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General info

— Course site: http://leo.technion.ac.il/Courses/CT/

— Credit points: 3.5

— Prerequisite: Introduction to Control (00340040), a must

— Grading policy:
2 midterm projects (tokef): 20% each (provided exam is passed)
Final exam (“closed”): 60% (or 100% is the grade is < 55)

— Passing policy:
minimum passing grade is 55
only those who pass both projects are eligible to take the final exam

Syllabus

1. Advanced single loop design

1.1 More on loop-shaping

1.2 More on on dead-time systems

1.3 More on pole placement (Sylvester matrix etc.)

1.4 Industrial control (saturation & anti-windup, reference signal generation)
1.5 Robustness of control systems

2. Introduction to state-space methods
2.1 Structural properties (controllability, observability, etc)
2.2 State feedback control
2.3 State observers
2.4 Observer-based output feedback
2.5 Introduction to optimization-based methods (LQR, Kalman filter, LQG)

3. Introduction to sampled-data systems

3.1 Digital redesign of analog controllers
3.2 Digital design
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Loop-shaping tools




Typical operations with L(jw)

Magnitude (dB)

—180

Phase (deg)

Frequency (rad/sec)

But

— one should not be religious about that,

the steps may be skipped, reordered, or altered, depending on the situation.

Typical course of action:

— choose crossover, wc

— shape high-freq. roll-off
(means: low-pass filter)

— set required crossover, @
(means: proportional controller)

— shape phase around wc
(means: lead controller)

— shape low-frequency gain
(means: lag controller)

by cascade adjustments of C(s).

Low-pass filters: Butterworth

The n-order Butterworth filter! with bandwidth wy, is the stable t.f. such that

1
Fon(jo)f = ———-,
| b,n(Jw)| 1+(w/a)b)2”
like wp wz
Foi(s) = or Fpo(s) = b
b1(s) s+ wp b2(5) 52 + V2,5 + of
with

Magnitude (dB)

'MATLAB: [num,den] =butter(n,wb,’

s’); Fb=tf(num,den);

Low-pass filter: usage

Main problem is that
— the phase lags before the magnitude st

arts to decay:

0

3k

Magnitude (dB)

Phase (deg)
p

180 &

L
0.1y,

wy

Frequency, w (rad/sec)

The rule of thumb:

— use wp = 10w, (decade above the intended crossover),

with éFb,l(ja)C) ~ —b.7°, ZFb,2(ja)c) ~ —8

1°, ZFy3(joc) = —11.5°, ...

1-order lead

General form:

as+ om
Clead(s) = \/>

s+ Vawn’

where ¢, € (0,90°) is the maximal phase lead (occurs at w = wp,).

1+singny

itha =~ > #m
N = T  sin

Bode Diagram of Ciead(s)
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1-order lead: cost of phase lead

Phase lead is expensive, it leads to
— the decrease of the low-frequency gain and
— the increase of the high-frequency gain
of the controller (both by the factor \/a). Quantitatively,

o
o
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maximal phase lead of Ciaq

12 V145 10 20

whose slope decreases. A rule of thumb is that

— the phase lead above 60° might be too expensive.

‘ Clead(oo)

2-order lead

General form:

o 5% + 20\ /awms + w2,
s2 +20/awms + aw?’

and
a = 1+2§<§+\/§2+c0t2¢7’”> tanz%’"

where ¢, € (0,180°) is the maximal phase lead (occurs at ® = wy,). Here

with ¢ € [i,\@},

Clead2 (5) = \/§

— the case { = 1 corresponds to Cieado = Céad,

— if £ <1/4/2, then | Clead2(j@)]| is not monotonic, so might be trickier,
— if £ > /2, then it might be that ZCeaq2(jw) > ¢m for some @ # om.

2-order lead (contd)

As C increases for the same ¢,
— phase lead becomes wider

— o increases
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2-order lead: cost of phase lead

Quantitatively,
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A rule of thumb is that

— the phase lead above 120° might be too expensive.




Lag

General form: 105 + @

10s + wm/B’

where the phase lag at w = wy, is at most 5.7°.

Cag(s) = with > 1,

Bode Diagram of Cie(s)
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Outline

M- and N-circles

M-circles

M-circles are contours of constant closed-loop magnitude on Nyquist plane.

Let L(jw) = x + jy. Then T(jo) = 14):7#)])/ Hence,

IT(jw)]? = M? <= M?*(1+4 x)*> + M?y? = x*> 4 y?
— (1-M?)x*> —2M?x + (1 — M?)y? = M?,

Then two cases are possible:

M =1 then x = —1 (vertical line)

M # 1 then (1 — M?)(x? — 21ﬁ/’,\2/,2x + (17%;2)2 + y?) = M?, so we get:

2
(x— %) +v* = (i)’

. M2 . . M
(circle centered at 1~ with radius 7‘17,\42‘)

M-circles (contd)

M-circles on Nyquist diagram
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M-circles: how to read

N-circles

N-circles are contours of constant closed-loop phase on Nyquist plane:
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N-circles on Nyquist diagram
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Nichols chart
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Nichols chart: motivation

12960000(5+5)(s%+0.85+16)(s?+1.525+1444)e—0-075s

Let L(s) = (

5+10)(s+100)(s2+35+9)(s2+0.485+9)(s2+0.85+1600)2

Im

Its Nyquist plot

Pitfalls of the Nyquist plot:

— becomes messy for systems with multiple crossover frequencies

— crossover region is imperceptible for systems with large resonant peaks




Remedy: Nichols chart

Nichols chart of transfer function L(s) is plot of |L(jw)| (in dB) vs. ZL(jw)
(in degrees) as frequency w changes from 0 to co.

20 -

-20

Open-Loop Gain (dB)

-40 t

-720 -540 -360 -180 0
Open-Loop Phase (deg)

Nichols chart: advantages

Since phase scale is linear rather than polar,
— Nichols chart is typically cleaner than Nyquist plot

especially for systems with large phase lags, like time-delay systems.

As magnitude scale is in dB, regions with large magnitude don’'t dominate,
hence

— the crossover region is more visible.

Also the consequence of the logarithmic scale of |L(jw)| is that
— multiplication of systems results in superposition

on Nichols chart, almost as easy as on the Bode diagrams.

Nichols charts of elementary systems

L(s) Bode Nyquist Nichols

n >

Ts+1

kw?
2428 wns+w?

—sh

Nyquist criterion on Nichols chart

The same idea as with the Nyquist plot, we should

— count encirclements of the critical point by the frequency-response plot.
This procedure might be less tangible with the Nichols charts as

— the critical point is not unique there
(any point with |L(jw)| = 0dB & arg L(jw) = —180 (mod 360) is critical).




Nyquist criterion on Nichols chart (contd)

Remember (maybe; IC, Lect.9):

\ negative crossing

Im‘

Then the

/
/\ positive crossing \ -1

‘Re

— number of counterclockwise encirclements of —1 + jO by the Nyquist
plot of L(jw) equals twice the net sum of crossings the ray (—oo, —1]
by the polar plot of L(jw) (plot direction is with the increase of w).

The Nichols chart counterpart uses rays [—180 + 360k, —180 + 360k + joo)

for k € Z:
itive crossin, m
negative crossing /POS five crossing _Ci
\ / \\ ?
~ =
P =
1
-
\ negative crossing
positive crossing
—540 —180 arg L(jw)

and the rest remains the same. ..

Nyquist criterion on Nichols chart: handling integrators

Polar plot: Each integrator adds a counterclockwise arc of 90° with infinite
radius, starting at L(jo)|m—o+

Nichols chart: An arc centered at the origin has a constant magnitude and
changing phase = an arc translates to a horizontal line on Nichols chart:

Gain and phase margins on Nichols chart

Gain margin g and phase margin ppp are easily calculable from Nichols

charts:

— Mg is the vertical distance from the critical point;

Mph is the horizontal distance from the critical point.
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here g = 8 ~ 18.06dB and pu,, ~ 63.36°.
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N-circles on Nichols charts

N-circles on Nichols chart

M-circles on Nichols charts: how

L(jw)
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Nichols chart of lag controller
10s + wm

Lag controller: Ciog(s) = 105 + /B’
m

Bode diagrams of Ciag(s) for wm =1 and f = {2, 4,10, 30, 00}
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Outline

Design example: the use of Nichols charts

System (remember IC, Lect. 11)

A DC motor controlled in closed loop:

d
y 1 u em r
n Ym

Requirements:
— closed-loop stability (of course)
— . = b5rad/sec
— zero steady-state error for a step in r
— zero steady-state error for a step in d
— Wph € {45.60}

always holds
integrator in C(s)

Remark: We implicitly assume that the plant is normalized, in a sense that
the control amplitude |u(t)| < 1is “small” and |u(t)| > 1 is “large".

Example 1: the plant
Let first ppnh = 45°. With w. =5,

Bode plot of P(jw)

Nichols chart of P(jw)
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This is below the actual crossover, so can be attained by the gain k ~ 26.9.

Example 1: adjusting crossover

We get:
Bode plot of L (jw) = P(jw) k Nichols chart of L (jw) = P(jw) k
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Example 1: adjusting low-frequency gain

Use the lag controller with w, =5 and = oc:

Bode plot of Ly(jw) = P(jw) k(jw)Clag (jw)

Nichols chart of Ly(jw) = P(jw) k(jw)Clag (jw)
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Here ppn ~ 16° and
— we need a phase lead of 45° — 16° = 29°,

for which one lead is enough.

Example 1: adjusting phase around crossover

We get:
Bode plot of L(jw) = P(jw) kCiead (jw)Clag (jw) Nichols chart of L(jw) = P(jw) kCiead (jw) Chag (jw)
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Here ppn ~ 45°, which is what we need. Resulting controller:

45.619(s + 2.951)(s + 0.5)
s(s + 8.471)

C(S) = kCIead(s)CIag(S) =

Note Nichols chart location vis-a-vis M-circles (not quite “nice”).

Example 1: closed-loop command response

Bode magnitude plots of P(jw) and T'(jw)

Step response of T'(s)

T
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To note:

— resonance peak (agrees with M-circles) = 0OS ~ 29%

— closed-loop bandwidth w, = 8.3176, which is a bit above the designed
wc = 5 and higher than the open-loop bandwidth

Example 2: adjusting low-frequency gain

Now, let upn = 60°. The first design steps, up until the addition of the lag
part, remain the same and we have

Bode plot of Ly (jw) = P(jw) k(jw)Clag(jw)

Nichols chart of Ly(jw) = P(jw) k(jw)Crag (jw)
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Here ppn =~ 16° and
— we now need a phase lead of 60° — 16° = 44°,

for which one lead is enough as well.




Example 2: adjusting phase around crossover

We get:
Bode plot of L(jw) = P(jw) kCiead (jw) Clag (jw) Nichols chart of L(jw) = P(jw) kCiead (jw)Chag (jw)
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Here ppn ~ 60°, which is what we need. Resulting controller:

62.977(s + 2.127)(s + 0.5)

C(s) = kCiead(5) Ciag(s) = s(s + 11.75)

Note again Nichols chart location vis-a-vis M-circles (“nicer”).

Example 2: closed-loop command response

Bode magnitude plots of P(jw) and T'(jw) Step response of T'(s)
— |P(jw)]
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To note:

— resonance peak becomes lower = lower OS ~ 14%

— closed-loop bandwidth wy, =~ 8.0649, which is a bit above the designed
wc = 5 and higher than the open-loop bandwidth

Outline

Bode's gain-phase relation

Loop shaping: big picture
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Dream loop shape

We'd prefer to have narrow crossover region, something like this:

high frequencies

R

140,
PR 7iiiciinn’id???Z2

{/;, A/

/ S
On 7000000

1to, |

Magnitude (dB)

low frequencies

Intuitively, it is hard to believe that this is possible (too good to be true:-).

It turns out that this “intuition” can be rigorously justified.

Bode's gain-phase relation: minimum-phase loop

Let L(s) be stable and minimum-phase and such that L(0) > 0. Then Vay

L e dinlLe) )
arg L(jwg) = — In coth — dv, here v :=In &
g L(joo) ﬂ/_oo o > w o
(coth x := £££2). Function Incoth % = In‘gfgg E
Incoth%

.l
ol
A

-5 —4 -3 -2 -1 0 1 2 3 4 5 v

may be thought of as a rough approximation of the Dirac delta.

Bode's gain-phase relation: what does it mean

Since In coth % decreases rapidly as w deviates from wy,

din|L(jw)| _ din|L(jo)|
dv - dinw

— arg L(jwo) depends mostly on

But

dIn|L(j dlog|L(j
n|L(w)] _ dlog|L(je) is the roll-off? of the Bode plot of |L(jw)].
dinw dlogw

It can be shown that

—N x 65.3°, if roll-off of |L(jw)| is N for § < 2 <3
arg L(jwo) < ¢ —N x 75.3°, if roll-off of |L(jw)| is N for § < o <5
—N x 82.7°, if roll-off of |L(jw)| is N for 5 < £ <10

In other words,

— high negative slope of |L(jw)| necessarily causes large phase lag.

2Roll-off is the absolute value of the negative slope, scaled by 20.

near frequency wy.

Bode's gain-phase relation: implication

For systems with rigid loops, it is advisable to
— keep loop roll-off % 1 in the crossover region3

to guarantee that L(jw) is far enough from the critical point. This, in turn,
means that

— low- and high-frequency regions should be well-separated.

This is the reason why our “dream shape” is not an option.

®].e. not much smaller than —20dB/dec slope of |L(jw)|.




Gain-phase relation: one nonminimum-phase zero

Let L(s) has one RHP zero at z > 0. Then

—Ss+z
L(s) =~ Lm(5)

for a minimum-phase Lmp(s). Since ‘faﬂr—z =1, |L(jw)| = |Lmp(jo)| and

—Jjwo + 2
arg L(jwo) = arg Lmp(jwo) + arg TGwotz

1 [ dIn|L(j
— / M In coth ‘2’dv — 2arctan @0
Vs

o dv z

Thus,
— nonminimum-phase zero adds a phase lag (especially at w > z)

imposing additional constraints on the slope of |L(jw)| in crossover region.

Phase of all-pass systems

Phase (deg)

Phase (deg)

wn 10w,

0.1w,

0.1z 05z z 10z
Frequency (rad/sec)

Frequency (rad/sec)

2§a)ns+w

—s+z
arg stz ls=jw arg 52—|—2§wns+a)n

s=jw

Gain-phase relation: complex nonminimum-phase zeros
Now, let L(s) has a pair of RHP zero at z + jz, z > 0. Then

St+z+)z; s+ z — )z

and we have:
v

1 /> dIn|L(j
arg L(jwo) = n/ dn\dija))\ In coth — 5
—0oQ

b4 2

—Jjwo + z £ jz

dv + ar
& JwO +Zr j:le

dv

—00

wo + Zi wo — Z
— 2(arctan 04 | arctan g).
Zy Zy

This harden constraints when wg > z, though may soften when wy < z.

Gain-phase relation: multiple nonminimum-phase zeros

In this case
—Ss+2z1—s+2= —S+ zx
L(s) = e Lmp(s)
s+z1 s+2 S+ zk
and we have:
_ 1 [ din|L(jw)| —jwo +zi
arg L(jwg) = — ——Inc dv arg ,
g L{jwo) ﬂ/oo dv Z jwo + z;

which further harden constraints.




Limitations due to nonminimum-phase zeros

For systems with a single crossover frequency* RHP zeros near w

— impose additional limitations on the roll-off in the crossover region.

Consequently, a well-known rule of thumb says that for nonminimum-phase
systems

— crossover frequency wc should be < the smallest RHP zero.

Also, it is safe to claim (regarding RHP zeros) that

— closer to the real axis == more restrictive crossover limitations

*For lightly damped systems it sometimes might be desirable to inject a phase lag by
adding RHP zeros. Yet this must be done with maximal care (don't try it at home!)

Outline

Philosophical remark: Bode's sensitivity integral

Bode's sensitivity integral

Let L(s) be a loop transfer function having pole excess > 2. Then, provided
S(s) is stable,

o ) if L stable
In|S (jo)|do = m .
0 Yy 7 Rep; otherwise (pj—unstable poles of L)

i.e.

In|S(je)]

1S(jw)| > 1

® (linear scale)

1S(j0)] <1

What does it mean?

Some conclusions:
— since 7 Y Rep; >0, |S(jw)| cannot® be < 1 over all frequencies

— improvements in one region inevitable cause deterioration in other
(so-called waterbed effect)

e

o (linear scale)

In|S(joo)|

for various values of k

L(s)

L
T s(s+2)

On qualitative level,
— controller can only redistribute |S(jw)| over frequencies

and the art of control may thus be seen as art of redistribution of |S(jw)].

®If pole excess of L(s) is > 2, of course. Yet this is typical in applications.
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