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Reference in setpoint tracking

Step reference

By considering r = y¢1 we express the steady-state goal to
— reach the final setpoint lim;_ y(t) = .



Reference in setpoint tracking

Step reference

By considering r = yf1 we express the steady-state goal to
— reach the final setpoint lim¢_,o y(t) = yr.
Step r is also used as a test signal to characterize quality of transients, e.g.
— overshoot
— raise time
— settling time

in controller design. This is convenient (analysis simplified / standardized).



Reference in setpoint tracking

Step reference

By considering r = yf1 we express the steady-state goal to
— reach the final setpoint lim;_ y(t) = .
Step r is also used as a test signal to characterize quality of transients, e.g.
— overshoot
— raise time
— settling time
in controller design. This is convenient (analysis simplified / standardized).
But
— does it make sense to use steps as actual reference signals?

— can we do better via different r even if the final goal is a setpoint?



Reference in setpoint tracking

Example 1: moving cart with pendulum
Consider an undamped pendulum on a cart. The control input is the cart

position x, the output is the pendulum angle 8. The linearized plant

s2

:m’

P(s)

where [ is the pendulum length (so period T, :=2m+/I/g). Our goal is to
— move the cart quickly from x = 0 to x¢ w/o oscillating the pendulum.

0 X¢ 0 Xf

— ) ~ (1




Reference in setpoint tracking

Example 1:

0

— 1)

posicast control (by Otto J. M. Smith)

X 0 (X0 + x7)/2 X

leap / / N\

halfway

T
4 wait - sec

Xf 0 (x0+ x7)/2 X

{/T\: leap the other / N \

halfway



Reference in setpoint tracking

Example 1: moral

There is
— more than the (smoothened) step reference
and

— transients can be improved by an elaborate choices of the command
signal:




Reference in setpoint tracking

Example 2

with ks

s+ ky

k
T(s) = . —|—pk and T.(s) =
p

and the 5% settling time t; ~ 3t = 3/k, independent of the setpoint yt.



Reference in setpoint tracking

Example 2

with K ks
T(s)=—2" d T(s)=—"—.
() s+ kp an c(s) s+ kp
and the 5% settling time t; ~ 3t = 3/k, independent of the setpoint y. If
r = y¢l, then, by linearity, both y and u are proportional to y;:

ku%

—
+ 4+
—

> 3

. 3kt 0 3k, t
meaning that

— large setpoint changes might cause actuator “overflow” .



Reference in setpoint tracking

Example 2: moral

When faces real-world limitations,
— linearity sucks

in the choice of the reference signal. Even the choice
r = Trefyfl

for a low-pass T, that smoothens the reference signal won't resolve that.
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Reference profile: fastest realistic response and S-curves



Reference profile: fastest response

What's wrong here?

The problem is that the
— step reference is not realistic for inertial systems,

no inertial system can be expected to jump under a limited input. As such,
the more successful we are in following such a command, the less affordable
the price is.

For a problem to be realistic (resources are always limited),
— ts should depend on the setpoint change
and, in control terms, we need a

— nonlinear dependence of r on the setpoint.



Reference profile: fastest response

Realistic settling time

Consider

under constraint |u(t)| < umax. Observe that
— t decreases as |y| increases
— ly(t)] = [u(?)]
— y stops immediately as u =0
Thus, |y(t)| < Umax and the shortest ts requires |u(t)] = umax till y(t) = yf.
Hence,
ts > ts, min ‘= |y1"/umax-

This bound depends on the setpoint yf (and on umax) and is attained via

u(t) = sign (vf) Umax ?f E< tomin | J(t) = sign (V) Umaxt if t < ts min
0 if t > ts min Yf if t > ts min

which are nonlinear functions of y.



Reference profile: fastest response

Unity-feedback workaround

Let's pick r that yields
— the fastest system response under given physical constraints,

which in our case results in

(t) = sign(yf)Umaxt if t < tomin [
Yr if t > ts,min

instead of r = yf1.



Reference profile: fastest response

Unity-feedback: simulation results

For controller gains k, = 13, k, = 2, and k, = 1 and two different umax's:

O = ¥

— p ~

t
3 1 S Umax |7

t t

— r now agrees with the physics / limitations of the system
hence, the resulting control signal is within the limits for all kp
— tracking properties still depend on k; (i.e. on closed-loop bandwidth)

it's our job to pick agreeing k, and r



Reference profile: fastest response

Unity-feedback: simulation results (contd)

For controller gains k, = 13, k, = 2, and k, = 1 and two different y¢'s:

—
+—~
~

3

e

t

-~
=
=

t
= Umax |7
El !

t




Reference profile: fastest response

General considerations

Ideally, pick r that yields
— the fastest system response under given physical constraints.
But this might be rather knotty for
— more complex dynamics
even for 2-order systems solution more complicated; no analytic solution in general
— more complex constraints
might involve internal signals, like DC motor current, sensor limitations, et cetera

— nonzero initial conditions

e.g. if a new setpoint arrives before the previous one was reached



Reference profile: fastest response

Pragmatic alternative

Pick r that yields

— the fastest trajectory under given constraints on derivatives of r.
For example,

minimize tf

subject to r(0) =0, r(ts) =y, F(tr) =0, F(t)=0,...

for given vimax > 0 (velocity), amax > 0 (acceleration), and jmax > 0 (jerk),
which indirectly reflect physical constraints, and a given setpoint y;.



Reference profile: fastest response

Example: constraints on velocity and acceleration

Problem: S
minimize [£3

subject to r(0)=0, r(tr)=wy, F(tr)=0
|/;(t)| < Vmaxs ‘r(t)’ < amax

for given vimax > 0, amax > 0, and y;.

Complications (due to amax < 00):
— maximal velocity cannot be achieved from the beginning

— r cannot be stopped immediately if its velocity is nonzero



Reference profile: fastest response

Example: constraints on velocity and acceleration

Problem:

minimize  tf
subject to r(0)=0, r(tr)=wy, F(tr)=0
|/;(t)| < Vmaxs ‘r(t)’ < amax

for given vimax > 0, amax > 0, and y;.

Complications (due to amax < 00):

— maximal velocity cannot be achieved from the beginning

— r cannot be stopped immediately if its velocity is nonzero

Strategy:

1.
2.
3.

start with maximal acceleration / stop with maximal deceleration
this might be sufficient (if yf is so small that vimayx is not reached)

if not, reset acceleration at t = tgy1, where |F(tsw1)| = Vmax IS satisfied,
then start deceleration at t = tg2, for which r(tsw2) = y5 — r(tswi)



Reference profile: fastest response
Example: some calculations
1. Maximal acceleration (assume, for simplicity, that yf > 0):
F(t) = amax = F(t) = amaxt = r(t) = amaxt/2.
Then r(t) = yf/2 at tew = \/M, so that
tr=2v/Y¥f/amax and  F(tew) = \/Vf 3max-

2. This strategy suffices iff \/Vfamax < Vmax <= ¥ < v,%ax/amax.

3. The first switch is at F(tswi) = Vimax, therefore toy1 = Vinax/amax. At this
moment r(tow1) = VA./(23max) < ¥r/2 and continues linearly, as

r(t) = Vmax/(2amax) + Vmax(t - tswl) = Vmaxt — vrznax/(2amax).

The second switch happens at r(ts2) = yf — V2../(23max), from which
tsw2 = Vi/Vmax. Finally, because of symmetry t; = tow1 + tew2.



Reference profile: fastest response

Reference trajectories (S-curve profiles)

SN CE S

A(t)
#(t)
i(tl

(1)
(1)
r(t)

M

t t

t

with the settling time:

2 ’yf|/amax if Yr < Vr%ax/amax
ts = _ i
||/ Vimax + Vmax/amax if yr > Virax/ @max

and switches at tow = \/| Y|/ 3max OF tswl = Vimax/3max and tsw2 = |¥f|/ Vimax-



Voltage constraints

Outline

Reference profile: fastest response under voltage constraints in DC motor



Voltage constraints

Preliminaries: residues, simple poles case

Let G(s) have a simple pole at s = a. The residue of G at s = a,

Res(G(s), a) := lim(s — a)G(s).

s—a

If Res(G(s),a) = 0, then the singularity at s = a is removable.

If G(s) is rational, proper, and has only simple poles, at s = s;, then

G(s) = G(o0) + Z Res(G(s), si)

S—S;
i=1 !

(partial fraction expansion).



Voltage constraints

Preliminaries: residues, simple poles case (contd)

Example
Glo)= 5 G(s) =t 1VE/BF) iVe/(F)
Is? + g I s—jVe/l s+iVe/l



Voltage constraints

Preliminaries: residues, simple poles case (contd)

Example
2 1 TR e
Ge)= S — o)=L VE/CR) VeGP
wre I s—ie/l s+ive/l
Example
The function . »
G@);%

has a single singularity at s = 0.

Res(G(s),0) = lim sG(s) = lim(1 —ae ™) =1 —a.

s—0 s—0

Two cases:
o # 1 Res(G(s),0) # 0 and the singularity is a pole
o =1 Res(G(s),0) =0 and the singularity is removable (not a pole)



Voltage constraints

Preliminaries: a special complex function

Let
No(s) + Ni(s)e ™ + .. + Np(s)e™™°

D(s)
for polynomials D(s) and N;(s) such that
— deg D(s) > deg N(s) for all i =0,...,n,

— all roots s; of D(s) are simple,

G(s) =

and 0< 11 < <+ <1y



Voltage constraints

Preliminaries: a special complex function

Let
No(s) + Ni(s)e ™ + .. + Np(s)e™™°

D(s)
for polynomials D(s) and N;(s) such that
— deg D(s) > deg Ni(s) forall i=0,...,n

— all roots s; of D(s) are simple,

G(s) =

and 0 <11 <1p <--- <71, Expand, forj=0,...,n

N; i N
405 o) e

N;j(s)
D(s)

G(s) = +Z s—s, ai(s) :== z;a;j ° and B(s Z,B e U°.
=

Note that «;(s;) = Res(G(s), s;).



Voltage constraints

Preliminaries: impulse response of ()

Let

ai(s) . ¥j —gs
Gi(s) := = E e U°.
S—5; . S$—5;
Jj=0
Its inverse Laplace transform

n n
gi(t) = Za,-jes"(t_’f)ﬂ(t — 1) =" Za,-je_s"’fﬂ(t 7))
j=0

j=0



Voltage constraints

Preliminaries: impulse response of ()

Let

ai(s) . ¥j —gs
Gi(s) := = E e U°.
S—5; . S$—5;
Jj=0
Its inverse Laplace transform

n n
gi(t) = Za,-jes"(t_’f)ﬂ(t — 1) =" Za,-je_s"’fﬂ(t 7))
j=0 Jj=0
If t > z,, then 1(t — 7;) = 1 for all j and

S/‘):O

n
gi(t) = 5> aye 50 = etay(s;) L0, VE> 1,
Jj=0

Hence,
— «i(si) =0, Vi = supp(g) C [0, 75] and G is BIBO stable.



Voltage constraints

Preliminaries: impulse response of ()

Let

Gi(s) := @i(s) = z”: Y o,

S—5;

Its inverse Laplace transform
n n
gi(t) = Za,-jesf(t_’f)ﬂ(t — 1) =" Za,-je_s"’fﬂ(t 7))
j=0 Jj=0

If t > z,, then 1(t — 7;) = 1 for all j and

n
g,-(t) = et Za,-je_s”f = esitO(i(Si) ai(s:[):O 0, Yt > 1,.
j=0
Hence,
— «i(si) =0, Vi = supp(g) C [0, 7,] and G is BIBO stable.
Systems, whose impulse responses have support over finite intervals dubbed

— FIR (finite impulse response) systems.



Voltage constraints

Preliminaries: step response of (x)

The step response of G is

If a;(s;) = 0 for all i, then supp(g) C [0, z,] and

Tn
y(t) :/ £(6)d0 = const = G(0), Vt > 1.
0

In other words, the

— step response of FIR systems converges to steady state in finite time.



Voltage constraints

Remark: posicast control revisited

Control

bt 1+ e_ST"/2 Xf
x=rr— = X =
0 T,/2

corresponds to the open-loop architecture (with u = x and y = 0)

52 1+ e 5h/2
P(S) = m and stable C0|(5) = f,

— step reference r = x¢1

under

and the controlled system
0.552 4 0.552e~5T/2
P(s)Cals) = Is> + g

is of form () and has «;(s;) = 0 for i = 1,2, just because Co(£jv/gl) =0
(check it yourselves), so is FIR.




Voltage constraints

Remark: posicast control for dampened pendulum
Let 2
P(s) .

=———— for0<c<+/gl
Is2+2cs+ g o= &
with poles at —o %+ jow for 0 = ¢/l and w = /gl — ¢? /I = 27/ T,. Choose

Col(s) =¢o + ¢1e_15-

We shall require
— Gi(0) =1=¢o+¢1 X = x is steady state
— Gi(—0tjw)=0 posicast, i.e. FIR



Voltage constraints
Remark: posicast control for dampened pendulum

Let 2

s
P(s)=—————, for0< Vel
(s) Is2+2cs+ g orrse=ve
with poles at —o %+ jow for 0 = ¢/l and w = /gl — ¢? /I = 27/ T,. Choose

Coi(s) = o + pre” ™°.

We shall require

— Gi(0) =1=¢o + ¢1 X = xg is steady state
— Gi(—0tjw)=0 posicast, i.e. FIR
Equivalent to
1 1 é 1
1 €% cos(tw) [¢0 ] =10
0 e'sin(tw) 1 0

(because e~ *(=9%i®) — %9 (sin(tw) F jcos(tw)) in ¢o.¢1 € R and T > 0.



Voltage constraints

Remark: posicast control for dampened pendulum (contd)

As ¢1 # 0 (otherwise unsolvable), must have sin(tw) = 0, with the shortest

T 1 1 ¢0 o 1 ¢0 o e™ 1
tiad B M b e M

(¢o > 1/2if ¢ > 0). Taking into account that T, = 2r/w, we end up with

e0-5 Toc/! + e—05Tps

Col(s) = 1+ 05Tec/l
The resulting
=" = 00)=_|\_w
0 T./2

also finish the move in T,/2, but
— not posicast, in the sense that é(t)’tTTp/Z # 0, whenever ¢ # 0.



Voltage constraints

Fastest shaft angle change under voltage constraints

K |
— 8
Ky

Consider the task of turning the shaft of a DC motor resting at 6(0) = 6o
to a new angular position, say 6 # 6y, and resting there. We may need to

— do that as quick as possible under physical constraints.

A possible constraint! is the

— input voltage amplitude, |u(t)| < umax for some umax > 0.
Our goal is to generate u that may then be a good choice for the reference

trajectory r.

!The armature current amplitude is another, perhaps even more practical, possibility.



Voltage constraints

Mathematical formulation

Let O satisfy
RIO(t) + (Rf + KmKp)O(t) = Kmu(t) <=  0(t)+0(t) = ku(t)
for t := RJ/(Rf + KnKp) and k := Ki/(Rf + KinKb),

minimize  tf
subject to  0(0) =6y, 6(0) =0, 6(t) =6, 6O(t) =0
lu(t)] < Umax

for given 6y, 65, and umax > 0. This problem depends on system dynamics.



Voltage constraints

Mathematical formulation

Let O satisfy
RJO(t) + (Rf + KnKp)B(t) = Kmu(t) <  10(t) + 0(t) = ku(t)
for T := RJ/(Rf + KmKp) and k := Knn/(RF + KmKp),
minimize  tf

subject to  0(0) =6y, 6(0) =0, 6(t) =6, 6O(t) =0
lu(t)] < Umax

for given 6y, 65, and umax > 0. This problem depends on system dynamics.
Note that the model in the Laplace variable domain,

o)=L Ky,

s s(ts+1)

is affected by the initial condition.



Voltage constraints

Time-optimal control

The studied problem is a special case of the time-optimal control problems,
whose theory goes beyond the scope of this course. Outcomes of the theory
relevant for the discussion below are:

— optimal u(t) in 0 < t < tf takes values only in the set {—umax, Umax }
(such control strategy is known as bang-bang control)

— there is a finite number of switches Umax = —Umax for any finite tf

— if the plant has only real poles, say n, then the number of switches in
(0, tf) is at most n — 1



Voltage constraints

Time-optimal control

The studied problem is a special case of the time-optimal control problems,
whose theory goes beyond the scope of this course. Outcomes of the theory
relevant for the discussion below are:

— optimal u(t) in 0 < t < tf takes values only in the set {—umax, Umax }
(such control strategy is known as bang-bang control)

— there is a finite number of switches Umax = —Umax for any finite tf

— if the plant has only real poles, say n, then the number of switches in
(0, tf) is at most n — 1

Applying to our problem?,

u1 if t € (0, tsw) “
u(t) e —U]_ If t E (tsws tf) = 0 tsw t¢ t
0 if t € (tf, 00) —u

for |u1| = umax and some 0 < tg, < t; to be determined.

*Mind that u(t) = 0 whenever t ¢ [0, 7] because of an integrator in the plant.



Voltage constraints

Solution logic
Thus, u(t) = u (1(t) — 21(t — tew) + 1(t — t)), or

1— 2e—stsw + e—stf

U(S) = B R
and Go(s)
. O kui(1— Qe Stw e_Stf) _ kui(1 — Qe Stsw e—Stf) 1
o(s) = 2 st T ) s

Our goal is to
— determine sign(u1), tew, and tf > toy

such that Gy(s) is FIR and Gy(0) = 6. This is equivalent? to
1. |ims%0 GQ(S) = 9f
2. Res(Gy(s),—1/t)=0

3Mind that the singularity of Gp(s) at s = 0 is always removable, by construction.



Voltage constraints
Solution details
1. Condition lims_, Gy(s) = 6 reads

kup (1 — 25w 4 e~ %)
s(ts+1)

0 = Oy + lim = by + ku1(2tsw — tf).
s—0

Hence,
kul(ztsw — tf) = 6f — 0.

2. Condition Res(Gy(s),—1/t) = 0 reads

1 kuy (1 — 2eStsw 4 st
0= lim <s+7) Go(s) = lim Kua(l=2e7" 4 e™)
s——1/t T s——1/t TS

= —kuy(1 — 2ef/T 4 /7).

Hence,
1+ et/®
—

elsw/T —



Voltage constraints

Solution details (contd)
The equality

etsw/r _ 1 + etf/‘r

e
. (1+et/7)/2 :
2 1
SW f

implies that tg, > tf/2, because

d e et/r d2 et/r
—e/T="— >0 and —e'l" >0
dt* T T 2

for all t (meaning that et/T is increasing and strictly convex).



Voltage constraints

Solution details (contd)
The equality

ti/T e
etSW/r — Hie . (1+ef l)/?l—/
2 - 1

implies that tg, > tf/2, because

d et/t: (S

a4t . >0 and @e

t/t

for all t (meaning that /T is increasing and strictly convex). But then

(2tsw > tr) A (kui(2tsw — t) = 0 — 6p) = sign(u1) = sign(6s — Op)
and
Or — b0 _ |65 — 6o

u Umax




Voltage constraints
Solution details (contd)
Thus, we end up with the following two equations for ts, > 0 and t; > tgy:

|6 — ol

and 2efw/T — 1 4 eff/T,
KUmax

2tsy — tF =

Hence, tf = 2ty — |0f — 6o|/(kumax) and

e—|0f—90\/(rkumax)(etsw/r)2 _ Debw/T +1=0.



Voltage constraints
Solution details (contd)
Thus, we end up with the following two equations for ts, > 0 and t; > tgy:

|0 — 6o

and 2eB/T =1 4 et/7,
KUmax

2tsw — =

Hence, tf = 2ty — |0f — 6o|/(kumax) and

e_lof_90|/(rkumax)(etsw/r)2 _ 2etsw/r + 1=0.

Solving this quadratic equation in e®*/7 yields (take “+" to have t,, < f;)

toy = M ( 41— e 1660l/( tkumax))
Ktmax
and o
tr = 16¢ = 6ol ;* ol 4 o, |n<1 +V1- e—\Gf—é’ol/(kamax)>.
Umax

Both are increasing functions of |6 — 6p| and © and decreasing of kupmax.



Voltage constraints

The fastest 6(t)

Taking the inverse Laplace transform of ©(s), we finally get

fo+ (t— (1 — e /7)) kuy if t €0, tow]
0(t) =< 6+ (2tsw +T7—t— e—t/’(zetsw/r — 1)r)ku1 if t € [tow, tf]
O if t € [tf, 00)

where u; = sign(6f — 6p) umax. The corresponding angular velocity

(1 — e’t/f)kul if t € [0’ tsw]
w(t) =4 (e7t/7(2e/T — 1) — 1)kuy if t € [tsw, ti]
0 if t € [tf, 00)



Voltage constraints

Resulting reference trajectories

u(t)
u(t)
u(t)

l F(t)
()
(1)
#(t)

?

=
-
=

(1)
(1)
(1)
r(t)

t t t t

are reminiscent of S-curves, but are not symmetric (stopping is cheaper).



!utline

Anti-windup control



Anti-windup control

Saturation

It is a system u — y, which we denote sat, 5}, such that

a if u(t) <a
y(t)=qu(t) ifa<u(t)<b sl \/ \/
y 1 u

b ifu(t)>b

for given a < b. We use the short notation sat, := sat|_, ; for some a > 0.
Think of a gas pedal in cars, water tap, integer overflow in computers, etc.

Saturation element is a nonlinear system (no superposition). Indeed,

sat1(2 x 0.6sint) # 2 x sat1(0.6sint) = 1.2sin t.



Anti-windup control

Saturation in feedback loop

Sl i o

All actuators saturate. Indeed,
— force, torque,
— voltage, current,
— flow rate,
are ultimately limited. Some sensors saturate as well. We therefore must
— respect the presence of (nonlinear) saturation elements

in any feedback loop.



Anti-windup control

Saturation in feedback loop (contd)




Anti-windup control

Saturation in feedback loop (contd)




Anti-windup control

Saturation in feedback loop (contd)

d

n Ym

This doesn't help in general, yet it is

— especially problematic when either P(s) or C(s) is unstable.



Anti-windup control

Saturation in feedback loop (contd)

d

n Ym

This doesn't help in general, yet it is

— especially problematic when either P(s) or C(s) is unstable.

What can be done:

— When plant is unstable, there is nothing we can do.



Anti-windup control

Saturation in feedback loop (contd)

Ym

This doesn't help in general, yet it is

— especially problematic when either P(s) or C(s) is unstable.

What can be done:

— When plant is unstable, there is nothing we can do.
— Controllers are in our power, so
1. if possible, it is advisable to avoid the use of unstable controllers;



Anti-windup control

Saturation in feedback loop (contd)

+a u C e~ '
E] o e
Ym

This doesn't help in general, yet it is

— especially problematic when either P(s) or C(s) is unstable.

What can be done:
— When plant is unstable, there is nothing we can do.

— Controllers are in our power, so

1. if possible, it is advisable to avoid the use of unstable controllers;
2. if not*, controller should be modified when control signal saturates.

“E.g. the plant is not strongly stabilizable, an integral action is required, et cetera.



Anti-windup control

Pl controllers and saturation




Anti-windup control

Pl controllers and saturation

PI controller transforms y,, and r to control signal u according to

x(t) = £ (r(t) = ym(1))

s) = —2(R(s) = Ym(s)) — ko Ym(s) or®
u(s) (R(s) = Ym(s)) () {u(t) = ko (x(£) — ym(t))

This is how this controller is implemented.



Anti-windup control

Pl controllers and saturation

PI controller transforms y,, and r to control signal u according to

x(t) =z (r(t) = ym(t))

Us:—RS—YmS —kamS or
(s) (R(s) = Ym(s)) () {u(t) = ko (x(t) — ym(t))

While u(t) saturates,

— state x(t), acting in open loop, might accumulate a big value,
so that

— U remains saturated even when r — y,, becomes small

(after all, dynamic systems have memory).



Anti-windup control

Pl controllers and saturation: example
Consider control system with P(s) = 1/s and C(s) =5(1+1/s). We have:

Command responses, u(t) does not saturate Command responses, u(t) saturates
1261 reference signal, r(t) || 1261 reference signal, (1) ||
= plant output, y(t) = plant output, y(t)
control input uf(t) —— control input u(t)
st
5
I
0
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Consider control system with P(s) =1/s and C(s) =5(1+1/s). We have:

Command responses, u(t) does not saturate Command responses, u(t) saturates
1261 reference signal, r(t) || 1261 N reference signal, () ||
= plant output, y(t) ,/ \ = plant output, y(t)
control input u(t) ’ \ —— control input u(t)
’ “ — — controller state, x(t)
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State variable becomes very large by the time error approaches 0, hence
— y continues to grow until x(t) becomes smaller than y(t)

(remember, u = ky(x — y) and the direction of y equals the sign of u =y).
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Integrator windup
The effect of

— significant grow of the integrator state during actuator saturation
is called the integrator windup.

Arguably, most remedies for windup effect are based on

— preventing integrator state from unstable updating once u saturates.

Possible heuristics (sometimes equivalent):
— stop updating integrator when u saturates (conditional integration);

— implement integral action as interconnection of stable elements, with
some of interconnections opened when u saturates;

— add internal controller feedback acting on u — sat,(u).
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Anti-windup scheme with internal feedback

[

n

This scheme (t; is called the tracking time constant) works as follows:
— if u does not saturate, then sat,(v) — u =0 and it is a standard PI;
— if u saturates, then the controller becomes stable:

0(s) = k(R = Yol9) £ 2 = LU(s)) = V(o).
ML ) = 22 (R(s) ~ (s 1) Yn(s) £ )
and then
U(s) = Tekp R(s) — tekp(Tis + 1) Y. (s)+ ko

T Tis + kp 7 Tis + kp
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Pl controllers and saturation: example (contd)

Internal feedback really helps (here © = 1):

Command responses, u(t) saturates

Command responses, u(t) saturates, anti-windup

12.6 - -<

T
N reference signal, (1) ||
== plant output, y(t)
—— control input u(t)

~ — controller state, (t)

1261 reference signal, 7(t) ||
= plant output, y(t)
—— control input u(t)
~ — controller state, z(t)
sk 4
5k

|
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In many situations we may
— avoid windup by a saturation-aware choice of the reference signal,

so no need in smart solutions to problems one shouldn't have gotten into in
the first place.
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so no need in smart solutions to problems one shouldn't have gotten into in
the first place.

Example:

With P(s) = I and |u(t)| < 1 we have
no chance to raise faster than y(t) =t
anyway. It may make sense to pick

t ift< g
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0 tomin = |yt

instead.
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Another anti-windup solution: saturation-aware r

In many situations we may
— avoid windup by a saturation-aware choice of the reference signal,

so no need in smart solutions to problems one shouldn't have gotten into in
the first place.

Exam p|e: Command responses, u(t) does not saturate

26 . 1
12,6 reference signal, (1)

With P(s) = % and |u(t)| <1 we have — plant outpat, ()
) control input u(t)

no chance to raise faster than y(t) =t

anyway. It may make sense to pick 8

t ift<np T
=9 o 0=
rr ift>r

0 tomin = |yt

instead. It helps: Al
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