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. Companion form:
x(t) = [8 Hx(tH H]u(t)
y(t)=[a T]x(t).

Note that one may also choose any other realization, like the observer form. In this case items 2, 3, and 6
will be different.

. Companion form is always controllable. This can be seen, for example, from the controllability matrix
Me=[95]-

. As the second-order realization above is minimal iff it is both controllable and observable and as it is
always controllable, this realization can be unobservable iff there are pole/zero cancellations in P(s). This
is obviously the case only when a = 0, in which case one pole at the origin is unobservable. An alternative
way to see this is through the observability matrix M, = [§ ! ], which is singular only for a = 0. As we
have modes only at the origin, the unobservable mode is obviously the one at s = 0.

. We know (Lecture 8, p. 4) that zeros of the closed-loop transfer function from r to y under a state-feedback
control law are those of the plant. Thus, in order to end up with a first-order transfer function we have
to guarantee that one closed-loop pole cancels the plant zero at s = —a. This cancellation is possible iff
a > 0 (closed-loop poles must be stable as feedback is stabilizing). Thus, we have to assign the following
closed-loop characteristic polynomial:

Xals) = (s +A\)(s +a) = s* + (a+A)s + aA
for any A > 0. The rest is trivial (remember, the realization is in the companion form):

F=[aX a+A].

. We know (Lecture 8, p. 16) that the closed-loop transfer function from r to y in the observer-based con-
figuration does not depend on the observer and is the same as in the state-feedback case. Thus, it should
in general be a second-order transfer function with one zero at s = —a. Following the reasoning in the
previous item, if a > 0, the order can be reduced by putting one of the closed-loop poles to —a. In this
case the minimal order is 1. On the other hand, if a < 0, this zero cannot be canceled and the minimal
order is 2.

. Note thaty(t) = [ a 1]x(t)and y(t) = [0 a]x(t) + u(t). Hence,

M4+ (1=AY2 +u? =X/ (7\[?] [a 1]4+(1=2) {O} [0 a}>x+zx’(17\) {O]u—l—(Z?\)uz
a a ——
C.C, S ?

We know (Lecture 9, p. 16) that cost function results in the LQR problem with the plant

1—A
xm:([g H—ﬁ[ﬂ 0 a})x(t)wL{?]ﬂ(t): [8 J;;a]x(tw[ﬂa(t), @)
%
A
where u(t) = u(t) — ﬁ [ 0 a } x(t), and the cost function with p =2 — A and any C, such that
-, ~ 0 (1-=N*To0 Aa? A
CZCZ_A[H [a 1]+(17\)[a] [0 a]- 2_}\) [a] [0 a]_[}\i Héaﬁ-
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Now, the LQR problem for this data is solvable iff realization (2) is stabilizable (always true as it is in
the companion form, hence always controllable) and (C,, A) has no unobservable modes on the jw-axis.

To check this condition, note that A has two modes at s = 0 and s = — 172 a. To see, whether they are
observable, let’s use the PBH test (Lecture 7, p. 11). If the first mode is not observable, then the matrix
0 1
0 —33a
\/Xa \/_

has reduced column rank. This is obviously true iff a = 0 and in this case the problem is not solvable. If

the mode at — 1 >‘ a is unobservable, the matrix
H a 1
0 0
Via VA

0 \/ga

has reduced column rank. This is again true iff a = 0 (the columns are linearly dependent). To conclude,
the problem is solvable iff a # 0.

Assume now that a # 0. Then the optimal control law is

u(t) = — [oﬂ[p‘ pz]x(t) 12200 alwit) = —

_ 1—A t
PN P2 D3 P p2 p3+( Ja ] x(t),

7 |

where [ p1 P2 } is the stabillizing solution of the Riccati equation

1 —32a][p2 ps P2 P3| [0 —3Fa Aa A+ 12 a?
T Iprp2]]|O0 P1 P2
- 01 =0.
2—?\[]92 p3 || [ ] P2 P3
Since we are looking for the stabilizing solution, the matrix

R KT LLRN R el
0 —33a 2-A |1 P2 P3 —55 P2 —55((1—Na+7ps)

must be stable. In other words, the conditions p, > 0 and p3 > (A — 1)a must hold.

_A

The ARE can be rewritten as

{ Aa? — 5= p3 P1— 172 ap2 +Aa — 555 paps ]:o
P1*;_—>\apz+7\a s P2p3 2(p2 — 2 aps) + A+ 12 a? — 55 pd

The (1, 1) element yields
P2 =+VA2—A)la|

(remember that p, > 0). The (2,2) element yields
p3+2a(1—Np3 — ((2—=AN)(2p2 +A) + (1 —=N)a?) =0

Therefore,

a1 —A i\/az F(2-A)2p2 +A) + (1 — A)a2
Sincep3>—(1—)\)aand(z—?\)(2p2+?\) + (11— )a > 0, we have that

—a(1=N) +1/2=A)(a2(1 = \) + 2/AZ =N [a| + A).

The last parameter, p1, can be easily obtained from the (1, 2) element. Yet since the optimal control doesn’t
depend on pj, this step is not required. Thus, the control law is

u(t) = —Z]j [ VAZ =N lal /(2 =) (a2(1 =) +2/AZ— A lal +2) } x(t)

Hmm, it looks that I slightly exaggerated with this item. ..
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In this case, the problem is the LQR for the plant
. 01 0
x(t) = {O O]x(t)Jr []}u(t)

and the regulated signal
7N
z(t) = [ 0 VI—A x(t)

(since x; =y and x; = y). Hence, we have that C, = { \(/)X \/10—7\] and p = 1.

It follows from the return-difference equality (Lecture 9, p. 11) that
Xol(—8)Xol(8) + §(s) = Xa(—s)xals),

where ¢(s) is the numerator polynomial of

, , N _ —s 0] '[Ar O s —117"To
1P.(—s)'P.(s) =B'(—sI = A")7'C.C.(sI—-A) " 'B=[0 1][1 s] [0 ]7\] [o S } []}
=[L -

] A0 ET_A 1A A-(1-N¢?
0 1= 1 g4 s2 g4 :

s

o=

Thus, we have that
Xcl(_S)Xcl(S) =5t — (11— )\)S2 + A.

Therefore, to get a double closed-loop pole at —«x for some « > 0 we have to meet the following requirement:
sSP—(1=Ns? + A= (—s+ &) (s + ) = (a«? —s%)? =s* —2a%s% + ™.
This leads to A = «* and then
T—a' =20 <= o' +207 —1=0 <= o =—1+V2

Thus, the required
A=(V2-12=3-2V2~0.17157.



