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Nobody’s perfect

In other words, any

− mathematical model is merely a (more / less accurate) approximation

of the real world.
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Modeling uncertainty in control systems

Modeling uncertainty (errors, mismatches) are caused by

− linearization

− unmodeled (high-frequency) dynamics

− parametric drifts

− element failures

− . . .
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Modeling uncertainty: DC motor

Consider a DC motor, modeled (from input voltage to shaft velocity) as

P(s) =
Km e−�s

(Ls + R)(Js + f ) + K 2
m

; (1)

where Km is motor constant (= back emf const), R is armature resistance,
L is armature inductance, J is load inertia, f is load friction, and the delay
� reflects potential control channel lags (like in digital implementation).

If L and � are very small, they are neglected and working model becomes

P(s) =
Km

R(Js + f ) + K 2
m

; (2)

which is an approximation of (1) (which, in turn, is an approximation of the
real DC motor).

Moreover, load inertia J might get changed and resistance R is sensitive to
thermal conditions (motor heating) and thus also might get changed.
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Modeling uncertainty: DC motor (contd)

Possible frequency responses (for some grid over R and J) look then as

Im

Re

P0(j!)

−1

actual plants
nominal plant

where

− Km = 0:0302, f = 0:05, R0 = 0:316, and J0 = 0:1 nominal values

− 0:9R0 ≤ R ≤ 1:5R0 and 0:8J0 ≤ J ≤ 1:2J0 uncertain values

− L = 8 · 10−5 and � = 0:1 unmodeled dynamics

and the nominal plant P0(s) =
Km

R0(J0s + f ) + K 2
m

.

6/54

Modeling uncertainty: DC motor (contd)

Thus, at each frequency, frequency response is a region rather than a point:

! = 0.2! = 1

! = 10

Im

Re

P0(j!)

−1

actual plants
nominal plant
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Frequency-domain modeling

It then does make sense to describe plant frequency response P(j!) at each
frequency not as a complex number, but rather as set of its possible values

P(j!) ∈ P!

where P! ⊂ C is some set for each ! ∈ R.

The choice of P! is conceptually nontrivial as

− accurate P! are complicated and hard to deal with in control design,

− easily handleable P! are typically conservative.

In this course (as frequently in engineering), we

− sacrifice accuracy for simplicity.
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Multiplicative unstructured uncertainty

Idea: describe P! as disks in the Nyquist plane around some nominal plant

Im

Re

P0(j!)

|P0(
j!)

|`(!
)

−1

These disks verify |P(j!)− P0(j!)| ≤ `(!)|P0(j!)|, where
− P0 is nominal plant (our design model) and

− `(!) ≥ 0 is multiplicative uncertainty radius.

In other words, in this case P! =
{
P(j!) :

∣∣ P(j!)
P0(j!)

− 1
∣∣ ≤ `(!)

}
.
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DC motor: finding `(!)

To find `(!), the following steps can be followed:

1. plot
∣∣ P(j!)
P0(j!)

− 1
∣∣ for different R ∈ [0:9R0; 1:5R0] and J ∈ [0:8J0; 1:2J0];

2. find maximum for every frequency, this is `(!).

We get:
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Typically (like in this case) uncertainty radii

− `(!) are smaller at low frequencies / larger at high frequencies.
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DC motor: finding `(!) (contd)

Now, at each frequency, frequency response is a disk rather than a point:

! = 0.2! = 1

! = 10

Im

Re

P0(j!)

−1

nominal plant

Disks fully cover actual uncertainty regions, hence

− whatever we can guarantee for disks, holds for the actual motor as well

− but not the other way round (conservatism)

Conservatism may be reduced if a “better” nominal plant P0(s) is chosen.
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Choice of nominal plant

! = 0.2! = 1

! = 10

Im

Re

P0(j!)

−1

actual plants
nominal plant

Might be highly nontrivial, some possible directions:

− place P0(j!) at the center of the minimal covering circle at each !
(might result in very high-order P0(s), whose handling is too complicated)

− fixed-order “physical” P0(s) with parameters in the middle of ranges
(might not produce the tightest disks, see below)

− fixed-order P0(s) producing tightest disk
(immensely complicated, depends on the choice of tightness measure, etc)
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DC motor: choice of nominal plant

Let’s pick

P0(s) = P0;1(s) ··=
Km

R1(J1s + f ) + K 2
m

;

with R1 = 1:2R0 = 0:3792 and J1 = J0 = 0:1 chosen as the median of the
corresponding intervals [0:9R0; 1:5R0] and [0:8J0; 1:2J0]. This results in

! = 0.2! = 1

! = 10

Im

Re

P0,1(j!)

−1

nominal plant

which is not necessarily better than the previous attempt . . .
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DC motor: choice of nominal plant (contd)

Consider the following class of nominal plants:

P0(s) = P0;2(s) ··=
Km

R2(J2s + f ) + K 2
m

:

Let’s aim at placing P0;2(j!) to the center of the minimal covering circle of
the uncertainty region of P(j!) defined by (2) with interval parameters1 at
each !. Even in this stripped down setting, solution is frequency dependent:

0.3386
0.3424

0.3566

0.3792

R2(!)

!

R1

1

0.096

0.09694

0.1
0.1002

J2(!)

!

J1

1

and not always close to the median values R1 = 0:3792 and J1 = 0:1.

1Note that this P(s) is not the “real” motor in (1) !
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DC motor: choice of nominal plant (contd)

For example, if R2 = R2(1) = 0:3424 and J2 = J2(1) = 0:09694, we have:

! = 0.2! = 1

! = 10

Im

Re

P0,2(j!)

−1

nominal plant

Note that even for ! = 1 we do not have the minimal covering circle. This
is due to the addition of L ̸= 0 and h ̸= 0 to the “real” model.
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Multiplicative uncertainty and controller

remu

d

y

ymn

CP −

Let P(j!) ∈ P! , where

P! =

{
P(j!) :

∣∣∣∣ P(j!)P0(j!)
− 1

∣∣∣∣ ≤ `(!)

}
:

Then L(j!) = P(j!)C (j!) ∈ L! , where

L! =

{
L(j!) :

∣∣∣∣ L(j!)L0(j!)
− 1

∣∣∣∣ ≤ `(!)

}
; L0(j!) ··= P0(j!)C (j!):

Thus,

− loop multiplicative uncertainty radius does not depend on controller.
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Robustness

The ability of a control system to cope with modeling uncertainty (that is,
to preserve required characteristics despite uncertainty) is called robustness.

We may talk about

− robust stability
(relatively simple problem, we’ll discuss it in some technical details)

− robust performance
(normally, much harder problem, we’ll only see a flavor of this kind of problems)
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Robust stability

remu

d

y

ymn

CP −

Let P be such that P(j!) ∈ P! . We say that the

− closed-loop system is robustly stable if it is stable for all P(j!) ∈ P! .

If the system is robustly stable, we say that C robustly stabilizes it.

19/54

Robust stability for multiplicative plant uncertainty

remu

d

y

ymn

CP −

Theorem
Let uncertainty be described as

P! =

{
P(j!) :

∣∣∣∣ P(j!)P0(j!)
− 1

∣∣∣∣ ≤ `(!)

}
and all P in this class share the same unstable poles. A controller C then
robustly stabilizes the system iff

1. C stabilizes nominal plant P0 and

2. |T0(j!)| < 1
`(!)

, for all !.2

2T0(s) = L0(s)=(1+ L0(s)) is the nominal complementary sensitivity transfer function.
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Robust stability for multiplicative plant uncertainty: proof

When nominal system is stable, we only need to

− ensure that the critical point does not belong to L! for all !.

The result then follows by straightforward geometry:

Im

Re

L0(j!)

|L0(
j!)

|`(!
)

|1 +
L
0 (j!)|

−1
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PI controller design for DC motor

Let’s now design a PI controller C (s) =
kp(s+k i)

s for P0(s). The closed-loop
characteristic polynomial �cl(s) = J0R0s

2 + (K 2
m +Kmkp + fR0)s +Kmkpki,

so the system is stable iff

kpki > 0 and kp > −(Km + fR0=Km) :

We then choose

− ki as the maximal gain for which |T0(j!)| monotonically decreases and

− kp to achieve a given crossover frequency !c.

This criterion produces unique coefficients as functions of !c:

kp =
1:0467

√
(!2

c + 0:1398)(!2
c + 0:4195)− 0:074

!2
c + 0:2797

;

ki =
!c(0:5289

√
(!2

c + 0:1398)(!2
c + 0:4195) + 0:1398!c)

!c

√
(!2

c + 0:1398)(!2
c + 0:4195)− 0:074

(positive iff !c > 0:24068, smaller !c’s yield undershoot with this strategy).
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Robust stability of PI controlled DC motor

Comparing |T0(j!)| with 1=`(!) for different !c, we get:
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Thus, the system is robustly stable only if !c < 11:25.
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Robust stability of PI controlled DC motor (contd)

The same can be seen through uncertainty disks in the Nyquist plane:

! = 0.5

! = 0.6

! = 0.7

! = 0.8

! = 0.9
! = 1

! = 1.2

! = 1.5

! = 2

! = 2.8

! = 5
! = 10

Im

Re−1

L0(j!), !c = 1

! = 1.8

! = 2.1

! = 2.5

! = 3

! = 4

! = 5

! = 6
! = 7

! = 11

Im

Re−1

L0(j!), !c = 4
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Robust stability of PI controlled DC motor (contd)

With the borderline !c the disk touches the critical point (at ! = 17:05)

! = 5

! = 6

! = 7

! = 8

! = 9
! = 10
! = 11
! = 12
! = 13

! = 17

Im

Re−1

L0(j!), !c = 11.25

! = 5

! = 6

! = 7

! = 8

! = 9
! = 10
! = 11
! = 12
! = 13

! = 17

Im

Re−1

L0(j!), !c = 11.25

We see that the actual uncertainty areas (on the right) are also very close
to the critical point. This means that the obtained bound on !c is virtually
non-conservative.
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Robust stability of PI controlled DC motor (contd)

With P0;1 as the nominal plan (median nominal R and J), the result is
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The largest attainable !c is less than 84% of what we obtained with T0.
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Robust stability of PI controlled DC motor (contd)

With P0;2 as the nominal plan (best fit for ! = 1), the result is
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1/ℓ(ω)
ωc = 1
ωc = 4
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The largest attainable !c is less than 96% of what we obtained with T0.

These two examples illustrate the fact that the

− choice of “the best” nominal model (design model) is highly nontrivial
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Bandwidth limitations due to robust stability

Since `(!) is typically larger at high frequencies, the condition

|T0(j!)| <
1

`(!)

imposes limitations on the achievable closed-loop bandwidth3 !b.

3And, consequently, on the loop crossover frequency !c.
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Open-loop control

ru

d

y
P Col

Let y0 be the response of the nominal plant P0. Then

y0 = P0Colr = Trefr and hence y = PColr =
P

P0
Trefr

Thus, the normalized control mismatch

|Y (j!)− Y0(j!)|
|R(j!)| =

∣∣∣∣ P(j!)P0(j!)
− 1

∣∣∣∣|Tref(j!)| ≤ `(!) |Tref(j!)|

and in the frequency range where Tref(j!) ≈ 1 (good tracking performance)

− control mismatch equals the uncertainty radius of the plant.

In other words,

− open-loop control has no effect on uncertainty.
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2DOF control: reference response

rydes

ureq

u

d

y

n

Tref

Col

CP -

With Col = Tref=P0,

y0 = Trefr and y =
P

1 + PC

Tref

P0
r +

PC

1 + PC
Trefr =

T

T0
Trefr

and the normalized control mismatch

|Y (j!)− Y0(j!)|
|R(j!)| =

∣∣∣∣ T (j!)

T0(j!)
− 1

∣∣∣∣ |Tref(j!)|

depends now upon the uncertainty radius of the complementary sensitivity
transfer function (rather than of the plant itself).
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2DOF control: disturbance response

rydes

ureq

u

d

y

n

Tref

Col

CP -

In this case,

y0 = Td;0d and y = Tdd =
T

T0
Td;0d ;

where Td;0 = P0=(1 + P0C ) is the nominal disturbance sensitivity. Then
the normalized control mismatch

|Y (j!)− Y0(j!)|
|D(j!)| =

∣∣∣∣ T (j!)

T0(j!)
− 1

∣∣∣∣ |Td;0(j!)|

also depends upon the uncertainty radius of the complementary sensitivity
transfer function. What can we say about it ?
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Disks mapping under feedback

It can be shown that if the robust stability condition |T0(j!)| < 1
`(!)

holds,∣∣∣∣T (j!)

T0(j!)
− 1

∣∣∣∣ ≤ `T0(!) ··=
`(!)

|1 + L0(j!)| − `(!)|L0(j!)|
=

`(!)|S0(j!)|
1− `(!)|T0(j!)|

where S0(s) = 1− T0(s) is the nominal sensitivity function.

Remark: As a matter of fact, a disk in the L-plane with the center at L0 is transformed
into a T -plane disk, whose center is not T0, but rather

T1(j!) =
|1− `2(!)T0(j!)|2

1− `2(!)|T0(j!)|2
T0(j!)

1− `2(!)T0(j!)
; with `T1(!) =

`(!)|S0(j!)|
|1− `2(!)T0(j!)|

(normalized radius). This disk is always contained in the disk around T0 defined above
and its non-normalized radius is

`T1(!)|T1(j!)| =
`(!)|S0(j!)|

1− `(!)|T0(j!)|
|T0(j!)|

1 + `(!)|T0(j!)|
≤ `T0(!)|T0(j!)|:

But the use of T1 as the nominal T for controller design might not be easy (complexity).
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Disks mapping by feedback: what does it mean?

Remember this: Im

Re

L0(j!)

|L0(
j!)

|`(!
)

|1 +
L
0 (j!)|

−1

The relation `T0(!) =
`(!)

|1+L0(j!)|−`(!)|L0(j!)| effectively says then that

− feedback reduces uncertainty level at frequencies !, where the disk L!
is at a distance of at least 1 from the critical point and that

− the further L! from the critical point −1+ j0, the lower the uncertainty
level in T (j!) is (provided we pick T0 as the nominal T, of course)

Also, the relation `T0(!) =
`(!)|S0(j!)|

1−`(!)|T0(j!)| implies that

− uncertainty is always aggravated by feedback at !’s where |S0(j!)| > 1
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Robust performance of PI controlled DC motor

! = 0.3

! = 0.356

! = 0.45

! = 0.6

! = 0.76

! = 1

Im

Re−1

L0(j!), !c = 1

! = 1.05

! = 1.18

! = 1.5

! = 2

! = 2.91

! = 4

Im

Re−1

L0(j!), !c = 4

! = 2.97

! = 3.4

! = 4

! = 4.83

! = 11.25

Im

Re−1

L0(j!), !c = 11.25

`T0(!) < `(!), ∀! < 0:76 `T0(!) < `(!), ∀! < 2:91 `T0(!) < `(!), ∀! < 4:83

`T0(!) <
`(!)
2

, ∀! < 0:356 `T0(!) <
`(!)
2

, ∀! < 1:18 `T0(!) <
`(!)
2

, ∀! < 2:97

`T0(!) → ∞ at ! ≈ 17:046

In all 3 cases `T0(0) = 0, which is the result of the use of an integral action
in the controller (as then S0(0) = 0, while `(0)|T0(0)| = 0:2676 < 1).
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Robust performance: DC motor comparison

Let us choose Tref(s) =
!2
N

s2+
√
2!Ns+!

2
N

with !N = 2
3 and compare 2 strategies

discussed in the beginning of this section. The feedback controller is the PI
discussed above with !c = 4. Advantages of feedback are clear:
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Modal analysis: idea

remu

d

y

ymn

CP −

Express closed-loop performance requirements

− in terms of the location of closed-loop poles

which are roots of the characteristic polynomial

�cl(s) ··= NP(s)NC (s) + DP(s)DC (s);

where

P(s) =
NP(s)

DP(s)
and C (s) =

NC (s)

DC (s)

and deg�cl(s) = degDP(s) + degDC (s) (assuming that P(s) and C (s) are
proper and there are no pole / zero cancellations between P(s) and C (s)).
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Modal analysis: idea (contd)

Example:

Re s

Im
s

O
S
=
O
S ∗

OS < OS∗

O
S

>
O
S

∗

∩
Re s

Im
s

!n = !∗
n!n > !∗

n

!n < !∗
n =

Re s

Im
s

O
S
=
O
S ∗

!
n
=

!
∗

n

O
S

<
O
S
∗
&

!
n

>
!

∗ n

small overshoot + fast transients = ”good” performance

− precise for 2-order systems w/o zeros

− justified for systems with 2-order dominant dynamics
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Example: static controller

Let P(s) = 1=(s2 + 2s) and controller is of the form C (s) = ˇ0. Then

�cl(s) = s2 + 2s + ˇ0:

Closed-loop poles can only be placed to points on root-locus branches:

Re s

Im
s

−1

−0.5

0.5

1

−2 −1

ˇ0 = 0ˇ0 = 0 ˇ0 = 0.8ˇ0 = 0.8 ˇ0 = 1ˇ0 = 1

ˇ0 = 1.25

ˇ0 = 1.25

ˇ0 = 2

ˇ0 = 2
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Example: 1-order strictly proper controller

Let P(s) = 1=(s2 + 2s) and controller is of the form C (s) = ˇ0
˛1s+˛0

. Then

�cl(s) = ˛1s
3 + (˛0 + 2˛1)s

2 + 2˛0s + ˇ0

= �3s
3 + �2s

2 + �1s + �0:

Still constrained: �1 − 2�2 + 4�3 = 0. Alternative form:
1 0 0
2 1 0
0 2 0
0 0 1


 ˛1˛0
ˇ0

 =


�3
�2
�1
�0

 ;
which cannot be solved for arbitrarily �i .
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Example: 1-order bi-proper controller

Let P(s) = 1=(s2 + 2s) and controller is of the form C (s) = ˇ1s+ˇ0
˛1s+˛0

. Then

�cl(s) = ˛1s
3 + (˛0 + 2˛1)s

2 + (ˇ1 + 2˛0)s + ˇ0

= �3s
3 + �2s

2 + �1s + �0:

Unconstrained, �i can be arbitrary. Alternative form:
1 0 0 0
2 1 0 0
0 2 1 0
0 0 0 1


︸ ︷︷ ︸

MS


˛1
˛0
ˇ1
ˇ0

 =


�3
�2
�1
�0

 ;

which can be solved for arbitrarily �i as detMS = 1 ̸= 0.
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Example: 2-order strictly proper controller

Let P(s) = 1=(s2 + 2s) and controller is of the form C (s) = ˇ1s+ˇ0
˛2s2+˛1s+˛0

.
Then

�cl(s) = ˛2s
4 + (˛1 + 2˛2)s

3 + (˛0 + 2˛1)s
2 + (ˇ1 + 2˛0)s + ˇ0

= �4s
4 + �3s

3 + �2s
2 + �1s + �0:

Unconstrained, �i can be arbitrary, which is seen from
1 0 0 0 0
2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 0 1


︸ ︷︷ ︸

MS


˛2
˛1
˛0
ˇ1
ˇ0

 =


�4
�3
�2
�1
�0



(always solvable in �i as detMS = 1 ̸= 0).
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Example: what can we learn from it

− controlers of sufficient high order needed for arbitrary pole placement

− polynomial equations reduce to linear equations
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Preliminary: multiplication of polynomials

Let A(s) = ans
n + · · ·+ a1s + a0 and B(s) = bms

m + · · ·+ b1s + b0 with
n ≥ m, so that

C (s) ··= A(s)B(s) = cn+ms
n+m + cn+m−1s

n+m−1 + · · ·+ c1s + c0:

The coefficients of C (s) can be calculated from the table

ans
n an−1s

n−1 · · · a1s a0
bms

m anbms
n+m an−1bms

n+m−1 · · · a1bms
m+1 a0bms

m

bm−1s
m−1 anbm−1s

n+m−1 an−1bm−1s
n+m−2 · · · a1bm−1s

m a0bm−1s
m−1

bm−2s
m−2 anbm−2s

n+m−2 an−1bm−2s
n+m−3 · · · a1bm−2s

m−1 a0bm−2s
m−2

...
...

...
...

...
b2s

2 anb2s
n+2 an−1b2s

n+1 · · · a1b2s
3 a0b2s

2

b1s anb1s
n+1 an−1b1s

n · · · a1b1s
2 a0b1s

b0 anb0s
n an−1b0s

n−1 · · · a1b0s a0b0

by summing up elements on each anti-diagonal.
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Preliminary: multiplication of polynomials (contd)

This results in the following formula for coefficients of C (s) :

cn+m

cn+m−1
...
cn
cn−1
...
cm
cm−1
...
c0



=



an 0 · · · 0
an−1 an · · · 0
...

...
. . .

...
an−m an−m+1 · · · an
an−m−1 an−m · · · an−1

...
...

. . .
...

a0 a1 · · · am
0 a0 · · · am−1
...

...
. . .

...
0 0 · · · a0


︸ ︷︷ ︸

Ma;m∈R(n+m+1)×(m+1)


bm
bm−1
...
b0


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Sylvester matrix

Let (here an ̸= 0)

DP(s) = ans
n + · · ·+ a1s + a0 and NP(s) = bns

n + · · ·+ b1s + b0:

The (2n + 1)× (2n + 2) matrix

MS ··=
[
Ma;n Mb;n

]
=



an 0 · · · 0 bn 0 · · · 0
an−1 an · · · 0 bn−1 bn · · · 0
...

...
. . .

...
...

...
. . .

...
a0 a1 · · · an b0 b1 · · · bn
0 a0 · · · an−1 0 b0 · · · bn−1
...

...
. . .

...
...

...
. . .

...
0 0 · · · a0 0 0 · · · b0


called Sylvester matrix, associated with DP(s) and NP(s).
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Sylvester matrix (contd)

We need also some sub-matrices of MS:

MS1 is the (2n+ 1)× (2n+ 1) matrix obtained from MS by eliminating its
(n + 2)th column

MS2 is the 2n × 2n matrix obtained from MS by eliminating its 1st row
and 1st and (n + 2)th columns

That is:

MS1 ··=



an 0 · · · 0 0 · · · 0
an−1 an · · · 0 bn · · · 0
...

...
. . .

...
...

. . .
...

a0 a1 · · · an b1 · · · bn
0 a0 · · · an−1 b0 · · · bn−1
...

...
. . .

...
...

. . .
...

0 0 · · · a0 0 · · · b0


and MS2 is in green.
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Sylvester’s theorem

Theorem
Polynomials DP(s) and NP(s) relatively prime iff the associated Sylvester
matrix MS has full (row) rank.

Corollary

DP(s) and NP(s) relatively prime iff detMS1 ̸= 0 (or detMS2 ̸= 0).

Example: Let DP(s) = s(s + 2) and NP(s) = s + 2. Then

MS1 =


1 0 0 0 0
2 1 0 0 0
0 2 1 1 0
0 0 2 2 1
0 0 0 0 2


is indeed singular (and so is MS2) as its 3rd and 4th columns coincide.
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Pole placement: n-order controller

Let P(s) have (irreducible) order n and consider n-order controller:

C (s) =
ˇns

n + · · ·+ ˇ1s + ˇ0
˛nsn + · · ·+ ˛1s + ˛0

This yields 2n-order �cl(s) = �2ns
2n + · · ·�1s + �0 satisfying



an 0 · · · 0 bn 0 · · · 0
an−1 an · · · 0 bn−1 bn · · · 0
...

...
. . .

...
...

...
. . .

...
a0 a1 · · · an b0 b1 · · · bn
0 a0 · · · an−1 0 b0 · · · bn−1
...

...
. . .

...
...

...
. . .

...
0 0 · · · a0 0 0 · · · b0


︸ ︷︷ ︸

MS



˛n
˛n−1
...
˛0
ˇn
ˇn−1
...
ˇ0


=



�2n
�2n−1

...
�n+1

�n
...
�0



− 2n+1 equations, 2n+2 variables, full-rank MS =⇒ ∞ many solutions
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Pole placement: (n − 1)-order controller

Let’s try to reduce the order of the controller to n − 1. This implies:

˛n = ˇn = �2n = 0

and then:

an · · · 0 bn · · · 0
...

. . .
...

...
. . .

...
a1 · · · an b1 · · · bn
a0 · · · an−1 b0 · · · bn−1
...

. . .
...

...
. . .

...
0 · · · a0 0 · · · b0


︸ ︷︷ ︸

MS2



˛n−1
...
˛0
ˇn−1
...
ˇ0


=



�2n−1
...

�n+1

�n
...
�0



− 2n equations, 2n variables, detMS ̸= 0 =⇒ unique solution

− any further reduction impossible (more equations than variables)
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n-order controller: exploiting freedom we have

We have one “spare” variable in this case, which can be exploited to

− bring about additional properties to the controller.

For example, we may enforce ˇn = 0 (strictly proper controller). Then:

an 0 · · · 0 0 · · · 0
an−1 an · · · 0 bn · · · 0
...

...
. . .

...
...

. . .
...

a0 a1 · · · an b1 · · · bn
0 a0 · · · an−1 b0 · · · bn−1
...

...
. . .

...
...

. . .
...

0 0 · · · a0 0 · · · b0


︸ ︷︷ ︸

MS1



˛n
˛n−1
...
˛0
ˇn−1
...
ˇ0


=



�2n
�2n−1

...
�n+1

�n
...
�0



− 2n + 1 equations, 2n + 1 variables, detMS1 ̸= 0 =⇒ unique solution
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n-order controller: exploiting freedom we have (contd)

Another possibility is to enforce ˛0 = 0 (integral action). Then:



an 0 · · · 0 bn 0 · · · 0
an−1 an · · · 0 bn−1 bn · · · 0
...

...
. . .

...
...

...
. . .

...
a0 a1 · · · an−1 b0 b1 · · · bn
0 a0 · · · an−2 0 b0 · · · bn−1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · b0


︸ ︷︷ ︸

MS3



˛n
˛n−1
...
˛1
ˇn
ˇn−1
...
ˇ0


=



�2n
�2n−1

...
�n+1

�n
...
�0



− 2n + 1 equations, 2n + 1 variables, detMS3 ̸= 0 =⇒ unique solution

(the non-singularity of MS3 can be proved under condition that b0 ̸= 0).
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Pole-placement as a design tool

Pros:

¨̂ arbitrary pole placement

¨̂ easily computable

Cons:

_̈ (almost) no control over controller poles

_̈ no control over controller zeros

_̈ no dominance guarantees
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