

### Step reference



By considering  $r = y_f \mathbb{1}$  we express the steady-state goal to

- reach the final setpoint  $\lim_{t \to \infty} y(t) = y_{\mathrm{f}}$ .

Step r is also used as a test signal to characterize quality of transients, e.g.

- overshoot
- raise time
- settling time

in controller design. This is convenient (analysis simplified / standardized). But

- does it make sense to use steps as *actual* reference signals?
- can we do better via different r even if the final goal is a setpoint?

# Outline

### Reference signals in setpoint tracking problems

Reference profile: fastest realistic response and S-curves

Reference profile: fastest response under voltage constraints in DC motor

Anti-windup control

# Example 1: moving cart with pendulum

Consider an undamped pendulum on a cart. The control input is the cart position x, the output is the pendulum angle  $\theta$ . The linearized plant

$$P(s) = \frac{s^2}{ls^2 + g}$$

where *l* is the pendulum length (so period  $T_p := 2\pi \sqrt{l/g}$ ). Our goal is to - move the cart *quickly* from x = 0 to  $x_f$  w/o oscillating the pendulum.







$$T(s) = rac{k_{
m p}}{s+k_{
m p}} \hspace{0.3cm} ext{and} \hspace{0.3cm} T_{
m c}(s) = rac{k_{
m p}s}{s+k_{
m p}}$$

and the 5% settling time  $t_s \approx 3\tau = 3/k_p$  independent of the setpoint  $y_f$ . If  $r = y_f \mathbb{1}$ , then, by linearity, both y and u are proportional to  $y_f$ :



### Example 1: moral

There is

- more than the (smoothened) step reference

and

- transients can be improved by an elaborate choices of the command signal:

$$x(t) = \frac{x_{1/2}}{0} \longrightarrow \theta(t) = \frac{T_{p/2}}{0}$$

### Example 2: moral

When faces real-world limitations,

linearity sucks

in the choice of the reference signal. Even the choice

$$r = T_{ref} y_f \mathbb{1}$$

for a low-pass  $T_{ref}$  that smoothens the reference signal won't resolve that.

# Outline

Reference signals in setpoint tracking problems

Reference profile: fastest realistic response and S-curves

Reference profile: fastest response under voltage constraints in DC motor

Anti-windup control

# Realistic settling time Consider $under constraint |u(t)| \le u_{max}$ . Observe that $-t_s$ decreases as $|\dot{y}|$ increases $-|\dot{y}(t)| = |u(t)|$ -y stops immediately as u = 0Thus, $|\dot{y}(t)| \le u_{max}$ and the shortest $t_s$ require

Thus,  $|\dot{y}(t)| \le u_{\max}$  and the shortest  $t_s$  requires  $|u(t)| = u_{\max}$  till  $y(t) = y_f$ . Hence,

$$t_{\rm s} \geq t_{\rm s,min} := |y_{\rm f}|/u_{\rm max}.$$

This bound depends on the setpoint  $y_f$  (and on  $u_{max}$ ) and is attained via

 $u(t) = \begin{cases} \operatorname{sign}(y_{\mathsf{f}})u_{\mathsf{max}} & \text{if } t \leq t_{\mathsf{s},\mathsf{min}} \\ 0 & \text{if } t > t_{\mathsf{s},\mathsf{min}} \end{cases} \text{ and } y(t) = \begin{cases} \operatorname{sign}(y_{\mathsf{f}})u_{\mathsf{max}}t & \text{if } t \leq t_{\mathsf{s},\mathsf{min}} \\ y_{\mathsf{f}} & \text{if } t \geq t_{\mathsf{s},\mathsf{min}} \end{cases}$ 

which are nonlinear functions of  $y_{f}$ .

# What's wrong here?



The problem is that the

- step reference is not realistic for inertial systems,

no inertial system can be expected to jump under a limited input. As such, the more successful we are in following such a command, the less affordable the price is.

For a problem to be realistic (resources are always limited),

- $t_s$  should depend on the setpoint change
- and, in control terms, we need a
- nonlinear dependence of r on the setpoint.

# Unity-feedback workaround



Let's pick r that yields

 $-\,$  the fastest system response under given physical constraints, which in our case results in

$$r(t) = \begin{cases} \operatorname{sign}(y_{f})u_{\max}t & \text{if } t \leq t_{s,\min} \\ y_{f} & \text{if } t \geq t_{s,\min} \end{cases} = \int_{0-t-1}^{t} \int_{0-t-1}^{t} |u_{t}|^{2} dt dt dt$$

instead of  $r = y_f \mathbb{1}$ .

### Unity-feedback: simulation results

For controller gains  $k_p = 13$ ,  $k_p = 2$ , and  $k_p = 1$  and two different  $u_{max}$ 's:



- *r* now agrees with the physics / limitations of the system hence, the resulting control signal is within the limits for all  $k_p$
- tracking properties still depend on  $k_p$  (i.e. on closed-loop bandwidth) it's our job to pick agreeing  $k_p$  and r



Ideally, pick r that yields

- $-\,$  the fastest system response under given physical constraints.
- But this might be rather knotty for
- more complex dynamics
   even for 2-order systems solution more complicated; no analytic solution in general
- more complex constraints
   might involve internal signals, like DC motor current, sensor limitations, et cetera
- nonzero initial conditions

e.g. if a new setpoint arrives before the previous one was reached





$$\begin{array}{ll} \text{minimize} & t_{\text{f}} \\ \text{subject to} & r(0) = 0, \quad r(t_{\text{f}}) = y_{\text{f}}, \quad \dot{r}(t_{\text{f}}) = 0, \quad \ddot{r}(t_{\text{f}}) = 0, \ldots \\ & |\dot{r}(t)| \leq v_{\text{max}} \\ & |\ddot{r}(t)| \leq a_{\text{max}} \\ & |\ddot{r}(t)| \leq j_{\text{max}} \end{array}$$

for given  $v_{max} > 0$  (velocity),  $a_{max} > 0$  (acceleration), and  $j_{max} > 0$  (jerk), which indirectly reflect physical constraints, and a given setpoint  $y_{f}$ .

### Example: constraints on velocity and acceleration

 $\begin{array}{ll} \mbox{minimize} & t_{\rm f} \\ \mbox{subject to} & r(0)=0, \quad r(t_{\rm f})=y_{\rm f}, \quad \dot{r}(t_{\rm f})=0 \\ & |\dot{r}(t)| \leq v_{\rm max}, \quad |\ddot{r}(t)| \leq a_{\rm max} \end{array}$ 

for given  $v_{\text{max}} > 0$ ,  $a_{\text{max}} > 0$ , and  $y_{\text{f}}$ .

Complications (due to  $a_{\max} < \infty$ ):

- maximal velocity cannot be achieved from the beginning
- r cannot be stopped immediately if its velocity is nonzero

Strategy:

Problem:

- 1. start with maximal acceleration / stop with maximal deceleration
- 2. this might be sufficient (if  $y_f$  is so small that  $v_{max}$  is not reached)
- 3. if not, reset acceleration at  $t = t_{sw1}$ , where  $|\dot{r}(t_{sw1})| = v_{max}$  is satisfied, then start deceleration at  $t = t_{sw2}$ , for which  $r(t_{sw2}) = y_f r(t_{sw1})$



### Example: some calculations

1. Maximal acceleration (assume, for simplicity, that  $y_f > 0$ ):

$$\dot{r}(t) = a_{\max} \implies \dot{r}(t) = a_{\max}t \implies r(t) = a_{\max}t^2/2.$$

Then 
$$r(t)=y_{
m f}/2$$
 at  $t_{
m sw}=\sqrt{y_{
m f}/a_{
m max}}$ , so that

$$t_{\rm f} = 2\sqrt{y_{\rm f}/a_{\rm max}}$$
 and  $\dot{r}(t_{\rm sw}) = \sqrt{y_{\rm f}\,a_{\rm max}}.$ 

- 2. This strategy suffices iff  $\sqrt{y_f a_{max}} \le v_{max} \iff y_f \le v_{max}^2/a_{max}$ .
- 3. The first switch is at  $\dot{r}(t_{sw1}) = v_{max}$ , therefore  $t_{sw1} = v_{max}/a_{max}$ . At this moment  $r(t_{sw1}) = v_{max}^2/(2a_{max}) < y_f/2$  and continues linearly, as

$$r(t) = v_{\max}^2/(2a_{\max}) + v_{\max}(t - t_{sw1}) = v_{\max}t - v_{\max}^2/(2a_{\max}).$$

The second switch happens at  $r(t_{sw2}) = y_f - v_{max}^2/(2a_{max})$ , from which  $t_{sw2} = y_f/v_{max}$ . Finally, because of symmetry  $t_f = t_{sw1} + t_{sw2}$ .

### Outline

Reference signals in setpoint tracking problems

Reference profile: fastest realistic response and S-curves

Reference profile: fastest response under voltage constraints in DC motor

### Anti-windup control

### Preliminaries: residues, simple poles case

Let G(s) have a *simple* pole at s = a. The residue of G at s = a,

$$\mathsf{Res}(G(s),a) \coloneqq \lim_{s o a} (s-a)G(s)$$

If  $\operatorname{Res}(G(s), a) = 0$ , then the singularity at s = a is removable.

If G(s) is rational, proper, and has only simple poles, at  $s = s_i$ , then

$$G(s) = G(\infty) + \sum_{i=1}^{n} \frac{\operatorname{Res}(G(s), s_i)}{s - s_i}$$

(partial fraction expansion).

Preliminaries: a special complex function

Let

$$G(s) = \frac{N_0(s) + N_1(s)e^{-\tau_1 s} + \dots + N_n(s)e^{-\tau_n s}}{D(s)}$$
(\*)

for polynomials D(s) and  $N_i(s)$  such that

- $\deg D(s) \ge \deg N_i(s)$  for all  $i = 0, \ldots, n$ ,
- all roots  $s_i$  of D(s) are simple,

and  $0 < \tau_1 < \tau_2 < \cdots < \tau_n$ . Expand, for j = 0, ..., n,

$$\frac{N_j(s)}{D(s)} = \beta_j + \sum_i \frac{\alpha_{ij}}{s - s_i}, \quad \alpha_{ij} = \operatorname{Res}\left(\frac{N_j(s)}{D(s)}, s_i\right) \text{ and } \beta_j = \lim_{s \to \infty} \frac{N_j(s)}{D(s)}.$$

Hence

$$G(s) = \beta(s) + \sum_{i} \frac{\alpha_{i}(s)}{s - s_{i}}, \quad \alpha_{i}(s) := \sum_{j=0}^{n} \alpha_{ij} e^{-\tau_{j}s} \text{ and } \beta(s) := \sum_{j=0}^{n} \beta_{j} e^{-\tau_{j}s}.$$
  
Note that  $\alpha_{i}(s_{i}) = \operatorname{Res}(G(s), s_{i}).$ 

Preliminaries: residues, simple poles case (contd)

Example

$$G(s) = \frac{s^2}{ls^2 + g} \implies G(s) = \frac{1}{l} + \frac{j\sqrt{g/(4l^3)}}{s - j\sqrt{g/l}} - \frac{j\sqrt{g/(4l^3)}}{s + j\sqrt{g/l}}$$

Example

The function

$$G(s) = \frac{1 - \alpha e^{-\tau s}}{s}$$

has a single singularity at s = 0.

$$\operatorname{Res}(G(s),0) = \lim_{s \to 0} sG(s) = \lim_{s \to 0} (1 - \alpha e^{-\tau s}) = 1 - \alpha.$$

Two cases:

 $\alpha \neq 1 \operatorname{Res}(G(s), 0) \neq 0$  and the singularity is a pole  $\alpha = 1 \operatorname{Res}(G(s), 0) = 0$  and the singularity is removable (not a pole)

Preliminaries: impulse response of (\*)

Let

$$G_i(s) := rac{lpha_i(s)}{s-s_i} = \sum_{j=0}^n rac{lpha_{ij}}{s-s_i} \mathrm{e}^{- au_j s}.$$

Its inverse Laplace transform

$$g_i(t) = \sum_{j=0}^n \alpha_{ij} \mathrm{e}^{s_i(t-\tau_j)} \mathbb{1}(t-\tau_j) = \mathrm{e}^{s_i t} \sum_{j=0}^n \alpha_{ij} \mathrm{e}^{-s_i \tau_j} \mathbb{1}(t-\tau_j)$$

If  $t > au_n$ , then  $\mathbb{1}(t - au_j) = 1$  for all j and

$$g_i(t) = \mathrm{e}^{s_i t} \sum_{j=0}^n lpha_{ij} \mathrm{e}^{-s_i au_j} = \mathrm{e}^{s_i t} lpha_i(s_i) \stackrel{lpha_i(s_i)=0}{=} 0, \qquad orall t > au_n.$$

Hence,

 $- \alpha_i(s_i) = 0, \forall i \implies \text{supp}(g) \subset [0, \tau_n] \text{ and } G \text{ is BIBO stable.}$ Systems, whose impulse responses have support over finite intervals dubbed - FIR (finite impulse response) systems.

### Preliminaries: step response of (\*)

The step response of G is

$$Y(s) = rac{G(s)}{s} \iff y(t) = \int_0^t g(\theta) d\theta.$$

If  $\alpha_i(s_i) = 0$  for all *i*, then supp $(g) \subset [0, \tau_n]$  and

$$y(t) = \int_0^{ au_n} g( heta) d heta = ext{const} = G(0), \quad orall t > au_n$$

In other words, the

- step response of FIR systems converges to steady state in finite time.

Remark: posicast control for dampened pendulum

$$P(s) = rac{s^2}{ls^2 + 2cs + g}, \quad ext{for } 0 \leq c < \sqrt{gl}$$

with poles at  $-\sigma \pm j\omega$  for  $\sigma = c/l$  and  $\omega = \sqrt{gl - c^2}/l = 2\pi/T_p$ . Choose

$$C_{
m ol}(s) = \phi_0 + \phi_1 {
m e}^{- au s}$$

We shall require

$$\begin{array}{ll} - & C_{ol}(0) = 1 = \phi_0 + \phi_1 & x = x_f \text{ is steady state} \\ - & C_{ol}(-\sigma \pm i\omega) = 0 & posicast, i.e. FIR \end{array}$$

Equivalent to

$$\begin{bmatrix} 1 & 1 \\ 1 & e^{\tau\sigma}\cos(\tau\omega) \\ 0 & e^{\tau\sigma}\sin(\tau\omega) \end{bmatrix} \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
  
because  $e^{-\tau(-\sigma\pm j\omega)} = e^{\tau\sigma}(\sin(\tau\omega)\mp j\cos(\tau\omega))$  in  $\phi_0, \phi_1 \in \mathbb{R}$  and  $\tau > 0$ .

### Remark: posicast control revisited

Control

$$x(t) = \frac{x_{\rm r}}{\frac{x_{\rm r}}{1-s_{\rm r}}} \implies X(s) = \frac{1+{\rm e}^{-sT_{\rm p}/2}}{2} \frac{x_{\rm f}}{s}$$

corresponds to the open-loop architecture (with u = x and  $y = \theta$ )

under  
- 
$$P(s) = \frac{s^2}{ls^2 + g}$$
 and stable  $C_{ol}(s) = \frac{1 + e^{-sT_p/2}}{2}$ ,  
- step reference  $r = x_f \mathbb{1}$   
and the controlled system  
 $P(s)C_{ol}(s) = \frac{0.5s^2 + 0.5s^2e^{-sT_p/2}}{ls^2 + g}$   
is of form (\*) and has  $\alpha_i(s_i) = 0$  for  $i = 1, 2$ , just because  $C_{ol}(\pm j\sqrt{gI}) = 0$   
(check it yourselves), so is FIR.

Remark: posicast control for dampened pendulum (contd) As  $\phi_1 \neq 0$  (otherwise unsolvable), must have  $\sin(\tau \omega) = 0$ , with the shortest  $\tau = \frac{\pi}{\omega} \implies \begin{bmatrix} 1 & 1 \\ 1 & -e^{\tau\sigma} \end{bmatrix} \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \implies \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} = \begin{bmatrix} e^{\tau\sigma} \\ 1 \end{bmatrix} \frac{1}{1 + e^{\tau\sigma}}$  $(\phi_0 > 1/2 \text{ if } c > 0)$ . Taking into account that  $T_p = 2\pi/\omega$ , we end up with

$$C_{ol}(s) = rac{\mathrm{e}^{0.5 \, T_{p} c / l} + \mathrm{e}^{-0.5 \, T_{p} s}}{1 + \mathrm{e}^{0.5 \, T_{p} c / l}}$$

The resulting

27/4

also finish the move in  $T_p/2$ , but

- not posicast, in the sense that  $\dot{\theta}(t)|_{t\uparrow T_p/2} \neq 0$ , whenever  $c \neq 0$ .

### Fastest shaft angle change under voltage constraints



Consider the task of turning the shaft of a DC motor resting at  $\theta(0) = \theta_0$  to a new angular position, say  $\theta_f \neq \theta_0$ , and resting there. We may need to

- do that as quick as possible under physical constraints.

A possible constraint<sup>1</sup> is the

- input voltage amplitude,  $|u(t)| \le u_{\max}$  for some  $u_{\max} > 0$ .

Our goal is to generate u that may then be a good choice for the reference trajectory r.

 $^1\mbox{The}$  armature current amplitude is another, perhaps even more practical, possibility.

### Time-optimal control

The studied problem is a special case of the time-optimal control problems, whose theory goes beyond the scope of this course. Outcomes of the theory relevant for the discussion below are:

- optimal u(t) in  $0 < t < t_f$  takes values only in the set  $\{-u_{max}, u_{max}\}$  (such control strategy is known as bang-bang control)
- $-\,$  there is a finite number of switches  $u_{\max} \rightleftharpoons -u_{\max}$  for any finite  $t_{\rm f}$
- if the plant has only real poles, say n, then the number of switches in  $(0, t_f)$  is at most n 1

Applying to our problem<sup>2</sup>,

$$u(t) = \begin{cases} u_1 & \text{if } t \in (0, t_{sw}) \\ -u_1 & \text{if } t \in (t_{sw}, t_f) \\ 0 & \text{if } t \in (t_f, \infty) \end{cases} = \frac{u_1}{\begin{array}{c} 0 \\ -u_1 \end{array}}$$

for 
$$|u_1| = u_{\sf max}$$
 and some  $0 < t_{\sf sw} < t_{\sf f}$  to be determined.

<sup>2</sup>Mind that u(t) = 0 whenever  $t \notin [0, t_f]$  because of an integrator in the plant.

### Mathematical formulation

Let  $\theta$  satisfy

$$RJ\ddot{\theta}(t) + (Rf + K_{\rm m}K_{\rm b})\dot{\theta}(t) = K_{\rm m}u(t) \iff \tau\ddot{\theta}(t) + \dot{\theta}(t) = ku(t)$$
  
for  $\tau := RJ/(Rf + K_{\rm m}K_{\rm b})$  and  $k := K_{\rm m}/(Rf + K_{\rm m}K_{\rm b})$ ,

 $\begin{array}{ll} \text{minimize} & t_{\rm f} \\ \text{subject to} & \theta(0) = \theta_0, \quad \dot{\theta}(0) = 0, \quad \theta(t_{\rm f}) = \theta_{\rm f}, \quad \dot{\theta}(t_{\rm f}) = 0 \\ & |u(t)| \leq u_{\rm max} \end{array}$ 

for given  $\theta_0$ ,  $\theta_f$ , and  $u_{max} > 0$ . This problem depends on system dynamics. Note that the model in the Laplace variable domain,

$$\Theta(s) = rac{ heta_0}{s} + rac{k}{s( au s+1)} U(s),$$

is affected by the initial condition.

Solution logic Thus,  $u(t) = u_1(1(t) - 21(t - t_{sw}) + 1(t - t_f))$ , or  $U(s) = u_1 \frac{1 - 2e^{-st_{sw}} + e^{-st_f}}{s}$ , and  $\Theta(s) = \frac{\theta_0}{s} + \frac{ku_1(1 - 2e^{-st_{sw}} + e^{-st_f})}{s^2(\tau s + 1)} = \left( \underbrace{\theta_0 + \frac{ku_1(1 - 2e^{-st_{sw}} + e^{-st_f})}{s(\tau s + 1)}} \right) \frac{1}{s}$ Our goal is to - determine sign( $u_1$ ),  $t_{sw}$ , and  $t_f > t_{sw}$ such that  $G_{\theta}(s)$  is FIR and  $G_{\theta}(0) = \theta_f$ . This is equivalent<sup>3</sup> to 1.  $\lim_{s \to 0} G_{\theta}(s) = \theta_f$ 2.  $\operatorname{Res}(G_{\theta}(s), -1/\tau) = 0$ 

<sup>3</sup>Mind that the singularity of  $G_{ heta}(s)$  at s=0 is always removable, by construction.

### Solution details

1. Condition  $\lim_{s\to 0} G_{\theta}(s) = \theta_{f}$  reads

$$heta_{\rm f} = heta_0 + \lim_{s \to 0} \frac{k u_1 (1 - 2 {\rm e}^{-st_{\rm sw}} + {\rm e}^{-st_{\rm f}})}{s(\tau s + 1)} = heta_0 + k u_1 (2t_{\rm sw} - t_{\rm f}).$$

Hence,

$$ku_1(2t_{\sf sw}-t_{\sf f})= heta_{\sf f}- heta_0$$

2. Condition  $\operatorname{Res}(G_{\theta}(s), -1/\tau) = 0$  reads

$$\begin{split} 0 &= \lim_{s \to -1/\tau} \left( s + \frac{1}{\tau} \right) G_{\theta}(s) = \lim_{s \to -1/\tau} \frac{k u_1 (1 - 2 e^{-st_{sw}} + e^{-st_f})}{\tau s} \\ &= -k u_1 (1 - 2 e^{t_{sw}/\tau} + e^{t_f/\tau}). \end{split}$$

Hence,

$$e^{t_{sw}/\tau} = \frac{1 + e^{t_f/\tau}}{2}$$

# Solution details (contd)

Thus, we end up with the following two equations for  $t_{sw} > 0$  and  $t_{f} > t_{sw}$ :

$$2t_{sw} - t_f = rac{| heta_f - heta_0|}{ku_{max}}$$
 and  $2e^{t_{sw}/ au} = 1 + e^{t_f/ au}$ .

Hence,  $t_{\rm f} = 2t_{\rm sw} - | heta_{\rm f} - heta_{\rm 0}|/(ku_{\rm max})$  and

$$e^{-| heta_{
m f}- heta_{
m 0}|/( au\,ku_{
m max})}(e^{t_{
m sw}/ au})^2-2e^{t_{
m sw}/ au}+1=0.$$

Solving this quadratic equation in  $e^{t_{sw}/\tau}$  yields (take "+" to have  $t_{sw} < t_f$ )

$$t_{\rm sw} = \frac{|\theta_{\rm f} - \theta_0|}{k u_{\rm max}} + \tau \ln \left(1 + \sqrt{1 - \mathrm{e}^{-|\theta_{\rm f} - \theta_0|/(\tau k u_{\rm max})}}\right)$$

 $\mathsf{and}$ 

$$E_{\rm f} = rac{| heta_{\rm f} - heta_{\rm 0}|}{k u_{
m max}} + 2 au \ln \Big( 1 + \sqrt{1 - {
m e}^{-| heta_{\rm f} - heta_{\rm 0}|/( au k u_{
m max})}} \Big).$$

Both are increasing functions of  $|\theta_f - \theta_0|$  and  $\tau$  and decreasing of  $ku_{max}$ .

### Solution details (contd)

The equality

$$e^{t_{sw}/\tau} = \frac{1 + e^{t_f/\tau}}{2} \quad : \quad {}^{e^{k/\tau}}_{1 - e^{k/\tau})/2}_{1 - \frac{1}{0} - \frac{t_f/2}{t_{sw} - t_f - t_s}}$$

implies that  $t_{sw} > t_f/2$ , because

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathsf{e}^{t/\tau} = \frac{\mathsf{e}^{t/\tau}}{\tau} > 0 \quad \text{and} \quad \frac{\mathsf{d}^2}{\mathsf{d}t^2}\mathsf{e}^{t/\tau} = \frac{\mathsf{e}^{t/\tau}}{\tau^2} > 0$$

for all t (meaning that  $e^{t/\tau}$  is increasing and strictly convex). But then

$$(2t_{sw} > t_{f}) \land (ku_{1}(2t_{sw} - t_{f}) = \theta_{f} - \theta_{0}) \implies sign(u_{1}) = sign(\theta_{f} - \theta_{0})$$

and

33/4

35/48

$$\frac{\theta_{\rm f}-\theta_0}{u_1}=\frac{|\theta_{\rm f}-\theta_0|}{u_{\rm max}}.$$

The fastest  $\theta(t)$ 

Taking the inverse Laplace transform of  $\Theta(s)$ , we finally get

$$\theta(t) = \begin{cases} \theta_0 + (t - (1 - e^{-t/\tau})\tau)ku_1 & \text{if } t \in [0, t_{sw}] \\ \theta_0 + (2t_{sw} + \tau - t - e^{-t/\tau}(2e^{t_{sw}/\tau} - 1)\tau)ku_1 & \text{if } t \in [t_{sw}, t_f] \\ \theta_f & \text{if } t \in [t_f, \infty) \end{cases}$$

where  $u_1 = \text{sign}(\theta_f - \theta_0) u_{\text{max}}$ . The corresponding angular velocity

$$\omega(t) = \begin{cases} (1 - e^{-t/\tau})ku_1 & \text{if } t \in [0, t_{sw}] \\ (e^{-t/\tau}(2e^{t_{sw}/\tau} - 1) - 1)ku_1 & \text{if } t \in [t_{sw}, t_f] \\ 0 & \text{if } t \in [t_f, \infty) \end{cases}$$



### Saturation

It is a system  $u \mapsto y$ , which we denote sat<sub>[a,b]</sub>, such that



for given a < b. We use the short notation sat<sub>a</sub> := sat<sub>[-a,a]</sub> for some a > 0. Think of a gas pedal in cars, water tap, integer overflow in computers, etc.

Saturation element is a nonlinear system (no superposition). Indeed,

$$\operatorname{sat}_1(2 \times 0.6 \sin t) \neq 2 \times \operatorname{sat}_1(0.6 \sin t) = 1.2 \sin t$$

# Outline Reference signals in setpoint tracking problems Reference profile: fastest realistic response and S-curves Reference profile: fastest response under voltage constraints in DC motor Anti-windup control



All actuators saturate. Indeed,

- force, torque,
- voltage, current,
- flow rate,
- ..

are ultimately limited. Some sensors saturate as well. We therefore must
respect the presence of (nonlinear) saturation elements
in any feedback loop.





- if *u* does not saturate, it behaves as standard linear closed-loop system:



if *u* saturates, it behaves as open-loop system:



# PI controllers and saturation



PI controller transforms  $y_m$  and r to control signal u according to

$$U(s) = \frac{k_{\rm p}}{\tau_{\rm i} s} (R(s) - Y_{\rm m}(s)) - k_{\rm p} Y_{\rm m}(s) \quad \text{or}^{5} \quad \begin{cases} \dot{x}(t) = \frac{1}{\tau_{\rm i}} (r(t) - y_{\rm m}(t)) \\ u(t) = k_{\rm p} (x(t) - y_{\rm m}(t)) \end{cases}$$

While u(t) saturates,

- state x(t), acting in open loop, might accumulate a big value, so that

- u remains saturated even when  $r - y_m$  becomes small (after all, dynamic systems have memory).

Saturation in feedback loop (contd)



This doesn't help in general, yet it is

- especially problematic when either P(s) or C(s) is unstable.

What can be done:

- $-\,$  When plant is unstable, there is nothing we can do.
- $-\,$  Controllers are in our power, so
  - 1. if possible, it is advisable to avoid the use of unstable controllers;
  - 2. if  $not^4$ , controller should be modified when control signal saturates.

 $^{4}\mathsf{E.g.}$  the plant is not strongly stabilizable, an integral action is required, et cetera.



- y continues to grow until x(t) becomes smaller than y(t)(remember,  $u = k_p(x - y)$  and the direction of y equals the sign of  $u = \dot{y}$ ).

<sup>&</sup>lt;sup>5</sup>This is how this controller is implemented.

### Integrator windup

### The effect of

 significant grow of the integrator state during actuator saturation is called the integrator windup.

Arguably, most remedies for windup effect are based on

- preventing integrator state from unstable updating once u saturates.

Possible heuristics (sometimes equivalent):

- stop updating integrator when u saturates (conditional integration);
- implement integral action as interconnection of stable elements, with some of interconnections opened when *u* saturates;
- add internal controller feedback acting on  $u \operatorname{sat}_a(u)$ .



Anti-windup scheme with internal feedback



This scheme ( $\tau_t$  is called the tracking time constant) works as follows:

- if u does not saturate, then  $sat_a(u) u = 0$  and it is a standard PI;
- if *u* saturates, then the controller becomes stable:

$$U(s) = k_{\mathsf{p}}\left(\frac{1}{\tau_{\mathsf{i}}s}\left(R(s) - Y_{\mathsf{m}}(s) \pm \frac{a}{\tau_{\mathsf{t}}} - \frac{1}{\tau_{\mathsf{t}}}U(s)\right) - Y_{\mathsf{m}}(s)\right),$$

so

$$\frac{k_{\mathsf{t}}\tau_{\mathsf{i}}s + k_{\mathsf{p}}}{\tau_{\mathsf{t}}\tau_{\mathsf{i}}s} U(s) = \frac{k_{\mathsf{p}}}{\tau_{\mathsf{i}}s} \Big( R(s) - (\tau_{\mathsf{i}}s + 1)Y_{\mathsf{m}}(s) \pm \frac{a}{\tau_{\mathsf{t}}s} \Big)$$

and then

$$U(s) = \frac{\tau_{\mathsf{t}}k_{\mathsf{p}}}{\tau_{\mathsf{t}}\tau_{\mathsf{i}}s + k_{\mathsf{p}}} R(s) - \frac{\tau_{\mathsf{t}}k_{\mathsf{p}}(\tau_{\mathsf{i}}s + 1)}{\tau_{\mathsf{t}}\tau_{\mathsf{i}}s + k_{\mathsf{p}}} Y_{\mathsf{m}}(s) \pm \frac{k_{\mathsf{p}}}{\tau_{\mathsf{t}}\tau_{\mathsf{i}}s + k_{\mathsf{p}}} a.$$

# Another anti-windup solution: saturation-aware r

In many situations we may

avoid windup by a saturation-aware choice of the reference signal,
 so no need in smart solutions to problems one shouldn't have gotten into in
 the first place.

### Example:

With  $P(s) = \frac{1}{s}$  and  $|u(t)| \le 1$  we have no chance to raise faster than y(t) = tanyway. It may make sense to pick

$$r(t) = \begin{cases} t & \text{if } t \leq r_{\text{f}} \\ r_{\text{f}} & \text{if } t \geq r_{\text{f}} \end{cases} = \int_{0}^{y_{\text{f}}} \int_{t_{\text{cmin}} = |y|/u_{\text{max}}}^{y_{\text{f}}}$$

instead. It helps:

