
Control Theory (00350188)
lecture no. 2

Leonid Mirkin

Faculty of Mechanical Engineering
Technion—IIT

1/48

Outline

Reference signals in setpoint tracking problems

Reference profile: fastest realistic response and S-curves

Reference profile: fastest response under voltage constraints in DC motor

Anti-windup control

2/48

Step reference

remu

d

y

ymn

CP −

By considering r = yf1 we express the steady-state goal to

− reach the final setpoint limt→∞ y(t) = yf.

Step r is also used as a test signal to characterize quality of transients, e.g.

− overshoot

− raise time

− settling time

in controller design. This is convenient (analysis simplified / standardized).

But

− does it make sense to use steps as actual reference signals ?

− can we do better via different r even if the final goal is a setpoint ?

3/48

Example 1: moving cart with pendulum

Consider an undamped pendulum on a cart. The control input is the cart
position x , the output is the pendulum angle � . The linearized plant

P(s) =
s2

ls2 + g
;

where l is the pendulum length (so period Tp ··= 2�
√
l=g). Our goal is to

− move the cart quickly from x = 0 to xf w/o oscillating the pendulum.

0 xf

→

0 xf

4/48

Example 1: posicast control (by Otto J. M. Smith)

0 xf

leap−−−−→
halfway

0 xf(x0 + xf)=2

↓ wait
Tp
2

sec

0 xf

leap the other←−−−−
halfway

0 xf(x0 + xf)=2

5/48

Example 1: moral

There is

− more than the (smoothened) step reference

and

− transients can be improved by an elaborate choices of the command
signal:

x(t) =
0 Tp=2

xf=2

xf

=⇒ �(t) =
0

Tp=2

6/48

Example 2

reu

d

y

n

kp
1

s -

with
T (s) =

kp
s + kp

and Tc(s) =
kps

s + kp
:

and the 5% settling time ts ≈ 3� = 3=kp independent of the setpoint yf. If
r = yf1, then, by linearity, both y and u are proportional to yf:

tt

y
(t
)

0 3=kp

yf

t

u
(t
)

0 3=kp

kpyf

meaning that

− large setpoint changes might cause actuator “overflow”.

7/48

Example 2: moral

When faces real-world limitations,

− linearity sucks

in the choice of the reference signal. Even the choice

r = Trefyf1

for a low-pass Tref that smoothens the reference signal won’t resolve that.

8/48

Outline

Reference signals in setpoint tracking problems

Reference profile: fastest realistic response and S-curves

Reference profile: fastest response under voltage constraints in DC motor

Anti-windup control

9/48

What’s wrong here ?

reu

d

y

n

kp
1

s -

The problem is that the

− step reference is not realistic for inertial systems,

no inertial system can be expected to jump under a limited input. As such,
the more successful we are in following such a command, the less affordable
the price is.

For a problem to be realistic (resources are always limited),

− ts should depend on the setpoint change

and, in control terms, we need a

− nonlinear dependence of r on the setpoint.

10/48

Realistic settling time

Consider
uy 1

s

under constraint |u(t)| ≤ umax. Observe that

− ts decreases as |ẏ | increases
− |ẏ(t)| = |u(t)|
− y stops immediately as u = 0

Thus, |ẏ(t)| ≤ umax and the shortest ts requires |u(t)| = umax till y(t) = yf.
Hence,

ts ≥ ts,min ··= |yf|=umax:

This bound depends on the setpoint yf (and on umax) and is attained via

u(t) =

{
sign(yf)umax if t ≤ ts,min

0 if t > ts,min

and y(t) =

{
sign(yf)umaxt if t ≤ ts,min

yf if t ≥ ts,min

which are nonlinear functions of yf.
11/48

Unity-feedback workaround

reu

d

y

n

kp
1

s -

Let’s pick r that yields

− the fastest system response under given physical constraints,

which in our case results in

r(t) =

{
sign(yf)umaxt if t ≤ ts,min

yf if t ≥ ts,min

=
yf

0 ts,min = |yf|=umax

instead of r = yf1.

12/48

Unity-feedback: simulation results

For controller gains kp = 13, kp = 2, and kp = 1 and two different umax’s:

yf

y
(t
)

t
umax

u
(t
)

t

yf

y
(t
)

t

umaxu
(t
)

t

− r now agrees with the physics / limitations of the system
hence, the resulting control signal is within the limits for all kp

− tracking properties still depend on kp (i.e. on closed-loop bandwidth)
it’s our job to pick agreeing kp and r

13/48

Unity-feedback: simulation results (contd)

For controller gains kp = 13, kp = 2, and kp = 1 and two different yf’s:

yf

y
(t
)

tumax

u
(t
)

t

yf

y
(t
)

tumax

u
(t
)

t

14/48

General considerations

remu

d

y

ymn

CP −

Ideally, pick r that yields

− the fastest system response under given physical constraints.

But this might be rather knotty for

− more complex dynamics
even for 2-order systems solution more complicated; no analytic solution in general

− more complex constraints
might involve internal signals, like DC motor current, sensor limitations, et cetera

− nonzero initial conditions
e.g. if a new setpoint arrives before the previous one was reached

15/48

Pragmatic alternative

remu

d

y

ymn

CP −

Pick r that yields

− the fastest trajectory under given constraints on derivatives of r .

For example,

minimize tf

subject to r(0) = 0; r(tf) = yf; ṙ(tf) = 0; r̈(tf) = 0; : : :

|ṙ(t)| ≤ vmax

|r̈(t)| ≤ amax

| ...r (t)| ≤ jmax

for given vmax > 0 (velocity), amax > 0 (acceleration), and jmax > 0 (jerk),
which indirectly reflect physical constraints, and a given setpoint yf.

16/48

Example: constraints on velocity and acceleration

Problem:
minimize tf

subject to r(0) = 0; r(tf) = yf; ṙ(tf) = 0

|ṙ(t)| ≤ vmax; |r̈(t)| ≤ amax

for given vmax > 0, amax > 0, and yf.

Complications (due to amax <∞):

− maximal velocity cannot be achieved from the beginning

− r cannot be stopped immediately if its velocity is nonzero

Strategy:

1. start with maximal acceleration / stop with maximal deceleration

2. this might be sufficient (if yf is so small that vmax is not reached)

3. if not, reset acceleration at t = tsw1, where |ṙ(tsw1)| = vmax is satisfied,
then start deceleration at t = tsw2, for which r(tsw2) = yf − r(tsw1)

17/48

Example: some calculations

1. Maximal acceleration (assume, for simplicity, that yf > 0):

r̈(t) = amax =⇒ ṙ(t) = amaxt =⇒ r(t) = amaxt
2=2:

Then r(t) = yf=2 at tsw =
√

yf=amax, so that

tf = 2
√
yf=amax and ṙ(tsw) =

√
yf amax:

2. This strategy suffices iff
√
yf amax ≤ vmax ⇐⇒ yf ≤ v2max=amax.

3. The first switch is at ṙ(tsw1) = vmax, therefore tsw1 = vmax=amax. At this
moment r(tsw1) = v2max=(2amax) < yf=2 and continues linearly, as

r(t) = v2max=(2amax) + vmax(t − tsw1) = vmaxt − v2max=(2amax):

The second switch happens at r(tsw2) = yf − v2max=(2amax), from which
tsw2 = yf=vmax. Finally, because of symmetry tf = tsw1 + tsw2.

18/48

Reference trajectories (S-curve profiles)

r̈(
t)

t

ṙ(
t)

t

r(
t)

t

r̈(
t)

t

ṙ(
t)

t

r(
t)

t

v 2
max=amax

r̈(
t)

t

ṙ(
t)

t

r(
t)

t

r̈(
t)

t

ṙ(
t)

t

r(
t)

t

with the settling time:

ts =

{
2
√
|yf|=amax if yf ≤ v2max=amax

|yf|=vmax + vmax=amax if yf ≥ v2max=amax

and switches at tsw =
√
|yf|=amax or tsw1 = vmax=amax and tsw2 = |yf|=vmax.

19/48

Outline

Reference signals in setpoint tracking problems

Reference profile: fastest realistic response and S-curves

Reference profile: fastest response under voltage constraints in DC motor

Anti-windup control

20/48

Preliminaries: residues, simple poles case

Let G (s) have a simple pole at s = a. The residue of G at s = a,

Res(G (s); a) ··= lim
s→a

(s − a)G (s):

If Res(G (s); a) = 0, then the singularity at s = a is removable.

If G (s) is rational, proper, and has only simple poles, at s = si , then

G (s) = G (∞) +
n∑

i=1

Res(G (s); si)

s − si

(partial fraction expansion).

21/48

Preliminaries: residues, simple poles case (contd)

Example

G (s) =
s2

ls2 + g
=⇒ G (s) =

1

l
+

j
√
g=(4l3)

s − j
√
g=l
− j

√
g=(4l3)

s + j
√
g=l

Example

The function

G (s) =
1− ˛e−�s

s

has a single singularity at s = 0.

Res(G (s); 0) = lim
s→0

sG (s) = lim
s→0

(1− ˛e−�s) = 1− ˛:

Two cases:

˛ ̸= 1 Res(G (s); 0) ̸= 0 and the singularity is a pole

˛ = 1 Res(G (s); 0) = 0 and the singularity is removable (not a pole)

22/48

Preliminaries: a special complex function

Let

G (s) =
N0(s) + N1(s)e

−�1s + · · ·+ Nn(s)e
−�ns

D(s)
(∗)

for polynomials D(s) and Ni (s) such that

− degD(s) ≥ degNi (s) for all i = 0; : : : ; n,

− all roots si of D(s) are simple,

and 0 < �1 < �2 < · · · < �n. Expand, for j = 0; : : : ; n,

Nj(s)

D(s)
= ˇj +

∑
i

˛ij

s − si
; ˛ij = Res

(
Nj(s)

D(s)
; si

)
and ˇj = lim

s→∞

Nj(s)

D(s)
.

Hence

G (s) = ˇ(s) +
∑
i

˛i (s)

s − si
; ˛i (s) ··=

n∑
j=0

˛ij e
−�j s and ˇ(s) ··=

n∑
j=0

ˇj e
−�j s .

Note that ˛i (si) = Res(G (s); si).

23/48

Preliminaries: impulse response of (∗)
Let

Gi (s) ··=
˛i (s)

s − si
=

n∑
j=0

˛ij

s − si
e−�j s :

Its inverse Laplace transform

gi (t) =
n∑

j=0

˛ij e
si (t−�j)1(t − �j) = esi t

n∑
j=0

˛ij e
−si�j 1(t − �j)

If t > �n, then 1(t − �j) = 1 for all j and

gi (t) = esi t
n∑

j=0

˛ij e
−si�j = esi t˛i (si)

˛i (si)=0
= 0; ∀t > �n:

Hence,

− ˛i (si) = 0; ∀i =⇒ supp(g) ⊂ [0; �n] and G is BIBO stable.

Systems, whose impulse responses have support over finite intervals dubbed

− FIR (finite impulse response) systems.

24/48

Preliminaries: step response of (∗)
The step response of G is

Y (s) =
G (s)

s
⇐⇒ y(t) =

∫ t

0
g(�)d�:

If ˛i (si) = 0 for all i , then supp(g) ⊂ [0; �n] and

y(t) =

∫ �n

0
g(�)d� = const = G (0); ∀t > �n:

In other words, the

− step response of FIR systems converges to steady state in finite time.

25/48

Remark: posicast control revisited

Control

x(t) =
0 Tp=2

xf=2

xf

=⇒ X (s) =
1 + e−sTp=2

2

xf
s

corresponds to the open-loop architecture (with u = x and y = �)

ruy
P Col

under

− P(s) =
s2

ls2 + g
and stable Col(s) =

1 + e−sTp=2

2
,

− step reference r = xf1

and the controlled system

P(s)Col(s) =
0:5s2 + 0:5s2e−sTp=2

ls2 + g

is of form (∗) and has ˛i (si) = 0 for i = 1; 2, just because Col(±j
√
gl) = 0

(check it yourselves), so is FIR.

26/48

Remark: posicast control for dampened pendulum

Let
P(s) =

s2

l s2 + 2cs + g
; for 0 ≤ c <

√
gl

with poles at −� ± j! for � = c=l and ! =
√
gl − c2 =l = 2�=Tp. Choose

Col(s) = �0 + �1e
−�s :

We shall require

− Col(0) = 1 = �0 + �1 x = xf is steady state

− Col(−� ± j!) = 0 posicast, i.e. FIR

Equivalent to  1 1
1 e�� cos(�!)
0 e�� sin(�!)

[
�0
�1

]
=

 1
0
0


(because e−�(−�±j!) = e�� (sin(�!)∓ j cos(�!)) in �0; �1 ∈ R and � > 0.

27/48

Remark: posicast control for dampened pendulum (contd)

As �1 ̸= 0 (otherwise unsolvable), must have sin(�!) = 0, with the shortest

� =
�

!
=⇒

[
1 1
1 −e��

] [
�0
�1

]
=

[
1
0

]
=⇒

[
�0
�1

]
=

[
e��

1

]
1

1 + e��

(�0 > 1=2 if c > 0). Taking into account that Tp = 2�=!, we end up with

Col(s) =
e0:5Tpc=l + e−0:5Tps

1 + e0:5Tpc=l
:

The resulting

x(t) =
0 Tp=2

�0

xf

=⇒ �(t) =
0

Tp=2

also finish the move in Tp=2, but

− not posicast, in the sense that �̇(t)|t ↑Tp=2 ̸= 0, whenever c ̸= 0.

28/48

Fastest shaft angle change under voltage constraints

uiT!

Vb

� 1

R
Km

1

Js + f

1

s

Kb

−

Consider the task of turning the shaft of a DC motor resting at �(0) = �0
to a new angular position, say �f ̸= �0, and resting there. We may need to

− do that as quick as possible under physical constraints.

A possible constraint1 is the

− input voltage amplitude, |u(t)| ≤ umax for some umax > 0.

Our goal is to generate u that may then be a good choice for the reference
trajectory r .

1The armature current amplitude is another, perhaps even more practical, possibility.
29/48

Mathematical formulation

Let � satisfy

RJ �̈(t) + (Rf + KmKb)�̇(t) = Kmu(t) ⇐⇒ ��̈(t) + �̇(t) = ku(t)

for � ··= RJ=(Rf + KmKb) and k ··= Km=(Rf + KmKb),

minimize tf

subject to �(0) = �0; �̇(0) = 0; �(tf) = �f; �̇(tf) = 0

|u(t)| ≤ umax

for given �0, �f, and umax > 0. This problem depends on system dynamics.
Note that the model in the Laplace variable domain,

Θ(s) =
�0

s
+

k

s(�s + 1)
U(s);

is affected by the initial condition.

30/48

Time-optimal control

The studied problem is a special case of the time-optimal control problems,
whose theory goes beyond the scope of this course. Outcomes of the theory
relevant for the discussion below are:

− optimal u(t) in 0 < t < tf takes values only in the set {−umax; umax}
(such control strategy is known as bang-bang control)

− there is a finite number of switches umax ⇌ −umax for any finite tf

− if the plant has only real poles, say n, then the number of switches in
(0; tf) is at most n − 1

Applying to our problem2,

u(t) =


u1 if t ∈ (0; tsw)

−u1 if t ∈ (tsw; tf)

0 if t ∈ (tf;∞)

=
t0 tsw tf

u1

−u1

for |u1| = umax and some 0 < tsw < tf to be determined.

2Mind that u(t) = 0 whenever t ̸∈ [0; tf] because of an integrator in the plant.
31/48

Solution logic

Thus, u(t) = u1
(
1(t)− 21(t − tsw) + 1(t − tf)

)
, or

U(s) = u1
1− 2e−stsw + e−stf

s
;

and

Θ(s) =
�0

s
+

ku1(1− 2e−stsw + e−stf)

s2(�s + 1)
=

(G� (s)︷ ︸︸ ︷
�0 +

ku1(1− 2e−stsw + e−stf)

s(�s + 1)

)
1

s

Our goal is to

− determine sign(u1), tsw, and tf > tsw

such that G� (s) is FIR and G� (0) = �f. This is equivalent
3 to

1. lims→0 G� (s) = �f

2. Res(G� (s);−1=�) = 0

3Mind that the singularity of G� (s) at s = 0 is always removable, by construction.
32/48

Solution details

1. Condition lims→0 G� (s) = �f reads

�f = �0 + lim
s→0

ku1(1− 2e−stsw + e−stf)

s(�s + 1)
= �0 + ku1(2tsw − tf):

Hence,
ku1(2tsw − tf) = �f − �0:

2. Condition Res(G� (s);−1=�) = 0 reads

0 = lim
s→−1=�

(
s +

1

�

)
G� (s) = lim

s→−1=�

ku1(1− 2e−stsw + e−stf)

�s

= −ku1(1− 2etsw=� + etf=�):

Hence,

etsw=� =
1 + etf=�

2
:

33/48

Solution details (contd)

The equality

etsw=� =
1 + etf=�

2
:

t0 tf=2 tsw tf

1

etf=�

(1 + etf=�)=2

implies that tsw > tf=2, because

d

dt
et=� =

et=�

�
> 0 and

d2

dt2
et=� =

et=�

�2
> 0

for all t (meaning that et=� is increasing and strictly convex). But then

(2tsw > tf) ∧ (ku1(2tsw − tf) = �f − �0) =⇒ sign(u1) = sign(�f − �0)

and
�f − �0
u1

=
|�f − �0|
umax

:

34/48

Solution details (contd)

Thus, we end up with the following two equations for tsw > 0 and tf > tsw:

2tsw − tf =
|�f − �0|
kumax

and 2etsw=� = 1 + etf=� :

Hence, tf = 2tsw − |�f − �0|=(kumax) and

e−|�f−�0|=(�kumax)(etsw=�)2 − 2etsw=� + 1 = 0:

Solving this quadratic equation in etsw=� yields (take “+” to have tsw < tf)

tsw =
|�f − �0|
kumax

+ � ln
(
1 +

√
1− e−|�f−�0|=(�kumax)

)
and

tf =
|�f − �0|
kumax

+ 2� ln
(
1 +

√
1− e−|�f−�0|=(�kumax)

)
:

Both are increasing functions of |�f − �0| and � and decreasing of kumax.

35/48

The fastest �(t)

Taking the inverse Laplace transform of Θ(s), we finally get

�(t) =


�0 +

(
t − (1− e−t=�)�

)
ku1 if t ∈ [0; tsw]

�0 +
(
2tsw + � − t − e−t=� (2etsw=� − 1)�

)
ku1 if t ∈ [tsw; tf]

�f if t ∈ [tf;∞)

where u1 = sign(�f − �0)umax. The corresponding angular velocity

!(t) =


(1− e−t=�)ku1 if t ∈ [0; tsw](
e−t=� (2etsw=� − 1)− 1

)
ku1 if t ∈ [tsw; tf]

0 if t ∈ [tf;∞)

36/48

Resulting reference trajectories
u
(t
)

t

ṙ(
t)

t

r(
t)

t

u
(t
)

t

ṙ(
t)

t

r(
t)

t

u
(t
)

t

ṙ(
t)

t

r(
t)

t

u
(t
)

t

ṙ(
t)

t

r(
t)

t

are reminiscent of S-curves, but are not symmetric (stopping is cheaper).

37/48

Outline

Reference signals in setpoint tracking problems

Reference profile: fastest realistic response and S-curves

Reference profile: fastest response under voltage constraints in DC motor

Anti-windup control

38/48

Saturation

It is a system u 7→ y , which we denote sat[a;b], such that

y(t) =


a if u(t) < a

u(t) if a ≤ u(t) ≤ b

b if u(t) > b
uy

for given a < b. We use the short notation sata ··= sat[−a;a] for some a > 0.
Think of a gas pedal in cars, water tap, integer overflow in computers, etc.

Saturation element is a nonlinear system (no superposition). Indeed,

sat1(2× 0:6 sin t) ̸= 2× sat1(0:6 sin t) = 1:2 sin t:

39/48

Saturation in feedback loop

CP
remu

d

y

ymn

−

All actuators saturate. Indeed,

− force, torque,

− voltage, current,

− flow rate,

− . . .

are ultimately limited. Some sensors saturate as well. We therefore must

− respect the presence of (nonlinear) saturation elements

in any feedback loop.

40/48

Saturation in feedback loop (contd)

CP
remu

d

y

ymn

−

− if u does not saturate, it behaves as standard linear closed-loop system:

remu

d

y

ymn

CP −

− if u saturates, it behaves as open-loop system:

C±aP
remu

d

y

ymn

−

41/48

Saturation in feedback loop (contd)

C±aP
remu

d

y

ymn

−

This doesn’t help in general, yet it is

− especially problematic when either P(s) or C (s) is unstable.

What can be done:

− When plant is unstable, there is nothing we can do.

− Controllers are in our power, so

1. if possible, it is advisable to avoid the use of unstable controllers;
2. if not4, controller should be modified when control signal saturates.

4E.g. the plant is not strongly stabilizable, an integral action is required, et cetera.
42/48

PI controllers and saturation

kp
1

�i s
P

remxu

d

y

ymn

−−

PI controller transforms ym and r to control signal u according to

U(s) =
kp
�is

(
R(s)− Ym(s)

)
− kpYm(s) or5

{
ẋ(t) = 1

� i

(
r(t)− ym(t)

)
u(t) = kp

(
x(t)− ym(t)

)
While u(t) saturates,

− state x(t), acting in open loop, might accumulate a big value,

so that

− u remains saturated even when r − ym becomes small

(after all, dynamic systems have memory).

5This is how this controller is implemented.
43/48

PI controllers and saturation: example

Consider control system with P(s) = 1=s and C (s) = 5(1+ 1=s). We have:

0 5 10 15 20

-1

0

1

5

8

12.6

0 5 10 15 20

-1

0

1

5

8

12.6

State variable becomes very large by the time error approaches 0, hence

− y continues to grow until x(t) becomes smaller than y(t)

(remember, u = kp(x − y) and the direction of y equals the sign of u = ẏ).

44/48

Integrator windup

The effect of

− significant grow of the integrator state during actuator saturation

is called the integrator windup.

Arguably, most remedies for windup effect are based on

− preventing integrator state from unstable updating once u saturates.

Possible heuristics (sometimes equivalent):

− stop updating integrator when u saturates (conditional integration);

− implement integral action as interconnection of stable elements, with
some of interconnections opened when u saturates;

− add internal controller feedback acting on u − sata(u).

45/48

Anti-windup scheme with internal feedback

kp
1

�i s
P

1
�t

remu

d

y

ymn

−−

−

This scheme (�t is called the tracking time constant) works as follows:

− if u does not saturate, then sata(u)− u = 0 and it is a standard PI;

− if u saturates, then the controller becomes stable:

U(s) = kp

(
1

�is

(
R(s)− Ym(s)±

a

�t
− 1

�t
U(s)

)
− Ym(s)

)
;

so
�t�is + kp
�t�is

U(s) =
kp
�is

(
R(s)− (�is + 1)Ym(s)±

a

�t

)
and then

U(s) =
�tkp

�t�is + kp
R(s)− �tkp(�is + 1)

�t�is + kp
Ym(s)±

kp
�t�is + kp

a:

46/48

PI controllers and saturation: example (contd)

Internal feedback really helps (here �t = 1):

0 5 10 15 20

-1

0

1

5

8

12.6

0 5 10 15 20

-1

0

1

5

8

12.6

47/48

Another anti-windup solution: saturation-aware r

In many situations we may

− avoid windup by a saturation-aware choice of the reference signal,

so no need in smart solutions to problems one shouldn’t have gotten into in
the first place.

Example:

With P(s) = 1
s and |u(t)| ≤ 1 we have

no chance to raise faster than y(t) = t
anyway. It may make sense to pick

r(t) =

{
t if t ≤ rf

rf if t ≥ rf
=

yf

0 ts,min = |yf|=umax

instead. It helps:
0 5 10 15 20

-1

0

1

5

8

12.6

48/48

	Reference signals in setpoint tracking problems
	Reference profile: fastest realistic response and S-curves
	Reference profile: fastest response under voltage constraints in DC motor
	Anti-windup control

