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Reference signals in setpoint tracking problems

Step reference
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By considering r = y£1 we express the steady-state goal to

— reach the final setpoint lim;_o ¥(t) = .

Step r is also used as a test signal to characterize quality of transients, e.g.

— overshoot
— raise time

— settling time

in controller design. This is convenient (analysis simplified / standardized).

But
— does it make sense to use steps as actual reference signals?

— can we do better via different r even if the final goal is a setpoint?

Example 1: moving cart with pendulum

Consider an undamped pendulum on a cart. The control input is the cart
position x, the output is the pendulum angle 6. The linearized plant
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where [ is the pendulum length (so period T, :=2mw+/l/g). Our goal is to
— move the cart quickly from x = 0 to xf w/o oscillating the pendulum.
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Example 1: posicast control (by Otto J. M. Smith)
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Example 1: moral

There is
— more than the (smoothened) step reference
and

— transients can be improved by an elaborate choices of the command

signal:
x(=r— = H(t):%—o
0 T./2
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Example 2
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k, kps
T(s) = P and T.(s) = ———.
( ) s + kp C( ) s + kp

and the 5% settling time t; &~ 37 = 3/k, independent of the setpoint yt.

r = y¢1, then, by linearity, both y and u are proportional to ys:
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meaning that

— large setpoint changes might cause actuator “overflow” .

Example 2: moral

When faces real-world limitations,
— linearity sucks
in the choice of the reference signal. Even the choice

r = Tyl

for a low-pass T,.f that smoothens the reference signal won't resolve that.
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Reference profile: fastest realistic response and S-curves

What's wrong here ?

The problem is that the
— step reference is not realistic for inertial systems,

no inertial system can be expected to jump under a limited input. As such,
the more successful we are in following such a command, the less affordable
the price is.

For a problem to be realistic (resources are always limited),
— ts should depend on the setpoint change
and, in control terms, we need a

— nonlinear dependence of r on the setpoint.

Realistic settling time
Consider
: :

under constraint |u(t)| < Umax. Observe that

— ts decreases as |y| increases

— y(8)] = [u(t)]

— y stops immediately as u =0

Thus, |y(t)] < umax and the shortest ts requires |u(t)| = umax till y(t) = y.

Hence,
ts > s, min ‘= ‘Yf‘/umax-

This bound depends on the setpoint yf (and on umax) and is attained via

U(t) _ Sign()/f)umax |f t < tsmin and y(t) _ Sign(yf)umaxt nc t < tsmin
0 if t > ts min yf if t > ts min

which are nonlinear functions of ys.

Unity-feedback workaround

Let's pick r that yields
— the fastest system response under given physical constraints,

which in our case results in

r(t) _ Sign(}/f)umaxt |f t < ts, min _ " /
Y if t > ts, min

0 tomin = |yil/tmax

instead of r = 1.




Unity-feedback: simulation results

For controller gains k, = 13, k, = 2, and k, = 1 and two different umax's:
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— r now agrees with the physics / limitations of the system

hence, the resulting control signal is within the limits for all k,

— tracking properties still depend on kj (i.e. on closed-loop bandwidth)
it's our job to pick agreeing k, and r

Unity-feedback: simulation results (contd)

For controller gains k, = 13, k, = 2, and k, = 1 and two different y¢'s:
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General considerations

Ideally, pick r that yields
— the fastest system response under given physical constraints.
But this might be rather knotty for

— more complex dynamics
even for 2-order systems solution more complicated; no analytic solution in general
— more complex constraints

might involve internal signals, like DC motor current, sensor limitations, et cetera

— nonzero initial conditions

e.g. if a new setpoint arrives before the previous one was reached

Pragmatic alternative

Pick r that yields
— the fastest trajectory under given constraints on derivatives of r.

For example,
minimize  tf
subject to r(0) =0, r(tr)=yr, F(tr)=0, F(tr)=0,...

|’;(t)| < Vmax
|F(t)] < amax
| 7 ()] < Jmax

for given vimax > 0 (velocity), amax > 0 (acceleration), and jmax > 0 (jerk),
which indirectly reflect physical constraints, and a given setpoint ys.




Example: constraints on velocity and acceleration

Problem: o
minimize tf

subject to r(0) =0, r(t) =y r(tr)=0
|r(t)| < Vmaxo |r(t)| < amax

for given Vmax > 0, amax > 0, and ;.

Complications (due to amax < 00):
— maximal velocity cannot be achieved from the beginning

— r cannot be stopped immediately if its velocity is nonzero

Strategy:

1. start with maximal acceleration / stop with maximal deceleration

2. this might be sufficient (if yf is so small that v« is not reached)

3. if not, reset acceleration at t = tqy1, Where |F(tsw1)| = Vimax is satisfied,
then start deceleration at t = ty,2, for which r(tsw2) = y5 — r(tsw1)

Example: some calculations
1. Maximal acceleration (assume, for simplicity, that ys > 0):
F(t) = amax = F(t) = amaxt = r(t) = amaxt?/2.
Then r(t) = y5/2 at tsy = \/m, so that
tr=2v/yf/amax and F(tsw) = /¥ amax-

2. This strategy suffices iff \/yf amax < Vmax < ¥ < v,%ax/amax.
3. The first switch is at F(tsw1) = Vmax, therefore tayi = Vimax/amax- At this
moment r(tsw1) = VAax/(2amax) < y5/2 and continues linearly, as
r(t) = Vr%\ax/(zamax) + Vmax(t — tsw1) = Vimaxt — Vr%ax/(2amax)'

The second switch happens at r(tsw2) = yf — V2 ../(2amax), from which

tsw2 = V§/Vmax. Finally, because of symmetry t; = tsw1 + tswo2.

Reference trajectories (S-curve profiles)
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with the settling time:

t. = {2 V/ 1¥6l/ amax if yp < Vr%ax/amax
L=

‘yf‘/vmax + Vmax/amax I yf > Vr%\ax/amax

and switches at tsw = \/|¥f|/3max OF tswl = Vmax/3max and tsw2 = |¥f|/Vimax-
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Reference profile: fastest response under voltage constraints in DC motor




Preliminaries: residues, simple poles case
Let G(s) have a simple pole at s = a. The residue of G at s = a,

Res(G(s), a) := lim(s — a)G(s).

= |
s—a

If Res(G(s), a) = 0, then the singularity at s = a is removable.

If G(s) is rational, proper, and has only simple poles, at s = s;, then

G(s) = G(o0) +Zw

. S—S;
i=1

(partial fraction expansion).

Preliminaries: residues, simple poles case (contd)

Example
§ 1 43) ] 453
G(s)=—— = G(s)=-+3 g/( ) g/( )
" +e I s—iell s+iell
Example
The function . .
G(s):i

has a single singularity at s = 0.
Res(G(s),0) = lim sG(s) = lim(1 —awe *°) =1 —a.
s—0 s—0
Two cases:

o # 1 Res(G(s),0) # 0 and the singularity is a pole
o =1 Res(G(s),0) = 0 and the singularity is removable (not a pole)

Preliminaries: a special complex function

Let 6(s) = Mol) T Ma(s)e ™ oo+ Nn(s)e ™
D(s)
for polynomials D(s) and N;(s) such that
— deg D(s) > deg Nj(s) forall i=0,...,n,
— all roots s; of D(s) are simple,

and 0 <1y < 1 <--- < 1y Expand, for j=0,...,n,
(s) ajj L Ni(s) e Ni(s)
(s) _ﬁj+zs—s, aU_ReS(D(s)’S' and f; = Jim, D(s)"
Hence

ai(s)

G(s) = B(s) + Y+

ai(s) : Zau ~U% and B(s) : Z'BJ s,

j=0

Note that «;(s;) = Res(G(s), s;).

Preliminaries: impulse response of ()

Let

Its inverse Laplace transform

gi(t) = Za,-jesf(t_’f)ﬂ(t — 1) = es"tZoc,-je_sf’fﬂ(t — 1)
=0
If t > 7, then 1(t — 7;) =1 for all j and

n
gi(t) = et Za,-je*s’tf = e%fa;(s;) @ile)=0 0, YVt > 1,.

Hence,
— «i(s)) =0, Vi = supp(g) C [0, 7,] and G is BIBO stable.
Systems, whose impulse responses have support over finite intervals dubbed

— FIR (finite impulse response) systems.




Preliminaries: step response of (x)

The step response of G is

v = S e - [ g(0)ds.

If a;j(s;) =0 for all i, then supp(g) C [0, t,] and
T
y(t) = / g(0)do = const = G(0), Vt> 1,.
0

In other words, the

— step response of FIR systems converges to steady state in finite time.

Remark: posicast control revisited

Control

1 —sTp/2
[ —  X(s)= l1+e "™ X
0 T,/2 2 S

x(t) ="

corresponds to the open-loop architecture (with u = x and y = 6)

L

2 14 e=sTo/2
— P(s) = iz and stable Cy(s) = —

— step reference r = x¢1

under

and the controlled system
0.55% 4 0.552¢=T/2
Is> + g
is of form (x) and has «;(s;) = 0 for i = 1,2, just because Co/(£jv/gl) =0
(check it yourselves), so is FIR.

P(s)Cu(s) =

Remark: posicast control for dampened pendulum
Let 2

s
P(s)=-————, for0< v/ gl
(s) Is2 +2cs+ g orvsce=ve

with poles at —o =+ jow for 0 = ¢/l and w = /gl — ¢? /I =27/ T,. Choose
CO|(S) = (]50 + (]518715.

We shall require
— Ga(0) =1=¢o + ¢
— CGi(—otjw)=0
Equivalent to

X = X is steady state

posicast, i.e. FIR

1 1 é 1
1 €% cos(tw) Lbo ] =10
0 e"sin(rtw) ! 0

(because e~ 7(=0Fi®) = e¥(sin(tw) T jcos(tw)) in ¢o.¢1 € R and > 0.

Remark: posicast control for dampened pendulum (contd)

As ¢1 # 0 (otherwise unsolvable), must have sin(zw) = 0, with the shortest

_T 1 1 do | |1 ¢o | | e 1
e I e H e M e E e

(¢o > 1/2 if ¢ > 0). Taking into account that T, = 27/w, we end up with

e0-5Tpc/! + e 05Tps

Cails) = 1+ 05Toc/l

The resulting

x(t) = i| = 0(t)= /2

0 T,/2 0

also finish the move in T,/2, but

— not posicast, in the sense that é(t)\tﬂ;/z # 0, whenever ¢ # 0.




Fastest shaft angle change under voltage constraints

Km ‘
S Vo
Ky

Consider the task of turning the shaft of a DC motor resting at 6(0) = 6
to a new angular position, say 6f # 6y, and resting there. We may need to

— do that as quick as possible under physical constraints.
A possible constraint! is the
— input voltage amplitude, |u(t)| < umax for some umax > 0.

Our goal is to generate u that may then be a good choice for the reference
trajectory r.

1The armature current amplitude is another, perhaps even more practical, possibility.

Mathematical formulation

Let @ satisfy

RJO(t) + (Rf + KmKp)0(t) = Kmu(t) <  16(t) + 6(t) = ku(t)
for v := RJ/(Rf + KnKp) and k := Kn/(Rf + KnKb),

minimize  tf

subject to  0(0) =6y, 6(0)=0, O(t) =06 O(t)=0
lu(t)] < Umax

for given 6Oy, 65, and umax > 0. This problem depends on system dynamics.
Note that the model in the Laplace variable domain,

o,k

() s + s(ts+1)

U(s),

is affected by the initial condition.

Time-optimal control

The studied problem is a special case of the time-optimal control problems,
whose theory goes beyond the scope of this course. Outcomes of the theory
relevant for the discussion below are:

— optimal u(t) in 0 < t < t; takes values only in the set {—uUmax, Umax }

(such control strategy is known as bang-bang control)
— there is a finite number of switches umax = —Umax for any finite t;

— if the plant has only real poles, say n, then the number of switches in
(0, tf) is at most n — 1

Applying to our problem?,

Uy if t € (0, tsw) ul
u(t) e —U]_ |f t S (tSW’ tf) = 0 tsw tr t
0 if t € (tr, 0) —un

for |u1| = Umax and some 0 < ty, < t; to be determined.

*Mind that u(t) = 0 whenever t & [0, tf] because of an integrator in the plant.

Solution logic
Thus, u(t) = uy (1(t) — 21(t — tew) + 1(t — &)), or

1— 2e—stsw + e—stf

U(s) = ,
(s) = .
and Go(s)
bo | kui(l —2e™stv + e™H) kup (1 — 2e 5w + e75f)\ 1
@ — = 9 —
(5) s s?(rs+1) o+ s(ts + 1) S

Our goal is to
— determine sign(uy), tsw, and tf > toy

such that Gg(s) is FIR and Gg(0) = 6. This is equivalent? to
1. lims_s0 Gg(s) = 6
2. Res(Gy(s),—1/t)=0

3Mind that the singularity of Gg (s) at s = 0 is always removable, by construction.




Solution details
1. Condition lims_,o Gy(s) = 6 reads

kup(1 — 2e~%tsw 4 e=5H)
s(ts+1)

0 = Gy + lim = 0y + kU1(2tSW — tf).
s—0

Hence,
kU1(2tSW — tf) = 0 — 0.

2. Condition Res(Gy(s), —1/t) = 0 reads

1 kuy (1 — 2e~Stsw 4 =5t
0= lim <s—|—7)G@(s) i (i 2e 4 e )
s——1/t T s——1/t TS

= —kuy(1 — 2e™/T 4 e¥/7),

Hence,

tow/T

14 efi/?
e =

2

Solution details (contd)
The equality

ti/T e
atw/T — l1+e . (1+e”)/2l_/
2 ' 1

implies that tg, > t;/2, because

d o et/r d2 et/t
E T . >0 and @e = ‘[2

for all t (meaning that e!/7 is increasing and strictly convex). But then
(2tsw > tr) A (kui(2tew — tr) = 6f — 0y) = sign(u1) = sign(fr — 6p)

and

b — 6o _ |6 — 6o

up Umax

Solution details (contd)

Thus, we end up with the following two equations for ty, > 0 and tf > tqy:

|0 — 6o

and 2efw/T — 1 4 etf/T,
kumax

2ty — tr =

Hence, tf = 2tqw — |0f — o]/ (kumax) and

e7|6f700|/(rkumax)(etsw/f)2 _ 2etsw/f + 1= 0.

Solving this quadratic equation in e/ yields (take “+" to have &, < )

tsw = ‘Qf - 90‘ + T |n(1 + \/]_ — e*wf*@o\/(tkumax)>
kumax
and o
tr = ‘ /i_ 0‘ + 2t In(l + \/1 — e_|9f—90‘/(fkumax)).
Umax

Both are increasing functions of |6f — 6y| and t and decreasing of kiimax-

The fastest 6(t)

Taking the inverse Laplace transform of ©(s), we finally get

b0+ (t — (1 — e /%)t kuy if t € [0, tw]
0(t) =< 60+ (2tew +7 —t — e /T(2e™/T — 1)t )kur i t € [tow, t]
O¢ if t € [tf, OO)

where u; = sign(0s — Op)umax. The corresponding angular velocity

(1— e t/TYkuy if t € [0, tow]
w(t) = (e7t/7(2e8/T — 1) — 1)kur if t € [tow, ti]
0 if t € [tr, 00)




Resulting reference trajectories

(1)

F(t
t

F(t)

t

r(t)
r(t)
r(t)

t t t t

are reminiscent of S-curves, but are not symmetric (stopping is cheaper).

Outline

Anti-windup control

Saturation

It is a system v+ y, which we denote sat(, p), such that

a if u(t) <a
y(t)=<qu(t) ifa<u(t)<b ~ - L / \/
y L::iilggggj— u

b ifu(t)>b

for given a < b. We use the short notation sat, := sat[_, ;5 for some a > 0.
Think of a gas pedal in cars, water tap, integer overflow in computers, etc.

Saturation element is a nonlinear system (no superposition). Indeed,

sat1(2 x 0.6sint) # 2 x sat;(0.6sint) = 1.2sin t.

Saturation in feedback loop

All actuators saturate. Indeed,
— force, torque,
— voltage, current,
— flow rate,
are ultimately limited. Some sensors saturate as well. We therefore must
— respect the presence of (nonlinear) saturation elements

in any feedback loop.




Saturation in feedback loop (contd)

Saturation in feedback loop (contd)

This doesn’t help in general, yet it is

— especially problematic when either P(s) or C(s) is unstable.

What can be done:
— When plant is unstable, there is nothing we can do.

— Controllers are in our power, so

1. if possible, it is advisable to avoid the use of unstable controllers;
2. if not*, controller should be modified when control signal saturates.

“E.g. the plant is not strongly stabilizable, an integral action is required, et cetera.

Pl controllers and saturation

Pl controller transforms y,, and r to control signal v according to

{x‘(t) = 1(r(6) - ym(0))

k
U(s) = =% (R(s) — Ym(s)) — kpYm(s) or®
(9= s (R0l =0l ) — hoe(6) - (0]

i
While u(t) saturates,
— state x(t), acting in open loop, might accumulate a big value,
so that
— u remains saturated even when r — y,,, becomes small

(after all, dynamic systems have memory).

This is how this controller is implemented.

Pl controllers and saturation: example

Consider control system with P(s) =1/s and C(s) =5(1+1/s). We have:

Command responses, u(t) does not saturate Command responses, u(t) saturates

T
reference signal, () | | 1261 27N N reference signal, () | |

= plant output, y(t) \ == plant output, y(t)

control input wu(t) N \ control input u(t)

— — controller state, z(t)

. . . . ; .
0 5 10 15 20 0 5 10 15 20
Time, ¢ [sec| Time, ¢ [sec]

State variable becomes very large by the time error approaches 0, hence
— y continues to grow until x(t) becomes smaller than y(t)

(remember, u = kp(x — y) and the direction of y equals the sign of u = y).




Integrator windup
The effect of

— significant grow of the integrator state during actuator saturation

is called the integrator windup.

Arguably, most remedies for windup effect are based on

— preventing integrator state from unstable updating once u saturates.

Possible heuristics (sometimes equivalent):
— stop updating integrator when u saturates (conditional integration);

— implement integral action as interconnection of stable elements, with
some of interconnections opened when u saturates;

— add internal controller feedback acting on u — sat,(u).

Anti-windup scheme with internal feedback

This scheme (t; is called the tracking time constant) works as follows:
— if u does not saturate, then sat,(u) — u =0 and it is a standard PI;
— if u saturates, then the controller becomes stable:

U(s) = k; (:S (R(s) ~ Yn(s) = Tit _ iU(s)) _ Ym(s)),

)
T Tis + kp B ko | ;
v U(s) = s (R(s) (tis + 1) Yim(s) £ rt>
and then
) = o (- el Dy e,
Tt TiS + kp T+ T;S + kp LTis T kp

Pl controllers and saturation: example (contd)

Internal feedback really helps (here t¢ = 1):

Command responses, u(t) saturates

Command responses, u(t) saturates, anti-windup

126 -

, \ == plant output, y(t)
control input u(t)
— — controller state, z(t)

.
N reference signal, 7(t) | |

reference signal, 7(t) | |
= plant output, y(t)
control input u(t)
— — controller state, z(t)

0 5 10 15
Time, t [sec]

20

0 5 10 15 20

Time, ¢ [sec]

Another anti-windup solution: saturation-aware r

In many situations we may
— avoid windup by a saturation-aware choice of the reference signal,

so no need in smart solutions to problems one shouldn’t have gotten into in
the first place.

Example:

With P(s) = % and |u(t)] <1 we have
no chance to raise faster than y(t) =t
anyway. It may make sense to pick 8

t ift< ” 5t
r(r)z{ e i
rr ift>rn

instead. It helps:

Command responses, u(t) does not saturate

126

reference signal, 7(t) | |
= plant output, y(t)
control input u(t)

0 5 10 15 20
Time, ¢ [sec]
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