalues A; = —1 and A, = 2. Then

{go(t) =27t 4
t

gi(t) = —3e "+ e

(wl) m0)] = ]| L 5] =

and hence

e><p<[_01 Ht) zgo(t)[(l) (1)] +g1(t)[_01 ;] _ [e; é(e”e; e™)

Note, the exponential of this triangular matrix is triangular too (general).
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Similar matrices

Let Ac R™" and T € R™" with det T # 0. The matrices
A and TAT !

are said to be similar and A +— TAT 1 is called a similarity transformation.
Similarity transformations do not affect characteristic equations:

X7ar-1(s) = det(Al — TAT 1) =det(T (Al — A)T 1)
= det(T)det(Al — A)det(T1) = det(Al — A)
= xa(s).

Some definitions / facts:
— a matrix A € R™" is said to be diagonalizable if there isa T € R™*"
such that TAT 1 = diag{A;};
— symmetric matrices are always diagonalizable;
— f(TAT 1) = Tf(A)T ! for any analytic function f(x)
follows by the very fact that (TAT ~1)* = TA*T~! for all k € N



Preliminaries: linear algebra
Sign-definite matrices

A symmetric matrix A= A" € R"*" is said to be
— positive definite (A > 0) if x¥’Ax > 0 for all x # 0,
— positive semidefinite (A > 0) if x’Ax > 0 for all x,
— negative definite (A < 0) if X’ Ax < 0 for all x # 0 (or if —A > 0),
— negative semidefinite (A < 0) if x’Ax <0 for all x (or —A > 0).
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Sign-definite matrices

A symmetric matrix A = A’ € R"*" is said to be
— positive definite (A > 0) if xX’Ax > 0 for all x #0,
— positive semidefinite (A > 0) if x’Ax > 0 for all x,
— negative definite (A < 0) if X’ Ax < 0 for all x # 0 (or if —A > 0),
— negative semidefinite (A < 0) if x’Ax <0 for all x (or —A > 0).

Clearly, A>0 = det A # 0. In fact,

— A >0 (> 0) iff all its eigenvalues are positive (nonnegative)



Preliminaries: linear algebra

Sign-definite matrices

A symmetric matrix A = A’ € R"*" is said to be

positive definite (A > 0) if x’Ax > 0 for all x # 0,

positive semidefinite (A > 0) if xX’Ax > 0 for all x,

negative definite (A < 0) if x¥’Ax < 0 for all x # 0 (or if —A > 0),
negative semidefinite (A < 0) if xX’Ax < 0 for all x (or —A > 0).

Clearly, A>0 = det A # 0. In fact,

— A >0 (> 0) iff all its eigenvalues are positive (nonnegative)

Given two matrices A=A’ € R™" and B = B’ € R™", we say
— A>BifA-B>0,
— A>BiftA-B>0,

A< Bif B—A> 0 (equivalently, A— B < 0),

A< Bif B— A >0 (equivalently, A— B <0).
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Sign-definite matrices (contd)

Example
If A=[% 7] for some & € R, then

X' Ax = [Xl XQ] [fll _11} [2} :(XX12—2X1X2—|-X22

=(a — l)xl2 + (x1 — x2)2

and if
a > 1 then x’Ax > 0 unless x; = xo = 0, for which X¥Ax =0 = A>0
a =1 then x’Ax > 0 unless x; = xo, for which x’Ax =0 = A>0

o < 1 then x’Ax might be both positive (e.g. if x1 = 0 # x2)
and negative (e.g. if x; = xo # 0) = AZ0



Preliminaries: linear algebra

Sign-definite block matrices

Let

Al A
A=
|:A21 A2

] for square Aj1 and A
be symmetric, i.e. A1 and Ay are symmetric and Ajp = Ab;. In this case

A1 >0 as [X{ O}A[)EH = xjA11x1 > 0 for all x; #0
App >0 as[0x]A[2

X2

A>0 = ,
}:x2A22x2 > 0 for all xo #0
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Sign-definite block matrices

Let
A [An A1

for square A;; and A
Aoy Ao ] q 11 22

be symmetric, i.e. A1 and Ay are symmetric and Ajp = Ab;. In this case

A0 = A1 >0 as [X{O}A{Xgl}:X§A11X1>0f0ra|| x; # 0
A >0 as [OxﬂA[XJ:X2A22x2>0fora|| X27£0
Then (this technique is known as completing the square)

x' Ax = X{Allxl + X{A12X2 + XéA21X1 =+ X£A22X2
= X{(All — A12A2_21A21)X1 + X{A12A2_21A21X1 + 2XéA21X1 + X£A22X2
= X{(All — A12A;21A21)X1 + (X{A12A;21 + Xé)AQQ(A;;AQle + X2)

Thus, A> 0 <— (A22 > 0) VAN (All — A12A2_21A21 > 0)
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Sign-definite block matrices

Let
A [An A1

for square A;; and A
Aoy Ao ] q 11 22

be symmetric, i.e. A1 and Ay are symmetric and Ajp = Ab;. In this case

A1 >0 as [X{ O}AHH = xjA11x1 > 0 for all x; #0
0

A>0 =
{A22 >0 as [OXHA[XQ} :XéA22X2 > 0 for all X2 7£0

Then (this technique is known as completing the square)

x' Ax = X{Allxl + X{A12X2 + XéA21X1 =+ X£A22X2
= X{(All — A12A2_21A21)X1 + X{A12A2_21A21X1 + 2XéA21X1 + X£A22X2
= X{(All — A12A;21A21)X1 + (X{A12A;21 + Xé)AQQ(A;;AQle + X2)

Thus, A> 0 <— (Agg > O) A (A11 - A12A2_21A21 > 0). We can see, by
similar arguments, that A > 0 <— (All > 0) A (A22 — A21A1_11A12 > O).
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State-space models

Spring-mass-damper system 1

c
{F u = force
—

AAAAAAAAAA
VVVVVVVYYY

—

y
Dynamics,

my(t) + cy(t) + ky(t) = u(t),
can be rewritten as

x(t) = [k/m C/m]x(t)+ [1/0m] u(t)

where

x(t) = {y.(t)]

y(t)

is the state vector, having clear physical meaning.



State-space models

Spring-mass-damper system 2

Cc
[
m
AAAAAAAAAA
VWY
k

—_— . —
u = position y

Dynamics,
my(t) + cy(t) + ky(t) = cu(t) + ku(t),

can be rewritten as

Mﬂ:[_£w7_ém]dﬂ+[$]4ﬂ

y(t) = [k/m c/m]x(t)

where

An:[ﬁg]fmwnzwn—ﬂo

is the state vector, having no clear physical meaning.



State-space models

State-space realizations

A state-space description (realization) of a linear SISO system G : v+ y is

Ax(t) 4+ Bu(t), x(0) = xo
Cx(t) + Du(t),

()
—N—
< x
NN
1

where
— u(t) € Ris an input signal,
— y(t) € Ris an output signal,

— x(t) € R" is a state vector (internal variable) with initial condition xp.



State-space models

State-space realizations

A state-space description (realization) of a linear SISO system G : v+ y is

c. x(t) = Ax(t) + Bu(t), x(0) = xo
| y(t) = Cx(t) + Du(t),

where
— u(t) € R is an input signal,
— y(t) € R is an output signal,

— x(t) € R" is a state vector (internal variable) with initial condition xp.

State and realization are not unique. For example, let X := Tx, then

c. {i(t) — TAT'%(t) + TBu(t), %(0) = T,
() = CT1%(2) + Due)

describes the very same mapping u + y (similarity transformation).



State-space models

Solution of the state equation

The evolution of the state vector x(t) at t > 0 is
t
x(t) = e’txg +/ eAlt=9) By(s)ds.
0
Substituting this expression into the output equation, we end up with

t
y(t) = Celxg + Du(t) + C/ eA(t_S)Bu(s)ds.
0



State-space models

Solution of the state equation

The evolution of the state vector x(t) at t > 0 is
t
x(t) = e’txg +/ eAlt=9) By(s)ds.
0
Substituting this expression into the output equation, we end up with

t
y(t) = Celxg + Du(t) + C/ eA(t_s)Bu(s)ds.
0

This solution prompts the following interpretation of the state vector:

— the state vector x(t) is a history accumulator: there is no need to know
input history to calculate future outputs, the knowledge of the current
state and future inputs is sufficient.

Indeed, given any tp, then for all t > t
t
y(t) = CeMt=0)x(19) + Du(t) + C / eAt=%) Bu(s)ds.
to

history (up to tg) future (from to and up to t)



State-space models

Impulse response via state-space realizations

The response to u(t) = §(t) and zero initial conditions xg = 0 is

t
y(t) = D5(t) + C/ Alt=9) B§(s)ds = D§(t) + Ce**B.
0

If D =0, this response is reminiscent of that to initial condition. Namely,
— Atp _ At .
y(t) = Ce™*B = Ce™xp whenever xo = B.

This implies that

— the effect of initial conditions can also be expresses as the effect of
external signal

(Dirac delta in this case).



State-space models

From state space to transfer functions

The transfer function is the Laplace transform of the impulse response (with
zero initial conditions). Hence,

G(s) = £{D§(t) + Ce™B} = D + C(sl — A)'B.
This can also be seen via rewriting the state model in the s-domain:

sX(s) = AX(s) + BU(s) X(s) = (sl — A)"1BU(s)
Y(s)= CX(s)+DU(s) [~ ) Y(s) = CX(s) + DU(s)



State-space models

From state space to transfer functions

The transfer function is the Laplace transform of the impulse response (with
zero initial conditions). Hence,

G(s) = £{D§(t) + Ce™B} = D + C(sl — A)'B.

This can also be seen via rewriting the state model in the s-domain:

sX(s) = AX(s) + BU(s) X(s) = (sl — A)"1BU(s)
Y(s)= CX(s)+DU(s) [~ ) Y(s) = CX(s) + DU(s)

Because Cadi(sl — A)B
_ adj(sl —
D+ C(sl —A)'B=D+ ————"/—
+Cls ) * det(sl — A)
where adj(s/ — A) is the adjugate matrix having polynomial entries,
— poles of D+ C(sl — A)~1B are the eigenvalues of A, i.e. in spec(A)

(it's a bit more complicated, we'll study that later on in the course).



State-space models

Properness

Because

lim C(sl —A)"'B= lim 1C(1-1A)"'B= Iim zC(I - zA) B =0

|s]|—o00 |s]—o00 |z|—0

we have that
lim D+ C(sl — A)"'B=D.
|s|—o0
Compare
' bns™ + bp_18"1 + .-+ bis+ by
m

= b,.
Is|so0 S"+ ap_15" 1+ -+ a5+ ag

Thus, the transfer function
— D+ C(sl — A)"1B is strictly proper iff D = 0 (or bi-proper iff D # 0).
The parameter D is called the feed-through term of the realization.



State-space models

Pole excess and high-frequency gain

Let
G(s) = bms™ 4 bpm—15™ 1+ -+ + bis + by
 s"4a, sl 4 ais+ag

be strictly proper (i.e.n > m). lts pole excess, n— m, can be interpreted as

— the minimum k € N such that s¥G(s) is bi-proper.

Now, because
s(sl — At =14+ A(sl — AL,

we have that
sC(sl — A)"'1B = CB + CA(sl — A)"'B
s>°C(sl — A)™'B = sCB + CAB + CA*(sl — A)"'B

. k—1
sKC(sl = A)'B =) s'CA*" 1B+ CA*'B + CA*(sl - A)'B
i=1



State-space models

Pole excess and high-frequency gain (contd)

Thus, given G(s) = D+ C(sl — A)~!B for! D=0, its
— pole excess is the minimum k € N such that CA*~1B + 0.
The quantities CA*"'B, k € N, are known as Markov parameters of G(s).

LIf D # 0, then the pole excess is always zero.



State-space models

Pole excess and high-frequency gain (contd)

Thus, given G(s) = D+ C(sl — A)~!B for! D=0, its
— pole excess is the minimum k € N such that CAK=1B £ 0.
The quantities CA*~1B, k € N, are known as Markov parameters of G(s).

The high-frequency gain of G(s),
bm = lim s""MG(s).
|s|—o0
In state space,
s""MC(sl — A)TIB = CA"™ 1B + CA" (sl — A)"!B.
Hence, the high-frequency gain of G(s) = C(s/ — A)"1B is
bm = CA"" !B,

where n is the dimension of A and n — m is the pole excess of G(s).

LIf D # 0, then the pole excess is always zero.



State-space models

From transfer functions to state space
by_15""1 4 -+ bys + by

Let G(s) = 1 . Its state-space realization in
s"+ap_1s" 4+ -~ +a15+ ag
— companion form ) )
0 1 0 .0
A:B Lo
cipl=1 o0 o 1 10|
| 7% Ta ... —apail
| bo b bp—1 0
— observer form _
—ap—1 1 . 0 bp_1
AB N
’C’T’D = —a; O .10 by
| T 0.0 00 b
| 1 0...0 0 |

bn5n+bn—15n71+"'+b0 _ (bn—l_bnan—1)5n71+"'+b0_bn30 _
If by # 0, s"+a, 15" 14-+ag T bn + sT+ap—15""14-+ag & D = bn.
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System interconnections in terms of state-space realizations



System interconnections

Problem

We know how to carry out parallel, cascade, and feedback interconnections
in terms of transfer functions G;(s) and Gy(s). Indeed:
— parallel: Gi(s) + Gy(s)
— series: Gy(s)Gi(s)
Gi(s)
1F Gi(s)Ga(s)
The question is: how this can be done in state space?

— feedback:



System interconnections

Problem

We know how to carry out parallel, cascade, and feedback interconnections
in terms of transfer functions G;(s) and Gy(s). Indeed:
— parallel: Gi(s) + Gy(s)
— series: Gy(s)Gi(s)
Gi(s)
1F Gi(s)Ga(s)
The question is: how this can be done in state space?

— feedback:

We assume that

G - Xl(t):Alxl(t)+Blul(t) and G - Xz(t):A2X2(t)+82U2(t)
) na(t) = Coxalt) + Dyu(t) 2 yalt) = Goxa(t) + Doun(t)

A possible way of interconnecting systems is to
— determine what inputs / outputs to equate

— unite state vectors



System interconnections

Parallel interconnection

This corresponds to

— U1 =ux=1u

—Yy=nty
Then
RO1- 1% ][0 ]+ 2]
yt) =[G G] [2%3 } + (D1 + Do)u(t)

We already know (spectrum of block-diagonal matrices) that

— poles of G(s) are spec(A;) Uspec(A)



System interconnections

Series / cascade interconnection

e} {a}

This corresponds to

- ui=u
- lk=yn
- y=x
Then
0] - [ AT 0]+ [enn o

y(t)=[D:G G ] [28 ] + DaDyu(t)

We already know (spectrum of block-triangular matrices) that

— poles of G(s) are spec(A;) Uspec(A)



System interconnections

Feedback interconnection

This corresponds to

— up=uxy
— W=7
- YyY=n

Then, assuming that D; = 0 for simplicity (enough for our purposes),

][50 256 20] - [4]

1 o-ta o[



System interconnections

Inversion

Let
. x(t) = Ax(t) + Bu(t)
| y(t) = Cx(t) + Du(t)

be bi-proper (i.e. D # 0). Its inverse is the system mapping y +— u. Then
u(t) = =D 1Cx(t) + D7 ty(¢)

and
x(t) = Ax(t) + B(=D71Cx(t) + D™ ty(t))

Therefore,

—y x(t) = (A— BD71C)x(t) + BD Ly (t)
| u(t) = —D7Cx(t) + DLy (t)

and zeros of G(s) (= poles of G~1(s)) are in spec(A — BD~C).
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