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General info

Course site: http://leo.technion.ac.il/Courses/CT/

Credit points: 3.5

Prerequisite: Introduction to Control (00340040), a must

Grading policy:

2 midterm projects (tokef): 20% each (provided exam is passed)
Final exam ("“closed”): 60% (or 100% is the grade is < 55)

Passing policy:

minimum passing grade is 55

only those who pass both projects are eligible to take the final exam



Syllabus

1. Advanced single loop design
1.1 More on loop-shaping
1.2 More on on dead-time systems
1.3 More on pole placement (Sylvester matrix etc.)

1.4 Industrial control (saturation & anti-windup, reference signal generation)
1.5 Robustness of control systems



Syllabus

2. Introduction to state-space methods
2.1 Structural properties (controllability, observability, etc)
2.2 State feedback control
2.3 State observers
2.4 Observer-based output feedback
2.5 Introduction to optimization-based methods (LQR, Kalman filter, LQG)



Syllabus

3. Introduction to sampled-data systems

3.1 Digital redesign of analog controllers
3.2 Digital design
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Loop-shaping tools

Magnitude (dB)

Phase (deg)

—180

Typical operations with L(jw)

We

Frequency (rad/sec)

Typical course of action:
— choose crossover, w.

— shape high-freq. roll-off
— set required crossover, @
— shape phase around wc
— shape low-frequency gain

by cascade adjustments of C(s).



Loop-shaping tools

Magnitude (dB)

Phase (deg)

—180

Typical operations with L(jw)

W
Frequency (rad/sec)

Typical course of action:

choose crossover, w.
shape high-freq. roll-off
(means: low-pass filter)

set required crossover, wc¢
(means: proportional controller)
shape phase around .
(means: lead controller)

shape low-frequency gain

(means: lag controller)

by cascade adjustments of C(s).



Loop-shaping tools

Typical operations with L(jw)

Typical course of action:
— choose crossover, w.

— shape high-freq. roll-off

Magnitude (dB)

(means: low-pass filter)

— set required crossover, @

(means: proportional controller)

— shape phase around wc

(means: lead controller)
~180

Phase (deg)

— shape low-frequency gain

” (means: lag controller)
Ve

Frequency (rad/sec) by cascade adjustments of C(s).

But
— one should not be religious about that,
the steps may be skipped, reordered, or altered, depending on the situation.



Loop-shaping tools

Low-pass filters: Butterworth

The n-order Butterworth filter! with bandwidth wy, is the stable t.f. such that

1
Fon(jo))? = ———=,
Fonlio)” = o o
like ® w2
b b
F,1(s) = or Fyo(s) =
ba(s) s+ wp bals) 52 +V2wps + 0f
with

Magnitude (dB)

180k

L
0.1,

'MATLAB: [num,den] =butter(n,wb,’s’); Fb=tf(num,den);



Loop-shaping tools

Low-pass filter: usage

Main problem is that

— the phase lags before the magnitude starts to decay:

Magnitude (dB)

Phase (deg)
: o

s

:

’

.

-180 &=

|
0.1wy, wh
Frequency, w (rad/sec)



Loop-shaping tools

Low-pass filter: usage

Main problem is that

— the phase lags before the magnitude starts to decay:

0
3k

20

Magnitude (dB)

Phase (deg)
: o

s

:

’

,
0.1wy, Wh
Frequency, w (rad/sec)

The rule of thumb:
— use wp = 10w, (decade above the intended crossover),
with ZF, 1(joc) = —5.7°, LFp2(joc) = —8.1°, L F, 5(jwc) ~ —11.57,



Loop-shaping tools

1-order lead

General form:

1+si
7\/&s+wm’ with a = Z SN m s!ngbm’
s+ Vawm 1—singm

where ¢, € (0,90°) is the maximal phase lead (occurs at @ = wn).

CIead (5) -

Bode Diagram of Ciead(s)

10lge

Magnitude (dB)
-

~101ga ; ‘ ‘

= in @=L
= arcsin 23

Phase (deg)

0E L I L ~
0.01wm 0.1wm Wm 10w 100w,

Frequency (rad/sec)



Loop-shaping tools

1-order lead: cost of phase lead

Phase lead is expensive, it leads to
— the decrease of the low-frequency gain and
— the increase of the high-frequency gain
of the controller (both by the factor \/«). Quantitatively,

T 90
9
O 786
s
S 674
g 601
?
©
| 369
=
€
%
©
€

0

12 JVi4s 10 20 |Ceaa(00)]

whose slope decreases. A rule of thumb is that

— the phase lead above 60° might be too expensive.



Loop-shaping tools

2-order lead

General form:

2 2
s+ 20/awms + o . 1
G = AL th ¢ e [— 2},
202(8) = 2o Tyoms rawz “EC |5 V2

o = 1+2§<Z+\/§2+cot2 %’”) tan2¢7'"

where ¢, € (0,180°) is the maximal phase lead (occurs at @ = wp,). Here

and

— the case ¢ = 1 corresponds to Ciead2 = Céad,
— if £ < 1/v/2, then | Geag2(j@)| is not monotonic, so might be trickier,
— if £ > /2, then it might be that ZGeag2(jw) > ¢m for some w # wn,.



Loop-shaping tools

2-order lead (contd)

As ¢ increases for the same ¢,

— phase lead becomes wider

— o increases

Bode Diagram of Cieadz(s) for ¢ € {1/\5, 1, \/5}

20lga -

Magnitude (dB)
°

~20lga

-

$m = 180 — 2arctan Z¥e

Phase (deg)

Frequency (rad/sec)




Loop-shaping tools

2-order lead: cost of phase lead

Quantitatively,
9 143
o 127
-
© 121
o
2
g 102
©
< 901
TE“ 82.4
5 706
[0
£ 60.1
53.2
36.9 C= Clead
_CZCIead%é‘:]-/\/§
_C:Qead27§:1
_C:(:Iead%;:\/§
0
12 Vi4 8 10 20 |C(c0)|

A rule of thumb is that
— the phase lead above 120° might be too expensive.



Loop-shaping tools

Lag

General form: 10 + @

- 10s + wm/B’

where the phase lag at w = wp, is at most 5.7°.

Ciag(s) with g > 1,

Bode Diagram of Ciy4(s)

20Igp

101g8

Magnitude (dB)

Phase (deg)

. . . . .
0.001wp 0.010m 0.1wm/\/B 0lwm Om 100

Frequency (rad/sec)



!utlme

M- and N-circles



M-circles

M-circles

M-circles are contours of constant closed-loop magnitude on Nyquist plane.



M-circles

M-circles

M-circles are contours of constant closed-loop magnitude on Nyquist plane.

Let L(jo) = x +jy. Then T(jw) = 5% . Hence,

IT(w)? = M? <= M?*(1+x)>+ M?y? = x? +y?
— (1 - M*)x*> —2M?x + (1 — M?)y? = M2,



M-circles

M-circles

M-circles are contours of constant closed-loop magnitude on Nyquist plane.

Let L(jo) = x +jy. Then T(jw) = 5% . Hence,

IT(w)? = M? <= M?*(1+x)>+ M?y? = x? +y?
— (1 - M*)x*> —2M?x + (1 — M?)y? = M2,

Then two cases are possible:

M =1 then x = —1 (vertical line)

M # 1 then (1 — M?)(x? —27M x + a AX;Q)Q + y?) = M?, so we get:

(= %) +v* = (57)°

(circle centered at ;7 with radius 7‘17,\42')



M-circles
M-circles (contd)

M-circles on Nyquist diagram
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M-circles

M-circles: how

L)

12d8

6dB

308

AN

Magnitude (dB)

to read

0
Frequency

3

(rad/sec)




M-circles

N-circles

N-circles are contours of constant closed-loop phase on Nyquist plane:

N-circles on Nyquist diagram
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Nichols chart



Nichols chart

Nichols chart: motivation

Let L(s) = 12960000(5+5)(5%4-0.85416)(s2+1.525+1444)e 00755
~ (s+10)(s+100)(s2+35+9)(s2+0.485+9)(s2+0.85+1600)2 *

Its Nyquist plot

Im

Re

Pitfalls of the Nyquist plot:
— becomes messy for systems with multiple crossover frequencies
— crossover region is imperceptible for systems with large resonant peaks



Nichols chart

Remedy: Nichols chart

Nichols chart of transfer function L(s) is plot of |L(jw)| (in dB) vs. ZL(jw)
(in degrees) as frequency w changes from 0 to co.

20 -

-20 [

Open-Loop Gain (dB)

-40

-720 -540 -360 -180 0
Open-Loop Phase (deg)



Nichols chart

Nichols chart: advantages

Since phase scale is linear rather than polar,
— Nichols chart is typically cleaner than Nyquist plot

especially for systems with large phase lags, like time-delay systems.



Nichols chart

Nichols chart: advantages

As magnitude scale is in dB, regions with large magnitude don't dominate,
hence

— the crossover region is more visible.



Nichols chart

Nichols chart: advantages

Also the consequence of the logarithmic scale of |L(jw)| is that
— multiplication of systems results in superposition

on Nichols chart, almost as easy as on the Bode diagrams.



Nichols chart

Nichols charts of elementary systems

L(s) Bode

0>

Ts+1

kw?
2428 wns+w?

—sh




Nichols chart

Nichols charts of elementary systems

L(s)

Bode

Nichols

0>

Ts+1

kw?

2428 wns+w?

—sh




Nichols chart

Nyquist criterion on Nichols chart

The same idea as with the Nyquist plot, we should

— count encirclements of the critical point by the frequency-response plot.
This procedure might be less tangible with the Nichols charts as

— the critical point is not unique there
(any point with |L(jw)| = 0dB & arg L(jw) = —180 (mod 360) is critical).



Nichols chart

Nyquist criterion on Nichols chart (contd)

\ negative crossing Im
/

Remember (maybe; IC, Lect.9):
Then the

— number of counterclockwise encirclements of —1 + jO by the Nyquist
plot of L(jw) equals twice the net sum of crossings the ray (—oo, —1]
by the polar plot of L(jw) (plot direction is with the increase of w).

-1 ‘ Re

/ positive crossing



Nichols chart

Nyquist criterion on Nichols chart (contd)

\ negative crossing Im
/

Remember (maybe; IC, Lect.9):
Then the

— number of counterclockwise encirclements of —1 + jO by the Nyquist
plot of L(jw) equals twice the net sum of crossings the ray (—oo, —1]
by the polar plot of L(jw) (plot direction is with the increase of w).

-1 ‘ Re

/ positive crossing

The Nichols chart counterpart uses rays [—180 + 360k, —180 + 360k + joo)
for k € Z:

positive crossing m
negative crossing / 'U'
/ \ =
\\ \ \37
=
Pd
>t \
\ negative crossing
positive crossing
—540 —180 arg L(jo)

and the rest remains the same. ..



Nichols chart

Nyquist criterion on Nichols chart: handling integrators

Polar plot: Each integrator adds a counterclockwise arc of 90° with infinite
radius, starting at L(jo)|p—o+



Nichols chart

Nyquist criterion on Nichols chart: handling integrators

Polar plot: Each integrator adds a counterclockwise arc of 90° with infinite
radius, starting at L(jo)|p—o+

Nichols chart: An arc centered at the origin has a constant magnitude and
changing phase = an arc translates to a horizontal line on Nichols chart



Nichols chart

Nyquist criterion on Nichols chart: handling integrators

Polar plot: Each integrator adds a counterclockwise arc of 90° with infinite
radius, starting at L(jo)|p—o+

Nichols chart: An arc centered at the origin has a constant magnitude and
changing phase = an arc translates to a horizontal line on Nichols chart:

B 1 _3(s+1) | 3541
~ 2s(s+ 1) L(s) = s2(10s +3)° L(s) = 452(s +1)°

L(s)

(dB)
(dB)
(dB)

Open-Loop Gain

180 90 180 90 180 90
Open-Loop Phase (deg) Open-Loop Phase (deg) Open-Loop Phase (deg)

Each integrator needs —90° of the line.



Nichols chart

Gain and phase margins on Nichols chart
Gain margin g and phase margin ppp are easily calculable from Nichols
charts:
— Mg is the vertical distance from the critical point;
— Mph is the horizontal distance from the critical point.

201

Hph

Open-Loop Gain (dB)

-20

-30 ¢

-270 -180 -90 0
Open-Loop Phase (deg)

here ug = 8 ~ 18.06dB and pupn ~ 63.36°.



Nichols chart

M-circles on Nichols charts

M-circles on Nichols chart
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Nichols chart

les on Nichols charts

-CIrc

N

N-circles on Nichols chart
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Open-Loop Gain (dB)

Nichols chart

M-circles on Nichols charts: how to read

L(jo) | T()|

10 T T T T T

T
adB odB

6B 308
[0}
w2 1
w3
ZeaB

—12d8

Magnitude (dB)

-20 2008

-250 -200 -150 -100 -50 0 wy w2 w3
Open-Loop Phase (deg) Frequency (rad/sec)



Nichols chart

Nichols chart of lead controller

Vas + on

— o > 1.
s+ vawn

Lead controller: Ciead(s) =

Bode diagrams of Ciead(s) for wm = 1 and @ = {2, 4, 10,20} Nichols chart of Ciead(s) for om = 1 and & = {2,4,10, 20}
. . . : . : : : : : —— 5

Magnitude (dB)

Open-Loop Gain (dB)
o
N
N

Phase (deg)

|

2 0 N _20
10 0 o o o —180 135 90 45 0 45 ) 135 180
Frequency (rad /sec) Open-Loop Phase (deg)




Nichols chart

Nichols chart of lag controller

105 + wm B>1

Lag controller: qag(s) = m
m

Bode diagrams of Cig(s) for wm =1 and B = {2, 4,10, 30, 00} Nichols chart of Gag(s) for wm =1 and g = {2,4,10,30, 00}
30
25 0508
=20
g 108
£
s
& 15
g
7 308
g 10
_ 8
g 608
2 5
E -45
[
of + N
1 i i -5 !
10 o o ° ~180  -135 90 45 0 45 90 135 180

Frequency (rad/sec) Open-Loop Phase (deg)



Example

Outline

Design example: the use of Nichols charts



Example

System (remember IC, Lect. 11)

A DC motor controlled in closed loop:

Requirements:
— closed-loop stability (of course)
— wc = 5rad/sec
— zero steady-state error for a step in r always holds
— zero steady-state error for a step in d integrator in C(s)
— mph € {45,60}

Remark: We implicitly assume that the plant is normalized, in a sense that
the control amplitude |u(t)| < 1is “small” and |u(t)| > 1 is “large”.



Example

Example 1: the
Let first ppn = 45°. With o, = 5,

Bode plot of P(jw)

plant

Nichols chart of P(jw)

Open-Loop Gain (dB)

135

Phase [deg]

-180

10° 102 10! 10" 10! 10?
Frequency, w [rad/sec]

-270

-180
Open-Loop Phase (deg)

This is below the actual crossover, so can be attained by the gain k =~ 26.9.



=

Magnitude [dB]

Phase [deg]

Example

Example 1: adjusting crossover

Nichols chart of Ly (jw) = P(jw) k

T T 5
0 1 30 (.25 dB 1
- 05.4B )
301 1 1.dB ’J
|
of 1 = 3dB
5 d
= “6-dB
301 b g
Z of + 1
. <}
g ;
g
i e
= 7
2 s
<
29 ]
10 102 0! 10" 10’ 10 270 180 -158 90

Frequency, w [rad /sec] Open-Loop Phase (deg)



Example

Example 1: adjusting low-frequency gain
Use the lag controller with w,, =5 and B = oc:

Bode plot of Ly(jw) = P(jw) k(jw)Crag(jw) Nichols chart of Ly(jw) = P(jw) k(jw)Clag (jw)

oo} R ] 30 ;
=)
=30
o
=
2 0 —~
& ]
& Z
= a0 ]
5 0f 1
o
L iSe e S mnata E g
<. =
~ g
— g
g N 5
- S S
g 135 o
] N
= N -29
[ <
“164 S
-180 n L L L n
10° 10? 10! 10" 10! 10? 270 -180 90

Frequency, w [rad/sec] Open-Loop Phase (deg)

Here ppn ~ 16° and
— we need a phase lead of 45° — 16° = 29°,

for which one lead is enough.



Example

Example 1: adjusting phase around crossover

We get:
Bode plot of L(jw) = P(jw) kCiead (jw)Clag (jw) Nichols chart of L(jw) = P(jw) kClead (jw)Chag (jw)
0 I N \‘\ T I 30 - o
5 e
S R
2 2
E <
Z 0 —
2 ~ £
= a0k N =
N Z 0
> o
R
90 g
b
Fy 2
= S
o |
g2
= 29
S
130 L L L L
0 0? 0! 10° 10! 0 270 -180 135 90
Frequency, w [rad/sec| Open-Loop Phase (deg)

Here 11pn =~ 45°, which is what we need. Resulting controller:

C(5) = kCiead(5) Ciag(s) = 45'619(_:(:_52‘5417)1()5 +0.5)

Note Nichols chart location vis-a-vis M-circles (not quite “nice”).



Example

Example 1: closed-loop command response

Bode magnitude plots of P(jw) and T'(jw)

Step response of T'(s)
— 129} I I
— [P(jw)|
0 — [TGw)| |4
3t ]
n
=)
=
P
= )
= =
2 20t
5
&
=
-40 L L L 0 L L L
107 1072 10" 10° 10! 10* 0 1 2 3 4 5
Frequency, w [rad/sec] Time, ¢ [sec]
To note:

— resonance peak (agrees with M-circles) = OS ~ 29%

— closed-loop bandwidth wy, = 8.3176, which is a bit above the designed
wc = 5 and higher than the open-loop bandwidth



Example

Example 2: adjusting low-frequency gain

Now, let ppn = 60°. The first design steps, up until the addition of the lag
part, remain the same and we have

Bode plot of Ly(jw) = P(jw) k(jw)Ciag(jw) Nichols chart of Ly(jw) = P(jw) k(jw)Clag (jw)
60} EEL I I I "] 30 - ' 25-AB /A
E) 7
= wp %
E *
2 _ p
E_‘ 0 g v
= ob g
: of J
&
a
P TS T T T T 8
Ts i
N o
N
N
N
X 29
180 n i i i = n :
10 10 10 10 10! 10 270 -180

-90
Frequency, w [rad /scc]

Open-Loop Phase (deg)
Here 1tpn ~ 16° and

— we now need a phase lead of 60° — 16° = 44°,

for which one lead is enough as well.



Example

Example 2: adjusting phase around crossover

We get:
Bode plot of L(jw) = P(jw) kCiead (jw)Clag (jw) Nichols chart of L(jw) = P(jw) kClead (jw)Chag (jw)
oF - - - - M 30 :
I~y
= 30
$
2
=l =
£ =
“ 30 g
Z 0
O | e
2
% g
b
g
2
o
29
0 0? e w e 0 270 -180 -120 90
Frequency, w [rad/sec]

Open-Loop Phase (deg)

Here 11pn =~ 60°, which is what we need. Resulting controller:

Note again Nichols chart location vis-a-vis M-circles ( “nicer").



Example

Example 2: closed-loop command response

Bode magnitude plots of P(jw) and T'(jw)

Step response of T'(s)
— [P(jw)|
0 — [TGw)| |4
L14F
3t ]
n
=)
=
P
= )
= =
2 20t
5
&
=
-40 - - : 0 . . .
107 1072 10" 10° 10! 10* 0 1 2 3 4 5
Frequency, w [rad/sec] Time, ¢ [sec]
To note:

— resonance peak becomes lower = lower OS =~ 14%

— closed-loop bandwidth wy, =~ 8.0649, which is a bit above the designed
wc = 5 and higher than the open-loop bandwidth



Bode's gain-phase relation

Outline

Bode's gain-phase relation



Magnitude (dB)

Phase (deg)

1+o,
or

On
1+0,

—180

Bode's gain-phase relation

Loop shaping: big picture

high frequencies

wC
Frequency (rad/sec)



Bode's gain-phase relation

Dream loop shape

We'd prefer to have narrow crossover region, something like this:

L high frequencies
r

1+o, H
[ofq 7772 /iii/llisd

Op L
140,

Magnitude (dB)

low frequencies




Bode's gain-phase relation

Dream loop shape

We'd prefer to have narrow crossover region, something like this:

L high frequencies
r
o o
i‘:i 0. 7
-g 0 PN |
2 o | s,
‘c 140,
oo
s

low frequencies

Intuitively, it is hard to believe that this is possible (too good to be true:-).
It turns out that this “intuition” can be rigorously justified.



Bode's gain-phase relation

Bode's gain-phase relation: minimum-phase loop

Let L(s) be stable and minimum-phase and such that L(0) > 0. Then Vg

1 /OO din|L(jw)|

%
In coth udv, where v := |In &

(cothx := £Ee3),

eX—e—X




Bode's gain-phase relation

Bode's gain-phase relation: minimum-phase loop

Let L(s) be stable and minimum-phase and such that L(0) > 0. Then Vg

1 [ din|L(jw)]| [v]
arg L(jwg) = — —— 7 Incoth —dv, where v := |In &
g L(jwo) n/_oo 0 > wo
(coth x := :ﬁfzii) Function In coth % = Inlgf—gg :
Incoth%

A
N
A

,.5 ,.4 ,.3 7.2 7.1 0 i é é 4.1 é Vv

may be thought of as a rough approximation of the Dirac delta.



Bode's gain-phase relation

Bode's gain-phase relation: what does it mean

Since In coth % decreases rapidly as w deviates from wy,
din|L(jo)| _ dIn|L(jw)|
dv - dho

— arg L(jwo) depends mostly on near frequency wy.

But

dIn|L(j dlog|L(j
_ din[L(jw)l = og|L(je) is the roll-off?> of the Bode plot of |L(jow)|.
dinw dlogw

2Roll-off is the absolute value of the negative slope, scaled by 20.
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Bode's gain-phase relation: what does it mean

Since In coth 2! decreases rapidly as w deviates from wo,
3 pialy
din|L(jw)| _ dIn|L(jw)|
T = —dinw  Near frequency wo.

— arg L(jwo) depends mostly on

But
din|L(j dlog|L(j
n|L(w)] _ dlog|L(jv)l is the roll-off?> of the Bode plot of |L(jow)|.

dinw ~  dlogw

It can be shown that

—N x 65.3°, if roll-off of |L(jw)| is N for § < 2 <3
arg L(jwo) < 4 =N x 75.3°, if roll-off of |L(jw)| is N for § < 2 <5
—N x 82.7°, if roll-off of [L(jo)| is N for {5 < 2 <10

2Roll-off is the absolute value of the negative slope, scaled by 20.
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Bode's gain-phase relation: what does it mean

Since In coth 2! decreases rapidly as w deviates from wo,
3 pialy
din|L(jw)| _ dIn|L(jw)|
T = —dinw  Near frequency wo.

— arg L(jwo) depends mostly on

But

dIn|L(j dlog|L(j
n|L(j)| = og|L(joo)] is the roll-off?> of the Bode plot of |L(jow)|.
dinw dlogw

It can be shown that

—N x 65.3°, if roll-off of |L(jw)| is N for § < 2 <3
arg L(jwo) < 4 =N x 75.3°, if roll-off of |L(jw)| is N for § < 2 <5
—N x 82.7°, if roll-off of [L(jo)| is N for {5 < 2 <10

In other words,
— high negative slope of |L(jw)| necessarily causes large phase lag.

2Roll-off is the absolute value of the negative slope, scaled by 20.



Bode's gain-phase relation
Bode's gain-phase relation: implication

For systems with rigid loops, it is advisable to

— keep loop roll-off % 1 in the crossover region3

to guarantee that L(jw) is far enough from the critical point.

3].e. not much smaller than —20dB/dec slope of |L(jw)|.
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Bode's gain-phase relation: implication

For systems with rigid loops, it is advisable to
— keep loop roll-off % 1 in the crossover region

to guarantee that L(jw) is far enough from the critical point. This, in turn,
means that

— low- and high-frequency regions should be well-separated.



Bode's gain-phase relation
Bode's gain-phase relation: implication
For systems with rigid loops, it is advisable to

— keep loop roll-off % 1 in the crossover region

to guarantee that L(jw) is far enough from the critical point. This, in turn,
means that

— low- and high-frequency regions should be well-separated.

This is the reason why our “dream shape” is not an option.



Bode's gain-phase relation

Gain-phase relation: one nonminimum-phase zero

Let L(s) has one RHP zero at z > 0. Then

-S4z
L(s) = e Lmp(s)
for a minimum-phase Lmp(s). _wa+z L(jo)| = [Lmp(jw)| and
—jwo + z
arg L(jwo) = arg Lmp(jwo) + arg g
1 [ dIn|L(j
= / M In coth udv — 2 arctan @.
T J_ o dv 2 z



Bode's gain-phase relation

Gain-phase relation: one nonminimum-phase zero
Let L(s) has one RHP zero at z > 0. Then

—SsS+z

L(s) =~ Lme(s)
for a minimum-phase Lmp(s). Since ‘%} =1, |L(jo)| = |Lmp(jw)| and
—jwo + z
arg L(jwo) = arg Lmp(jwo) + arg g
1 [ dIn|L(j
:/ Mlncothudv—Zarctan@.
T J_ o dv 2 z

Thus,
— nonminimum-phase zero adds a phase lag (especially at > z)

imposing additional constraints on the slope of |L(jw)| in crossover region.



Bode's gain-phase relation
Gain-phase relation: complex nonminimum-phase zeros
Now, let L(s) has a pair of RHP zero at z =+ jz, z > 0. Then

—Ss+z+jz—s+z —jz
- — Lmp(s)
stz +jz s+z—jz

L(s)

and we have:

1 /% dlin|L(j —] +jz
arg L(jwo) = - / n!dlEJa))! In coth ‘;’dv +arg e g
—o0

jwo+z £jz
1 [/*° dlInl|L(j
T ) dv 2
— 2(arctan M -+ arctan ®o ~ Zi).
Zr

Zy

This harden constraints when wg > z, though may soften when wg < z
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Bode's gain-phase relation

Phase of all-pass systems
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Bode's gain-phase relation

Gain-phase relation: multiple nonminimum-phase zeros

In this case
—Ss+z1—-5s+2 —Ss+ zx
L(s) = L
(s) PI——— e mp(5)
and we have:
> din|L(jw)| —on+Z,
L ———"Inco dv ar ,
st =2 [ 214 Yt

which further harden constraints.



Bode's gain-phase relation

Limitations due to nonminimum-phase zeros

For systems with a single crossover frequency?® RHP zeros near .

— impose additional limitations on the roll-off in the crossover region.

3For lightly damped systems it sometimes might be desirable to inject a phase lag by
adding RHP zeros. Yet this must be done with maximal care (don't try it at home!)
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Limitations due to nonminimum-phase zeros

For systems with a single crossover frequency RHP zeros near w.

— impose additional limitations on the roll-off in the crossover region.

Consequently, a well-known rule of thumb says that for nonminimum-phase
systems

— crossover frequency w. should be < the smallest RHP zero.



Bode's gain-phase relation

Limitations due to nonminimum-phase zeros

For systems with a single crossover frequency RHP zeros near w.
— impose additional limitations on the roll-off in the crossover region.

Consequently, a well-known rule of thumb says that for nonminimum-phase
systems

— crossover frequency w. should be < the smallest RHP zero.

Also, it is safe to claim (regarding RHP zeros) that
— closer to the real axis =  more restrictive crossover limitations



Bode's sensitivity integral

Outline

Philosophical remark: Bode's sensitivity integral



Bode's sensitivity integral

Bode's sensitivity integral

Let L(s) be a loop transfer function having pole excess > 2. Then, provided
S(s) is stable,

o i 0 if L stable
In[S(j)ldo =4~ . |
0 my 7 Rep; otherwise (pj—unstable poles of L)

i.e.

In|S(jo)|

1S(jw)| > 1

o (linear scale)

1S(je)l <1




Bode's sensitivity integral
What does it mean?
Some conclusions:

— since 7 Y Rep; > 0, |S(jw)| cannot? be < 1 over all frequencies

— improvements in one region inevitable cause deterioration in other
(so-called waterbed effect)

P

w (linear scale)

In|S(jo)|

for various values of k

1= iy

3|f pole excess of L(s) is > 2, of course. Yet this is typical in applications.



Bode's sensitivity integral
What does it mean?
Some conclusions:

— since 7 Y Rep; >0, |S(jw)| cannot be < 1 over all frequencies

— improvements in one region inevitable cause deterioration in other
(so-called waterbed effect)

P

w (linear scale)

In|S(jo)|

1= iy

for various values of k
On qualitative level,

— controller can only redistribute |S(jw)| over frequencies

and the art of control may thus be seen as art of redistribution of |S(jw)|.
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