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Delay element in time domain

D̄� uy

tt t + �

I/O relation:
y = D̄�u ⇐⇒ y(t) = u(t − �)

This system is

− linear
D̄� (˛1u1 + ˛2u2) = ˛1u1(t − �) + ˛2u2(t − �) = ˛1(D̄�u1) + ˛2(D̄�u2)

− time invariant
D̄�1(S�2u) = u(t − �2 − �1) = S�2(D̄�1u)

− BIBO stable
∥y∥∞ = ∥u∥∞ for all u ∈ L∞
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− BIBO stable1

∥y∥∞ = ∥u∥∞ for all u ∈ L∞

1L∞ ··= {x : R → R | ∥x∥∞ <∞}, where ∥x∥∞ ··= supt∈R |x(t)|
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Delay element in s-domain

D̄� uy

tt t + �

By the time shift property of the Laplace transform:

y(t) = u(t − �) ⇐⇒ Y (s) = e−�sU(s)

Thus, delay element has the transfer function

D̄� (s) = e−�s :

This transfer function is

− irrational,

so D̄� is an infinite-dimensional system.
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Frequency response

Now,
e−�s |s=j! = e−j�! = cos(�!)− j sin(�!)

and it has

− unit magnitude (|ej�! | ≡ 1) and

− linearly decaying phase (arg ej�! = −�!, in radians if ! is in rad/sec)
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Why delays?

− Ubiquitous in physical processes

− loop delays
− process delays
− . . .

− Compact/economical approximations of complex dynamics

− Exploiting delays to improve performance
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Loop delays: steel rolling

Thickness can only be measured at some distance from rolls, leading to

− measurement delays
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Loop delays: networked control

Plant

Controller

Network

Sampling, encoding, transmission, decoding need time. This gives rise to

− measurement delays

− actuation delays
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Loop delays: temperature control

Everybody experienced this, I guess. . .
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Delays as modeling tool: heating a can

Transfer function of a heated can (derived from a PDE model):

G (s) = 1

J0
(√−s

˛ R
) +

∞∑
m=1

2
�mR J1(�mR)

s
s+˛�2

m

1

cosh
(√

s
˛+�

2
m·

L
2

) :
Its approximation by G2(s) =

1
(�1s+1)(�2s+1) e

−�s is reasonably accurate:
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Delays as modeling tool: process control

Consider a process described by

P(s) =
(−0:3s + 1)(0:08s + 1)

(2s + 1)(s + 1)(0:4s + 1)(0:2s + 1)(0:05s + 1)3
:

Its “second-order+delay” approximation (found by a brute-force search),

P2(s) =
1

(1:19s + 1)(1:91s + 1)
e−0:865s ;

is quite accurate, yet includes less parameters to identify:

0.865 5 10 t

y
(t
)

1

step response of P(s)
step response of P2(s)
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Systems with loop delays

CP D̄�
remu

d

y

ymn

−

where

P plant, has a rational transfer function

C controller, has a rational transfer function
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Effect of loop delay on characteristic polynomial

CP D̄�
remu

d

y

ymn

−

If P(s) = NP(s)=DP(s) and C (s) = NC (s)=DC (s), then

�cl(s) = e−�sNP(s)NC (s) + DP(s)DC (s)

has infinitely many roots (this �cl(s) called quasi-polynomial).

Example

Let P(s) = 1 and C (s) = kp. Then

�cl(s) = kpe
−�s + 1

has roots at �s = ln kp + j(� + 2� i) for all i ∈ Z.
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Effect of loop delay on closed-loop frequency response

CP D̄�
remu

d

y

ymn

−

For instance,

T (j!) =
P(j!)C (j!)e−j�!

1 + P(j!)C (j!)e−j�!

might be very complicated function of !.

Example

Again, let P(s) = 1 and C (s) = kp < 1.
Then for kp = {0:5; 0:75}:

0

Frequency, ω (rad/sec)

M
a
g
n
it
u
d
e
(d

B
)



Time-delay systems Time delays and feedback Rational approximations Smith controller MSP

Effect of loop delay on closed-loop frequency response

CP D̄�
remu

d

y

ymn

−

For instance,

T (j!) =
P(j!)C (j!)e−j�!

1 + P(j!)C (j!)e−j�!

might be very complicated function of !.

Example

Again, let P(s) = 1 and C (s) = kp < 1.
Then for kp = {0:5; 0:75}: 0

Frequency, ω (rad/sec)

M
a
g
n
it
u
d
e
(d

B
)



Time-delay systems Time delays and feedback Rational approximations Smith controller MSP

Another scary example

remu

d

y

ymn

kp
1

s
e−�s

−

Comparing delay-free (� = 0) and delayed (� > 0) closed-loop systems

0

Frequency, ω (rad/sec)
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we can see that the presence of the delay considerably complicates matters.
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Effect of loop delay on L(j!)

L -

Let L(s) = Lr(s)e
−�s for some rational Lr(s). In this case

L(j!) = Lr(j!)e
−j�!

⇓

|L(j!)| = |Lr(j!)| and arg L(j!) = arg Lr(j!)− �!:

In other words, delay in this case

− does not change the magnitude of Lr(j!) and

− adds phase lag proportional to !,

which is not hard to account for.
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Effect of loop delay on L(j!): Bode diagram
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Effect of loop delay on L(j!): polar plot

Re

Im

Lr(j!)

Lr(j!)e−j�!

−1
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Effect of loop delay on L(j!): Nichols chart
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Nyquist stability criterion

L −

The idea is to

− use plot of L(j!) to count the number of closed-loop poles in RHP.

Namely, let L(s) have no unstable pole/zero cancellations and denote

nol number of unstable poles of L(s)

ncl number of unstable poles of 1
1+L(s)

κ number of clockwise encirclements of −1 + j0 by Nyquist plot of L(j!)
as ! runs from −∞ to ∞

In this case
ncl = nol + κ:
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What is changed for dead-time systems ?

LrD̄� −

Nothing, at least if the high-frequency gain of Lr(s) is not 1.

Remark: If |Lr(j∞)| = 1, the situation is quite complicated, the closed-loop
system might have no RHP poles and still be unstable, like for

Lr(s) =
s

s + 1

(explanations go beyond the scope of this course). It is safe to say that in
this case the closed-loop system is unstable, regardless its pole locations.
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Loop delays and closed-loop stability: “rigid” loops

For systems with “rigid” loops

− delay is a destabilizing factor

as it adds phase lag, thus imposing limitations on achievable crossover !c.

Bode’s gain-phase relation for L(s) = Lr(s)e
−�s (if Lr(s) is minimum-phase)

arg L(j!0) =
1

�

∫ ∞

−∞

d ln|Lr(j�)|
d�

ln coth
|�|
2
d� − �!0; where � ··= ln !

!0
;

so effect of delay is similar to effect of RHP zero.



Time-delay systems Time delays and feedback Rational approximations Smith controller MSP

Loop delays and closed-loop stability: “rigid” loops

For systems with “rigid” loops

− delay is a destabilizing factor

as it adds phase lag, thus imposing limitations on achievable crossover !c.

Bode’s gain-phase relation for L(s) = Lr(s)e
−�s (if Lr(s) is minimum-phase)

arg L(j!0) =
1

�

∫ ∞

−∞

d ln|Lr(j�)|
d�

ln coth
|�|
2
d� − �!0; where � ··= ln !

!0
;

so effect of delay is similar to effect of RHP zero.



Time-delay systems Time delays and feedback Rational approximations Smith controller MSP

Loop delays and closed-loop stability: “flexible” loops

For systems with “flexible” loops

− delay in some (very special) cases may be stabilizing factor,

yet this property shall be used with great care2.

2Don’t try it at home!
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Example

L(s) =
0:4

s2 + 0:1s + 1
:
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no closed-loop poles in RHP
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Example (contd)

L(s) =
0:4

s2 + 0:1s + 1
e−s :
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two closed-loop poles in RHP

− delay � = 1 is destabilizing
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Example (contd)
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Example (contd)
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0:4

s2 + 0:1s + 1
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− delay � = 5 is stabilizing (and stability margins > those with � = 0)
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Example (contd)
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Example (contd)

L(s) =
0:4

s2 + 0:1s + 1
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four closed-loop poles in RHP

− delay � = 11 is destabilizing again (and destabilizing for all larger �)
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Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is
not a surprise then that we want to approximate delay by finite-dimensional
(rational) elements, say R(s), to

− use standard methods in analysis and design,

− use standard software for simulations,

− avoid learning new methods,

− . . .

Approximation measure

We may consider as the approximation measure the quantity

�R ··= max
!∈R

|R(j!)− e−j�! |;

assuming that R(s) is stable.
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What to approximate: bad news

On the one hand,

− phase lag of the delay element is not bounded (and continuous in !).

On the other hand,

− rational systems can only provide finite phase lag.

Therefore, phase error between e−�s and any rational transfer function R(s)
is arbitrarily large. Moreover, for every R(s) there always is !0 such that

− arg e−j�! − argR(j!) continuously decreasing function of !, ∀! ≥ !0.

Hence there always is frequency !1 such that

arg e−j�!1 − argR(j!1) = −� − 2�k i.e.

e−j�!1

R(j!1)

and �R ≥ 1 for all R(s). Thus,

− rational approximation of pure delay, e−�s , is hopeless,

just because �R = 1 already for the trivial (and senseless) choice R(s) = 0.
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What to approximate: good news

We never work over infinite bandwidth. Hence, we

− need to approximate e−�s in finite frequency range

or, equivalently,

− approximate F (s)e−�s for some low-pass (strictly proper) F (s).

This can be done, since

− phase lag of delay over finite bandwidth is finite

and

− magnitude of F (j!)e−j�! decreases as ! increases,

which implies that at frequencies where the phase lag of F (j!)e−j�! large,
the function effectively vanishes.

Also, we may consider � = 1 w.l.o.g., otherwise s → s=� makes the trick.
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Truncation-based methods

General idea is to

− truncate some power series,

which could give accurate results in a (sufficiently large) neighborhood of 0.

Näıve approach. We may try it as follows:

e−s =
e−s=2

es=2
=

1− s=2
1!

+ s2=22

2!
− s3=23

3!
+ · · ·

1 + s=2
1!

+ s2=22

2!
+ s3=23

3!
+ · · ·

≈
1− s=2

1!
+ · · ·+ (−1)nsn=n2

n!

1 + s=2
1!

+ · · ·+ sn=n2

n!

for some n ∈ N. The problem is that this approximation is

− unstable whenever n > 4.

which is not convenient (e−s itself is stable). For example, for n = 5 this approach yields

e−s ≈ −s5 + 10s4 − 80s3 + 480s2 − 1920s + 3840

s5 + 10s4 + 80s3 + 480s2 + 1920s + 3840

with poles at {−4:361;−3:299± j3:388; 0:48± j6:257}. Thus, more sophisticated methods
are required . . .
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Truncation-based methods

General idea is to

− truncate some power series,

which could give accurate results in a (sufficiently large) neighborhood of 0.

Näıve approach. We may try it as follows:

e−s =
e−s=2

es=2
=

1− s=2
1!

+ s2=22

2!
− s3=23

3!
+ · · ·

1 + s=2
1!

+ s2=22

2!
+ s3=23

3!
+ · · ·

≈
1− s=2

1!
+ · · ·+ (−1)nsn=n2

n!

1 + s=2
1!

+ · · ·+ sn=n2

n!

for some n ∈ N. The problem is that this approximation is

− unstable whenever n > 4.

which is not convenient (e−s itself is stable). For example, for n = 5 this approach yields

e−s ≈ −s5 + 10s4 − 80s3 + 480s2 − 1920s + 3840

s5 + 10s4 + 80s3 + 480s2 + 1920s + 3840

with poles at {−4:361;−3:299± j3:388; 0:48± j6:257}. Thus, more sophisticated methods
are required . . .
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Truncation-based methods: Padé approximant

Consider approximation

e−s ≈ Pm(s)

Qn(s)
=·· R[m;n](s);

where Pm(s) and Qn(s) are polynomials of degrees m and n, respectively.
Power series at s = 0 of each side are

e−s = 1− s

1!
+

s2

2!
− s3

3!
+ · · ·

R[m;n](s) = R[m;n](0) +
R ′
[m;n](0)s

1!
+

R ′′
[m;n](0)s

2

2!
+

R ′′′
[m;n](0)s

3

3!
+ · · ·

The idea of [m; n]-Padé approximant is to find coefficients of R[m;n](s) via

− matching their first n +m + 1 power series coefficients.

It can be shown that

− n = m =⇒ Pn(s) = Qn(−s).
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It can be shown that

− n = m =⇒ Pn(s) = Qn(−s).
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Example: [2; 2]-Padé approximant

In this case R[2;2](s) =
s2−q1s+q0
s2+q1s+q0

and power series are

e−s = 1− s +
s2

2
− s3

6
+

s4

24
− · · ·

R[2;2](s) = 1− 2q1
q0

s +
2q21
q20

s2 − 2(q31 − q1q0)

q30
s3 +

2(q41 − 2q21q0)

q40
s4 − · · ·

from which

q0 = 2q1 and
q1 − 2

4q1
=

1

6

and then q1 = 6 and q0 = 12, matching 5 coefficients.

Thus, [2; 2]-Padé approximant is

e−s ≈ s2 − 6s + 12

s2 + 6s + 12
=

1− s
2 + s2

12

1 + s
2 + s2

12

:
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Truncation-based methods: Padé approximant (contd)

General formula for [n; n]-Padé approximant is

e−s ≈
∑n

i=0

(n
i

) (2n−i)!
(2n)! (−s)i∑n

i=0

(n
i

) (2n−i)!
(2n)! s i

=

∑n
i=0

(2n−i)!n!
(2n)!(n−i)! i! (−s)i∑n

i=0
(2n−i)!n!

(2n)!(n−i)! i! s
i

This yields:

n 1 2 3 4

e−�s ≈ 1− �s
2

1+ �s
2

1− �s
2
+ �

2s2

12

1+ �s
2
+ �

2s2

12

1− �s
2
+ �

2s2

10
− �3s3

120

1+ �s
2
+ �

2s2

10
+ �

3s3

120

1− �s
2
+ 3�2s2

28
− �3s3

84
+ �

4s4

1680

1+ �s
2
+ 3�2s2

28
+ �

3s3

84
+ �

4s4

1680

It can be proved that

− [n; n]-Padé approximation is stable for all n ∈ N.
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Padé approximant: example

Let e−s=(s + 1). Its Padé approximant can be calculated with the Matlab
command pade(tf(1,[1 1],’InputDelay’,1),N).
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Padé approximant: example (contd)

We may also compare step responses

and Nichols charts
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From loop shaping perspectives,

− approximation performance depends on crossover requirements.
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Padé approximant: example (contd)
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Padé approximant: example (contd)

Increasing approximants orders improves the match between step responses
of e−s=(s + 1) and its Padé approximation:
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Not true for the approximation of the pure delay e−s !
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Padé approximant: example (contd)
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Outline

Time-delay systems (mostly from IC)

Time delays and feedback (mostly from IC)

Rational approximations of time delays

Introduction to dead-time compensation

Modified Smith predictor (optional self-study)
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Infinite dimensional for infinite dimensional

In many cases,

− controller complexity should be compatible to plant complexity,

since controller should, in a sense, “counteract” plant dynamics.

Plant with dead time,

− PD̄� , is an infinite dimensional.

We may, hence, expect that we can do better by using infinite-dimensional
controllers. In doing this, the following aspects are of primary importance:

− small number of design parameters;

− implementability;

− design transparency.
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Infinite dimensional for infinite dimensional

In many cases,

− controller complexity should be compatible to plant complexity,

since controller should, in a sense, “counteract” plant dynamics.

Plant with dead time,

− PD̄� , is an infinite dimensional.

We may, hence, expect that we can do better3 by using infinite-dimensional
controllers. In doing this, the following aspects are of primary importance:

− small number of design parameters;

− implementability;

− design transparency.

3If the phase lag due to delay at the intended crossover is sufficiently large.
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Smith controller

Otto J. M. Smith (1957) proposed

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

or, equivalently, in the unity-feedback form

P D̄�

C

C̃

P(1− D̄�)

reẽu

d

y
- -

where the overall controller e 7→ u has the irrational transfer function

C (s) =
C̃ (s)

1 + P(s)(1− e−�s)C̃ (s)
:



Time-delay systems Time delays and feedback Rational approximations Smith controller MSP

Smith controller: rationale

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

The signal

ỹ = y + P(1− D̄� )u = P(d + D̄�u) + P(1− D̄� )u

= P(d + u)

would be the output in the delay-free case. The internal feedback block

− P(1− D̄� ), dubbed the Smith predictor or dead-time compensator,

helps to predict the plant output � time units ahead. The designed part is

− the primary controller C̃ .
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Smith controller: rationale

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

The signal

ỹ = y + P(1− D̄� )u = P(d + D̄�u) + P(1− D̄� )u

= P(d + u)

would be the output in the delay-free case. The internal feedback block

− P(1− D̄� ), dubbed the Smith predictor or dead-time compensator,

helps to predict the plant output � time units ahead. The designed part is

− the primary controller C̃ .
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Smith controller: the trick

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

The transfer function of the closed-loop system r 7→ y is

T (s) =
P(s)C̃ (s)

1 + P(s)C̃ (s)
e−�s =·· T̃ (s) e−�s :

Note that

− denominator of the closed-loop transfer function is delay free.

We may expect that if C̃ stabilizes P, then C stabilizes PD̄� .
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Smith controller: the trick

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

The transfer function of the closed-loop system r 7→ y is

T (s) =
P(s)C̃ (s)

1 + P(s)C̃ (s)
e−�s =·· T̃ (s) e−�s :

Note that

− denominator of the closed-loop transfer function is delay free.

We may expect that if C̃ stabilizes P, then C stabilizes PD̄� .
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Smith controller: design paradigm

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

The following two-stage procedure appears natural:

1. design primary controller C̃ for delay-free plant, P;

2. implement primary controller in combination with the Smith predictor.

It yields a

− finite-dimensional design with an infinite-dimensional controller,

− small number of tuning parameters (those of C̃ ),

− implementability (the only infinite-dimensional part, D̄� , is a buffer)
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Smith controller: design example 1

1

s + a
e−s kp

1

�is

1− e−s

s + a

rẽu

d

y

ỹ

−−

Here the primary controller is PI (implemented to avoid zeros in r 7→ y)

C̃ (s) = kp
(
1 +

1

�is

)
=

kp(�is + 1)

�is
:

We aim at

− “good” step response and “good” disturbance attenuation

and hope for the

− transparency of tuning kp and �i

(i.e. that their “good” choices result in “good” overall controller C ).
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Design example 1: stage 1

Delay-free system:

1

s + a
kp

1

�is

rẽu

d̃

ỹ
−−

Its characteristic polynomial,

�̃cl(s) = kp(�is + 1) + �is(s + a) = �is
2 + �i(a+ kp)s + kp;

is Hurwitz iff either �i > 0 ∧ kp > max{−a; 0} or �i < 0 ∧ kp < min{−a; 0}.
The closed-loop transfer functions,[

T̃yr (s)

T̃d(s)

]
=

[
kp
�is

]
1

�is2 + �i(a+ kp)s + kp
;

are easy to understand (with T̃yr (0) = 1 and T̃d(0) = 0 because of “I”).
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Design example 1: stage 1 (contd)

1

s + a
kp

1

�is

rẽu

d̃

ỹ
−−

Let’s choose
kp = �i = 2− a;

for which

T̃yr (s) =
1

(s + 1)2
and T̃d(s) =

s

(s + 1)2

(if a = 2 we end up with the I controller C̃ (s) = 1=s, otherwise C̃ (s) is PI).
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Design example 1: stage 2 (a > 0, stable plant)

Closed-loop step responses:

y r
(t
)

t0 1 5

1

stage 1 design

� = 1, all a’s y d
(t
)

t0 1 5 9

1
e

stage 1 design

� = 1, a = 30

� = 1, a = 3

� = 1, a = 1

� = 1, a = 0.2

− reference responses are as expected

− disturbance responses are not always (decays slow for small a) why?
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Design example 1: stage 2 (a = 0, intergator)

Closed-loop step responses:

y r
(t
)

t0 1 5

1

stage 1 design

� = 1, a = 0 y d
(t
)

t0 1 5 9

1
e

1

stage 1 design

� = 1, a = 0

− reference response is as expected

− disturbance response is not (limt→∞ yd(t) = 1 ̸= 0) why?
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Design example 1: stage 2 (a < 0, unstable plant)

Closed-loop step responses:

y r
(t
)

t0 1 5

1

stage 1 design

� = 1, all a’s y d
(t
)

t0 1 5 9

1
e

stage 1 design

� = 1, a = −0.01

� = 1, a = −0.02

� = 1, a = −0.03

− reference responses are as expected

− disturbance responses are not (diverge!) why?
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Smith controller: pole-zero cancellations

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

Let

P(s) =
NP(s)

DP(s)
and C̃ (s) =

NC̃ (s)

DC̃ (s)

and assume that these fractions are irreducible. Then

C (s) =
C̃ (s)

1 + P(s)C̃ (s)(1− e−�s)
=

DP(s)NC̃ (s)

DP(s)DC̃ (s) + NP(s)NC̃ (s)(1− e−�s)

and, excluding the obvious case when C̃ (s) cancels poles of P(s),

− poles of P(s) are zeros of C (s), unless they are zeros of 1− e−�s too.
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Pole-zero cancellations: implications

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

Smith controller is

_̈ internally unstable whenever P is unstable
(unless4 all unstable poles of P(s) are zeros of 1− e−�s , which are at j 2�

h
k, ∀k ∈ Z)

_̈ inefficient in attenuating load disturbances if P has “slow” poles

_̈ inefficient in dampening lightly-damped dynamics of the plant

4This is what happened in the example with a = 0.
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Smith controller: disturbance response

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

Disturbance sensitivity

Td(s) =
1 + P(s)C̃ (s)(1− e−�s)

1 + P(s)C̃ (s)
P(s) = T̃d(s) + T̃ (s)(1− e−�s)P(s)

is indeed unstable, unless all CRHP poles of P(s) are canceled by 1− e−�s .
Also note that

− a “good” T̃d(s) does not necessarily result in a “good” Td(s)

(because the relation between |Td(j!)| and |T̃d(j!)| is complicated, unless
|T̃ (j!)(1− e−j!h)P(j!)| ≪ 1).
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Smith controller: disturbance response

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

Disturbance sensitivity

Td(s) =
1 + P(s)C̃ (s)(1− e−�s)

1 + P(s)C̃ (s)
P(s) = T̃d(s) + T̃ (s)(1− e−�s)P(s)

is indeed unstable, unless all CRHP poles of P(s) are canceled by 1− e−�s .
Also note that

− a “good” T̃d(s) does not necessarily result in a “good” Td(s)

(because the relation between |Td(j!)| and |T̃d(j!)| is complicated, unless
|T̃ (j!)(1− e−j!h)P(j!)| ≪ 1).
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Smith controller: integral action in the controller

P D̄� C̃

P(1− D̄�)

rẽu

d

y

ỹ

-

If C̃ (s) = 1
s C̃0(s) for some C̃0(s) such that |C̃0(0)| <∞, then

C (s) =
C̃ (s)

1 + (1− e−�s)P(s)C̃ (s)
=

C̃0(s)

s + (1− e−�s)P(s)C̃0(s)

and there is an

− integrator in C ⇐⇒ lims→0(1− e−�s)P(s) = 0

(i.e. the predictor part has zero static gain). As a general rule,

− design of C̃ is transparent at frequencies where the predictor gain is
low, i.e. |(1− e−j�!)P(j!)| ≪ 1.
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Smith controller: integral action in the controller
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y

ỹ
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If C̃ (s) = 1
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=

C̃0(s)
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and there is an

− integrator in C ⇐⇒ lims→0(1− e−�s)P(s) = 0

(i.e. the predictor part has zero static gain). As a general rule,

− design of C̃ is transparent at frequencies where the predictor gain is
low, i.e. |(1− e−j�!)P(j!)| ≪ 1.
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Design example 1: controller static gain

1

s + a
e−s kp

1

�is

1− e−s

s + a

rẽu

d

y

ỹ

−−

We have that

lim
s→0

1− e−s

s + a
=

{
1 if a = 0

0 otherwise
=⇒ lim

s→0
C (s) =

{
1 if a = 0

∞ otherwise

This agrees with simulations, where the disturbance was rejected in steady
state only with a > 0, but not with a = 0.
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Outline

Time-delay systems (mostly from IC)

Time delays and feedback (mostly from IC)

Rational approximations of time delays

Introduction to dead-time compensation

Modified Smith predictor (optional self-study)
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Modified Smith predictor

Some problems may be resolved in the Modified Smith Predictor (MSP):

P D̄� C̃

Π

rẽu

d

y

ỹ

−

where
Π = P̃ − PD̄� ;

for some P̃, having rational and proper P̃(s), which may be different from
P. This Π also compensates the delay:

ỹ = P(d + D̄�u) + (P̃ − PD̄� )u = Pd + P̃u;

although no longer predicts the delay-free output P(d + u).
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Modified Smith predictor (contd)

P D̄� C̃

Π

rẽu

d

y

ỹ

−

The transfer function of the closed-loop system r 7→ y is then

T (s) =
P(s)C̃ (s)

1 + P̃(s)C̃ (s)
e−�s

and its denominator is delay free (a standard polynomial if C̃ (s) is rational).

The two-stage design procedure may then be modified as follows:

1. design primary controller C̃ for P̃;

2. implement primary controller in combination with Π.
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Modified Smith predictor (contd)

P D̄� C̃

Π

rẽu

d

y

ỹ

−

The transfer function of the closed-loop system r 7→ y is then

T (s) =
P(s)C̃ (s)

1 + P̃(s)C̃ (s)
e−�s

and its denominator is delay free (a standard polynomial if C̃ (s) is rational).

The two-stage design procedure may then be modified as follows:

1. design primary controller C̃ for P̃;

2. implement primary controller in combination with Π.
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MSP: pole-zero cancellations

P D̄� C̃

Π

rẽu

d

y

ỹ

−

Let

P(s) =
NP(s)

DP(s)
; P̃(s) =

NP̃(s)

DP(s)
; and C̃ (s) =

NC̃ (s)

DC̃ (s)

be irreducible (P̃(s) is frequently chosen to have the same denominator as
P(s), although it need not). In this case

C (s) =
C̃ (s)

1 + C̃ (s)Π(s)
=

DP(s)NC̃ (s)

DP(s)DC̃ (s) + NC̃ (s)(NP̃(s)− NP(s)e−�s)

and, excluding the obvious case when C̃ (s) cancels poles of P̃(s),

− poles of P(s) are zeros of C (s), unless zeros of NP̃(s)−NP(s)e
−�s too.
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Pole-zero cancellations: implications

P D̄� C̃

Π

rẽu

d

y

ỹ

−

degDP(s) + 1 free parameters in NP̃(s) can be used to

− assign zeros of NΠ(s) ··= NP̃(s)− NP(s)e
−�s at points of need.

This can be used to

− prevent unstable cancellations =⇒ internal stability

− avoid harmful stable cancellations =⇒ better disturbance attenuation

− render the logic in the choice of C̃ more streamlined (transparency)
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MSP: stability

P D̄� C̃

Π

rẽu

d

y

ỹ

−

There are no unstable cancellations between C (s) and P(s) iff all unstable
poles of P(s) are zeros of NΠ(s). Because

Π(s) =
NP̃(s)

DP(s)
− NP(s)

DP(s)
e−�s =

NΠ(s)

DP(s)
;

there are

− no unstable pole-zero cancellations in MSP iff Π is stable itself

and then the closed-loop system is internally stable iff C̃ stabilizes P̃.
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MSP: design example 2

1

s + a
e−s kp

1

�is

ea − e−s

s + a

rẽu

d

y

ỹ

−−

If

P̃(s) =
ea

s + a
=⇒ Π(s) =

ea − e−s

s + a
:

In this case

lim
s→a

Π(s) = lim
s→a

ea − e−s

s + a
= lim

s→a
e−s = e−h

is finite, so the singularity at s = −a is removable (i.e. not a pole)5.

5The implementation of this Π(s) might not be straightforward if a ≤ 0. Yet this issue
goes beyond our scope here, just know that Π(s) can be implemented.
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Design example 2: stage 1

Delay-free system:

ea

s + a
kp

1

�is

rẽu

d̃

ỹ
−−

Its characteristic polynomial,

�̃cl(s) = kpe
a(�is + 1) + �is(s + a) = �is

2 + �i(a+ kpe
a)s + kpe

a;

is stable iff either �i > 0 ∧ kp > max{− a
ea ; 0} or �i < 0 ∧ kp < min{− a

ea ; 0}.
The closed-loop transfer functions,[

T̃yr (s)

T̃d(s)

]
=

[
kp
�is

]
ea

�is2 + �i(a+ kpea)s + kpea
;

are still easy to understand (T̃yr (0) = 1 and T̃d(0) = 0 because of “I”).
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Design example 2: stage 1 (contd)

ea

s + a
kp

1

�is

rẽu

d̃

ỹ
−−

Let’s choose
kp = e−a(2− a) and �i = 2− a;

for which

T̃yr (s) =
1

(s + 1)2
and T̃d(s) =

eas

(s + 1)2

(if a = 2 we end up with the I controller C̃ (s) = 1=s, otherwise C̃ (s) is PI).
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Design example 2: stage 2

Closed-loop step responses, now converging:

y r
(t
)

t0 1 5

1.65

1

0.61

� = 1, a = −0.5
� = 1, a = 0
� = 1, a = 0.5

y d
(t
)

t0 1 5 9

1.3

1

0.79

� = 1, a = −0.5
� = 1, a = 0
� = 1, a = 0.5

− reference responses are not as expected (limt→∞ yr (t) = e−a ̸= 1)

− disturbance responses are not as expected
(limt→∞ yd(t) =

1−e−a

a ̸= 0)

What’s wrong now?
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MSP: integral action in the controller

P D̄� C̃

Π

rẽu

d

y

ỹ

−

Let C̃ (s) = 1
s C̃0(s) for some C̃0(s) such that |C̃0(0)| <∞. Then

C (s) =
C̃ (s)

1 + Π(s)C̃ (s)
=

C̃0(s)

s +Π(s)C̃0(s)

and there is an

− integrator in C (s) ⇐⇒ lims→0Π(s) = 0

(i.e. the predictor part has zero static gain). As a general rule, again,

− design of C̃ (s) is transparent at frequencies where the predictor gain is
low, i.e. |Π(j!)| ≪ 1.
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MSP: integral action in the controller

P D̄� C̃

Π

rẽu

d

y

ỹ

−

Let C̃ (s) = 1
s C̃0(s) for some C̃0(s) such that |C̃0(0)| <∞. Then

C (s) =
C̃ (s)

1 + Π(s)C̃ (s)
=

C̃0(s)

s +Π(s)C̃0(s)

and there is an

− integrator in C (s) ⇐⇒ lims→0Π(s) = 0

(i.e. the predictor part has zero static gain). As a general rule, again,

− design of C̃ (s) is transparent at frequencies where the predictor gain is
low, i.e. |Π(j!)| ≪ 1.
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Design example 2: controller static gain

1

s + a
e−s kp

1

�is

ea − e−s

s + a

rẽu

d

y

ỹ

−−

We have that

lim
s→0

Π(s) = lim
s→0

ea − e−s

s + a
=

ea − 1

a
=⇒ lim

s→0
C (s) =

a

ea − 1
:

Because the static gain of the plant is 1=a, we have that

Td(0) =
1=a

1 + 1=(ea − 1)
=

1− e−a

a
̸= 0

(monotonically decreasing function of a, in agreement with simulations).
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MSP: design example 3

1

s + a
e−s kp

1

�is

Π(s)

rẽu

d

y

ỹ

−−

Consider a more general

P̃(s) =
˛1s + ˛0
s + a

=⇒ Π(s) =
˛1s + ˛0 − e−s

s + a

and try to impose the following constraints:

1. |Π(−a)| <∞ if a is small enough (say a ≤ 3)
(to prevent canceling the problematic—unstable or slow stable—pole of the plant)

2. Π(0) = 0
(to keep integral action in the PI C̃(s))
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MSP: design example 3 (contd)

These conditions yield (mind that lims→0(1− e−s)=s = 1 <∞){
˛0 − ˛1a = ea

˛0 = 1
⇐⇒

(
˛0 = 1

)
∧
(
˛1 =

{
1−ea

a if a ≤ 3

0 otherwise

)
Thus, considering only the nontrivial case of a ≤ 3, we have

1

s + a
e−s kp

1

�is

−˛s + 1− e−s

s + a

rẽu

d

y

ỹ

−−

and end up with the (bi-proper and nonminimum-phase)

P̃(s) =
−˛s + 1

s + a
;

where ˛ ··= ea−1
a ∈ (0; 6:36). For larger a’s this parameter ˛ grows rapidly,

which is numerically inconvenient . . .
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MSP: design example 3 (contd)

These conditions yield (mind that lims→0(1− e−s)=s = 1 <∞){
˛0 − ˛1a = ea

˛0 = 1
⇐⇒

(
˛0 = 1

)
∧
(
˛1 =

{
1−ea

a if a ≤ 3

0 otherwise

)
Thus, considering only the nontrivial case of a ≤ 3, we have

1

s + a
e−s kp

1

�is

−˛s + 1− e−s

s + a

rẽu

d

y

ỹ

−−

and end up with the (bi-proper and nonminimum-phase)

P̃(s) =
−˛s + 1

s + a
;

where ˛ ··= ea−1
a ∈ (0; 6:36). For larger a’s this parameter ˛ grows rapidly,

which is numerically inconvenient . . .
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Design example 3: stage 1

−˛s + 1

s + a
kp

1

�is

rẽu

d̃

ỹ
−−

The characteristic polynomial,

�̃cl(s) = kp(−˛s + 1)(�is + 1) + �is(s + a)

= �i(1− ˛kp)s2 + (�i(a+ kp)− ˛kp)s + kp

and the closed-loop transfer functions,[
T̃yr (s)

T̃d(s)

]
=

[
kp
�is

] −˛s + 1

�i(1− ˛kp)s2 + (�i(a+ kp)− ˛kp)s + kp
:

are still second-order. Mind that now T̃d(s) is bi-proper and both T̃yr (s)
and T̃d(s) have a RHP zero, which might be misleading (the responses of
the original system are inertial and should not normally exhibit undershoot).
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Design example 3: stage 1 (contd)

−˛s + 1

s + a
kp

1

�is

rẽu

d̃

ỹ
−−

Let’s choose

kp =
a(ea − (a− 1)2)

(ea + a− 1)2
> 0:099 and �i =

1− e−a(a− 1)2

a
> 0:267;

(with lima→0 kp = 3
4 and lima→0 �i = 3) for which

T̃yr (s) =
−˛s + 1

(s + 1)2
and T̃d(s) =

s(−˛s + 1)

(s + 1)2
:



Time-delay systems Time delays and feedback Rational approximations Smith controller MSP

Design example 3: stage 2

Closed-loop step responses now have no remainings of plant dynamics:

y r
(t
)

t0 1 5

1

� = 1, all a’s

y d
(t
)

t0 1 5 9

0.32

1.1

1.21

1.68
� = 1, a = 3, Smith
� = 1, a = 3, MSP
� = 1, a = 0.2, Smith
� = 1, a = 0.2, MSP
� = 1, a = 0, Smith
� = 1, a = 0, MSP
� = 1, a = −0.5, MSP

As a matter of fact, in this case Tyr (s) =
e−s

(s+1)2
and

Td(s) =
e−a

a
s

(
1− e−s

s
− ea − e−s

s + a
+

(ea − 1)s + 2ea + a− 2

(s + 1)2
e−s

)
;

so both s = 0 and s = −a are removable singularities (not poles) of Td(s).
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MSP: loop transfer function

Loops can be analyzed in terms of their return difference transfer functions:

− at frequencies where |1 + L(j!)| ≫ 1, the loop gain is high;

− at frequencies where |1 + L(j!)| ≈ 1, the loop gain is low;

− at frequencies where |1 + L(j!)| ≪ 1, it is close to the critical point.

P D̄� C̃

Π

rẽu

d

y

ỹ

−

The MSP return difference for the actual loop L(s) = P(s)e−�sC (s) is

1 + L(s) = 1 +
P(s)e−�s C̃ (s)

1 + Π(s)C̃ (s)
=

1 + P̃(s)C̃ (s)

1 + Π(s)C̃ (s)
=

1 + L̃(s)

1 + Π(s)C̃ (s)
;

where L̃(s) = P̃(s)C̃ (s) is the designed loop in stage 1.
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MSP: loop transfer function

Loops can be analyzed in terms of their return difference transfer functions:

− at frequencies where |1 + L(j!)| ≫ 1, the loop gain is high;

− at frequencies where |1 + L(j!)| ≈ 1, the loop gain is low;

− at frequencies where |1 + L(j!)| ≪ 1, it is close to the critical point.

P D̄� C̃

Π

rẽu

d

y

ỹ

−

The MSP return difference for the actual loop L(s) = P(s)e−�sC (s) is

1 + L(s) = 1 +
P(s)e−�s C̃ (s)

1 + Π(s)C̃ (s)
=

1 + P̃(s)C̃ (s)

1 + Π(s)C̃ (s)
=

1 + L̃(s)

1 + Π(s)C̃ (s)
;

where L̃(s) = P̃(s)C̃ (s) is the designed loop in stage 1.
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MSP: loop transfer function (contd)

Thus, the relation between the designed and actual loops, can be seen in

|1 + L(j!)| = |SC (j!)| |1 + L̃(j!)|:

where SC (s) ··= 1
1+Π(s)C̃(s)

is the sensitivity function of the internal loop of

the overall controller C (s). Thus,

|SC (j!)| ≈ 1 =⇒ transparent design

|SC (j!)| ≪ 1 =⇒ poor L(s), even from good L̃(s)

|SC (j!)| ≫ 1 =⇒ possibly good L, even from poor L̃, but might yield

− high-gain L when low-gain L̃ is designed
− fragile implementation of the controller internal

loop

Note that |SC (j!)| ≈ 1 ⇐⇒ |Π(j!)C̃ (j!)| ≪ 1, so it may make sense to

− keep |Π(j!)| small at frequencies of interest,

which actually implies that P̃(j!) should approximate P(j!)e−j�! there . . .
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MSP: loop transfer function (contd)

Thus, the relation between the designed and actual loops, can be seen in

|1 + L(j!)| = |SC (j!)| |1 + L̃(j!)|:

where SC (s) ··= 1
1+Π(s)C̃(s)

is the sensitivity function of the internal loop of

the overall controller C (s). Thus,

|SC (j!)| ≈ 1 =⇒ transparent design

|SC (j!)| ≪ 1 =⇒ poor L(s), even from good L̃(s)

|SC (j!)| ≫ 1 =⇒ possibly good L, even from poor L̃, but might yield

− high-gain L when low-gain L̃ is designed
− fragile implementation of the controller internal

loop

Note that |SC (j!)| ≈ 1 ⇐⇒ |Π(j!)C̃ (j!)| ≪ 1, so it may make sense to

− keep |Π(j!)| small at frequencies of interest,

which actually implies that P̃(j!) should approximate P(j!)e−j�! there . . .
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Design example 3: loop transfer function

1

s + a
e−s kp

1

�is

−˛s + 1− e−s

s + a

rẽu

d

y

ỹ

−−

Here

SC (s) =
a(˛ + 1)2

eaa+ ea 1−e−s

s − (a− 1)2 ea−e−s

s+a

;

where ˛ = ea−1
a . It verifies |SC (j!)| > 1 for all a and all !:

some plots should be here, perhaps . . .
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