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Outline

Time-delay systems (mostly from IC)

Time delays and feedback (mostly from IC)

Rational approximations of time delays

Introduction to dead-time compensation

Modified Smith predictor (optional self-study)



Time-delay systems
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Time-delay systems (mostly from IC)



Time-delay systems

Delay element in time domain

[/O relation:



Time-delay systems

Delay element in time domain

LA —— A

tot+rT — t

y D, u

[/O relation:

y=Diu < y(t) = u(t —1)
This system is

— linear

Dr (o1t + azun) = a1 (t — 1) 4+ aown(t — 1) = a1 (Dr 1) + aa(Dr )
— time invariant

Dy, (Sepu) = u(t — 12 — 11) = Srp(Dryu1)
— BIBO stable?

I¥llso = ||u]loo for all u € Lo

oo = {x:R = R|||x]Joc < o0}, where ||x]oc := sup,cg |x(t)]



Time-delay systems

Delay element in s-domain

LA — A

t

y D, u
By the time shift property of the Laplace transform:

y(t)=u(t—1) < Y(s)=e"U(s)



Time-delay systems

Delay element in s-domain

By the time shift property of the Laplace transform:
y(t)=u(t—1) < Y(s)=e"U(s)
Thus, delay element has the transfer function

D:(s) =e ™.



Time-delay systems

Delay element in s-domain

By the time shift property of the Laplace transform:
y(t)=u(t—1) < Y(s)=e"U(s)
Thus, delay element has the transfer function
D:(s) =e ™.

This transfer function is
— irrational,

so D is an infinite-dimensional system.



Time-delay systems

Frequency response

Now,
e lsmjo = e 7Y = cos(tw) — jsin(tw)
and it has
— unit magnitude (|e)*®| = 1) and
— linearly decaying phase (arg &)™ = —zw, in radians if w is in rad/sec)
Bode Diagram of e ™ Nichols Chart of e ™
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Time-delay systems
Why delays?

— Ubiquitous in physical processes
— loop delays
— process delays

— Compact/economical approximations of complex dynamics

— Exploiting delays to improve performance



Time-delay systems

Loop delays: steel rolling

Thickness can only be measured at some distance from rolls, leading to

— measurement delays



Time-delay systems

Loop delays: networked control

Controller

Sampling, encoding, transmission, decoding need time. This gives rise to
— measurement delays

— actuation delays



Time-delay systems

Loop delays: temperature control

- |
- P 8Row- 7

Everybody experienced this, | guess. ..



Time-delay systems

Delays as modeling tool: heating a can

Transfer function of a heated can (derived from a PDE model):

o 1
G(S)_Jo(\/TR)—i_ZA ":\’Jl/.L R) s"'O‘}”mcosh \/a A L .

m=1



Time-delay systems

Delays as modeling tool: heating a can

Transfer function of a heated can (derived from a PDE model):

o
o 1 2 s 1
G(S) - Jo( 7SR) + ,.,2_:1 AmR J1(AmR) s+aA2, COSh(\/g-&-Aﬁ,é) .

1

Its approximation by Gy(s) = 0 )e_” is reasonably accurate:
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Time-delay systems

Delays as modeling tool: process control

Consider a process described by

Pls) — (—0.35s 4+ 1)(0.08s + 1)
() = s ¥ 1)(s + 1)(0.4s + 1)(0.25 + 1)(0.055 1 1)°°

Its “second-order+delay” approximation (found by a brute-force search),

1 e—0.865s
(1.19s + 1)(1.91s + 1) ’

is quite accurate, yet includes less parameters to identify:

Pg(s) =

—— step response of P(s)
—— step response of P(s)

0.865 5 10




Time delays and feedback

Outline

Time delays and feedback (mostly from IC)



where

Time delays and feedback

Systems with loop delays

€m

P plant, has a rational transfer function

C controller, has a rational transfer function



Time delays and feedback

Effect of loop delay on characteristic polynomial
Ym

If P(s) = Np(s)/Dp(s) and C(s) = N¢(s)/Dc(s), then

n

xc(s) = e Np(s)Nc(s) + Dp(s)Dc(s)

has infinitely many roots (this y(s) called quasi-polynomial).



Time delays and feedback

Effect of loop delay on characteristic polynomial

D u C €m r
ym

If P(s) = Np(s)/Dp(s) and C(s) = N¢(s)/Dc(s), then

xc(s) = e Np(s)Nc(s) + Dp(s)Dc(s)

has infinitely many roots (this y(s) called quasi-polynomial).

Example
Let P(s) =1 and C(s) = ky. Then

Xa(s) = kpe ™ +1

has roots at ts = In k, + j(7 + 27i) for all i € Z.



Time delays and feedback

Effect of loop delay on closed-loop frequency response
Dr u C em_ r
Ym

P(jw)C(jw)e ™

For instance,

MUY= TP Cw)e e

might be very complicated function of w.



Time delays and feedback

Effect of loop delay on closed-loop frequency response

d
y Dr u C em_ r
n Ym

For instance,

o P)C(o)eT
MUY= TP Cw)e e

might be very complicated function of w.

Example

Again, let P(s) =1 and C(s) = k, < 1.
Then for k, = {0.5,0.75}:

Magnitude (dB)
o

Frequency, w (rad/sec)



Time delays and feedback

Another scary example

— u € r

Ym

Magnitude (dB)

i i
Frequency, w (rad/sec)

we can see that the presence of the delay considerably complicates matters.



Time delays and feedback

Effect of loop delay on L(jw)

e

Let L(s) = L,(s)e™"° for some rational L.(s). In this case

L(jo) = Li(jw)e 1™
4
L(j)| = |L(jw)| and  arg L(jo) = arg L (jo) — to.
In other words, delay in this case
— does not change the magnitude of L,(jw) and

— adds phase lag proportional to w,

which is not hard to account for.



Effect of loop delay on L(jw)

Magnitude (dB)

Phase (deg)

Time delays and feedback

: Bode diagram

(=)
T
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10°
Frequency, w (rad/sec)
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Time delays and feedback

Effect of loop delay on L(jw): polar plot

Re




Time delays and feedback

Effect of loop delay on L(jw): Nichols chart

Open-Loop Gain (dB)

-540 360 -180 0
Open-Loop Phase (deg)




Time delays and feedback

Nyquist stability criterion

ey

The idea is to

— use plot of L(jw) to count the number of closed-loop poles in RHP.
Namely, let L(s) have no unstable pole/zero cancellations and denote
noi number of unstable poles of L(s)

ng number of unstable poles of —*

1+L(s)

» number of clockwise encirclements of —1 + jO by Nyquist plot of L(jw)
as w runs from —oo to oo

In this case

Ne| = No| + 7¢.



Time delays and feedback

What is changed for dead-time systems?

L.D; Q

Nothing, at least if the high-frequency gain of L,(s) is not 1.



Time delays and feedback

What is changed for dead-time systems?

LD, O

Nothing, at least if the high-frequency gain of L,(s) is not 1.

Remark: If |L,(joo)| = 1, the situation is quite complicated, the closed-loop
system might have no RHP poles and still be unstable, like for

L(s) =

s
s+1

(explanations go beyond the scope of this course). It is safe to say that in
this case the closed-loop system is unstable, regardless its pole locations.



Time delays and feedback

Loop delays and closed-loop stability: “rigid” loops

For systems with “rigid” loops
— delay is a destabilizing factor

as it adds phase lag, thus imposing limitations on achievable crossover w..



Time delays and feedback
Loop delays and closed-loop stability: “rigid” loops

For systems with “rigid” loops
— delay is a destabilizing factor
as it adds phase lag, thus imposing limitations on achievable crossover w..

Bode's gain-phase relation for L(s) = L.(s)e™*® (if L,(s) is minimum-phase)

: 1 [ dIn|L(]
arg L(jwo) = ”/ W In coth |v2‘dv — Twp, where v :=Inx,
—00

so effect of delay is similar to effect of RHP zero.



Time delays and feedback

Loop delays and closed-loop stability: “flexible” loops

For systems with “flexible” loops
— delay in some (very special) cases may be stabilizing factor,
yet this property shall be used with great care?.

2Don't try it at home!



Time delays and feedback

Example
0.4
L(s) = ——F—:
)= @ rots 11
Im
g
-1
Re a I
Sof i+
3
L,(jw) —960

720 540 360 180 0
Open-Loop Phase (deg)

no closed-loop poles in RHP



Time delays and feedback

Example (contd)

0.4 .
s2+0.1s+1

—S.

L(s) =

Im T " N )

Re

Open-Loop Gain (dB)
=)
+
+

-900 =720 -540 -360
Open-Loop Phase (deg)

two closed-loop poles in RHP



Time delays and feedback

Example (contd)

0.4 .

L(s)= — %
)= aiomsri®

Im

— delay v = 1 is destabilizing

Re

Open-Loop Gain (dB)

=

B
L
: '“-‘" :
L
I
+ [ + +
1
I
1
1
o o
L L L L il
-900 720 -540 -360 -180 0

Open-Loop Phase (deg)

two closed-loop poles in RHP



Time delays and feedback

Example (contd)

0.4 —bs.

L(s)= — %
)= aiomsri®

Im

=
T
+

Open-Loop Gain (dB)

-900 =720 -540 -360 -180 0
Open-Loop Phase (deg)

no closed-loop poles in RHP



Time delays and feedback

Example (contd)

0.4
L(s) = 57— e >
(s) s2+01s+1
Im
6
3
&)
B — g
! =
B g h
: 5 -
; >
. 1
% o |
N i . i . i
-900 =720 -540 -360 -180 0
Open-Loop Phase (deg)

no closed-loop poles in RHP

— delay © = 5 is stabilizing (and stability margins > those with t = 0)



Time delays and feedback

Example (contd)

0.4 o—lls.
s2+01s+1 '

L(s) =

=

Open-Loop Gain (dB)

L L L L il
-900 =720 -540 -360 -180 0
Open-Loop Phase (deg)

four closed-loop poles in RHP



Time delays and feedback

Example (contd)

0.4
s2+0.1s+1

—11s,

L(s) =

Open-Loop Gain (dB)
=)

L L L L il
-900 =720 -540 -360 -180 0
Open-Loop Phase (deg)

four closed-loop poles in RHP

— delay 7 = 11 is destabilizing again (and destabilizing for all larger 7)



Rational approximations

Outline

Rational approximations of time delays



Rational approximations

Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is
not a surprise then that we want to approximate delay by finite-dimensional
(rational) elements, say R(s),



Rational approximations

Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is
not a surprise then that we want to approximate delay by finite-dimensional
(rational) elements, say R(s), to

— use standard methods in analysis and design,



Rational approximations

Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is
not a surprise then that we want to approximate delay by finite-dimensional
(rational) elements, say R(s), to

— use standard methods in analysis and design,

— use standard software for simulations,



Rational approximations

Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is
not a surprise then that we want to approximate delay by finite-dimensional
(rational) elements, say R(s), to

— use standard methods in analysis and design,
— use standard software for simulations,

— avoid learning new methods,



Rational approximations

Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is
not a surprise then that we want to approximate delay by finite-dimensional
(rational) elements, say R(s), to

— use standard methods in analysis and design,
— use standard software for simulations,
— aveoidlearningnew-methods;



Rational approximations

Why to approximate

Delay element is infinite-dimensional, which complicates its treatment. It is
not a surprise then that we want to approximate delay by finite-dimensional
(rational) elements, say R(s), to

— use standard methods in analysis and design,

— use standard software for simulations,

— aveoidlearningnew-methods;

Approximation measure

We may consider as the approximation measure the quantity

— R(i 10
€r == max |R(jo) — e7™,

assuming that R(s) is stable.



Rational approximations

What to approximate: bad news

On the one hand,

— phase lag of the delay element is not bounded (and continuous in ).
On the other hand,

— rational systems can only provide finite phase lag.

Therefore, phase error between e~** and any rational transfer function R(s)
is arbitrarily large. Moreover, for every R(s) there always is wg such that

— arge ™ —arg R(jw) continuously decreasing function of w, Yo > wo.
Hence there always is frequency w; such that

arge ™ —arg R(jwy) = —m — 27k ie.

and eg > 1 for all R(s).



Rational approximations

What to approximate: bad news

On the one hand,

— phase lag of the delay element is not bounded (and continuous in ).
On the other hand,

— rational systems can only provide finite phase lag.
Therefore, phase error between e~** and any rational transfer function R(s)
is arbitrarily large. Moreover, for every R(s) there always is wg such that

— arge ™ —arg R(jw) continuously decreasing function of w, Yo > wo.

Hence there always is frequency w; such that

arge ™ —arg R(jwy) = —m — 27k ie.

and eg > 1 for all R(s). Thus,

— rational approximation of pure delay, e **

, is hopeless,

just because eg = 1 already for the trivial (and senseless) choice R(s) = 0.



Rational approximations

What to approximate: good news

We never work over infinite bandwidth. Hence, we

'S in finite frequency range

— need to approximate e~
or, equivalently,

— approximate F(s)e ™ for some low-pass (strictly proper) F(s).

This can be done, since

— phase lag of delay over finite bandwidth is finite
and

— magnitude of F(jw)e 1™ decreases as w increases,

which implies that at frequencies where the phase lag of F(jw)e™ % large,
the function effectively vanishes.



Rational approximations

What to approximate: good news

We never work over infinite bandwidth. Hence, we

— need to approximate e **°

in finite frequency range
or, equivalently,

— approximate F(s)e ™ for some low-pass (strictly proper) F(s).

This can be done, since

— phase lag of delay over finite bandwidth is finite
and

— magnitude of F(jw)e 1™ decreases as w increases,

which implies that at frequencies where the phase lag of F(jw)e™ % large,
the function effectively vanishes.

Also, we may consider T = 1 w.l.0.g., otherwise s — s/t makes the trick.



Rational approximations

Truncation-based methods

General idea is to
— truncate some power series,

which could give accurate results in a (sufficiently large) neighborhood of 0.



Rational approximations

Truncation-based methods

General idea is to
— truncate some power series,

which could give accurate results in a (sufficiently large) neighborhood of 0.

Naive approach. We may try it as follows:

2 /02 3,03
e /2 1,5{75+%,%+...N1,5ﬁ+...+(7

- 2 /92 3 /23 ~ n /2
es/? 1+5{%+%+%+... 1+51/7!2+...+%

—s _

(S

for some n € N. The problem is that this approximation is
— unstable whenever n > 4.

which is not convenient (e™* itself is stable). For example, for n = 5 this approach yields

e n —s° + 10s* — 80s> 4 480s” — 1920s + 3840
" 55+ 10s* + 80s® + 480s2 + 1920s + 3840

with poles at {—4.361, —3.299+j3.388,0.48+ j6.257}. Thus, more sophisticated methods
are required . . .



Rational approximations

Truncation-based methods: Padé approximant

Consider approximation

s _ Pm(s)
© T R (o)

where P, (s) and Qn(s) are polynomials of degrees m and n, respectively.
Power series at s = 0 of each side are

’ ](O)s R[’;n’n](O)s2 F\’[’,’;’H](O)s3

1! 2! 3!




Rational approximations

Truncation-based methods: Padé approximant

Consider approximation

s _ Pm(s)
e ) Rim,n (),

where P, (s) and Qn(s) are polynomials of degrees m and n, respectively.
Power series at s = 0 of each side are

efs = 1 — F E — ? +
Rini(Qs R (0)s2 R (0)s?
Rim,n)(S) = Rim,n (0) + [m’;]! [m,n21! [m’rg!

The idea of [m, n]-Padé approximant is to find coefficients of Ry, ;(s) via
— matching their first n + m + 1 power series coefficients.
It can be shown that

— n=m = Pu(s) = Qn(—5).



Rational approximations

Example: [2,2]-Padé approximant

In this case Ry 5)(s) = jﬁ;giijjgg and power series are
2 3 4
S S S
C=1- S
Tty 6 T
2 2 2(qg3 — 2g* — 2g2
R[2’2]( s)=1- ﬂ + CI1 §2 _ (g1 3Q1QO)S3 + (a7 4‘71‘70)54 _
90 9 9% q
from which , .
go =2q1 and a—<_ 1

4q1 _6

and then g1 = 6 and go = 12, matching 5 coefficients.



Rational approximations

Example: [2,2]-Padé approximant

In this case Ry 5)(s) = jﬁ;;ﬁijjgg and power series are
2 3 4
S S S
C=1- S
Tty 6 T
2 2 2(qg3 — 2g* — 2g2
R[2’2]( s)=1- ﬂ + CI1 §2 _ (g1 3C71QO)S3 + (a7 4‘71‘70)54 _
90 9 9% q
from which , .
go =2q1 and a—<_ 1

4q1 _6

and then g1 = 6 and go = 12, matching 5 coefficients.

Thus, [2,2]-Padé approximant is

—S ~

s> —6s+12 1——+12

(S

N52+6s+12 1+§+E



Rational approximations

Truncation-based methods: Padé approximant (contd)

General formula for [n, n]-Padé approximant is

S ()Tt (5 T 23)7 ke (—s)

-5 ~

n n (2n=i)! _; _(2n=)n!  _;
ZiZO (I) (2n)! s 0 @n)I(n=NTi" S
This yields:
n | 1 2 3 4
77 77 33 3722 33 44
e TS 1‘% 1_%"'1%252 - — 13203 rzs"’ rzss — g43+ 1‘618(‘)‘
+% I+ 5 +53 1+r25+rlg +555 1+rs+3r +r TR T

It can be proved that
[n, n]-Padé approximation is stable for all n € N.



Rational approximations

Padé approximant: example

Let e */(s+1). Its Padé approximant can be calculated with the Matlab
command pade (tf (1, [1 1],’InputDelay’,1),N).

e

<77 and its 2nd and 4th order approximations Approximation errors

Magnitude (dB)

-20 -40

Magnitude (dB)

-180
360 80
540

720

Phase (deg)

-900
1080

10° 10°
Frequency (rad/sec) Frequency (radsec)



Rational approximations

Padé approximant: example (contd)
We may also compare step responses

se% and its 2nd and 4th order approximations

Amplitude

(] 05 1 15 25 3 a5 4

2
Time (sec)



Rational approximations

Padé approximant: example (contd)
We may also compare step responses and Nichols charts

:% and its 2nd and 4th order approximations :% and its 2nd and 4th order approximations

Amplitude
Open-Loop Gain (dB)

25 3 a5 4 720 630 540 450 360 270 180 90 0

(] 05 1 15 2
Time (sec) Open-Loop Phase (deg)

From loop shaping perspectives,

— approximation performance depends on crossover requirements.



Rational approximations

Padé approximant: example (contd)

Increasing approximants orders improves the match between step responses
of e7*/(s+ 1) and its Padé approximation:

j% and its 50th order approximation

Amplitude




Rational approximations

Padé approximant: example (contd)

Increasing approximants orders improves the match between step responses
of e7*/(s+ 1) and its Padé approximation:

e

£5 and its 50th order approximation e”* and its 50th order approximation

Amplitude
Amplitude

o 05 1 15 2 25 3 35 4 0 05 1 15 2
Time (sec) Time (sec)

Not true for the approximation of the pure delay e™* !



Smith controller

Outline

Introduction to dead-time compensation



Smith controller

Infinite dimensional for infinite dimensional

In many cases,
— controller complexity should be compatible to plant complexity,

since controller should, in a sense, “counteract” plant dynamics.



Smith controller

Infinite dimensional for infinite dimensional

In many cases,
— controller complexity should be compatible to plant complexity,

since controller should, in a sense, “counteract” plant dynamics.

Plant with dead time,
— PDI, is an infinite dimensional.

We may, hence, expect that we can do better? by using infinite-dimensional
controllers. In doing this, the following aspects are of primary importance:

— small number of design parameters;
— implementability;

— design transparency.

3|f the phase lag due to delay at the intended crossover is sufficiently large.



Smith controller

Smith controller

Otto J. M. Smith (1957) proposed

where the overall controller e — u has the irrational transfer function

C(s) = C(s)
1+ P(s)(1 — e ™)C(s)’




Smith controller

Smith controller: rationale

The signal

y=y+P(l—D;)u=P(d+ D;u)+ P(1—D;)u
= P(d + u)
would be the output in the delay-free case. The internal feedback block

— P(1 — D¢), dubbed the Smith predictor or dead-time compensator,
helps to predict the plant output T time units ahead.



Smith controller

Smith controller: rationale

The signal

y=y+P(l—D;)u=P(d+ D;u)+ P(1—D;)u
= P(d + u)
would be the output in the delay-free case. The internal feedback block
— P(1— D), dubbed the Smith predictor or dead-time compensator,
helps to predict the plant output 7 time units ahead. The designed part is

— the primary controller C.



Smith controller

Smith controller: the trick

The transfer function of the closed-loop system r +— y is

re) - _PEIEE)

=TT PE)EE) e T =:T(s)e "



Smith controller

Smith controller: the trick

The transfer function of the closed-loop system r +— y is

re) - _PEIEE)

=TT PE)EE) e T =:T(s)e "

Note that
— denominator of the closed-loop transfer function is delay free.
We may expect that if C stabilizes P, then C stabilizes PD;.



Smith controller

Smith controller: design paradigm

The following two-stage procedure appears natural:

1. design primary controller € for delay-free plant, P;

2. implement primary controller in combination with the Smith predictor.
It yields a

— finite-dimensional design with an infinite-dimensional controller,

— small number of tuning parameters (those of C),

— implementability (the only infinite-dimensional part, D, is a buffer)



Smith controller

Smith controller: design example 1

Here the primary controller is Pl (implemented to avoid zeros in r — y)

E(s)=ko(1+—) = koltis +1).

TiS
We aim at
— “good” step response and “good” disturbance attenuation
and hope for the
— transparency of tuning k, and T;
(i.e. that their “good"” choices result in “good” overall controller C).



Smith controller

Design example 1: stage 1

Delay-free system:

Its characteristic polynomial,
F(s) = ko(is + 1) + zis(s + a) = is” + ti(a + kp)s + ko,

is Hurwitz iff either 7; > 0 A ky > max{—a.0} or 7; < 0 A k, < min{—a,0}.
The closed-loop transfer functions,

[%((j)) } B [f.ps] 7is° —I—Ti(al+ ko)s + kp'’

are easy to understand (with T,,(0) =1 and T4(0) = 0 because of “I").



Smith controller

Design example 1: stage 1 (contd)

Let's choose
ke =11 =2—a,
for which

Ty(s) = (5+11)2 and  Ty(s) = ﬁ

(if a= 2 we end up with the | controller C(s) = 1/s, otherwise C(s) is PI).



Smith controller

Design example 1: stage 2 (a > 0, stable plant)

Closed-loop step responses:

— . — -
> --- stage 1 design > --- stage 1 design
N =1, allas N —_—1=1a=30
—T=1 a=3
—r=1 a=1
—1=1 a=02
1 -
-
’ ~
N
~
\\
~al
0 1 5 9 t

— reference responses are as expected

— disturbance responses are not always (decays slow for small a)  why?



Smith controller

Design example 1: stage 2 (a = 0, intergator)

Closed-loop step responses:

— — stage 1 design

E --- stage 1 design S
N —_—r1=1a=0 ;2 —_—1=1a=0

S T —

- ,/—\\\

I’ \\
0 1 5 t
— reference response is as expected
why?

— disturbance response is not (lim;—. ya(t) =1 # 0)



Smith controller

Design example 1: stage 2 (a < 0, unstable plant)

Closed-loop step responses:

— reference responses are as expected

— disturbance responses are not (diverge!)

— . —
> --- stage 1 design >
N t=1,alla’s N
--- stage 1 design
—1=1 a=-001
—1=1, a=-0.02
—1=1 a=-0.03
1 -
7T
I’ SS
~
0 1 5 9 t



Smith controller

Smith controller: pole-zero cancellations

y
e Ne(s) Ne(s)
s ~ &(s
P(s) = —" and C(s) =
()= Dots) ()= Be(s)
and assume that these fractions are irreducible. Then
¢ Dp(s)N¢
C(S) (S) _ P(S) C(s)

T 1+ P(s)C(s)1— ) Dp(s)Dé(s) + Np(s)Ne(s)(1 — e)

and, excluding the obvious case when C(s) cancels poles of P(s),

— poles of P(s) are zeros of C(s), unless they are zeros of 1 — e~ ** too.



Smith controller

Pole-zero cancellations: implications

Smith controller is

A internally unstable whenever P is unstable

(unless* all unstable poles of P(s) are zeros of 1 — e~ *°, which are at jZ k, Vk € Z)
A inefficient in attenuating load disturbances if P has “slow” poles

A~ inefficient in dampening lightly-damped dynamics of the plant

“This is what happened in the example with a = 0.



Smith controller

Smith controller: disturbance response

Disturbance sensitivity

1+ P(s)C(s)(1—e™) , = 7 — e T)P(s
P PO = T+ T )P(s)

Td(S) =

is indeed unstable, unless all CRHP poles of P(s) are canceled by 1 — e **.



Smith controller

Smith controller: disturbance response

Disturbance sensitivity

PO =) o e e p(s
= Ee PO =T+ FEa - e IR

Td(S)

is indeed unstable, unless all CRHP poles of P(s) are canceled by 1 — e **.

Also note that
— a“good” Ty(s) does not necessarily result in a “good” Ty(s)

(because the relation between | T4(jw)| and | Ta(jo)| is complicated, unless
| T(jw)(1 - e MP(jo)| < 1).



Smith controller

Smith controller: integral action in the controller

If C(s) = %(.: (s) for some Cy(s) such that |C(0)| < oo, then

C(S) _ C(S) o 60(5)

1+ (1 —e")P(s)C(s) s+ (1—e*5)P(s)Co(s)
and there is an
— integrator in C <= lims_ (1 — e *)P(s) =0

(i.e. the predictor part has zero static gain).



Smith controller

Smith controller: integral action in the controller

If C(s) = %(.: (s) for some Cy(s) such that |C(0)| < oo, then

C(S) _ CN.(S) o 60(5)

1+(1- e*fS)P(s)(f(s) s+ (1—e™)P(s)Co(s)

and there is an
— integrator in C <= lims_ (1 — e *)P(s) =0
(i.e. the predictor part has zero static gain). As a general rule,

— design of C is transparent at frequencies where the predictor gain is
low, i.e. [(1 — e J™)P(jw)| < 1.



Smith controller

Design example 1: controller static gain

We have that

1 ifa=0

oo otherwise

lim ——— =

1—e5 1 ifa=0
0 otherwise

= in_r;rz)C(s): {

This agrees with simulations, where the disturbance was rejected in steady
state only with a > 0, but not with a = 0.



Outline

Modified Smith predictor (optional self-study)

MSP



MSP

Modified Smith predictor

Some problems may be resolved in the Modified Smith Predictor (MSP):

where

N=P—PD,,

for some .‘5 having rational and proper .5(5) which may be different from
P. This I also compensates the delay:

7 = P(d + Dyu) + (P — PDy)u = Pd + Pu,

although no longer predicts the delay-free output P(d + u).



MSP

Modified Smith predictor (contd)

The transfer function of the closed-loop system r + y is then

T(s) = _PlC(s)
1+ P(s)C(s)

—Ts

and its denominator is delay free (a standard polynomial if C(s) is rational).



MSP

Modified Smith predictor (contd)

The transfer function of the closed-loop system r + y is then

T(s) = _PlC(s)
1+ P(s)C(s)

—Ts

and its denominator is delay free (a standard polynomial if C(s) is rational).

The two-stage design procedure may then be modified as follows:
1. design primary controller C for P;

2. implement primary controller in combination with I1.



MSP

MSP: pole-zero cancellations

Let
Né(s)
Dc(S)

Ne(s) 5y _ NE(S)

P(s) =

and C(s) =

DP(S) ’

be irreducible (P(s) is frequently chosen to have the same denominator as
P(s), although it need not). In this case

QY
—~

s) Dp(s)Neé(s)

) = T Eo)N(s) ~ Dr()De(s) + Ne(s)(Np(s) — Np(s)e ™)

and, excluding the obvious case when C(s) cancels poles of P(s),

— poles of P(s) are zeros of C(s), unless zeros of Np(s) — Np(s)e™** too.



MSP

Pole-zero cancellations: implications

deg Dp(s) + 1 free parameters in Np(s) can be used to
— assign zeros of Np(s) := Np(s) — Np(s)e ™ at points of need.
This can be used to
— prevent unstable cancellations = internal stability
— avoid harmful stable cancellations = better disturbance attenuation

— render the logic in the choice of C more streamlined (transparency)



MSP

MSP: stability

There are no unstable cancellations between C(s) and P(s) iff all unstable
poles of P(s) are zeros of Np(s). Because

_ N(s)  Np(s) ee_ Nn(s)
DP(S) DP(S) DP(S)’

M(s)

there are
— no unstable pole-zero cancellations in MSP iff [1 is stable itself

and then the closed-loop system is internally stable iff C stabilizes P.



MSP

MSP: design example 2

If
. a e? — S
P(s) = = [(s)= ——.
s+a s+a
In this case
. . el—e h
limMN(s) = lim ——— =lime * =e”
s—a s—+a S+ a s—a
is finite, so the singularity at s = —a is removable (i.e. not a pole)®.

>The implementation of this M(s) might not be straightforward if a < 0. Yet this issue
goes beyond our scope here, just know that M(s) can be implemented.



MSP

Design example 2: stage 1

Delay-free system:

Its characteristic polynomial,
Fa(s) = koe®(tis + 1) + tis(s + a) = ;5% + ti(a + kpe?)s + kpe?,

is stable iff either 7; > 0 A ky > max{—35.0} or 7; < 0 A k, < min{—23.0}.
The closed-loop transfer functions,

Tye(s) | | ko e?
Ta(s) | [ @s | ©is? + ti(a+ kpe?)s + kpe?’

are still easy to understand (7,,(0) = 1 and T4(0) = 0 because of “I").



Design example 2: stage 1 (contd)

Let's choose
ke=¢%2—-a) and 17=2-a,

for which .
~ e"s
and Td(s) = m

1
Tye(s) = m

MSP

(if a =2 we end up with the | controller C(s) = 1/s, otherwise C(s) is PI).



MSP

Design example 2: stage 2

Closed-loop step responses, now converging:

S —1=1 a=-05 S
S~ || =—r=1 a=0 3
1_2%,—1:1,3:0.5 >
13 s
1 1
0.79
0.61[
—1=1 a=-05
—_—71=1 a=0
—1=1 a=05
0 1 5 t 0 1 5 9 t

— reference responses are not as expected (lim¢_oo yr(t) = e 2 # 1)
— disturbance responses are not as expected

(iMoo ya(t) = 25— #0)
What's wrong now?



MSP: integral action in the controller

Let C(s) = LCy(s) for some Cy(s) such that |C(0)| < oo. Then

S

C(S) _ C(S) _ CO(S)
1+N(s)C(s) s+ N(s)Co(s)

and there is an
— integrator in C(s) <= limsoMN(s) =0

(i.e. the predictor part has zero static gain).

MSP



MSP

MSP: integral action in the controller

Let C(s) = % o(s) for some Cy(s) such that |Co(0)| < co. Then

C(S) _ C(S) _ CO(S)
1+N(s)C(s) s+ N(s)Co(s)

and there is an
— integrator in C(s) <= lims_oM(s) =0
(i.e. the predictor part has zero static gain). As a general rule, again,

— design of (:"(s) is transparent at frequencies where the predictor gain is
low, i.e. |N(jo)| < 1.



MSP

Design example 2: controller static gain

We have that

_ . ef—e® e?-1 _ a
lim M(s) = lim = = lim C(s) = .
5s—0 s—0 S+ a a 5—0 e? —1

Because the static gain of the plant is 1/a, we have that

1/a 1—e7?

“irye-1n. a 70

T4(0)

(monotonically decreasing function of a, in agreement with simulations).



MSP

MSP: design example 3

Consider a more general

p(s):als—I—ao N n(s):a15+ao—e_
s+a s+a
and try to impose the following constraints:
1. |[M(—a)| < oo if a is small enough (say a < 3)
(to prevent canceling the problematic—unstable or slow stable—pole of the plant)
2. M(0) =0
(to keep integral action in the Pl C(s))



MSP: design example 3 (contd)

These conditions yield (mind that lims_0(1 —e™°)/s =1 < o0)

—wa=e’ L=< ifa<3
oo mo= Mao:lm(al:{a

ag =1 0 otherwise

)

MSP



MSP

MSP: design example 3 (contd)

These conditions yield (mind that lims_0(1 —e™°)/s =1 < o0)

1—e?
ag — a1a = € ifa<3 >
<— (ag=1)A|a1 = a
{0‘0 =1 ( 0 ) < ! {O otherwise

Thus, considering only the nontrivial case of a < 3, we have

and end up with the (bi-proper and nonminimum-phase)
~ —as+1
s+a

where o := % € (0,6.36). For larger a's this parameter o grows rapidly,
which is numerically inconvenient. ..



MSP

Design example 3: stage 1

The characteristic polynomial,

Ha(s) = kp(—as+1)(tis + 1) + tis(s + a)
= 1i(1 — aky)s® + (ti(a + kp) — aky)s + kp

and the closed-loop transfer functions,

[ ;ydr((ss)) ] B [fg ] (1 — akpy)s? + (_:l(sailkp) —aky)s+ ky'

are still second-order. Mind that now T4(s) is bi-proper and both T,,(s)
and T4(s) have a RHP zero, which might be misleading (the responses of
the original system are inertial and should not normally exhibit undershoot).



MSP

Design example 3: stage 1 (contd)

Let's choose

_ a(e? — (a—1)?)
P (e a—1)2

_ a—af4 _ 1)2
~ 0099 and 7= ¢ a(a D” . 0.267,

(with lim,—0 kp = 2 and lim,_, 7; = 3) for which

~ —as+1

s(—as+1
Tye(s) = m g

and  Ty(s) = Gri)



Design example 3: stage 2

MSP

Closed-loop step responses now have no remainings of plant dynamics:

— =1, allas - r=1 a=3 Smith
1.68 w1 =1, a=3, MSP
— = <=7 =1, a=02, Smith
= - =17 =1, a=0.2, MSP
< N ----7=1, a=0, Smith
121 —17=1, a=0, MSP
11t <N\ T :_r_: 1, a=-05, MSP
I EI N /2N, N R et T e L)
0 1 5 t o 1 5 ot
. . _ _e”®
As a matter of fact, in this case T,,(s) = (5172 and
N et e I \ R RN Y
d(s) = s - ’
a s s+a (s+1)?

so both s = 0 and s = —a are removable singularities (not poles) of T4(s).



MSP

MSP: loop transfer function

Loops can be analyzed in terms of their return difference transfer functions:
— at frequencies where |1 + L(jw)| > 1, the loop gain is high;
— at frequencies where |1 + L(jw)| = 1, the loop gain is low;

— at frequencies where |1 + L(jw)| < 1, it is close to the critical point.



MSP

MSP: loop transfer function

Loops can be analyzed in terms of their return difference transfer functions:
— at frequencies where |1 + L(jw)| > 1, the loop gain is high;
— at frequencies where |1 + L(jw)| = 1, the loop gain is low;

— at frequencies where |1 + L(jw)| < 1, it is close to the critical point.

The MSP return difference for the actual loop L(s) = P(s)e™**C(s) is

P(s)e=75C(s) 1+ lé(S)Cj(S) 1+ L(s)
C

P TG Ee) T T neEe) | 1rn(E)dE)

where [(s) = P(s)C(s) is the designed loop in stage 1.



MSP

MSP: loop transfer function (contd)
Thus, the relation between the designed and actual loops, can be seen in
1+ L(jo)| = |Sc(j@)| [1 + L(jw)|.
where Sc¢(s) := m is the sensitivity function of the internal loop of
the overall controller C(s). Thus,
|Sc(jw)| =1 = transparent design
Sc(jw)| < 1 = poor L(s), even from good L(s)
Sc(jw)| > 1 = possibly good L, even from poor L, but might yield

— high-gain L when low-gain L is designed

— fragile implementation of the controller internal
loop



MSP

MSP: loop transfer function (contd)
Thus, the relation between the designed and actual loops, can be seen in
1+ L(jo)| = |Sc(j@)| [1 + L(jw)|.
where Sc¢(s) := m is the sensitivity function of the internal loop of
the overall controller C(s). Thus,
|Sc(jw)| =1 = transparent design
Sc(jw)| < 1 = poor L(s), even from good L(s)
Sc(jw)| > 1 = possibly good L, even from poor L, but might yield

— high-gain L when low-gain L is designed

— fragile implementation of the controller internal
loop

Note that |S¢(jw)| = 1 < |N(jw)C(jw)| < 1, so it may make sense to
— keep [M(jow)| small at frequencies of interest,

which actually implies that P(jw) should approximate P(jw)e ™3 there. .



MSP

Design example 3: loop transfer function

Here ( 2
ale +1
SC(S) = l—e—s Ded—e—S k4
efat+ e —— —(a— 1255~
where o = eaa_l. It verifies |Sc(jw)| > 1 for all a and all @:

‘some plots should be here, perhaps...
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