Control Theory (00350188) lecture no. 1

Leonid Mirkin

Faculty of Mechanical Engineering Technion — IIT

Outline

Loop-shaping tools

M- and N-circles

Nichols chart

Design example: the use of Nichols charts

Bode's gain-phase relation

Philosophical remark: Bode's sensitivity integral

- Course site: http://leo.technion.ac.il/Courses/CT/

Credit points: 3.8

Prerequisite: Introduction to Control (00340040), a must

Grading policy

2 midterm projects (tokef): 20% each (provided exam is passed) Final exam ("closed"): 60% (or 100% is the grade is < 55)

Passing policy

minimum passing grade is 55

only those who pass both projects are eligible to take the final exam

- Course site: http://leo.technion.ac.il/Courses/CT/
- Credit points: 3.5
 - Prerequisite: Introduction to Control (00340040), a must
 - Grading policy
 - 2 midterm projects (toker): 20% each (provided exam is passed): Final exam ("closed"): 60% (or 100% is the grade is < 55)
 - Passing policy
 - minimum passing grade is 55
 - only those who pass both projects are eligible to take the final exam

- Course site: http://leo.technion.ac.il/Courses/CT/
- Credit points: 3.5
- Prerequisite: Introduction to Control (00340040), a must
 - Grading policy
 - 2 midterm projects (tokel): 20% each (provided exam is passed. Final exam ("closed"): 60% (or 100% is the grade is < 55)
 - Passing policy
 - minimum passing grade is 55
 - only those who pass both projects are eligible to take the final exam

- Course site: http://leo.technion.ac.il/Courses/CT/
- Credit points: 3.5
- Prerequisite: Introduction to Control (00340040), a must
- Grading policy:
 - 2 midterm projects (tokef): 20% each (provided exam is passed)
 - Final exam ("closed"): 60% (or 100% is the grade is <55)

- Course site: http://leo.technion.ac.il/Courses/CT/
- Credit points: 3.5
- Prerequisite: Introduction to Control (00340040), a must
- Grading policy:
 2 midterm projects (tokef): 20% each (provided exam is passed)
 Final exam ("closed"): 60% (or 100% is the grade is < 55)
- Passing policy:
 minimum passing grade is 55
 only those who pass both projects are eligible to take the final exam

Syllabus

1. Advanced single loop design

- 1.1 More on loop-shaping
- 1.2 More on on dead-time systems
- 1.3 More on pole placement (Sylvester matrix etc.)
- 1.4 Industrial control (saturation & anti-windup, reference signal generation)
- 1.5 Robustness of control systems

Syllabus

1.1 More on loop-shaping
1.2 More on on dead-time systems
1.3 More on pole placement (Sylvester matrix etc.)
1.4 Debut and control of the system of the syst

2. Introduction to state-space methods

- 2.1 Structural properties (controllability, observability, etc)
- 2.2 State feedback control
- 2.3 State observers
- 2.4 Observer-based output feedback
- 2.5 Introduction to optimization-based methods (LQR, Kalman filter, LQG)

Syllabus

- Advanced single loop design
- 1.1 Iviore on loop-snaping
- 1.2 More on an dead-time
- 1.3 More on pole placement (Sylvester matrix etc.)
- 1.4 Industrial control (saturation & anti-windup, reference si
- 1.5 Rodustness of control systems
- Introduction to state-space methods
 - 2.1 Structural properties (controllability, observability, etc.)
 - 2.2 State feedback control
 - 2.3 State observers
 - 2.4 Observer-based output feedback
- 2.5 Introduction to optimization-based methods (Eqit, Italinan litter, Eqo.)
- 3. Introduction to sampled-data systems
 - 3.1 Digital redesign of analog controllers
 - 3.2 Digital design

Outline

Loop-shaping tools

M- and N-circles

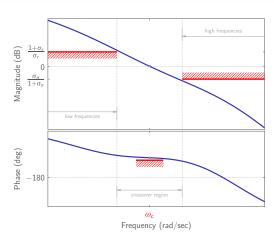
Nichols chart

Design example: the use of Nichols charts

Bode's gain-phase relation

Philosophical remark: Bode's sensitivity integral

Typical operations with $L(j\omega)$

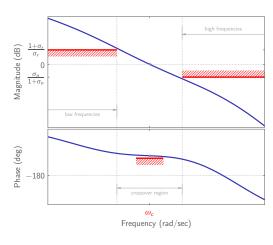


Typical course of action:

- choose crossover, ω_c
- shape high-freq. roll-off
- set required crossover, ω_c
- shape phase around ω_c
- shape low-frequency gain

by cascade adjustments of C(s).

Typical operations with $L(j\omega)$

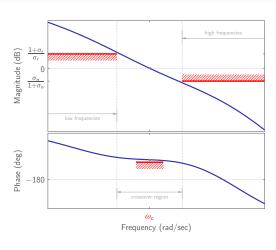


Typical course of action:

- choose crossover, ω_c
- shape high-freq. roll-off (means: low-pass filter)
- set required crossover, ω_c (means: proportional controller)
- shape phase around ω_c (means: lead controller)
- shape low-frequency gain (means: lag controller)

by cascade adjustments of C(s).

Typical operations with $L(j\omega)$



Typical course of action:

- choose crossover, $\omega_{\rm c}$
- shape high-freq. roll-off (means: low-pass filter)
- set required crossover, $\omega_{\rm c}$ (means: proportional controller)
- shape phase around $\omega_{\rm c}$ (means: lead controller)
- shape low-frequency gain (means: lag controller)

by cascade adjustments of C(s).

But

one should not be religious about that,

the steps may be skipped, reordered, or altered, depending on the situation.

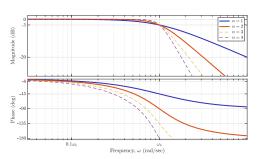
The *n*-order Butterworth filter with bandwidth ω_b is the stable t.f. such that

$$|F_{\mathsf{b},n}(\mathsf{j}\omega)|^2 = \frac{1}{1 + (\omega/\omega_\mathsf{b})^{2n}},$$

like

$$F_{b,1}(s) = \frac{\omega_b}{s + \omega_b}$$
 or $F_{b,2}(s) = \frac{\omega_b^2}{s^2 + \sqrt{2}\omega_b s + \omega_b^2}$

with

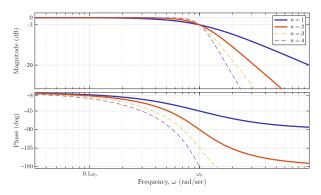


¹MATLAB: [num,den] = butter(n,wb,'s'); Fb = tf(num,den);

Low-pass filter: usage

Main problem is that

the phase lags before the magnitude starts to decay:



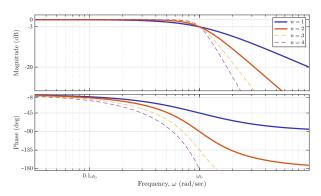
The rule of thumb

use $\omega_{\rm B}=10\omega_{\rm c}$ (decade above the intended crossover) with $\angle F_{\rm B,1}({\rm j}\omega_{\rm c})\approx -5.7^{\circ}$, $\angle F_{\rm B,2}({\rm j}\omega_{\rm c})\approx -8.1^{\circ}$. $\angle F_{\rm B,2}({\rm j}\omega_{\rm c})$

Low-pass filter: usage

Main problem is that

the phase lags before the magnitude starts to decay:



The rule of thumb:

- use $\omega_{\rm b}=10\omega_{\rm c}$ (decade above the intended crossover),

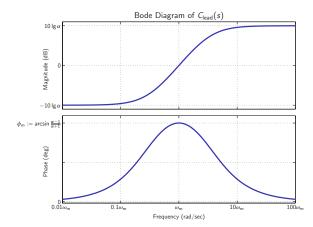
with
$$\angle F_{b,1}(j\omega_c) \approx -5.7^\circ$$
, $\angle F_{b,2}(j\omega_c) \approx -8.1^\circ$, $\angle F_{b,3}(j\omega_c) \approx -11.5^\circ$, ...

1-order lead

General form:

$$C_{\mathsf{lead}}(s) = rac{\sqrt{lpha}\,s + \omega_{\mathsf{m}}}{s + \sqrt{lpha}\omega_{\mathsf{m}}}, \quad ext{ with } lpha = rac{1 + \sin\phi_{\mathit{m}}}{1 - \sin\phi_{\mathit{m}}},$$

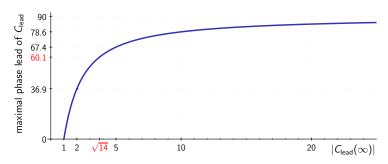
where $\phi_m \in (0, 90^\circ)$ is the maximal phase lead (occurs at $\omega = \omega_m$).



1-order lead: cost of phase lead

Phase lead is expensive, it leads to

- the decrease of the low-frequency gain and
- the increase of the high-frequency gain of the controller (both by the factor $\sqrt{\alpha}$). Quantitatively,



whose slope decreases. A rule of thumb is that

the phase lead above 60° might be too expensive.

2-order lead

General form:

$$\label{eq:clead2} \textit{C}_{\text{lead2}}(\textit{s}) = \frac{\alpha \, \textit{s}^2 + 2\zeta\sqrt{\alpha}\omega_{\text{m}}\textit{s} + \omega_{\text{m}}^2}{\textit{s}^2 + 2\zeta\sqrt{\alpha}\omega_{\text{m}}\textit{s} + \alpha\omega_{\text{m}}^2}, \quad \text{ with } \zeta \in \Big[\frac{1}{\sqrt{2}}, \sqrt{2}\Big],$$

and

$$lpha=1+2\zeta\Big(\zeta+\sqrt{\zeta^2+\cot^2rac{\phi_m}{2}}\Big) an^2rac{\phi_m}{2}$$

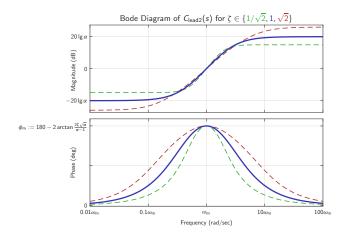
where $\phi_m \in (0, 180^\circ)$ is the maximal phase lead (occurs at $\omega = \omega_m$). Here

- the case $\zeta=1$ corresponds to $C_{\mathsf{lead}2}=C_{\mathsf{lead}}^2$,
- if $\zeta < 1/\sqrt{2}$, then $|C_{\text{lead2}}(j\omega)|$ is not monotonic, so might be trickier,
- if $\zeta > \sqrt{2}$, then it might be that $\angle C_{\text{lead2}}(j\omega) > \phi_m$ for some $\omega \neq \omega_m$.

2-order lead (contd)

As ζ increases for the same ϕ_m ,

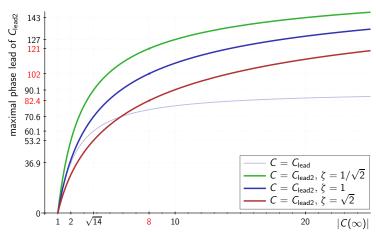
- phase lead becomes wider
- $-\alpha$ increases



Loop-shaping tools M-circles Nichols chart Example Bode's gain-phase relation Bode's sensitivity integr

2-order lead: cost of phase lead

Quantitatively,



A rule of thumb is that

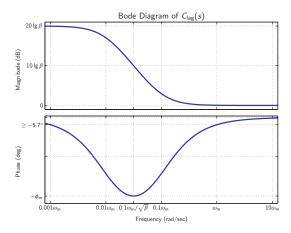
the phase lead above 120° might be too expensive.

Lag

General form:

$$C_{\mathsf{lag}}(s) = rac{10s + \omega_{\mathsf{m}}}{10s + \omega_{\mathsf{m}}/eta}, \quad ext{ with } eta > 1,$$

where the phase lag at $\omega = \omega_{\rm m}$ is at most 5.7°.



Outline

Loop-shaping tools

M- and N-circles

Nichols chart

Design example: the use of Nichols charts

Bode's gain-phase relation

Philosophical remark: Bode's sensitivity integral

M-circles

M-circles are contours of constant closed-loop magnitude on Nyquist plane.

```
|T(j\omega)|^2 = M^2 \iff M^2(1+x)^2 + M^2y^2 = x^2 + y^2
```

- I hen two cases are possible:
- M=1 then $x=-\frac{1}{2}$ (vertical line)
- $M \neq 1$ then $(1 M^2)(x^2 2\frac{m}{1 M^2}x \pm \frac{m}{(1 M^2)^2} + y^2) = M^2$, so we get

(circle centered at $\frac{M^2}{1-M^2}$ with radius $\frac{M}{1-M^2}$)

M-circles are contours of constant closed-loop magnitude on Nyquist plane.

Let
$$L(j\omega) = x + jy$$
. Then $T(j\omega) = \frac{x+jy}{1+x+jy}$. Hence,

$$|T(j\omega)|^2 = M^2 \iff M^2(1+x)^2 + M^2y^2 = x^2 + y^2$$

 $\iff (1-M^2)x^2 - 2M^2x + (1-M^2)y^2 = M^2.$

M-circles

M-circles are contours of constant closed-loop magnitude on Nyquist plane.

Let
$$L(j\omega)=x+jy$$
. Then $T(j\omega)=rac{x+jy}{1+x+jy}$. Hence,

$$|T(j\omega)|^2 = M^2 \iff M^2(1+x)^2 + M^2y^2 = x^2 + y^2$$

 $\iff (1-M^2)x^2 - 2M^2x + (1-M^2)y^2 = M^2.$

Then two cases are possible:

$$M=1$$
 then $x=-\frac{1}{2}$ (vertical line)

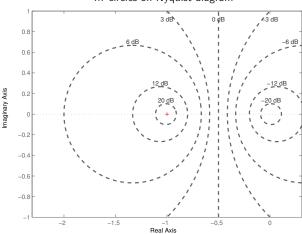
$$M \neq 1$$
 then $(1 - M^2)(x^2 - 2\frac{M^2}{1 - M^2}x \pm \frac{M^4}{(1 - M^2)^2} + y^2) = M^2$, so we get:

$$(x - \frac{M^2}{1 - M^2})^2 + y^2 = (\frac{M}{1 - M^2})^2$$

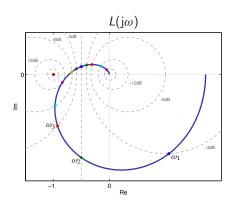
(circle centered at $\frac{M^2}{1-M^2}$ with radius $\frac{M}{|1-M^2|}$)

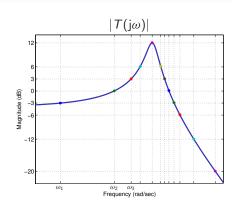
M-circles (contd)





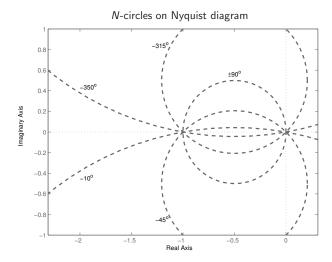
M-circles: how to read





N-circles

N-circles are contours of constant closed-loop phase on Nyquist plane:



Outline

Loop-shaping tools

M- and N-circles

Nichols chart

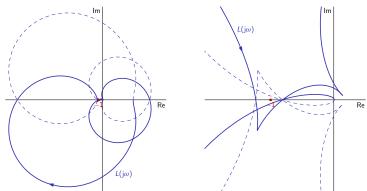
Design example: the use of Nichols charts

Bode's gain-phase relation

Philosophical remark: Bode's sensitivity integral

Nichols chart: motivation

Let
$$L(s) = \frac{12960000(s+5)(s^2+0.8s+16)(s^2+1.52s+1444)e^{-0.075s}}{(s+10)(s+100)(s^2+3s+9)(s^2+0.48s+9)(s^2+0.8s+1600)^2}$$
. Its Nyquist plot

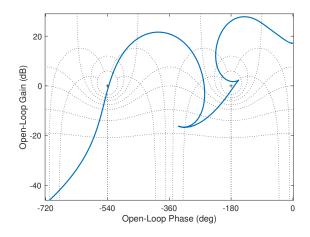


Pitfalls of the Nyquist plot:

- becomes messy for systems with multiple crossover frequencies
- crossover region is imperceptible for systems with large resonant peaks
- lacks system composition (superposition) properties of Bode diagrams

Remedy: Nichols chart

Nichols chart of transfer function L(s) is plot of $|L(j\omega)|$ (in dB) vs. $\angle L(j\omega)$ (in degrees) as frequency ω changes from 0 to ∞ .



Nichols chart: advantages

Since phase scale is linear rather than polar,

 Nichols chart is typically cleaner than Nyquist plot especially for systems with large phase lags, like time-delay systems.

As magnitude scale is in dB, regions with large magnitude don't dominate hence

— the crossover region is more visible.

Also the consequence of the logarithmic scale of $|L(j\omega)|$ is that — multiplication of systems results in superposition

Nichols chart: advantages

office phase scale is fillear rather than polar,

Nichols chart is typically cleaner than Nyquist plot

especially for systems with large phase lags, like time-delay systems.

As magnitude scale is in dB, regions with large magnitude don't dominate, hence

the crossover region is more visible.

Also the consequence of the logarithmic scale of $|L(j\omega)|$ is that

multiplication of systems results in superposition

on Nichols chart, almost as easy as on the Bode diagrams

Nichols chart: advantages

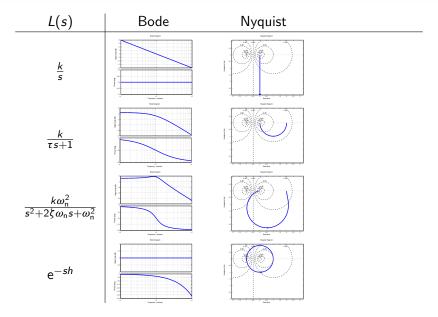
 Nichols chart is typically cleaner than Nyquist plot pecially for systems with large phase lags, like time-delay

As magnitude scale is in dB, regions with large magnitude don't dominated hence

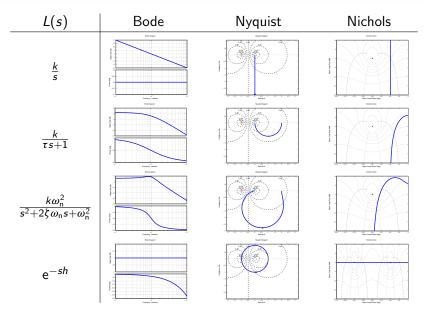
Also the consequence of the logarithmic scale of $|L(i\omega)|$ is that

multiplication of systems results in superposition
 on Nichols chart, almost as easy as on the Bode diagrams.

Nichols charts of elementary systems



Nichols charts of elementary systems



Nyquist criterion on Nichols chart

The same idea as with the Nyquist plot, we should

count encirclements of the critical point by the frequency-response plot.

This procedure might be less tangible with the Nichols charts as

the critical point is not unique there

```
(any point with |L(j\omega)| = 0 \, dB \, \& \, arg \, L(j\omega) = -180 \, (mod \, 360) is critical).
```

Nyquist criterion on Nichols chart (contd)

Remember (maybe; IC, Lect. 9):

Then the

- number of counterclockwise encirclements of -1 + j0 by the Nyquist plot of $L(j\omega)$ equals *twice* the net sum of crossings the ray $(-\infty, -1]$ by the polar plot of $L(j\omega)$ (plot direction is with the increase of ω).

Nyquist criterion on Nichols chart (contd)

Remember (maybe; IC, Lect. 9):

Then the

- number of counterclockwise encirclements of -1+j0 by the Nyquist plot of $L(j\omega)$ equals *twice* the net sum of crossings the ray $(-\infty, -1]$ by the polar plot of $L(j\omega)$ (plot direction is with the increase of ω).

The Nichols chart counterpart uses rays $[-180 + 360k, -180 + 360k + j\infty)$ for $k \in \mathbb{Z}$:



and the rest remains the same....

Nyquist criterion on Nichols chart: handling integrators

Polar plot: Each integrator adds a counterclockwise arc of 90° with infinite radius, starting at $L(j\omega)|_{\omega=0^+}$

Nyquist criterion on Nichols chart: handling integrators

Polar plot: Each integrator adds a counterclockwise arc of 90° with infinite radius, starting at $L(j\omega)|_{\omega=0^+}$

Nichols chart: An arc centered at the origin has a constant magnitude and changing phase \implies an arc translates to a horizontal line on Nichols chart

Nyquist criterion on Nichols chart: handling integrators

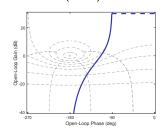
Polar plot: Each integrator adds a counterclockwise arc of 90° with infinite radius, starting at $L(j\omega)|_{\omega=0^{+}}$

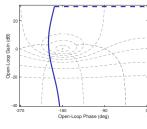
Nichols chart: An arc centered at the origin has a constant magnitude and changing phase \implies an arc translates to a horizontal line on Nichols chart:

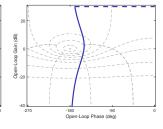
$$L(s) = \frac{1}{2s(s+1)}$$
:

$$L(s) = \frac{3(s+1)}{s^2(10s+3)}$$
:

$$L(s) = \frac{3s+1}{4s^2(s+1)}$$
:





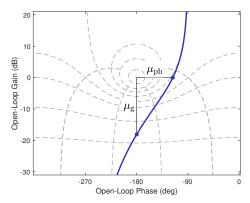


Each integrator needs -90° of the line.

Gain and phase margins on Nichols chart

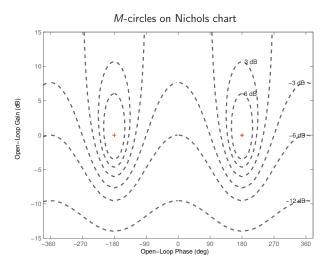
Gain margin μ_g and phase margin μ_{ph} are easily calculable from Nichols charts:

- $\mu_{\rm g}$ is the vertical distance from the critical point;
- $\mu_{\rm ph}$ is the horizontal distance from the critical point.

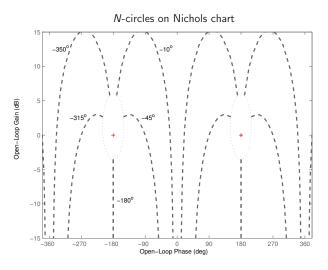


here $\mu_{\rm g}=8\approx 18.06\,{\rm dB}$ and $\mu_{\rm ph}\approx 63.36^\circ$.

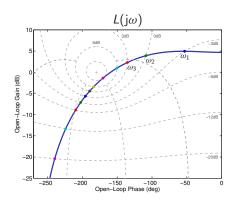
M-circles on Nichols charts

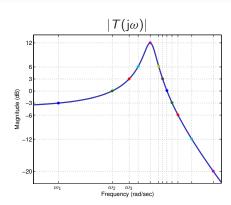


N-circles on Nichols charts

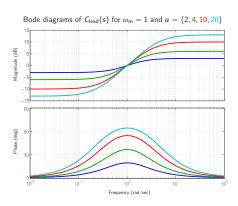


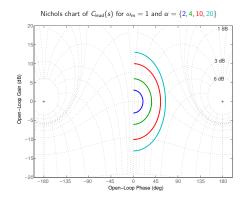
M-circles on Nichols charts: how to read





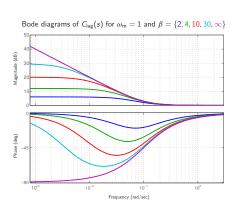
Lead controller:
$$C_{\text{lead}}(s) = \frac{\sqrt{\alpha} \ s + \omega_{\text{m}}}{s + \sqrt{\alpha} \omega_{\text{m}}}, \ \alpha > 1.$$

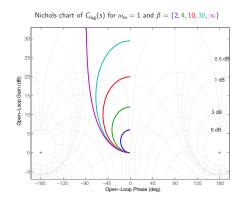




Nichols chart of lag controller

Lag controller:
$$C_{\text{lag}}(s) = \frac{10s + \omega_{\text{m}}}{10s + \omega_{\text{m}}/\beta}$$
, $\beta > 1$.





Outline

Loop-shaping tools

M- and N-circles

Nichols chart

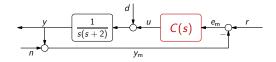
Design example: the use of Nichols charts

Bode's gain-phase relation

Philosophical remark: Bode's sensitivity integral

System (remember IC, Lect. 11)

A DC motor controlled in closed loop:



Requirements:

- closed-loop stability (of course)
- $\omega_{\rm c}=5\,{\rm rad/sec}$
- zero steady-state error for a step in r

integrator in C(s)

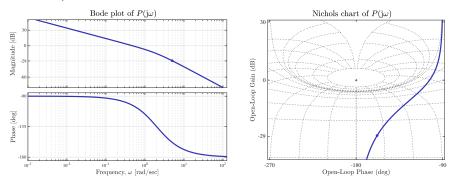
always holds

- zero steady-state error for a step in d
- $-\mu_{\rm ph} \in \{45,60\}$

Remark: We implicitly assume that the plant is normalized, in a sense that the control amplitude |u(t)| < 1 is "small" and |u(t)| > 1 is "large".

Example 1: the plant

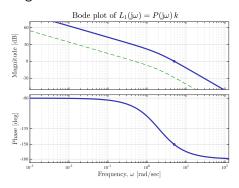
Let first $\mu_{ph}=45^{\circ}$. With $\omega_{c}=5$,

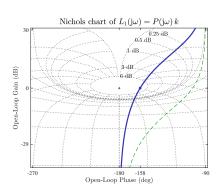


This is below the actual crossover, so can be attained by the gain $k \approx 26.9$.

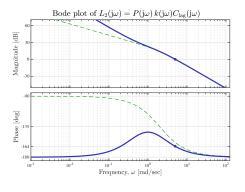
Example 1: adjusting crossover

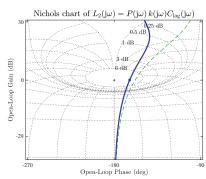
We get:





Use the lag controller with $\omega_m = 5$ and $\beta = \infty$:



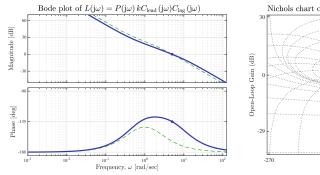


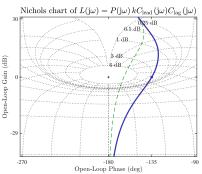
Here $\mu_{\rm ph}\approx 16^{\circ}$ and

we need a phase lead of $45^{\circ} - 16^{\circ} = 29^{\circ}$.

for which one lead is enough.

We get:



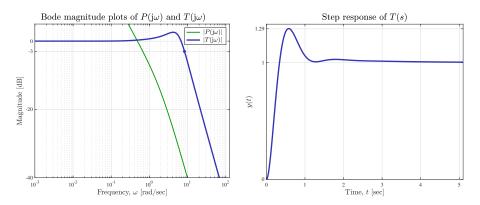


Here $\mu_{\rm ph} \approx 45^{\circ}$, which is what we need. Resulting controller:

$$C(s) = kC_{\text{lead}}(s)C_{\text{lag}}(s) = \frac{45.619(s + 2.951)(s + 0.5)}{s(s + 8.471)}.$$

Note Nichols chart location vis- \hat{a} -vis M-circles (not quite "nice").

Example 1: closed-loop command response

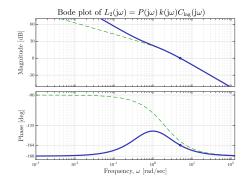


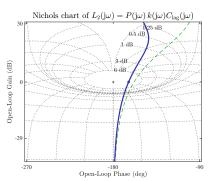
To note:

- resonance peak (agrees with *M*-circles) \implies OS \approx 29%
- closed-loop bandwidth $\omega_{\rm b}\approx 8.3176$, which is a bit above the designed $\omega_{\rm c}=5$ and higher than the open-loop bandwidth

Example 2: adjusting low-frequency gain

Now, let $\mu_{ph} = 60^{\circ}$. The first design steps, up until the addition of the lag part, remain the same and we have



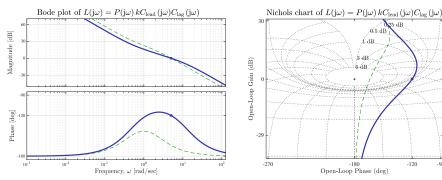


Here $\mu_{\rm ph} \approx 16^{\circ}$ and

we now need a phase lead of $60^{\circ}-16^{\circ}=44^{\circ}$. for which one lead is enough as well.

Example 2: adjusting phase around crossover

We get:

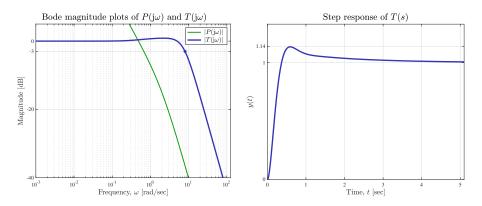


Here $\mu_{\rm ph} \approx 60^{\circ}$, which is what we need. Resulting controller:

$$C(s) = kC_{\text{lead}}(s)C_{\text{lag}}(s) = \frac{62.977(s+2.127)(s+0.5)}{s(s+11.75)}.$$

Note again Nichols chart location vis- \hat{a} -vis M-circles ("nicer").

Example 2: closed-loop command response



To note:

- resonance peak becomes lower \implies lower OS pprox 14%
- closed-loop bandwidth $\omega_{\rm b}\approx 8.0649$, which is a bit above the designed $\omega_{\rm c}=5$ and higher than the open-loop bandwidth

Outline

Loop-shaping tools

M- and N-circles

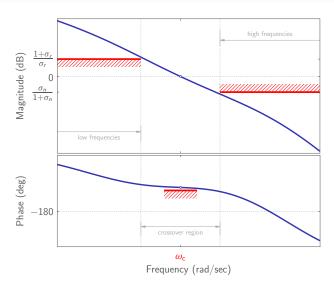
Nichols chart

Design example: the use of Nichols charts

Bode's gain-phase relation

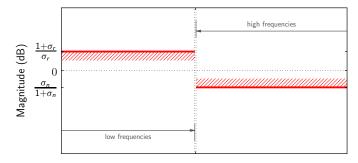
Philosophical remark: Bode's sensitivity integral

Loop shaping: big picture



Dream loop shape

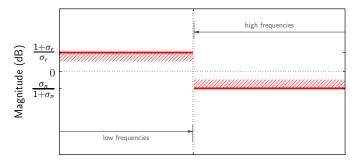
We'd prefer to have narrow crossover region, something like this:



Intuitively, it is hard to believe that this is possible (too good to be true:-). It turns out that this "intuition" can be rigorously justified

Dream loop shape

We'd prefer to have narrow crossover region, something like this:



Intuitively, it is hard to believe that this is possible (too good to be true:-). It turns out that this "intuition" can be rigorously justified.

Bode's gain-phase relation: minimum-phase loop

Let L(s) be stable and minimum-phase and such that L(0) > 0. Then $\forall \omega_0$

$$\arg L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathsf{d} \ln \lvert L(j\omega) \rvert}{\mathsf{d} \nu} \ln \coth \frac{\lvert \nu \rvert}{2} \mathsf{d} \nu, \qquad \text{where } \nu := \ln \frac{\omega}{\omega_0}$$

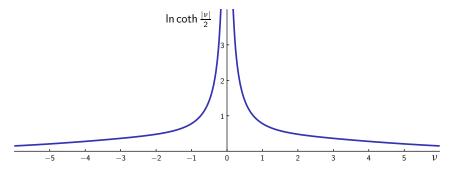
$$(\coth x := \frac{e^x + e^{-x}}{e^x - e^{-x}}).$$

Bode's gain-phase relation: minimum-phase loop

Let L(s) be stable and minimum-phase and such that L(0) > 0. Then $\forall \omega_0$

$$\arg \textit{L}(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathsf{d} \ln \lvert \textit{L}(j\omega) \rvert}{\mathsf{d} \nu} \ln \coth \frac{\lvert \nu \rvert}{2} \mathsf{d} \nu, \qquad \text{where } \nu := \ln \frac{\omega}{\omega_0}$$

$$\left(\coth x := \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{\mathrm{e}^x - \mathrm{e}^{-x}}\right). \text{ Function In coth } \frac{|\nu|}{2} = \ln\left|\frac{\omega + \omega_0}{\omega - \omega_0}\right|:$$



may be thought of as a rough approximation of the Dirac delta.

Since $\ln \coth \frac{|v|}{2}$ decreases rapidly as ω deviates from ω_0 ,

— arg
$$L(j\omega_0)$$
 depends mostly on $\frac{d \ln |L(j\omega)|}{d\nu} = \frac{d \ln |L(j\omega)|}{d \ln \omega}$ near frequency ω_0 .

But

$$-\frac{\mathrm{d} \ln |L(\mathrm{j}\omega)|}{\mathrm{d} \ln \omega} = \frac{\mathrm{d} \log |L(\mathrm{j}\omega)|}{\mathrm{d} \log \omega} \text{ is the roll-off}^2 \text{ of the Bode plot of } |L(\mathrm{j}\omega)|.$$

²Roll-off is the absolute value of the negative slope, scaled by 20.

Since $\ln \coth \frac{|\nu|}{2}$ decreases rapidly as ω deviates from ω_0 ,

$$-$$
 arg $L(j\omega_0)$ depends mostly on $\frac{d\ln|L(j\omega)|}{d\nu} = \frac{d\ln|L(j\omega)|}{d\ln\omega}$ near frequency ω_0 .

But

$$-\frac{\mathrm{d} \ln |L(\mathrm{j}\omega)|}{\mathrm{d} \ln \omega} = \frac{\mathrm{d} \log |L(\mathrm{j}\omega)|}{\mathrm{d} \log \omega} \text{ is the roll-off}^2 \text{ of the Bode plot of } |L(\mathrm{j}\omega)|.$$

It can be shown that

$$\arg L(\mathrm{j}\omega_0) < \begin{cases} -\mathit{N} \times 65.3^\circ, & \text{if roll-off of } |L(\mathrm{j}\omega)| \text{ is } \mathit{N} \text{ for } \frac{1}{3} \leq \frac{\omega}{\omega_0} \leq 3 \\ -\mathit{N} \times 75.3^\circ, & \text{if roll-off of } |L(\mathrm{j}\omega)| \text{ is } \mathit{N} \text{ for } \frac{1}{5} \leq \frac{\omega}{\omega_0} \leq 5 \\ -\mathit{N} \times 82.7^\circ, & \text{if roll-off of } |L(\mathrm{j}\omega)| \text{ is } \mathit{N} \text{ for } \frac{1}{10} \leq \frac{\omega}{\omega_0} \leq 10 \end{cases}$$

In other words,

²Roll-off is the absolute value of the negative slope, scaled by 20.

Bode's gain-phase relation: what does it mean

Since $\ln \coth \frac{|v|}{2}$ decreases rapidly as ω deviates from ω_0 ,

- arg
$$L(j\omega_0)$$
 depends mostly on $\frac{d \ln |L(j\omega)|}{d\nu} = \frac{d \ln |L(j\omega)|}{d \ln \omega}$ near frequency ω_0 .

But

$$-\frac{\mathrm{d} \ln |L(\mathrm{j}\omega)|}{\mathrm{d} \ln \omega} = \frac{\mathrm{d} \log |L(\mathrm{j}\omega)|}{\mathrm{d} \log \omega} \text{ is the roll-off}^2 \text{ of the Bode plot of } |L(\mathrm{j}\omega)|.$$

It can be shown that

$$\arg L(\mathrm{j}\omega_0) < \begin{cases} -N\times65.3^\circ, & \text{if roll-off of } |L(\mathrm{j}\omega)| \text{ is } N \text{ for } \frac{1}{3} \leq \frac{\omega}{\omega_0} \leq 3 \\ -N\times75.3^\circ, & \text{if roll-off of } |L(\mathrm{j}\omega)| \text{ is } N \text{ for } \frac{1}{5} \leq \frac{\omega}{\omega_0} \leq 5 \\ -N\times82.7^\circ, & \text{if roll-off of } |L(\mathrm{j}\omega)| \text{ is } N \text{ for } \frac{1}{10} \leq \frac{\omega}{\omega_0} \leq 10 \end{cases}$$

In other words.

- high negative slope of $|L(j\omega)|$ necessarily causes large phase lag.

²Roll-off is the absolute value of the negative slope, scaled by 20.

Bode's gain-phase relation: implication

For systems with rigid loops, it is advisable to

keep loop roll-off $\gg 1$ in the crossover region³ to guarantee that $L(j\omega)$ is far enough from the critical point.

³I.e. not much smaller than $-20 \, dB/dec$ slope of $|L(j\omega)|$.

Bode's gain-phase relation: implication

For systems with rigid loops, it is advisable to

- keep loop roll-off $\gg 1$ in the crossover region to guarantee that $L(j\omega)$ is far enough from the critical point. This, in turn, means that
 - low- and high-frequency regions should be well-separated.

Bode's gain-phase relation: implication

For systems with rigid loops, it is advisable to

- keep loop roll-off $\gg 1$ in the crossover region to guarantee that $L(j\omega)$ is far enough from the critical point. This, in turn, means that
 - low- and high-frequency regions should be well-separated.

This is the reason why our "dream shape" is not an option.

Let L(s) has one RHP zero at z > 0. Then

$$L(s) = \frac{-s+z}{s+z} L_{mp}(s)$$

for a minimum-phase $L_{mp}(s)$. Since $\left|\frac{-j\omega+z}{i\omega+z}\right| \equiv 1$, $|L(j\omega)| = |L_{mp}(j\omega)|$ and

$$\begin{split} \arg L(\mathrm{j}\omega_0) &= \arg L_{\mathrm{mp}}(\mathrm{j}\omega_0) + \arg \frac{-\mathrm{j}\omega_0 + z}{\mathrm{j}\omega_0 + z} \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} \ln|L(\mathrm{j}\omega)|}{\mathrm{d}\nu} \ln \coth \frac{|\nu|}{2} \mathrm{d}\nu - 2 \arctan \frac{\omega_0}{z}. \end{split}$$

Gain-phase relation: one nonminimum-phase zero

Let L(s) has one RHP zero at z > 0. Then

$$L(s) = \frac{-s+z}{s+z} L_{mp}(s)$$

for a minimum-phase $L_{mp}(s)$. Since $\left|\frac{-j\omega+z}{i\omega+z}\right| \equiv 1$, $|L(j\omega)| = |L_{mp}(j\omega)|$ and

$$\begin{split} \arg L(\mathrm{j}\omega_0) &= \arg L_{\mathrm{mp}}(\mathrm{j}\omega_0) + \arg \frac{-\mathrm{j}\omega_0 + z}{\mathrm{j}\omega_0 + z} \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} \ln|L(\mathrm{j}\omega)|}{\mathrm{d}\nu} \ln \coth \frac{|\nu|}{2} \mathrm{d}\nu - 2 \arctan \frac{\omega_0}{z}. \end{split}$$

Thus.

- nonminimum-phase zero adds a phase lag (especially at $\omega > z$) imposing additional constraints on the slope of $|L(j\omega)|$ in crossover region.

Gain-phase relation: complex nonminimum-phase zeros

Now, let L(s) has a pair of RHP zero at $z_r \pm jz_i$, $z_r > 0$. Then

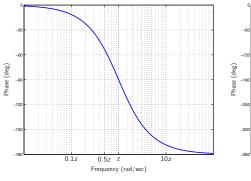
$$L(s) = \frac{-s + z_{r} + jz_{i}}{s + z_{r} + jz_{i}} \frac{-s + z_{r} - jz_{i}}{s + z_{r} - jz_{i}} L_{mp}(s)$$

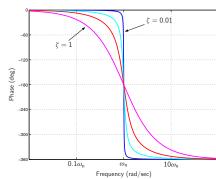
and we have:

$$\begin{split} \arg L(\mathrm{j}\omega_0) &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} \ln |L(\mathrm{j}\omega)|}{\mathrm{d}\nu} \ln \coth \frac{|\nu|}{2} \mathrm{d}\nu + \arg \frac{-\mathrm{j}\omega_0 + z_\mathrm{r} \pm \mathrm{j}z_\mathrm{i}}{\mathrm{j}\omega_0 + z_\mathrm{r} \pm \mathrm{j}z_\mathrm{i}} \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} \ln |L(\mathrm{j}\omega)|}{\mathrm{d}\nu} \ln \coth \frac{|\nu|}{2} \mathrm{d}\nu \\ &\qquad - 2 \big(\arctan \frac{\omega_0 + z_\mathrm{i}}{z_\mathrm{r}} + \arctan \frac{\omega_0 - z_\mathrm{i}}{z_\mathrm{r}} \big). \end{split}$$

This harden constraints when $\omega_0 > z_i$, though may soften when $\omega_0 \ll z_i$.

Phase of all-pass systems





$$\arg \frac{-s+z}{s+z}\Big|_{s=j\omega}$$

$$\arg \frac{s^2 - 2\zeta \omega_n s + \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \bigg|_{s = j\omega}$$

In this case

$$L(s) = \frac{-s + z_1}{s + z_1} \frac{-s + z_2}{s + z_2} \cdots \frac{-s + z_k}{s + z_k} L_{mp}(s)$$

and we have:

$$\arg L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d \ln|L(j\omega)|}{d\nu} \ln \coth \frac{|\nu|}{2} d\nu - \sum_{i=1}^{\kappa} \arg \frac{-j\omega_0 + z_i}{j\omega_0 + z_i},$$

which further harden constraints.

Limitations due to nonminimum-phase zeros

For systems with a single crossover frequency 3 RHP zeros near ω_c

impose additional limitations on the roll-off in the crossover region.

³For lightly damped systems it sometimes might be desirable to inject a phase lag by adding RHP zeros. Yet this must be done with maximal care (don't try it at home!)

Limitations due to nonminimum-phase zeros

For systems with a single crossover frequency RHP zeros near $\omega_{
m c}$

impose additional limitations on the roll-off in the crossover region.

Consequently, a well-known rule of thumb says that for nonminimum-phase systems

– crossover frequency ω_{c} should be < the smallest RHP zero.

Also, it is sate to claim (regarding RHP zeros) that

closer to the real axis \implies more restrictive crossover limitations

Limitations due to nonminimum-phase zeros

For systems with a single crossover frequency RHP zeros near $\omega_{
m c}$

impose additional limitations on the roll-off in the crossover region.

Consequently, a well-known rule of thumb says that for nonminimum-phase systems

– crossover frequency $\omega_{\rm c}$ should be < the smallest RHP zero.

Also, it is safe to claim (regarding RHP zeros) that

− closer to the real axis ⇒ more restrictive crossover limitations

Outline

Loop-shaping tools

M- and N-circles

Nichols chart

Design example: the use of Nichols charts

Bode's gain-phase relation

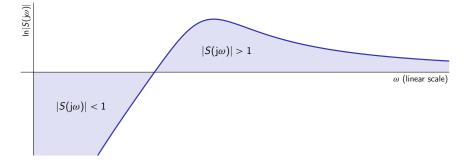
Philosophical remark: Bode's sensitivity integral

Bode's sensitivity integral

Let L(s) be a loop transfer function having pole excess ≥ 2 . Then, provided S(s) is stable,

$$\int_0^\infty \ln|S(j\omega)| d\omega = \begin{cases} 0 & \text{if } L \text{ stable} \\ \pi \sum_{i=1}^m \operatorname{Re} p_i & \text{otherwise } (p_i \text{—unstable poles of } L) \end{cases}$$

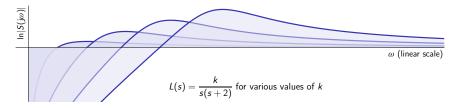
i.e.



What does it mean?

Some conclusions:

- since $\pi \sum \text{Re } p_i \ge 0$, $|S(j\omega)|$ cannot³ be < 1 over all frequencies
- improvements in one region inevitable cause deterioration in other (so-called waterbed effect)

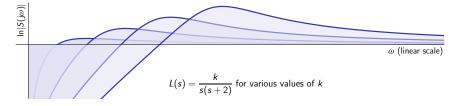


³If pole excess of L(s) is ≥ 2 , of course. Yet this is typical in applications.

What does it mean?

Some conclusions:

- since $\pi \sum \text{Re } p_i \geq 0$, $|S(j\omega)|$ cannot be < 1 over all frequencies
- improvements in one region inevitable cause deterioration in other (so-called waterbed effect)



On qualitative level,

controller can only redistribute $|S(j\omega)|$ over frequencies and the art of control may thus be seen as art of redistribution of $|S(j\omega)|$.