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Example

Let ym be the following measurement of a signal y :

y (t)ym(t) n(t)

where n is a measurement noise. Important question then is

− how information (y) can be recovered from measurements (ym) ?
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Harmonic signal

Signal
f (t) = cej!t =

for c ∈ C and ! ∈ R is called harmonic signal with frequency !, amplitude
|c|, and initial phase � = arg(c). It is 2�=|!|-periodic (! may be negative).

Euler’s formula ej!t = cos(!t) + j sin(!t) connects real and complex sines.
Also, we have that

cos(!t) =
ej!t + e−j!t

2
and sin(!t) =

ej!t − e−j!t

2j

so normally harmonics with ! and −! come together.

We say that c1e
j!1t is faster / slower than c2e

j!2t if |!1| > |!2| / |!1| < |!2|.
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Frequency-domain representation

Given f : R → F n, its Fourier transform

F{f } = F (j!) ··=
∫

R

f (t)e−j!tdt;

where ! ∈ R is frequency (in radians per time unit). Inverse transform

F−1{F} = f (t) =
1

2�

∫
R

F (j!)ej!td!:

F = F{f } is called the frequency-domain representation (or spectrum) of f .

− f is a superposition of elementary harmonics ej!t

− F (j!0) quantifies the contribution of ej!0t to f

Harmonic signals can be categorized on the “fast–slow” principle, namely

− ej!1t is faster (slower) than ej!2t if |!1| > |!2| (|!1| < |!2|)
Thus, the spectrum of f offers a different, informative, viewpoint on it and
facilitates the separation of fast and slow components.
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Fourier transform: interpretation (contd)

y (t)ym(t) n(t)

Signal y and noise n

− cannot be separated in the time domain,

− but can be separated in the frequency domain:

Y (j!)Ym(j!)
N(j!)

Separation can be done via filtering.
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LTI systems in the frequency domain

If P : u 7→ y is LTI (linear time-invariant), then

y(t) =

∫ ∞

−∞
g(t − s)u(s)ds =·· (g ∗ u)(t);

where g is the impulse response of P.

In the frequency domain,

y = g ∗ u =⇒ Y (j!) = G (j!)U(j!);

with the Fourier transform of the impulse response,

− G (j!) = G (s)|s=j! , is known as the frequency response of G .
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Systems as filters

Systems can be used to shape the spectrum of outputs.

− low-pass

Y (j!)
N(j!)

Ym(j!)Yf(j!)

− hi-pass

Y (j!)
N(j!)

Ym(j!)Yf(j!)

− band-pass

Y (j!)
N(j!)

Ym(j!)Yf(j!)
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Prototype control problem

u

d

y
P

y : regulated signal

u: control signal (means)

d : load disturbance

P: plant

Goal
u −→ y = r

where

r : reference signal (desired behavior)
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Ultimate methodology: plant inversion

u

d

y
P

y = P(d + u) ∧ y = r

⇓

r = P(d + u)

⇓

u =
1

P
r − d
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Open-loop plant inversion

ruy

d

P Col

with

Col =
1

P

ruy

d

P Col
-

with

Col =
1

P
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Limitations of open-loop plant inversion: internal stability

ruy

d

P Col

Signals [
y
u

]
=

[
PCol P
Col 0

] [
r
d

]
;

must bounded.

Hence, must have

− stable P

− bounded Colr

− if r is unknown a priori =⇒ Col = 1=P must be stable
− if r is known =⇒ stability of Col may be relaxed, e.g. non-proper Col(s)
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Approximate open-loop plant inversion

ruy

d

P Col

Pragmatic alternative if P is not stably invertible:

Col ≈
1

P
=⇒ Col =

Tr

P
→ y = Tr r

where the purpose of the reference model Tr : r 7→ y is twofold:

1. render Col feasible

2. keep Trr ≈ r e.g. Tr(j!) ≈ 1 at dominant frequencies of r(j!)

Technically,

− Tr must be stable itself

− Tr must result in bounded u = Colr = (Tr=P)r
− nonminimum-phase zeros of P(s) must be zeros of Tr(s)

− large enough pole excess of Tr(s)

· ≥ pole excess of P(s), if r is unknown a priori =⇒ proper Col(s)

· no “overly” high-order derivatives in Col if r is known
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Limitations of open-loop plant inversion: other

ruy

d

P Col

− unmeasured d nothing to do

− uncertain P nothing to do

Namely, if

Col =
Tr

P
;

while Ptrue ̸= P and d ̸= 0, then

y = Ptrue(d + u) = Ptrued +
Ptrue

P
Tr r

= Tr r + Ptrued −
(
1− Ptrue

P

)
Tr r
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Unity-feedback closed-loop setup

remu

d

y

ymn

CP -

Gang of four[
S(s) Tc(s)
Td(s) T (s)

]
··=

1

1 + P(s)C (s)

[
1 C (s)

P(s) P(s)C (s)

]
;

must be all stable (internal stability requirement, no unstable cancellations).

Signals  y
u
e

 =

 T Td −T
Tc −T −Tc

S −Td T

 r
d
n

 ;
where e ··= r − y = em + n.
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The marvel of feedback: closed-loop plant inversion

Because

Tc =
1

1=C + P
C→∞−−−−→ 1

P
and − T = − P

1=C + P
C→∞−−−−→ −1;

we have

reu

d

y ∞P - =⇒ ruy

d

P 1=P
-

Thus,

Td =
P

1 + PC
C→∞−−−−→ 0 and S =

1

1 + PC
C→∞−−−−→ 0;

independently of the plant and w/o an explicit measurement of d . In other
words,

− feedback is capable of handling uncertainty.

Also,

− feedback can stabilize unstable systems. but might also destabilize



Signals and systems in the frequency domain A crash review of control principles Goals and tradeoffs in the frequency domain Loop shaping fundamentals

The marvel of feedback: closed-loop plant inversion

Because

Tc =
1

1=C + P
C→∞−−−−→ 1

P
and − T = − P

1=C + P
C→∞−−−−→ −1;

we have

reu

d

y ∞P - =⇒ ruy

d

P 1=P
-

Thus,

Td =
P

1 + PC
C→∞−−−−→ 0 and S =

1

1 + PC
C→∞−−−−→ 0;

independently of the plant and w/o an explicit measurement of d . In other
words,

− feedback is capable of handling uncertainty.

Also,

− feedback can stabilize unstable systems. but might also destabilize



Signals and systems in the frequency domain A crash review of control principles Goals and tradeoffs in the frequency domain Loop shaping fundamentals

The marvel of feedback: closed-loop plant inversion

Because

Tc =
1

1=C + P
C→∞−−−−→ 1

P
and − T = − P

1=C + P
C→∞−−−−→ −1;

we have

reu

d

y ∞P - =⇒ ruy

d

P 1=P
-

Thus,

Td =
P

1 + PC
C→∞−−−−→ 0 and S =

1

1 + PC
C→∞−−−−→ 0;

independently of the plant and w/o an explicit measurement of d . In other
words,

− feedback is capable of handling uncertainty.

Also,

− feedback can stabilize unstable systems. but might also destabilize



Signals and systems in the frequency domain A crash review of control principles Goals and tradeoffs in the frequency domain Loop shaping fundamentals

Limitations of closed-loop plant inversion

remu

d

y

ymn

CP -

− closed-loop stability

− closed-loop stability Re s

Im
s

− closed-loop stability

− measurement noise sensitivity (T → 1 and Tc → 1=P)

− limited u

− . . .

Hence,

− (nontrivial) tradeoffs, conveniently over different frequencies
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Requirements to control systems

remu

d

y

ymn

CP -

We want:

1. internal stability (i.e. stability of all closed-loop treansfer functions),

2. good command following (i.e. small tracking error e),

3. good disturbance attenuation (i.e. attenuation of the effect of d on y),

4. low sensitivity to measurement noise,

and all this

5. with “reasonably small” control efforts.
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Command response: steady-state performance

reu

d

y

ymn

PC -

Remember that
y = Tr and e = Sr :

By good steady-state command response we understand that

Y (j!) ≈ R(j!) or |E (j!)| ≪ |R(j!)|

in the frequency range where the spectrum of r concentrated. Hence, good
command response requires

T (j!) ≈ 1 or, equivalently, |S(j!)| ≪ 1

in the frequency range where the spectrum of r concentrated.
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Disturbance response: steady-state performance

remu

d

y

ymn

PC -

In this case
y = Tdd = PSd (= −e):

By good steady-state disturbance attenuation we understand that

|Y (j!)| ≪ |D(j!)|

in the frequency range where the spectrum of d concentrated. Hence, good
disturbance response requires |P(j!)S(j!)| ≪ 1 which often reduces to

|S(j!)| ≪ 1 or |P(j!)| ≪ 1

(the latter condition does not depend on the controller).
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Noise sensitivity

ru

d

y

ymn

CP -

In this case
y = −Tn:

By low sensitivity to measurement noise we understand that

|Y (j!)| ≪ |N(j!)|

in the frequency range where the spectrum of n concentrated. This requires

|T (j!)| ≪ 1

in the frequency range where the spectrum of n concentrated.
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Steady-state requirements

remu

d

y

ymn

CP -

Thus (although this is a bit simplistic), we want

1. internal stability

2. |S(j!)| ≪ 1 (good command and disturbance responses)

3. |T (j!)| ≪ 1 (low noise sensitivity)

A (small) problem is that

− 2. and 3. cannot be achieved simultaneously,
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S-T tradeoff

Fundamental constraint:

S(j!) + T (j!) ≡ 1

This means that S(j!) and T (j!) cannot be made small simultaneously:

− if |S(j!)| ≪ 1, then T (j!) ≈ 1;

− if |T (j!)| ≪ 1, then S(j!) ≈ 1;

_̈ it might even happen that |S(j!)| ≫ 1 and |T (j!)| ≫ 1 (why?);

_̈ yet never that |S(j!)| ≪ 1 and |T (j!)| ≪ 1

The trick is that |S(j!)| and |T (j!)| required to be

− small at different frequencies.
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Frequency properties of r , d , and n

In many cases1,

− command signals are “slow”
(i.e. spectrum of r concentrated in the low-frequency range)

− measurement noise is “fast”
(i.e. spectrum of n concentrated in the high-frequency range)

Moreover, since most physical processes are low-pass filters,

− only “slow” components of d should be worried about
(“fast” part of d doesn’t show up in y anyway as |P(j!)| ≪ 1 at high frequencies)

1Oi va voi if this is not true !
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Steady-state requirements (contd)

remu

d

y

ymn

CP -

We thus have the following requirements:

1. internal stability

2. |S(j!)| ≪ 1 at “low” frequencies

3. |T (j!)| ≪ 1 at “high” frequencies

where “low” and “high” depend upon properties of exogenous signals (r(t),
d(t), and n(t)) and the plant P(s) (e.g. of its bandwidth).
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Steady-state requirements (contd)

In other words,

− S(s) should be high-pass filter,

− T (s) should be low-pass filter.

Ideally, something like this:

0dB

!

|T (j!)| |S(j!)|

More realistically, something like this:

0dB

!

|T (j!)| |S(j!)|
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Transient performance of command response

We’re mostly concerned with transient performance of command response:

reu

d

y

ymn

PC -

and measure it on the basis of the step response (its speed and smoothness).

We know that from the transient performance viewpoint time-domain and
frequency-domain properties related as follows:

− the wider the bandwidth of T (j!) is, the faster its step response is;

− the higher resonant peaks of T (j!) are, the larger over / undershoot is.
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Control effort

remu

d

y

ymn

CP -

Since

Tc(j!) =
T (j!)

P(j!)
;

properties of the step response of u

− determined by the ratio of the closed- and open-loop bandwidths.

For example, if !b;T (s) ≫ !b;P(s),

− Tc(j!) has high-frequency resonant peak(s),

which, in turn, leads to high-amplitude peaks in the step response of u.
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Requirements to control systems

remu

d

y

ymn

CP -

We thus end up with the following requirements:

− internal stability

− |S(j!)| ≪ 1 at “low” frequencies

− |T (j!)| ≪ 1 at “high” frequencies

− sufficiently “wide” (but not too “wide”) bandwidth !b of T (j!)

− no high resonant peaks in T (j!)

where “low” and “high” depend upon properties of exogenous signals (r , d ,
and n) and the plant P(s) (e.g. its bandwidth) and !b is limited from above
by control effort constraints and the spectrum of n.
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The good, the bad and . . .

This is what we can get:

Frequency, ω

M
a

g
n

it
u

d
e

 (
d

B
)

10
0

10
1

10
2

10
3

−40

−35

−30

−25

−20

−15

−10

−5

0

|T (j!)||S(j!)|

Frequency, ω

M
a

g
n
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u

d
e

 (
d

B
)

10
0

10
1

10
2

10
3

−60

−50

−40

−30

−20

−10

0

10

20

|T (j!)||S(j!)|

“Good” S and T “Bad” S and T



Signals and systems in the frequency domain A crash review of control principles Goals and tradeoffs in the frequency domain Loop shaping fundamentals

Outline

Signals and systems in the frequency domain

A crash review of control principles

Goals and tradeoffs in the frequency domain

Loop shaping fundamentals



Signals and systems in the frequency domain A crash review of control principles Goals and tradeoffs in the frequency domain Loop shaping fundamentals

Loop shaping

Design of C (s) to obtain desired S(s) and T (s) complicated by the fact
that

− S = 1=(1 + PC ) and T = PC=(1 + PC ) are nonlinear as functions of
the controller.

L -

Loop shaping is design method attempting to produce desirable S(s) and
T (s) by shaping the frequency response of L(s). In other words, it aims at

− producing required closed-loop f.r. by shaping open-loop f.r.

Advantages:

− L(s) = P(s)C (s) is linear as a function of the controller
(this facilitates modular design in which simple controller blocks added at each step)

− we have only one transfer function to take care of
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Closed vs. open loop: stability

remu

d

y

ymn

CP -

The closed-loop system internally stable iff

1. no unstable pole-zero cancellations occur in P(s)C (s),

2. the Nyquist plot of L(j!) agrees with the Nyquist stability criterion
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Closed vs. open loop: S and T

L -

As
|S(j!)| = 1

|1 + L(j!)| and |T (j!)| = |L(j!)|
|1 + L(j!)| ;

we have:

− If |L(j!)| ≫ 1 =⇒ |S(j!)| ≪ 1 (independently of arg L(j!))

− If |L(j!)| ≪ 1 =⇒ |T (j!)| ≪ 1 (independently of arg L(j!))

− If |L(j!)| ≈ 1, the situation is more delicate. In this case

|T (j!)| ≈ |S(j!)| ≈ 1
|1+L(j!)|

might be in [≈ 1
2 ;∞), depending on arg L(j!) (e.g. check L = ±1).
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Crossover region

L -

By crossover frequency, !c, we understand the frequency at which

|L(j!c)| = 1 (= 0 dB):

Frequency range (around !c) where |L(j!c)| ≈ 1 called crossover region.

Shaping L(j!) in the crossover region is

− most delicate and, arguably, most important

part of loop shaping because

− stability, transient performance, sensitivity to modeling inaccuracies

all heavily depend upon it.
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Closed vs. open loop: resonant peak of T

|1 + L(j!)| is the distance between L(j!) and the critical point:

Re

Im

−1

|1
+
L
(j!

)|

L(j!) L(j!) + 1

Thus,

− the closer L(j!) to the critical point is, the larger |T (j!)| is.
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Closed vs. open loop: example

Let L(s) =
k
√
2

(s + 1)(s2 + s + 1)
. Then for k ∈ { 0:5; 1; 2 } we have:
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Closeness to the critical point

Is normally (and simplistically) measured by

− stability margins, like gain �g, phase �ph, . . .
(all are measured around the crossover frequency !c, at which |L(j!c)| = 1)
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Closed vs. open loop: bandwidth of T

The closed-loop bandwidth !b is typically close to the crossover frequency
!c. A rule of thumb is that !b ≈ 1:2÷ 1:5!c.

For example, for L(s) =
k
√
2

(s + 1)(s2 + s + 1)
and k ∈ { 1; 2 } we have:
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Closed vs. open loop: the bottom line

Roughly, the following relationships hold:

− Closed-loop system stable ⇐⇒ L(j!) verifies the Nyquist criterion

− |S(j!)| ≪ 1 ⇐⇒ |L(j!)| ≫ 1

− |T (j!)| ≪ 1 ⇐⇒ |L(j!)| ≪ 1

−
T (j!) has “sufficiently wide” bandwidth !b

⇕
L(j!) has “sufficiently large” crossover frequency !c

−
T (j!) does not have high resonant peaks

⇕
L(j!) is “far” from the critical point in the crossover region
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Requirements to L(j!)

L -

We finally get:

− plot of L(j!) agrees with the Nyquist stability criterion,

− L(j!) has “sufficiently large” crossover frequency !c,

− |L(j!)| ≫ 1 (high loop gain) at low frequencies (! ≪ !c),

− |L(j!)| ≪ 1 (low loop gain) at high frequencies (! ≫ !c),

− L(j!) is “far” from the critical point in the crossover region.
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Big picture of loop shaping
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. . . although could be different in some cases, like lightly-damped systems
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