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Control Theory (00350188) Time-delay systems (mostly from IC)
lecture no. 4

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT
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Delay element in time domain Delay element in s-domain
; D, T ; e~ TS -
1/O relation: By the time shift property of the Laplace transform:

y=Diu <= y(t)=u(t —1)

This system is y(t) =u(t=7) = Y(s)=e Ul

— linear Thus, delay element has the transfer function
D (c1un + aatn) = arun(t — 1) + aaun(t — ©) = a1(Dr tn) + aa(Dr u2)
— time invariant
Dy, (Se,u) = u(t — 12 — 1) = S, (Dry 1)
— BIBO stable?
I¥|loo = ||u]|oo for all u € Loo

This transfer function is
— irrational,

so Dy is an infinite-dimensional system.

Lo = {x: R = R | [xl|oo < oo}, where [[x]loo = supecg [x(¢)|




Frequency response

Now,
e "|smjw = € 7 = cos(tw) — jsin(tw)
and it has
— unit magnitude (|e/*®| = 1) and
— linearly decaying phase (arg e™® = —tw, in radians if  is in rad/sec)
Bode Diagram of e ™ ‘ Nic‘hols Chart of ‘e’“
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Why delays?
— Ubiquitous in physical processes

— loop delays
— process delays

— Compact/economical approximations of complex dynamics

— Exploiting delays to improve performance

Loop delays: steel rolling

Thickness can only be measured at some distance from rolls, leading to

— measurement delays

Loop delays: networked control

Controller

Sampling, encoding, transmission, decoding need time. This gives rise to
— measurement delays

— actuation delays




Loop delays: temperature control Delays as modeling tool: heating a can

Transfer function of a heated can (derived from a PDE model):
——— |
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Its approximation by Gy(s) = me_“ is reasonably accurate:
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Delays as modeling tool: process control Outline

Consider a process described by

p(s) — (—0.3s +1)(0.08s + 1)
)= (25 + 1)(s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3°

Its “second-order—+delay” approximation (found by a brute-force search), Time delays and feedback (mostly from IC)

1
Po(s) = 08655
2(s) (1.19s + 1)(1.91s + 1)
is quite accurate, yet includes less parameters to identify:
1
=
—— step response of P(s)
—— step response of Py(s)
0.865 5

10




Systems with loop delays
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where

P plant, has a rational transfer function

C controller, has a rational transfer function

Effect of loop delay on characteristic polynomial

d
n Ym

If P(s) = Np(s)/Dp(s) and C(s) = N¢(s)/Dc(s), then

xcl(s) = e " Np(s)Nc(s) + Dp(s)Dc(s)

has infinitely many roots (this y(s) called quasi-polynomial).
Example
Let P(s) =1 and C(s) = kp. Then

Xa(s) = kpe T +1

has roots at ts = Ink, + j(r + 2ni) for all i € Z.

Effect of loop delay on closed-loop frequency response

d
[ Ym

For instance,

P(jw)C(jw)e I
1+ P(jo)C(jw)e it

might be very complicated function of w.

T(jo) =

Example

Again, let P(s) =1 and C(s) = k, < 1.
Then for k, = {0.5,0.75}:
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Comparing delay-free (t = 0) and delayed (7 > 0) closed-loop systems
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we can see that the presence of the delay considerably complicates matters.




Effect of loop delay on L(jw)

L

Let L(s) = Li(s)e ** for some rational L,(s). In this case

L(jo) = Li(jw)e ™
Y

IL(jo)| = [L(jo)| and argL(jw) = arg Li(jo) — t.

In other words, delay in this case
— does not change the magnitude of L,(jw) and
— adds phase lag proportional to w,

which is not hard to account for.

Effect of loop delay on L(jw): Bode diagram
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Effect of loop delay on L(jw): polar plot
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Effect of loop delay on L(jw): Nichols chart
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Nyquist stability criterion

ik

The idea is to

— use plot of L(jw) to count the number of closed-loop poles in RHP.
Namely, let L(s) have no unstable pole/zero cancellations and denote
nol number of unstable poles of L(s)

ne number of unstable poles of ﬁL(S)

» number of clockwise encirclements of —1 + jO by Nyquist plot of L(jw)
as w runs from —oo to oo

In this case
Ne| = No| + 5.

What is changed for dead-time systems ?

L,D, -0
) 7

Nothing, at least if the high-frequency gain of L,(s) is not 1.

Remark: If |L,(joo)| = 1, the situation is quite complicated, the closed-loop
system might have no RHP poles and still be unstable, like for

L(s) =

s
s+1

(explanations go beyond the scope of this course). It is safe to say that in
this case the closed-loop system is unstable, regardless its pole locations.

Loop delays and closed-loop stability: “rigid” loops

For systems with “rigid” loops
— delay is a destabilizing factor
as it adds phase lag, thus imposing limitations on achievable crossover w..

Bode's gain-phase relation for L(s) = L,(s)e™** (if L,(s) is minimum-phase)

1 /OO dlIn|L.(jv)|

. V
arg L(jwo) = p T id -

In coth 7dv — Twg, Wherev:=1In w5

— o0

so effect of delay is similar to effect of RHP zero.

Loop delays and closed-loop stability: “flexible” loops

For systems with “flexible” loops
— delay in some (very special) cases may be stabilizing factor,
yet this property shall be used with great care?.

2Don’t try it at homel!




Example

L(s) 0.4
§)= ——"-——:
s2+0.1s+1
Im
=
=z
.
Re i
3 0 L+ : + +
&
L,(jw) -900 -720 -540 -360 -180 0

Open-Loop Phase (deg)

no closed-loop poles in RHP

Example (contd)

(5)_0%4e
T s2401s+1

—s.

Im

X
(]
Open-Loop Gain (dB)
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-900 -720 -540 -360
Open-Loop Phase (deg)

two closed-loop poles in RHP

— delay 7 = 1 is destabilizing

Example (contd)

0.4 .
s24+0.1s+1

—5s.

L(s) =

Open-Loop Gain (dB)

i

-900 -720 -540 -360 -180 0
Open-Loop Phase (deg)

no closed-loop poles in RHP

— delay v = 5 is stabilizing (and stability margins > those with 7 = 0)

Example (contd)

. 0.4 _11s.
)= gros71®

Open-Loop Gain (dB)

i

-900 -720 -540 -360 -180 0
Open-Loop Phase (deg)

four closed-loop poles in RHP

— delay v = 11 is destabilizing again (and destabilizing for all larger 1)
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Rational approximations of time delays

Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is
not a surprise then that we want to approximate delay by finite-dimensional
(rational) elements, say R(s), to

— use standard methods in analysis and design,

— use standard software for simulations,
B | ) hods.

Approximation measure

We may consider as the approximation measure the quantity
€r := max |R(jw) — e 77|,
weR

assuming that R(s) is stable.

What to approximate: bad news

On the one hand,

— phase lag of the delay element is not bounded (and continuous in ).
On the other hand,

— rational systems can only provide finite phase lag.

Therefore, phase error between e~*° and any rational transfer function R(s)
is arbitrarily large. Moreover, for every R(s) there always is wp such that

— arge J™ —arg R(jw) continuously decreasing function of @, Yo > wp.

Hence there always is frequency w; such that

arg e T _arg R(jw;) = —1 — 21k ie.

and eg > 1 for all R(s). Thus,

— rational approximation of pure delay, e **

, is hopeless,

just because eg = 1 already for the trivial (and senseless) choice R(s) = 0.

What to approximate: good news

We never work over infinite bandwidth. Hence, we

— need to approximate e **°

in finite frequency range
or, equivalently,

— approximate F(s)e”*® for some low-pass (strictly proper) F(s).

This can be done, since

— phase lag of delay over finite bandwidth is finite
and

— magnitude of F(jw)e 1™ decreases as  increases,

which implies that at frequencies where the phase lag of F(jw)e™*® large,
the function effectively vanishes.

Also, we may consider T = 1 w.l.o.g., otherwise s — s/t makes the trick.




Truncation-based methods

General idea is to
— truncate some power series,

which could give accurate results in a (sufficiently large) neighborhood of 0.

Naive approach. We may try it as follows:

2 2 /52 3 /53 5 _1)nsn /2
e 1o oo 1oy 4 CURA
2 2 3 E n 2
R e

for some n € N. The problem is that this approximation is
unstable whenever n > 4.
which is not convenient (e™° itself is stable). For example, for n = 5 this approach yields

_s _ —s>+10s" — 80s® + 480s> — 1920s + 3840

e~
s% 4 10s* + 80s3 + 480s? + 1920s + 3840

with poles at {—4.361, —3.299+j3.388,0.48+j6.257}. Thus, more sophisticated methods
are required . . .

Truncation-based methods: Padé approximant

Consider approximation

s _ Pm(s)
© T Q) T Fmn(e)

where Pp,(s) and Q,(s) are polynomials of degrees m and n, respectively.
Power series at s = 0 of each side are

2 3
s s s° s
e T TR T
Rl (O)S R// (0)52 R/// (0)53
[m,n] [m,n] [m,n]
R[m,"](s) = R[m,n](o) + 1 + o 30 4.

The idea of [m, n]-Padé approximant is to find coefficients of R, ;(s) via
— matching their first n + m + 1 power series coefficients.

It can be shown that
— n=m = Py(s) = Qn(—5).

Example: [2,2]-Padé approximant

In this case Ry 2(s) = jﬁ;giijigg and power series are
=1—-s5+ e s + s*
2 6 24
2 2 2 3 _ 2 4 2 2
R[2’2](5) -1 <q1 s+ CI1 2 _ (q1 3q1qo)53 + (ql 4671670)54 o
qo q0 9% a
from which o
q1 —
=2 d I
qo g1 an v 6

and then g; = 6 and gg = 12, matching 5 coefficients.
Thus, [2,2]-Padé approximant is

,5N52—6s+12_1—§+%

e ~ =
2 2
5%+ 6s+12 1+54+ 355

Truncation-based methods: Padé approximant (contd)

General formula for [n, n]-Padé approximant is

n 2n—i i 2n—i)ln! i
s >im0 (i>((2n)| (—s) E =0 (2(n)'(n)l)'/' (= 5)

n m (2n=i)! ; _(2n=i)!n!
Zi:O(i)i(Zn)! S > =0 2n)i(n—1)1 7 >
This yields:
n |1 2 3 4
2.2 2.2 3.3 3 2.2 3 3 4 4
et | h At ity it
1+7 1+‘f2$+712$ 1+TS+113 +t120 1+r$+3t28 +r8: +§68$0

It can be proved that

[n, n]-Padé approximation is stable for all n € N.




Padé approximant: example

Let e°/(s+ 1). Its Padé approximant can be calculated with the Matlab
command pade (tf(1,[1 1],’InputDelay’,1),N).

e

Approximation errors
s+1

and its 2nd and 4th order approximations

Magnitude (dB)

Magnitude (dB)

100

10°
Frequency (rad/sec) Frequency (radisec)

Padé approximant: example (contd)

We may also compare step responses and Nichols charts

;;51 and its 2nd and 4th order approximations :% and its 2nd and 4th order approximations

1

Amplitude
Open-Loop Gain (dB)

0 05 1 15 2 25 3 35 4 ~720 -630 -540 450 360 -270 180 -90 0
Time (sec) Open-Loop Phase (deg)

From loop shaping perspectives,

— approximation performance depends on crossover requirements.

Padé approximant: example (contd)

Increasing approximants orders improves the match between step responses
of e7*/(s + 1) and its Padé approximation:

—s

£ and its 50th order approximation e”® and its 50th order approximation

Amplitude
Amplitude

0 05 1 1.5 2 25 3 35 4 0 05 1 15

2 25 3 35 4
Time (sec) Time (sec)

Not true for the approximation of the pure delay e !

Outline

Introduction to dead-time compensation




Infinite dimensional for infinite dimensional

In many cases,
— controller complexity should be compatible to plant complexity,

since controller should, in a sense, “counteract” plant dynamics.

Plant with dead time,
— PDy, is an infinite dimensional.

We may, hence, expect that we can do better by using infinite-dimensional
controllers. In doing this, the following aspects are of primary importance:

— small number of design parameters;
— implementability;

— design transparency.

Smith controller
Otto J. M. Smith (1957) proposed

where the overall controller e — u has the irrational transfer function

C(s) = C(s)
14+ P(s)(1—e™)C(s)

Smith controller: rationale

The signal

y=y+P(1—D)u=P(d+ D;u)+ P(1 - D;)u
= P(d + u)

would be the output in the delay-free case. The internal feedback block
— P(1 — D), dubbed the Smith predictor or dead-time compensator,
helps to predict the plant output t time units ahead. The designed part is

— the primary controller C.

Smith controller: the trick

The transfer function of the closed-loop system r +— y is

P()C(s)

T pEEE S e

T(s) =

Note that
— denominator of the closed-loop transfer function is delay free.
We may expect that if C stabilizes P, then C stabilizes PD,.




Smith controller: design paradigm

The following two-stage procedure appears natural:

1. design primary controller C for delay-free plant, P;

2. implement primary controller in combination with the Smith predictor.

It yields a
— finite-dimensional design with an infinite-dimensional controller,
— small number of tuning parameters (those of C),

— implementability (the only infinite-dimensional part, Dy, is a buffer)

Smith controller: design example 1

Here the primary controller is Pl (implemented to avoid zeros in r — y)

E(s) = by (1 =) = Lot L)
TiS TiS
We aim at
— “good"” step response and “good” disturbance attenuation
and hope for the
— transparency of tuning kp and t;

(i.e. that their “good” choices result in “good"” overall controller C).

Design example 1: stage 1

Delay-free system:

Its characteristic polynomial,

Fa(s) = kp(tis + 1) + tis(s + a) = 1is* + 1i(a + kp)s + kp,

is Hurwitz iff either 7; > 0 A k, > max{—a.0} or 7; < 0 A k, < min{—a,0}.

The closed-loop transfer functions,

[%((55” - HZ} r;52+ri(al+kp)5+kp’

are easy to understand (with T,,(0) = 1 and T4(0) = 0 because of “I").

Design example 1: stage 1 (contd)

Let's choose

kp:‘[i:2—a,

for which
s

1
T (s+12 T (s+12

(if a =2 we end up with the | controller C(s) = 1/s, otherwise C(s) is PI).

7~'y,(s) and fd(s)




Design example 1: stage 2 (a > 0, stable plant)

Closed-loop step responses:

— ; — .
> --- stage 1 design > --- stage 1 design
N — =1 alla’s N —1=1, a=30
—r=1 a=3
—1=1 a=1
—1=1 a=02
g -
N 7 g
~
~
~
.o
0 1 5 9 t

— reference responses are as expected

— disturbance responses are not always (decays slow for small a)  why?

Design example 1: stage 2 (a = 0, intergator)

Closed-loop step responses:

--- stage 1 design — — stage 1 design
—_—1=1 a=0 —_—1=1 a=0

ve(t)
ya(t)

—

— reference response is as expected

— disturbance response is not (lims_o yg(t) =1 # 0) why?

Design example 1: stage 2 (a < 0, unstable plant)

Closed-loop step responses:

--- stage 1 design
—7=1alla's

ve(t)
ya(t)

-—- stage 1 design

—1=1 a=-001
—1=1 a=-002
—1=1 a=-003

— reference responses are as expected
— disturbance responses are not (diverge!) why?

Smith controller: pole-zero cancellations

d
P(1 - D,)
O y
e Ne(s) Ne(s)
p\s =~ cls
P(s) = and C(s) =
)= Bos) ()= Be(s)
and assume that these fractions are irreducible. Then
g Dp(s)Ng
o) &(s) _ p(s)NE(s)

14 P(s)C(s)(1 — e ) Dp(s)Dé(s) + Np(s)Ne(s)(1 — e ™)

and, excluding the obvious case when C(s) cancels poles of P(s),

— poles of P(s) are zeros of C(s), unless they are zeros of 1 — e~ ** too.




Pole-zero cancellations: implications

Smith controller is

A~ internally unstable whenever P is unstable
(unless® all unstable poles of P(s) are zeros of 1 — e~ "%, which are at j2Z k, Vk € Z)

~ inefficient in attenuating load disturbances if P has “slow” poles

~ inefficient in dampening lightly-damped dynamics of the plant

3This is what happened in the example with a = 0.

Smith controller: disturbance response

d

Disturbance sensitivity

14 P(s)C(s)(1 — e~

Ta(s) 1+ P(s)C(s)

) P(s) = Tu(s) + 7~'(s)(1 —e )P(s)

is indeed unstable, unless all CRHP poles of P(s) are canceled by 1 — e~ "*.
Also note that

— a‘“good” T4(s) does not necessarily result in a “good” Ty(s)

(because the relation between | T4(jow)| and | Ta(jw)| is complicated, unless
[T (jw)(1 — e 3N P(jw)| < 1).

Smith controller: integral action in the controller

If C(s) = %C:o(s) for some Co(s) such that |Co(0)| < oo, then

o) &) Gols)
1+ (1—e)P(s)C(s) s+ (1—e*)P(s)Co(s)

and there is an
— integrator in C <= lims0(l — e ™)P(s) =0
(i.e. the predictor part has zero static gain). As a general rule,

— design of Cis transparent at frequencies where the predictor gain is
low, i.e. |(1 — e ™®)P(jo)| < 1.

Design example 1: controller static gain

1 ifa=0

oo otherwise

0 otherwise

1—es {1 ifa=0

— im0~

This agrees with simulations, where the disturbance was rejected in steady
state only with a > 0, but not with a = 0.




Outline

Modified Smith predictor (optional self-study)

Modified Smith predictor
Some problems may be resolved in the Modified Smith Predictor (MSP):

where

N=P—PD,,

for some P, having rational and proper f’(s) which may be different from
P. This I also compensates the delay:

7= P(d + Dyu) + (P — PD;)u= Pd + Pu,

although no longer predicts the delay-free output P(d + u).

Modified Smith predictor (contd)

The transfer function of the closed-loop system r +— y is then

rsy) - _PEEE)
14 P(s)C(s)

—Ts

and its denominator is delay free (a standard polynomial if C(s) is rational).

The two-stage design procedure may then be modified as follows:
1. design primary controller C for P;

2. implement primary controller in combination with 1.

MSP: pole-zero cancellations

Let ) N ) Ne(s)
DP(S)’ DP(S)’ Dc"(S)

be irreducible (P(s) is frequently chosen to have the same denominator as
P(s), although it need not). In this case

_ (s) _ Dp(s)Ne(s)
1+ C(s)N(s)  De(s)De(s) + Ne(s)(Np(s) — Np(s)e ™)

_Ne(s) ey NE(S)

P(s) and C(s)

Y M

C(s)

and, excluding the obvious case when C(s) cancels poles of P(s),

— poles of P(s) are zeros of C(s), unless zeros of Np(s) — Np(s)e™** too.




Pole-zero cancellations: implications

deg Dp(s) + 1 free parameters in Np(s) can be used to
— assign zeros of Np(s) := Np(s) — Np(s)e ™ at points of need.
This can be used to
— prevent unstable cancellations = internal stability
— avoid harmful stable cancellations = better disturbance attenuation

— render the logic in the choice of C more streamlined (transparency)

MSP: stability

There are no unstable cancellations between C(s) and P(s) iff all unstable
poles of P(s) are zeros of Np(s). Because

_ Np(s)  Np(s) e _ Nn(s)

()= Bp(s) " Dp(s)¢ ~ Dp(s)

there are
— no unstable pole-zero cancellations in MSP iff 1 is stable itself

and then the closed-loop system is internally stable iff C stabilizes P.

MSP: design example 2

If
~ ea ea _ e—s
P(s) = = M(s)= —
s+ a s+a
In this case
. . e?—e™ h
imM(s) = lim ——— =lime* =e"
s—a s—+a S-+a s—a
is finite, so the singularity at s = —a is removable (i.e. not a pole)*.

*The implementation of this M(s) might not be straightforward if a < 0. Yet this issue
goes beyond our scope here, just know that (s) can be implemented.

Design example 2: stage 1

Delay-free system:

Its characteristic polynomial,
Fa(s) = koe®(tis + 1) + tis(s + a) = ;5% + ti(a + kpe?)s + kpe?,

is stable iff either 7; > 0 A k, > max{—2.0} or 7; < 0 A k, < min{—3.0}.
The closed-loop transfer functions,

LAREEE

Ta(s) | | us } 7is% + ti(a + kpe?)s + kpe?’

a

are still easy to understand (T,,(0) = 1 and T4(0) = 0 because of “I").




Design example 2: stage 1 (contd)

d
y e? u
s+a Pl — TS

>
|
2
-

o)

Let's choose
ke =¢"%2—a) and 7,=2-a,

for which

Ty (s)

= m and 7~_d(s) = m

(if a = 2 we end up with the | controller C(s) = 1/s, otherwise C(s) is PI).

Design example 2: stage 2

Closed-loop step responses, now converging:

S — =1 a=-05 X
L || e—tr=1 a=0 &)
1;% —rt=1 a=05 >
1.3
1 1
0.79
0.61
—t1=1 a=-05
—_—1=1a=0
—_—1=1 a=05
01 5 t 0 1 5 9 ¢

— reference responses are not as expected (lim;_,o0 yr(t) =72 # 1)
— disturbance responses are not as expected
#0)

(Iimt—>oo Yd(t) = kTe
What's wrong now?

MSP: integral action in the controller

Let C(s) = %60(5) for some Co(s) such that |Co(0)| < oo. Then

e &l
1+ N(s)C(s) s+ N(s)Co(s)

C(s)

and there is an
— integrator in C(s) <= lims_,oMN(s) =0
(i.e. the predictor part has zero static gain). As a general rule, again,

— design of 5(5) is transparent at frequencies where the predictor gain is
low, i.e. [M(jw)| < 1.

Design example 2: controller static gain

We have that

S

-1
lim M(s) = lim . = lim C(s) = -
s—0 s—»0 s+a a s—0 e?—1

e? —e”

Because the static gain of the plant is 1/a, we have that

B 1/a 1-e?
S 1+1/(e2—1)  a 70

T4(0)

(monotonically decreasing function of a, in agreement with simulations).




MSP: design example 3

Consider a more general

1S + oo
. s+a s+a

P(s)

and try to impose the following constraints:
1. |[M(—a)| < oo if a is small enough (say a < 3)
(to prevent canceling the problematic—unstable or slow stable—pole of the plant)
2. M(0) =0
(to keep integral action in the Pl C(s))

MSP: design example 3 (contd)

These conditions yield (mind that lims_o(1 — e °)/s =1 < o)

1—e?
og —ora=¢e? ifa<3 )
<— (aqg=1)A a1 = a
{0‘0 =1 ( 0 ) < ! {O otherwise

Thus, considering only the nontrivial case of a < 3, we have

and end up with the (bi-proper and nonminimum-phase)

~ — 1
P(s) = os + ’
s+a
where o := % € (0,6.36). For larger a's this parameter o grows rapidly,

which is numerically inconvenient. . .

Design example 3: stage 1

The characteristic polynomial,

Ha(s) = ko(—as + 1)(zis + 1) + tis(s + a)
= 1(1 — aky)s® + (ti(a + kp) — aky)s + kp

and the closed-loop transfer functions,

{77-{,((55))} - [fps] 7i(1 — akp)s? +(_j(sailk,,) — aky)s + Ky

are still second-order. Mind that now T4(s) is bi-proper and both T,,(s)
and T4(s) have a RHP zero, which might be misleading (the responses of

the original system are inertial and should not normally exhibit undershoot).

Design example 3: stage 1 (contd)
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Let's choose

_ a(e? — (a—1)?)
P (e2+a—1)2

_ .—a . 2
~ 0099 and 7= 1_°© ia D” . 0067,

(with lim,—0 ky = 2 and lim,_,o 7; = 3) for which

~ —as+1

—as+1
Tnls) = iy s(-as+1)

and  Ty(s) = s e




Design example 3: stage 2

Closed-loop step responses now have no remainings of plant dynamics:

IR i
1.68 1 =1, a=3, MSP
- o~ ---- 7 =1, a=0.2, Smith
— ~ — 71 =1, a=02 MSP
= N —--7 =1, a=0, Smith
1.01F = 1 =1, a=0, MSP
11 = 17 =1, a=—0.5, MSP
X i AN\ Tl
0.321 -
01 5 t 0o 1 5 C
As a matter of fact, in this case T, (s) = (S+1)2 and
e? (l—e”* e—e* (e?—1)s+2e?+a—-2 _,
Ta(s) =< s -t c)
a s s+a (s+1)
so both s = 0 and s = —a are removable singularities (not poles) of Ty4(s).

MSP: loop transfer function

Loops can be analyzed in terms of their return difference transfer functions:
— at frequencies where |1 + L(jw)| > 1, the loop gain is high;
— at frequencies where |1 + L(jw)| ~ 1, the loop gain is low;

— at frequencies where |1 4+ L(jw)| < 1, it is close to the critical point.

d

The MSP return difference for the actual loop L(s) = P(s)e " C(s) is

) 1+ L(s)

N (s
brif)=1+ (5) 14N

P(s)e="*C(s) 1+ P(s)C
1+N(s)C(s)  1+N(s)C

where [(s) = P(s)C(s) is the designed loop in stage 1.

MSP: loop transfer function (contd)

Thus, the relation between the designed and actual loops, can be seen in
11+ L(jo)| = |Sc(jo)| |1 + L(jo)|.

where S¢(s) := m is the sensitivity function of the internal loop of
the overall controller C(s). Thus,
|Sc(jw)| =1 == transparent design

Sc(jw)| < 1 = poor L(s), even from good L(s)

Sc(jw)| > 1 = possibly good L, even from poor L, but might yield
— high-gain L when low-gain L is designed
— fragile implementation of the controller internal
loop

Note that |Sc(jw)| ~ 1 <= |N(jw)C(jo)| < 1, so it may make sense to
— keep |M(jw)| small at frequencies of interest,

which actually implies that P(jw) should approximate P(jw)e ™37 there. ..

Design example 3: loop transfer function

Here

Se(s) = a(a +1)?

a al—e—s _1\2e—e=S’
efat+ e —r— —(a— 1255

where a = 63;1. It verifies |Sc(jw)| > 1 for all a and all w:

‘some plots should be here, perhaps...
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