Control Theory (00350188) lecture no. 4

Leonid Mirkin

Faculty of Mechanical Engineering Technion—IIT

Time-delay systems (mostly from IC)

Time delays and feedback (mostly from IC)

Rational approximations of time delays

Introduction to dead-time compensation

Modified Smith predictor (optional self-study)

Outline

Time-delay systems (mostly from IC)

Time delays and feedback (mostly from IC)

Rational approximations of time delays

Introduction to dead-time compensation

Modified Smith predictor (optional self-study)

Delay element in time domain

I/O relation:

$$y = \bar{D}_{\tau} u \iff y(t) = u(t - \tau)$$

This system is

- linear
 - $\bar{D}_{\tau}(\alpha_{1}\nu_{1} + \alpha_{2}\nu_{2}) = \alpha_{1}\nu_{1}(t \tau) + \alpha_{2}\nu_{2}(t \tau) = \alpha_{1}(\bar{D}_{\tau}\nu_{1}) + \alpha_{2}(\bar{D}_{\tau}\nu_{2})$
- time invariant
 - $\bar{D}_{\tau_1}(S_{\tau_2}u) = u(t \tau_2 \tau_1) = S_{\tau_2}(\bar{D}_{\tau_1}u)$
- BIBO stable
 - $\|y\|_{\infty} = \|u\|_{\infty}$ for all $u \in L_{\infty}$

Delay element in time domain

I/O relation:

$$y = \bar{D}_{\tau} u \iff y(t) = u(t - \tau)$$

This system is

linear

$$\bar{D}_{\tau}(\alpha_{1}u_{1} + \alpha_{2}u_{2}) = \alpha_{1}u_{1}(t - \tau) + \alpha_{2}u_{2}(t - \tau) = \alpha_{1}(\bar{D}_{\tau}u_{1}) + \alpha_{2}(\bar{D}_{\tau}u_{2})$$

- time invariant

$$\bar{D}_{\tau_1}(S_{\tau_2}u) = u(t - \tau_2 - \tau_1) = S_{\tau_2}(\bar{D}_{\tau_1}u)$$

BIBO stable¹

$$\|y\|_{\infty} = \|u\|_{\infty}$$
 for all $u \in L_{\infty}$

 $^{1}L_{\infty}:=\{x:\mathbb{R}
ightarrow\mathbb{R}\mid\|x\|_{\infty}<\infty\}$, where $\|x\|_{\infty}:=\sup_{t\in\mathbb{R}}|x(t)|$

Delay element in *s*-domain

By the time shift property of the Laplace transform:

$$y(t) = u(t-\tau) \iff Y(s) = e^{-\tau s} U(s)$$

Thus, delay element has the transfer function

$$\bar{D}_{\tau}(s) = \mathrm{e}^{-\tau s}.$$

This transfer function is

irrational,

so \bar{D}_r is an infinite-dimensional system.

Delay element in s-domain

By the time shift property of the Laplace transform:

$$y(t) = u(t - \tau) \iff Y(s) = e^{-\tau s} U(s)$$

Thus, delay element has the transfer function

$$ar{D}_{ au}(s) = \mathrm{e}^{- au s}$$

Delay element in *s*-domain

By the time shift property of the Laplace transform:

$$y(t) = u(t - \tau) \iff Y(s) = e^{-\tau s} U(s)$$

Thus, delay element has the transfer function

$$ar{D}_{ au}(s) = \mathrm{e}^{- au s}$$

This transfer function is

irrational,

so \bar{D}_{τ} is an infinite-dimensional system.

Frequency response

Now,

$$e^{-\tau s}|_{s=j\omega} = e^{-j\tau\omega} = \cos(\tau\omega) - j\sin(\tau\omega)$$

and it has

- unit magnitude ($|{
 m e}^{{
 m j} au\omega}|\equiv 1$) and
- linearly decaying phase (arg $e^{j\tau\omega} = -\tau\omega$, in radians if ω is in rad/sec)

Why delays?

- Ubiquitous in physical processes
 - loop delays
 - process delays
 - ...

- Compact/economical approximations of complex dynamics
- Exploiting delays to improve performance

Loop delays: steel rolling

Thickness can only be measured at some distance from rolls, leading to

measurement delays

Loop delays: networked control

Sampling, encoding, transmission, decoding need time. This gives rise to

- measurement delays
- actuation delays

Loop delays: temperature control

Everybody experienced this, I guess...

Delays as modeling tool: heating a can

Transfer function of a heated can (derived from a PDE model):

$$G(s) = \frac{1}{J_0\left(\sqrt{\frac{-s}{\alpha}}R\right)} + \sum_{m=1}^{\infty} \frac{2}{\lambda_m R J_1(\lambda_m R)} \frac{s}{s + \alpha \lambda_m^2} \frac{1}{\cosh\left(\sqrt{\frac{s}{\alpha} + \lambda_m^2} \cdot \frac{L}{2}\right)}.$$

Its approximation by $G_2(s) = \frac{1}{(\tau_1 s+1)(\tau_2 s+1)} e^{-\tau s}$ is reasonably accurate:

Delays as modeling tool: heating a can

Transfer function of a heated can (derived from a PDE model):

$$G(s) = \frac{1}{J_0\left(\sqrt{\frac{-s}{\alpha}}R\right)} + \sum_{m=1}^{\infty} \frac{2}{\lambda_m R J_1(\lambda_m R)} \frac{s}{s + \alpha \lambda_m^2} \frac{1}{\cosh\left(\sqrt{\frac{s}{\alpha} + \lambda_m^2} \cdot \frac{L}{2}\right)}.$$

Its approximation by $G_2(s) = \frac{1}{(\tau_1 s + 1)(\tau_2 s + 1)} e^{-\tau s}$ is reasonably accurate:

Delays as modeling tool: process control

Consider a process described by

$$P(s) = \frac{(-0.3s+1)(0.08s+1)}{(2s+1)(s+1)(0.4s+1)(0.2s+1)(0.05s+1)^3}.$$

Its "second-order+delay" approximation (found by a brute-force search),

$$P_2(s) = rac{1}{(1.19s+1)(1.91s+1)} e^{-0.865s},$$

is quite accurate, yet includes less parameters to identify:

Time-delay systems (mostly from IC)

Time delays and feedback (mostly from IC)

Rational approximations of time delays

Introduction to dead-time compensation

Modified Smith predictor (optional self-study)

Systems with loop delays

where

- *P* plant, has a rational transfer function
- C controller, has a rational transfer function

Effect of loop delay on characteristic polynomial

If $P(s) = N_P(s)/D_P(s)$ and $C(s) = N_C(s)/D_C(s)$, then

$$\chi_{cl}(s) = e^{-\tau s} N_P(s) N_C(s) + D_P(s) D_C(s)$$

has infinitely many roots (this $\chi_{cl}(s)$ called quasi-polynomial).

Example

Let P(s) = 1 and $C(s) = k_p$. Then

$$\chi_{cl}(s) = k_{p}e^{-\tau s} + 1$$

has roots at $au s = \ln k_{\mathsf{p}} + \mathsf{j}(\pi + 2\pi i)$ for all $i \in \mathbb{Z}$.

Effect of loop delay on characteristic polynomial

If $P(s) = N_P(s)/D_P(s)$ and $C(s) = N_C(s)/D_C(s)$, then

$$\chi_{cl}(s) = e^{-\tau s} N_P(s) N_C(s) + D_P(s) D_C(s)$$

has infinitely many roots (this $\chi_{cl}(s)$ called quasi-polynomial).

Example

Let P(s) = 1 and $C(s) = k_p$. Then

$$\chi_{cl}(s) = k_{p}e^{-\tau s} + 1$$

has roots at $\tau s = \ln k_p + j(\pi + 2\pi i)$ for all $i \in \mathbb{Z}$.

Effect of loop delay on closed-loop frequency response

For instance,

$$T(j\omega) = \frac{P(j\omega)C(j\omega)e^{-j\tau\omega}}{1 + P(j\omega)C(j\omega)e^{-j\tau\omega}}$$

might be very complicated function of ω .

Example

Again, let P(s)=1 and $C(s)=k_{
m p}<1.$ Then for $k_{
m p}=\{0.5,0.75\}$:

Effect of loop delay on closed-loop frequency response

For instance,

$$T(j\omega) = \frac{P(j\omega)C(j\omega)e^{-j\tau\omega}}{1 + P(j\omega)C(j\omega)e^{-j\tau\omega}}$$

might be very complicated function of ω .

Example

Again, let
$$P(s) = 1$$
 and $C(s) = k_p < 1$.
Then for $k_p = \{0.5, 0.75\}$:

Another scary example

Comparing delay-free ($\tau = 0$) and delayed ($\tau > 0$) closed-loop systems

we can see that the presence of the delay considerably complicates matters.

Effect of loop delay on $L(j\omega)$

Let $L(s) = L_r(s)e^{-\tau s}$ for some rational $L_r(s)$. In this case

$$L(j\omega) = L_{r}(j\omega)e^{-j\tau\omega}$$

$$\downarrow$$

$$|L(j\omega)| = |L_{r}(j\omega)| \text{ and } \arg L(j\omega) = \arg L_{r}(j\omega) - \tau\omega.$$

In other words, delay in this case

- $-\,$ does not change the magnitude of $L_{\rm r}({\rm j}\omega)$ and
- adds phase lag proportional to ω ,

which is not hard to account for.

Effect of loop delay on $L(j\omega)$: Bode diagram

Effect of loop delay on $L(j\omega)$: polar plot

Effect of loop delay on $L(j\omega)$: Nichols chart

Nyquist stability criterion

The idea is to

use plot of L(jω) to count the number of closed-loop poles in RHP.
Namely, let L(s) have no unstable pole/zero cancellations and denote
n_{ol} number of unstable poles of L(s)
n_{cl} number of unstable poles of 1/(1+L(s))
≈ number of clockwise encirclements of -1 + j0 by Nyquist plot of L(jω) as ω runs from -∞ to ∞

In this case

$$n_{\rm cl} = n_{\rm ol} + \varkappa$$
.

What is changed for dead-time systems?

Nothing, at least if the high-frequency gain of $L_r(s)$ is not 1.

Remark: If $|L_t(j\infty)| = 1$, the situation is quite complicated, the closed-loop system might have no RHP poles and still be unstable, like for

$$L_r(s) = rac{s}{s+1}$$

(explanations go beyond the scope of this course). It is safe to say that in this case the closed-loop system is unstable, regardless its pole locations.

What is changed for dead-time systems?

Nothing, at least if the high-frequency gain of $L_r(s)$ is not 1.

Remark: If $|L_r(j\infty)| = 1$, the situation is quite complicated, the closed-loop system might have no RHP poles and still be unstable, like for

$$L_r(s) = \frac{s}{s+1}$$

(explanations go beyond the scope of this course). It is safe to say that in this case the closed-loop system is unstable, regardless its pole locations.

Loop delays and closed-loop stability: "rigid" loops

For systems with "rigid" loops

delay is a destabilizing factor

as it adds phase lag, thus imposing limitations on achievable crossover ω_c .

Bode's gain-phase relation for $L(s) = L_r(s)e^{-rs}$ (if $L_r(s)$ is minimum-phase)

$$\arg L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} \ln |L_t(j\nu)|}{\mathrm{d}\nu} \ln \coth \frac{|\nu|}{2} \mathrm{d}\nu - \tau \omega_0, \quad \text{where } \nu := \ln \frac{\omega}{\omega_0},$$

so effect of delay is similar to effect of RHP zero.

Loop delays and closed-loop stability: "rigid" loops

For systems with "rigid" loops

delay is a destabilizing factor

as it adds phase lag, thus imposing limitations on achievable crossover $\omega_{\rm c}$.

Bode's gain-phase relation for $L(s) = L_r(s)e^{-\tau s}$ (if $L_r(s)$ is minimum-phase)

$$\arg L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d\ln|L_r(j\nu)|}{d\nu} \ln\coth\frac{|\nu|}{2} d\nu - \tau \omega_0, \quad \text{where } \nu := \ln\frac{\omega}{\omega_0},$$

so effect of delay is similar to effect of RHP zero.

Loop delays and closed-loop stability: "flexible" loops

For systems with "flexible" loops

- delay in some (very special) cases may be stabilizing factor,

yet this property shall be used with great care².

²Don't try it at home!

Example

. L_r(jω)

Example (contd)

two closed-loop poles in RHP

— delay au = 1 is destabilizing

Example (contd)

L(jω)

. L_r(jω)

two closed-loop poles in RHP

- delay $\tau = 1$ is destabilizing

no closed-loop poles in RHP

- delay $\tau = 5$ is stabilizing (and stability margins > those with $\tau = 0$).

no closed-loop poles in RHP

- delay $\tau = 5$ is stabilizing (and stability margins > those with $\tau = 0$)

four closed-loop poles in RHP

— delay au = 11 is destabilizing again (and destabilizing for all larger au)

four closed-loop poles in RHP

- delay $\tau = 11$ is destabilizing again (and destabilizing for all larger τ)

Time-delay systems (mostly from IC)

Time delays and feedback (mostly from IC)

Rational approximations of time delays

Introduction to dead-time compensation

Modified Smith predictor (optional self-study)

Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is not a surprise then that we want to approximate delay by finite-dimensional (rational) elements, say R(s),

use standard methods in analysis and design,

Approximation measure

We may consider as the approximation measure the quantity

$$\epsilon_R := \max_{\omega \in \mathbb{R}} |R(j\omega) - e^{-j\tau\omega}|,$$

Delay element is infinite-dimensional, which complicates its treatment. It is not a surprise then that we want to approximate delay by finite-dimensional (rational) elements, say R(s), to

use standard methods in analysis and design,

avoid learning new methods,

Approximation measure

We may consider as the approximation measure the quantity

$$\epsilon_{R} := \max_{\omega \in \mathbb{R}} |R(j\omega) - e^{-j\tau\omega}|,$$

Delay element is infinite-dimensional, which complicates its treatment. It is not a surprise then that we want to approximate delay by finite-dimensional (rational) elements, say R(s), to

- use standard methods in analysis and design,
- use standard software for simulations,

Approximation measure

We may consider as the approximation measure the quantity

$$\epsilon_{R} := \max_{\omega \in \mathbb{R}} |R(j\omega) - e^{-j\tau\omega}|,$$

Delay element is infinite-dimensional, which complicates its treatment. It is not a surprise then that we want to approximate delay by finite-dimensional (rational) elements, say R(s), to

- use standard methods in analysis and design,
- use standard software for simulations,
- avoid learning new methods,

Approximation measure

We may consider as the approximation measure the quantity

$$\epsilon_{R} := \max_{\omega \in \mathbb{R}} |R(j\omega) - e^{-j\tau\omega}|,$$

Delay element is infinite-dimensional, which complicates its treatment. It is not a surprise then that we want to approximate delay by finite-dimensional (rational) elements, say R(s), to

- use standard methods in analysis and design,
- use standard software for simulations,
- avoid learning new methods,

Approximation measure

We may consider as the approximation measure the quantity

$$\epsilon_{R} := \max_{\omega \in \mathbb{R}} |R(j\omega) - e^{-j\tau\omega}|,$$

. . .

Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is not a surprise then that we want to approximate delay by finite-dimensional (rational) elements, say R(s), to

- use standard methods in analysis and design,
- use standard software for simulations,
- avoid learning new methods,

Approximation measure

We may consider as the approximation measure the quantity

$$\epsilon_R := \max_{\omega \in \mathbb{R}} |R(j\omega) - e^{-j\tau\omega}|,$$

What to approximate: bad news

On the one hand,

- phase lag of the delay element is not bounded (and continuous in ω). On the other hand,

- rational systems can only provide finite phase lag.

Therefore, phase error between $e^{-\tau s}$ and any rational transfer function R(s) is arbitrarily large. Moreover, for every R(s) there always is ω_0 such that

- arg $e^{-j\tau\omega}$ - arg $R(j\omega)$ continuously decreasing function of ω , $\forall \omega \ge \omega_0$. Hence there always is frequency ω_1 such that

$$\arg e^{-j\tau\omega_1} - \arg R(j\omega_1) = -\pi - 2\pi k$$
 i.e.

and $\epsilon_R \geq 1$ for all R(s).

— rational approximation of pure delay, $e^{-\tau s}$, is hopeless,

just because $\epsilon_R = 1$ already for the trivial (and senseless) choice R(s) = 0.

What to approximate: bad news

On the one hand,

- phase lag of the delay element is not bounded (and continuous in ω). On the other hand.

- rational systems can only provide finite phase lag.

Therefore, phase error between $e^{-\tau s}$ and any rational transfer function R(s) is arbitrarily large. Moreover, for every R(s) there always is ω_0 such that

- arg $e^{-j\tau\omega}$ - arg $R(j\omega)$ continuously decreasing function of ω , $\forall \omega \ge \omega_0$. Hence there always is frequency ω_1 such that

and $\epsilon_R \geq 1$ for all R(s). Thus,

- rational approximation of pure delay, $e^{-\tau s}$, is hopeless,

just because $\epsilon_R = 1$ already for the trivial (and senseless) choice R(s) = 0.

What to approximate: good news

We never work over infinite bandwidth. Hence, we

- need to approximate $e^{-\tau s}$ in finite frequency range
- or, equivalently,
 - approximate $F(s)e^{-\tau s}$ for some low-pass (strictly proper) F(s).

This can be done, since

- phase lag of delay over finite bandwidth is finite

and

- magnitude of $F(j\omega)e^{-j\tau\omega}$ decreases as ω increases,

which implies that at frequencies where the phase lag of $F(j\omega)e^{-j\tau\omega}$ large, the function effectively vanishes.

Also, we may consider au=1 w.l.o.g., otherwise s o s/ au makes the trick.

What to approximate: good news

We never work over infinite bandwidth. Hence, we

- need to approximate $e^{-\tau s}$ in finite frequency range
- or, equivalently,
 - approximate $F(s)e^{-\tau s}$ for some low-pass (strictly proper) F(s).

This can be done, since

- phase lag of delay over finite bandwidth is finite

and

- magnitude of $F(j\omega)e^{-j\tau\omega}$ decreases as ω increases,

which implies that at frequencies where the phase lag of $F(j\omega)e^{-j\tau\omega}$ large, the function effectively vanishes.

Also, we may consider $\tau = 1$ w.l.o.g., otherwise $s \rightarrow s/\tau$ makes the trick.

Truncation-based methods

General idea is to

truncate some power series,

which could give accurate results in a (sufficiently large) neighborhood of 0.

Naïve approach. We may try it as follows:

 $\frac{8756(122)}{25} + \frac{1}{2} + \frac{1}{$

— unstable whenever n > 4.

which is not convenient (e^{-*} itself is stable). For example, for n = 5 this approach yields

 $r_{1}^{2} = -r^{2} + 10s^{4} - 80s^{2} + 480s^{2} - 1920s + 3840$ $r_{2}^{2} = s^{2} + 10s^{4} + 60s^{2} + 480s^{2} + 1920s + 3940$

with poles at $\{-4.361, -3.299 \pm j3.388, 0.48 \pm j6.257\}$. Thus, more applicated methods are required. . .

Truncation-based methods

General idea is to

truncate some power series,

which could give accurate results in a (sufficiently large) neighborhood of 0.

Naïve approach. We may try it as follows:

$$\mathsf{e}^{-s} = \frac{\mathsf{e}^{-s/2}}{\mathsf{e}^{s/2}} = \frac{1 - \frac{s/2}{1!} + \frac{s^2/2^2}{2!} - \frac{s^3/2^3}{3!} + \cdots}{1 + \frac{s/2}{2!} + \frac{s^3/2^3}{3!} + \cdots} \approx \frac{1 - \frac{s/2}{1!} + \cdots + \frac{(-1)^n s^n/n^2}{n!}}{1 + \frac{s/2}{1!} + \cdots + \frac{s^n/n^2}{n!}}$$

for some $n \in \mathbb{N}$. The problem is that this approximation is

- unstable whenever n > 4.

which is not convenient (e^{-s} itself is stable). For example, for n = 5 this approach yields

$$e^{-s} \approx \frac{-s^5 + 10s^4 - 80s^3 + 480s^2 - 1920s + 3840}{s^5 + 10s^4 + 80s^3 + 480s^2 + 1920s + 3840}$$

with poles at $\{-4.361, -3.299 \pm j3.388, 0.48 \pm j6.257\}$. Thus, more sophisticated methods are required...

Truncation-based methods: Padé approximant

Consider approximation

$$\mathrm{e}^{-s} pprox rac{P_m(s)}{Q_n(s)} =: R_{[m,n]}(s),$$

where $P_m(s)$ and $Q_n(s)$ are polynomials of degrees m and n, respectively. Power series at s = 0 of each side are

$$e^{-s} = 1 - \frac{s}{1!} + \frac{s^2}{2!} - \frac{s^3}{3!} + \cdots$$
$$R_{[m,n]}(s) = R_{[m,n]}(0) + \frac{R'_{[m,n]}(0)s}{1!} + \frac{R''_{[m,n]}(0)s^2}{2!} + \frac{R'''_{[m,n]}(0)s^3}{3!} + \cdots$$

The idea of [m, n]-Padé approximant is to find coefficients of $R_{[m,n]}(s)$ via — matching their first n + m + 1 power series coefficients.

t can be shown that

 $-n = m \implies P_n(s) = Q_n(-s).$

Truncation-based methods: Padé approximant

Consider approximation

$$\mathrm{e}^{-s} pprox rac{P_m(s)}{Q_n(s)} =: R_{[m,n]}(s),$$

where $P_m(s)$ and $Q_n(s)$ are polynomials of degrees m and n, respectively. Power series at s = 0 of each side are

$$e^{-s} = 1 - \frac{s}{1!} + \frac{s^2}{2!} - \frac{s^3}{3!} + \cdots$$
$$R_{[m,n]}(s) = R_{[m,n]}(0) + \frac{R'_{[m,n]}(0)s}{1!} + \frac{R''_{[m,n]}(0)s^2}{2!} + \frac{R'''_{[m,n]}(0)s^3}{3!} + \cdots$$

The idea of [m, n]-Padé approximant is to find coefficients of $R_{[m,n]}(s)$ via – matching their first n + m + 1 power series coefficients.

It can be shown that

 $- n = m \implies P_n(s) = Q_n(-s).$

Example: [2, 2]-Padé approximant

In this case $R_{[2,2]}(s) = rac{s^2 - q_1 s + q_0}{s^2 + q_1 s + q_0}$ and power series are

$$e^{-s} = 1 - s + \frac{s^2}{2} - \frac{s^3}{6} + \frac{s^4}{24} - \cdots$$
$$R_{[2,2]}(s) = 1 - \frac{2q_1}{q_0}s + \frac{2q_1^2}{q_0^2}s^2 - \frac{2(q_1^3 - q_1q_0)}{q_0^3}s^3 + \frac{2(q_1^4 - 2q_1^2q_0)}{q_0^4}s^4 - \cdots$$

from which

$$q_0 = 2q_1$$
 and $rac{q_1-2}{4q_1} = rac{1}{6}$

and then $q_1 = 6$ and $q_0 = 12$, matching 5 coefficients.

Thus, [2, 2]-Padé approximant is

$$e^{-s} \approx rac{s^2 - 6s + 12}{s^2 + 6s + 12} = rac{1 - rac{s}{2} + rac{s^2}{12}}{1 + rac{s}{2} + rac{s^2}{12}}$$

Example: [2, 2]-Padé approximant

In this case $R_{[2,2]}(s) = rac{s^2 - q_1 s + q_0}{s^2 + q_1 s + q_0}$ and power series are

$$e^{-s} = 1 - s + \frac{s^2}{2} - \frac{s^3}{6} + \frac{s^4}{24} - \cdots$$
$$R_{[2,2]}(s) = 1 - \frac{2q_1}{q_0}s + \frac{2q_1^2}{q_0^2}s^2 - \frac{2(q_1^3 - q_1q_0)}{q_0^3}s^3 + \frac{2(q_1^4 - 2q_1^2q_0)}{q_0^4}s^4 - \cdots$$

from which

$$q_0 = 2q_1$$
 and $rac{q_1-2}{4q_1} = rac{1}{6}$

and then $q_1 = 6$ and $q_0 = 12$, matching 5 coefficients.

Thus, [2, 2]-Padé approximant is

$$e^{-s} \approx \frac{s^2 - 6s + 12}{s^2 + 6s + 12} = \frac{1 - \frac{s}{2} + \frac{s^2}{12}}{1 + \frac{s}{2} + \frac{s^2}{12}}.$$

Truncation-based methods: Padé approximant (contd)

General formula for [n, n]-Padé approximant is

$$e^{-s} \approx \frac{\sum_{i=0}^{n} \binom{n}{i} \frac{(2n-i)!}{(2n)!} (-s)^{i}}{\sum_{i=0}^{n} \binom{n}{i} \frac{(2n-i)!}{(2n)!} s^{i}} = \frac{\sum_{i=0}^{n} \frac{(2n-i)!n!}{(2n)!(n-i)!n!} (-s)^{i}}{\sum_{i=0}^{n} \frac{(2n-i)!n!}{(2n)!(n-i)!n!} s^{i}}$$

This yields:

$$\frac{n}{e^{-\tau s}} \approx \frac{1 - \frac{\tau s}{2}}{1 + \frac{\tau s}{2}} \frac{1 - \frac{\tau s}{2} + \frac{\tau^2 s^2}{12}}{1 + \frac{\tau s}{2} + \frac{\tau^2 s^2}{12}} \frac{1 - \frac{\tau s}{2} + \frac{\tau^2 s^2}{10} - \frac{\tau^3 s^3}{120}}{1 + \frac{\tau s}{2} + \frac{\tau^2 s^2}{10} + \frac{\tau^3 s^3}{120}} \frac{1 - \frac{\tau s}{2} + \frac{3\tau^2 s^2}{28} - \frac{\tau^3 s^3}{84} + \frac{\tau^4 s^4}{1680}}{1 + \frac{\tau s}{28} + \frac{\tau^3 s^3}{128} + \frac{\tau^4 s^4}{1680}}$$

It can be proved that

− [n, n]-Padé approximation is stable for all $n \in \mathbb{N}$.

Padé approximant: example

Let $e^{-s}/(s+1)$. Its Padé approximant can be calculated with the Matlab command pade(tf(1, [1 1], 'InputDelay', 1), N).

Padé approximant: example (contd)

We may also compare step responses

Padé approximant: example (contd)

We may also compare step responses and Nichols charts

From loop shaping perspectives,

approximation performance depends on crossover requirements.

Padé approximant: example (contd)

Increasing approximants orders improves the match between step responses of $e^{-s}/(s+1)$ and its Padé approximation:

Padé approximant: example (contd)

Increasing approximants orders improves the match between step responses of $e^{-s}/(s+1)$ and its Padé approximation:

Not true for the approximation of the pure delay e^{-s} !

Time-delay systems (mostly from IC)

Time delays and feedback (mostly from IC)

Rational approximations of time delays

Introduction to dead-time compensation

Modified Smith predictor (optional self-study)

Infinite dimensional for infinite dimensional

In many cases,

 controller complexity should be compatible to plant complexity, since controller should, in a sense, "counteract" plant dynamics.

Plant with dead time,

 $- P \bar{D}_{\tau}$, is an infinite dimensional.

We may, hence, expect that we can do better by using infinite-dimensional controllers. In doing this, the following aspects are of primary importance:

- small number of design parameters;
- implementability;
- design transparency.

Infinite dimensional for infinite dimensional

In many cases,

 controller complexity should be compatible to plant complexity, since controller should, in a sense, "counteract" plant dynamics.

Plant with dead time,

 $- P\bar{D}_{\tau}$, is an infinite dimensional.

We may, hence, expect that we can do better³ by using infinite-dimensional controllers. In doing this, the following aspects are of primary importance:

- small number of design parameters;
- implementability;
- design transparency.

³If the phase lag due to delay at the intended crossover is sufficiently large.

Smith controller

Otto J. M. Smith (1957) proposed

or, equivalently, in the unity-feedback form

where the overall controller $e \mapsto u$ has the irrational transfer function $C(s) = \frac{\tilde{C}(s)}{1 + P(s)(1 - e^{-\tau s})\tilde{C}(s)}.$

Smith controller: rationale

The signal

$$\begin{split} \tilde{y} &= y + P(1 - ar{D}_{ au})u = P(d + ar{D}_{ au}u) + P(1 - ar{D}_{ au})u \ &= P(d + u) \end{split}$$

would be the output in the delay-free case. The internal feedback block $-P(1-\bar{D}_{\tau})$, dubbed the Smith predictor or dead-time compensator, helps to predict the plant output τ time units ahead.

Smith controller: rationale

The signal

$$\begin{split} \tilde{y} &= y + P(1 - ar{D}_{ au})u = P(d + ar{D}_{ au}u) + P(1 - ar{D}_{ au})u \ &= P(d + u) \end{split}$$

would be the output in the delay-free case. The internal feedback block $-P(1-\bar{D}_{\tau})$, dubbed the Smith predictor or dead-time compensator, helps to predict the plant output τ time units ahead. The designed part is - the primary controller \tilde{C} .

Smith controller: the trick

The transfer function of the closed-loop system $r \mapsto y$ is

$$T(s) = \frac{P(s)\tilde{C}(s)}{1+P(s)\tilde{C}(s)} e^{-\tau s} =: \tilde{T}(s) e^{-\tau s}$$

Note that

denominator of the closed-loop transfer function is delay free.
 We may expect that if C
 stabilizes P, then C stabilizes PD_x.

Smith controller: the trick

The transfer function of the closed-loop system $r \mapsto y$ is

$$T(s) = \frac{P(s)\tilde{C}(s)}{1+P(s)\tilde{C}(s)} e^{-\tau s} =: \tilde{T}(s) e^{-\tau s}.$$

Note that

- denominator of the closed-loop transfer function is delay free. We may expect that if \tilde{C} stabilizes P, then C stabilizes $P\bar{D}_{\tau}$.

Smith controller: design paradigm

The following two-stage procedure appears natural:

1. design primary controller \tilde{C} for delay-free plant, P;

2. **implement** primary controller in combination with the Smith predictor. It yields a

- finite-dimensional design with an infinite-dimensional controller,
- small number of tuning parameters (those of $ilde{C}$),
- implementability (the only infinite-dimensional part, $ar{D}_{ au}$, is a buffer)
Smith controller: design example 1

Here the primary controller is PI (implemented to avoid zeros in $r \mapsto y$)

$$ilde{C}(s) = k_\mathsf{p}\Big(1+rac{1}{ au_\mathsf{i}s}\Big) = rac{k_\mathsf{p}(au_\mathsf{i}s+1)}{ au_\mathsf{i}s}.$$

We aim at

- "good" step response and "good" disturbance attenuation and hope for the

- transparency of tuning k_p and τ_i
- (i.e. that their "good" choices result in "good" overall controller C).

Design example 1: stage 1

Delay-free system:

Its characteristic polynomial,

$$\tilde{\chi}_{cl}(s) = k_p(\tau_i s + 1) + \tau_i s(s + a) = \tau_i s^2 + \tau_i (a + k_p)s + k_p$$

is Hurwitz iff either $\tau_i > 0 \land k_p > \max\{-a, 0\}$ or $\tau_i < 0 \land k_p < \min\{-a, 0\}$. The closed-loop transfer functions,

$$\left[egin{array}{c} { ilde{\mathcal{T}}_{yr}(s)} \\ { ilde{\mathcal{T}}_d(s)} \end{array}
ight] = \left[egin{array}{c} k_{\mathsf{p}} \\ { au_{\mathsf{i}}s} \end{array}
ight] rac{1}{{ au_{\mathsf{i}}s^2 + { au_{\mathsf{i}}(a+k_{\mathsf{p}})s+k_{\mathsf{p}}}},$$

are easy to understand (with $\tilde{T}_{yr}(0) = 1$ and $\tilde{T}_d(0) = 0$ because of "I").

Design example 1: stage 1 (contd)

Let's choose

$$k_{\mathsf{p}} = au_{\mathsf{i}} = 2 - a,$$

for which

$$ilde{T}_{yr}(s)=rac{1}{(s+1)^2} \quad ext{and} \quad ilde{T}_d(s)=rac{s}{(s+1)^2}$$

(if a = 2 we end up with the I controller $\tilde{C}(s) = 1/s$, otherwise $\tilde{C}(s)$ is PI).

Design example 1: stage 2 (a > 0, stable plant)

Closed-loop step responses:

- reference responses are as expected
- disturbance responses are not always (decays slow for small a) why?

Design example 1: stage 2 (a = 0, intergator)

Closed-loop step responses:

- reference response is as expected
- disturbance response is not $(\lim_{t o\infty} y_d(t) = 1
 eq 0)$ why?

Design example 1: stage 2 (a < 0, unstable plant)

Closed-loop step responses:

- reference responses are as expected
- disturbance responses are not (diverge!)

why?

Smith controller: pole-zero cancellations

Let

$$P(s) = rac{N_P(s)}{D_P(s)} \quad ext{and} \quad ilde{C}(s) = rac{N_{ ilde{C}}(s)}{D_{ ilde{C}}(s)}$$

and assume that these fractions are irreducible. Then

$$C(s) = \frac{\tilde{C}(s)}{1 + P(s)\tilde{C}(s)(1 - e^{-\tau s})} = \frac{D_P(s)N_{\tilde{C}}(s)}{D_P(s)D_{\tilde{C}}(s) + N_P(s)N_{\tilde{C}}(s)(1 - e^{-\tau s})}$$

and, excluding the obvious case when $\tilde{C}(s)$ cancels poles of P(s),

- poles of P(s) are zeros of C(s), unless they are zeros of $1 - e^{-\tau s}$ too.

Pole-zero cancellations: implications

Smith controller is

- ∴ internally unstable whenever *P* is unstable (unless⁴ all unstable poles of *P*(*s*) are zeros of $1 - e^{-\tau s}$, which are at $j\frac{2\pi}{h}k$, $\forall k \in \mathbb{Z}$)
- $\ddot{\neg}$ inefficient in attenuating load disturbances if *P* has "slow" poles
- $\ddot{\sim}$ inefficient in dampening lightly-damped dynamics of the plant

⁴This is what happened in the example with a = 0.

Smith controller: disturbance response

Disturbance sensitivity

$$T_{\mathsf{d}}(s) = rac{1+P(s) ilde{\mathcal{C}}(s)(1-\mathsf{e}^{- au s})}{1+P(s) ilde{\mathcal{C}}(s)}P(s) = ilde{T}_{\mathsf{d}}(s) + ilde{T}(s)(1-\mathsf{e}^{- au s})P(s)$$

is indeed unstable, unless all CRHP poles of P(s) are canceled by $1 - e^{-\tau s}$.

– a "good" $T_{d}(s)$ does not necessarily result in a "good" $T_{d}(s)$

(because the relation between $|T_d(j\omega)|$ and $|\tilde{T}_d(j\omega)|$ is complicated, unless $|\tilde{T}(j\omega)(1-e^{-j\omega h})P(j\omega)| \ll 1$).

Smith controller: disturbance response

Disturbance sensitivity

$$T_{\mathsf{d}}(s) = \frac{1 + P(s)\tilde{\mathcal{C}}(s)(1 - \mathrm{e}^{-\tau s})}{1 + P(s)\tilde{\mathcal{C}}(s)}P(s) = \tilde{T}_{\mathsf{d}}(s) + \tilde{T}(s)(1 - \mathrm{e}^{-\tau s})P(s)$$

is indeed unstable, unless all CRHP poles of P(s) are canceled by $1 - e^{-\tau s}$. Also note that

- a "good" $\tilde{T}_{d}(s)$ does not necessarily result in a "good" $T_{d}(s)$ (because the relation between $|T_{d}(j\omega)|$ and $|\tilde{T}_{d}(j\omega)|$ is complicated, unless $|\tilde{T}(j\omega)(1 - e^{-j\omega h})P(j\omega)| \ll 1$).

Smith controller: integral action in the controller

If $ilde{C}(s)=rac{1}{s} ilde{C}_0(s)$ for some $ilde{C}_0(s)$ such that $| ilde{C}_0(0)|<\infty$, then

$$C(s) = \frac{\tilde{C}(s)}{1 + (1 - e^{-\tau s})P(s)\tilde{C}(s)} = \frac{\tilde{C}_0(s)}{s + (1 - e^{-\tau s})P(s)\tilde{C}_0(s)}$$

and there is an

- integrator in $C \iff \lim_{s \to 0} (1 - e^{-\tau s})P(s) = 0$

(i.e. the predictor part has zero static gain).

- design of C is transparent at frequencies where the predictor gain is low, i.e. $|(1 - e^{-j\tau \omega})P(j\omega)| \ll 1$.

Smith controller: integral action in the controller

If $ilde{C}(s)=rac{1}{s} ilde{C}_0(s)$ for some $ilde{C}_0(s)$ such that $| ilde{C}_0(0)|<\infty$, then

$$C(s) = \frac{\tilde{C}(s)}{1 + (1 - e^{-\tau s})P(s)\tilde{C}(s)} = \frac{\tilde{C}_0(s)}{s + (1 - e^{-\tau s})P(s)\tilde{C}_0(s)}$$

and there is an

- integrator in $C \iff \lim_{s \to 0} (1 e^{-\tau s}) P(s) = 0$
- (i.e. the predictor part has zero static gain). As a general rule,
 - design of \tilde{C} is transparent at frequencies where the predictor gain is low, i.e. $|(1 e^{-j\tau\omega})P(j\omega)| \ll 1$.

Design example 1: controller static gain

We have that

$$\lim_{s \to 0} \frac{1 - e^{-s}}{s + a} = \begin{cases} 1 & \text{if } a = 0 \\ 0 & \text{otherwise} \end{cases} \implies \lim_{s \to 0} C(s) = \begin{cases} 1 & \text{if } a = 0 \\ \infty & \text{otherwise} \end{cases}$$

This agrees with simulations, where the disturbance was rejected in steady state only with a > 0, but not with a = 0.

Time-delay systems (mostly from IC)

Time delays and feedback (mostly from IC)

Rational approximations of time delays

Introduction to dead-time compensation

Modified Smith predictor (optional self-study)

Modified Smith predictor

Some problems may be resolved in the Modified Smith Predictor (MSP):

where

$$\Pi = \tilde{P} - P\bar{D}_{\tau},$$

for some \tilde{P} , having rational and proper $\tilde{P}(s)$, which may be different from P. This Π also compensates the delay:

$$\tilde{y} = P(d + \bar{D}_{\tau}u) + (\tilde{P} - P\bar{D}_{\tau})u = Pd + \tilde{P}u,$$

although no longer predicts the delay-free output P(d + u).

Modified Smith predictor (contd)

The transfer function of the closed-loop system $r \mapsto y$ is then

$$T(s) = rac{P(s) ilde{C}(s)}{1+ ilde{P}(s) ilde{C}(s)} \, \mathrm{e}^{- au s}$$

and its denominator is delay free (a standard polynomial if $\tilde{C}(s)$ is rational).

The two-stage design procedure may then be modified as follows: 1. design primary controller \tilde{C} for \tilde{P} ;

2. implement primary controller in combination with IL.

Modified Smith predictor (contd)

The transfer function of the closed-loop system $r \mapsto y$ is then

$$T(s) = rac{P(s) ilde{C}(s)}{1+ ilde{P}(s) ilde{C}(s)} \, \mathrm{e}^{- au s}$$

and its denominator is delay free (a standard polynomial if $\tilde{C}(s)$ is rational).

The two-stage design procedure may then be modified as follows:

- 1. design primary controller \tilde{C} for \tilde{P} ;
- 2. implement primary controller in combination with Π .

MSP: pole-zero cancellations

Let

$$P(s) = rac{N_P(s)}{D_P(s)}, \quad ilde{P}(s) = rac{N_{ ilde{P}}(s)}{D_P(s)}, \quad ext{and} \quad ilde{C}(s) = rac{N_{ ilde{C}}(s)}{D_{ ilde{C}}(s)}$$

be irreducible $(\tilde{P}(s)$ is frequently chosen to have the same denominator as P(s), although it need not). In this case

$$C(s) = \frac{\tilde{C}(s)}{1 + \tilde{C}(s)\Pi(s)} = \frac{D_P(s)N_{\tilde{C}}(s)}{D_P(s)D_{\tilde{C}}(s) + N_{\tilde{C}}(s)(N_{\tilde{P}}(s) - N_P(s)e^{-\tau s})}$$

and, excluding the obvious case when $\tilde{C}(s)$ cancels poles of $\tilde{P}(s)$,

- poles of P(s) are zeros of C(s), unless zeros of $N_{\tilde{P}}(s) - N_{P}(s)e^{-\tau s}$ too.

Pole-zero cancellations: implications

deg $D_P(s) + 1$ free parameters in $N_{\tilde{P}}(s)$ can be used to

- assign zeros of $N_{\Pi}(s) := N_{\tilde{P}}(s) - N_{P}(s)e^{-\tau s}$ at points of need.

This can be used to

- prevent unstable cancellations \implies internal stability
- avoid harmful stable cancellations \implies better disturbance attenuation
- render the logic in the choice of \tilde{C} more streamlined (transparency)

MSP: stability

There are no unstable cancellations between C(s) and P(s) iff all unstable poles of P(s) are zeros of $N_{\Pi}(s)$. Because

$$\Pi(s) = \frac{N\tilde{\rho}(s)}{D_P(s)} - \frac{N_P(s)}{D_P(s)} e^{-\tau s} = \frac{N_\Pi(s)}{D_P(s)},$$

there are

- no unstable pole-zero cancellations in MSP iff Π is stable itself and then the closed-loop system is internally stable iff \tilde{C} stabilizes \tilde{P} .

MSP: design example 2

lf

$$ilde{P}(s) = rac{\mathrm{e}^a}{s+a} \quad \Longrightarrow \quad \Pi(s) = rac{\mathrm{e}^a - \mathrm{e}^{-s}}{s+a}.$$

In this case

$$\lim_{s \to a} \Pi(s) = \lim_{s \to a} \frac{\mathrm{e}^a - \mathrm{e}^{-s}}{s+a} = \lim_{s \to a} \mathrm{e}^{-s} = \mathrm{e}^{-h}$$

is finite, so the singularity at s = -a is removable (i.e. not a pole)⁵.

⁵The implementation of this $\Pi(s)$ might not be straightforward if $a \leq 0$. Yet this issue goes beyond our scope here, just know that $\Pi(s)$ can be implemented.

Design example 2: stage 1

Delay-free system:

Its characteristic polynomial,

$$\tilde{\chi}_{cl}(s) = k_{p}e^{a}(\tau_{i}s+1) + \tau_{i}s(s+a) = \tau_{i}s^{2} + \tau_{i}(a+k_{p}e^{a})s + k_{p}e^{a},$$

is stable iff either $\tau_i > 0 \land k_p > \max\{-\frac{a}{e^a}, 0\}$ or $\tau_i < 0 \land k_p < \min\{-\frac{a}{e^a}, 0\}$. The closed-loop transfer functions,

$$\begin{bmatrix} \tilde{T}_{yr}(s) \\ \tilde{T}_{d}(s) \end{bmatrix} = \begin{bmatrix} k_{\rm p} \\ \tau_{\rm i}s \end{bmatrix} \frac{{\rm e}^a}{\tau_{\rm i}s^2 + \tau_{\rm i}(a+k_{\rm p}{\rm e}^a)s + k_{\rm p}{\rm e}^a},$$

are still easy to understand $(\tilde{T}_{yr}(0) = 1 \text{ and } \tilde{T}_d(0) = 0$ because of "I").

Design example 2: stage 1 (contd)

Let's choose

$$k_{\mathsf{p}} = \mathsf{e}^{-\mathsf{a}}(2-\mathsf{a})$$
 and $au_{\mathsf{i}} = 2-\mathsf{a},$

for which

$$ilde{T}_{yr}(s) = rac{1}{(s+1)^2} \quad ext{and} \quad ilde{T}_d(s) = rac{\mathrm{e}^a s}{(s+1)^2}$$

(if a = 2 we end up with the I controller $\tilde{C}(s) = 1/s$, otherwise $\tilde{C}(s)$ is PI).

Design example 2: stage 2

Closed-loop step responses, now converging:

- reference responses are not as expected $(\lim_{t\to\infty} y_r(t) = e^{-a} \neq 1)$
- disturbance responses are not as expected
 $(\lim_{t\to\infty} y_d(t) = \frac{1-e^{-a}}{a} \neq 0)$

What's wrong now?

MSP: integral action in the controller

Let $\tilde{C}(s)=rac{1}{s}\tilde{C}_0(s)$ for some $\tilde{C}_0(s)$ such that $|\tilde{C}_0(0)|<\infty.$ Then

$$\mathcal{C}(s) = rac{ ilde{\mathcal{C}}(s)}{1+\Pi(s) ilde{\mathcal{C}}(s)} = rac{ ilde{\mathcal{C}}_0(s)}{s+\Pi(s) ilde{\mathcal{C}}_0(s)}$$

and there is an

 $- \ \, \text{integrator in} \ \, C(s) \ \Longleftrightarrow \ \, \lim_{s \to 0} \Pi(s) = 0$

(i.e. the predictor part has zero static gain).

- design of C(s) is transparent at frequencies where the predictor gain is low, i.e. $|\Pi(j\omega)| \ll 1$.

MSP: integral action in the controller

Let $ilde{C}(s)=rac{1}{s} ilde{C}_0(s)$ for some $ilde{C}_0(s)$ such that $| ilde{C}_0(0)|<\infty.$ Then

$$\mathcal{C}(s) = rac{ ilde{\mathcal{C}}(s)}{1+\Pi(s) ilde{\mathcal{C}}(s)} = rac{ ilde{\mathcal{C}}_0(s)}{s+\Pi(s) ilde{\mathcal{C}}_0(s)}$$

and there is an

 $- \ \, \text{integrator in} \ \, {\cal C}(s) \ \Longleftrightarrow \ \, \lim_{s \to 0} \Pi(s) = 0$

(i.e. the predictor part has zero static gain). As a general rule, again,

– design of $\tilde{C}(s)$ is transparent at frequencies where the predictor gain is low, i.e. $|\Pi(j\omega)| \ll 1$.

Design example 2: controller static gain

We have that

$$\lim_{s\to 0}\Pi(s)=\lim_{s\to 0}\frac{\mathrm{e}^a-\mathrm{e}^{-s}}{s+a}=\frac{\mathrm{e}^a-1}{a}\implies \lim_{s\to 0}C(s)=\frac{a}{\mathrm{e}^a-1}.$$

Because the static gain of the plant is 1/a, we have that

$$T_d(0) = \frac{1/a}{1+1/(e^a - 1)} = \frac{1 - e^{-a}}{a} \neq 0$$

(monotonically decreasing function of *a*, in agreement with simulations).

MSP: design example 3

Consider a more general

$$ilde{P}(s) = rac{lpha_1 s + lpha_0}{s + a} \quad \Longrightarrow \quad \Pi(s) = rac{lpha_1 s + lpha_0 - \mathrm{e}^{-s}}{s + a}$$

and try to impose the following constraints:

- 1. $|\Pi(-a)| < \infty$ if a is small enough (say $a \le 3$) (to prevent canceling the problematic—unstable or slow stable—pole of the plant)
- 2. $\Pi(0) = 0$

(to keep integral action in the PI $\tilde{C}(s)$)

MSP: design example 3 (contd)

These conditions yield (mind that $\lim_{s \to 0} (1-{\rm e}^{-s})/s = 1 < \infty)$

$$\left\{\begin{array}{ll} \alpha_0 - \alpha_1 a = \mathrm{e}^a \\ \alpha_0 = 1 \end{array} \right. \iff \left(\alpha_0 = 1\right) \land \left(\alpha_1 = \left\{\begin{array}{ll} \frac{1 - \mathrm{e}^a}{a} & \text{if } a \leq 3 \\ 0 & \text{otherwise} \end{array}\right)\right.$$

Thus, considering only the nontrivial case of $a \leq 3$, we have

and end up with the (bi-proper and nonminimum-phase)

$$ilde{P}(s) = rac{-lpha s + 1}{s + a},$$

where $\alpha := \frac{e^{t}-1}{a} \in (0, 6.36)$. For larger *a*'s this parameter α grows rapidly, which is numerically inconvenient...

MSP: design example 3 (contd)

These conditions yield (mind that $\lim_{s \to 0} (1-{\rm e}^{-s})/s = 1 < \infty)$

$$\left\{\begin{array}{ll} \alpha_0 - \alpha_1 a = \mathrm{e}^a \\ \alpha_0 = 1 \end{array} \iff \left(\alpha_0 = 1\right) \land \left(\alpha_1 = \begin{cases} \frac{1 - \mathrm{e}^a}{a} & \text{if } a \leq 3 \\ 0 & \text{otherwise} \end{cases}\right)$$

Thus, considering only the nontrivial case of $a \leq 3$, we have

and end up with the (bi-proper and nonminimum-phase)

$$ilde{P}(s) = rac{-lpha s + 1}{s + a},$$

where $\alpha := \frac{e^a - 1}{a} \in (0, 6.36)$. For larger *a*'s this parameter α grows rapidly, which is numerically inconvenient...

Design example 3: stage 1

The characteristic polynomial,

$$egin{split} \widetilde{\chi}_{\mathsf{cl}}(s) &= k_\mathsf{p}(-lpha s+1)(au_\mathsf{i}s+1) + au_\mathsf{i}s(s+a) \ &= au_\mathsf{i}(1-lpha k_\mathsf{p})s^2 + (au_\mathsf{i}(a+k_\mathsf{p})-lpha k_\mathsf{p})s+k_\mathsf{p} \end{split}$$

and the closed-loop transfer functions,

$$\begin{bmatrix} \tilde{T}_{yr}(s) \\ \tilde{T}_{d}(s) \end{bmatrix} = \begin{bmatrix} k_{p} \\ \tau_{i}s \end{bmatrix} \frac{-\alpha s + 1}{\tau_{i}(1 - \alpha k_{p})s^{2} + (\tau_{i}(a + k_{p}) - \alpha k_{p})s + k_{p}}$$

are still second-order. Mind that now $\tilde{T}_d(s)$ is bi-proper and both $\tilde{T}_{yr}(s)$ and $\tilde{T}_d(s)$ have a RHP zero, which might be misleading (the responses of the original system are inertial and should not normally exhibit undershoot).

Design example 3: stage 1 (contd)

Let's choose

$$k_{\rm p} = \frac{a({\rm e}^a - (a-1)^2)}{({\rm e}^a + a - 1)^2} > 0.099 \quad \text{and} \quad \tau_{\rm i} = \frac{1 - {\rm e}^{-a}(a-1)^2}{a} > 0.267,$$

(with $\lim_{a\to 0} k_p = \frac{3}{4}$ and $\lim_{a\to 0} \tau_i = 3$) for which

$$ilde{T}_{yr}(s)=rac{-lpha s+1}{(s+1)^2} \quad ext{and} \quad ilde{T}_d(s)=rac{s(-lpha s+1)}{(s+1)^2}.$$

Design example 3: stage 2

Closed-loop step responses now have no remainings of plant dynamics:

As a matter of fact, in this case $T_{yr}(s) = rac{e^{-s}}{(s+1)^2}$ and

$$T_d(s) = \frac{e^{-a}}{a} s \left(\frac{1 - e^{-s}}{s} - \frac{e^a - e^{-s}}{s + a} + \frac{(e^a - 1)s + 2e^a + a - 2}{(s + 1)^2} e^{-s} \right),$$

so both s = 0 and s = -a are removable singularities (not poles) of $T_d(s)$.

MSP: loop transfer function

Loops can be analyzed in terms of their return difference transfer functions:

- $-\,$ at frequencies where $|1+{\it L}({
 m j}\omega)|\gg 1$, the loop gain is high;
- $-\;$ at frequencies where $|1+\textit{L}(j\omega)|\approx 1,$ the loop gain is low;
- $-\;$ at frequencies where $|1+L({
 m j}\omega)|\ll 1$, it is close to the critical point.

The MSP return difference for the actual loop $L(s) = P(s)e^{-\tau s}C(s)$ is

$1+L(s)=1+\frac{P(s)\mathrm{e}^{-\tau s}\tilde{C}(s)}{1+\Pi(s)\tilde{C}(s)}=\frac{1+\tilde{P}(s)\tilde{C}(s)}{1+\Pi(s)\tilde{C}(s)}=\frac{1+\tilde{L}(s)}{1+\Pi(s)\tilde{C}(s)},$

where $ilde{L}(s)= ilde{P}(s) ilde{C}(s)$ is the designed loop in stage 1.

MSP: loop transfer function

Loops can be analyzed in terms of their return difference transfer functions:

- at frequencies where $|1+L({
 m j}\omega)|\gg 1$, the loop gain is high;
- $-\;$ at frequencies where $|1+\textit{L}(j\omega)|\approx 1,$ the loop gain is low;
- $-\;$ at frequencies where $|1+\textit{L}(j\omega)|\ll 1,$ it is close to the critical point.

The MSP return difference for the actual loop $L(s) = P(s)e^{-\tau s}C(s)$ is

$$1 + L(s) = 1 + \frac{P(s)e^{-\tau s}\tilde{C}(s)}{1 + \Pi(s)\tilde{C}(s)} = \frac{1 + \tilde{P}(s)\tilde{C}(s)}{1 + \Pi(s)\tilde{C}(s)} = \frac{1 + \tilde{L}(s)}{1 + \Pi(s)\tilde{C}(s)},$$

where $\tilde{L}(s) = \tilde{P}(s)\tilde{C}(s)$ is the designed loop in stage 1.

MSP: loop transfer function (contd)

Thus, the relation between the designed and actual loops, can be seen in

$$|1+L(j\omega)| = |S_C(j\omega)| |1+\tilde{L}(j\omega)|.$$

where $S_C(s) := \frac{1}{1+\Pi(s)\tilde{C}(s)}$ is the sensitivity function of the internal loop of the overall controller C(s). Thus,

$$\begin{split} |S_{\mathcal{C}}(j\omega)| &\approx 1 \implies \text{transparent design} \\ |S_{\mathcal{C}}(j\omega)| &\ll 1 \implies \text{poor } L(s), \text{ even from good } \tilde{L}(s) \\ |S_{\mathcal{C}}(j\omega)| \gg 1 \implies \text{possibly good } L, \text{ even from poor } \tilde{L}, \text{ but might yield} \\ &- \text{ high-gain } L \text{ when low-gain } \tilde{L} \text{ is designed} \\ &- \text{ fragile implementation of the controller internal} \\ &- \text{ loop} \end{split}$$

Note that $|S_C(j\omega)| \approx 1 \iff |\Pi(j\omega)\tilde{C}(j\omega)| \ll 1$, so it may make sense to - keep $|\Pi(j\omega)|$ small at frequencies of interest, which actually implies that $\tilde{P}(j\omega)$ should approximate $P(j\omega)e^{-j\tau\omega}$ there
MSP

MSP: loop transfer function (contd)

Thus, the relation between the designed and actual loops, can be seen in

$$|1 + L(j\omega)| = |S_C(j\omega)| |1 + \tilde{L}(j\omega)|.$$

where $S_C(s) := \frac{1}{1+\Pi(s)\tilde{C}(s)}$ is the sensitivity function of the internal loop of the overall controller C(s). Thus,

$$\begin{split} |S_{C}(j\omega)| &\approx 1 \implies \text{transparent design} \\ |S_{C}(j\omega)| &\ll 1 \implies \text{poor } L(s), \text{ even from good } \tilde{L}(s) \\ |S_{C}(j\omega)| \gg 1 \implies \text{possibly good } L, \text{ even from poor } \tilde{L}, \text{ but might yield} \\ &- \text{ high-gain } L \text{ when low-gain } \tilde{L} \text{ is designed} \\ &- \text{ fragile implementation of the controller internal} \\ &- \text{ loop} \end{split}$$

Note that $|S_C(j\omega)| \approx 1 \iff |\Pi(j\omega)\tilde{C}(j\omega)| \ll 1$, so it may make sense to - keep $|\Pi(j\omega)|$ small at frequencies of interest,

which actually implies that $\tilde{P}(j\omega)$ should approximate $P(j\omega)e^{-j\tau\omega}$ there...

MSP

Design example 3: loop transfer function

Here

$$S_{C}(s) = rac{a(lpha+1)^{2}}{{
m e}^{a}a+{
m e}^{a}rac{1-{
m e}^{-s}}{s}-(a-1)^{2}rac{{
m e}^{a}-{
m e}^{-s}}{s+a}},$$

where $\alpha = \frac{e^a - 1}{a}$. It verifies $|S_C(j\omega)| > 1$ for all a and all ω :

some plots should be here, perhaps...